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ARTICLE INFO ABSTRACT

Ciguatera fish poisoning (CFP) is prevalent around the tropical and sub-tropical latitudes of the world and
impacts many Pacific island communities intrinsically linked to the reef system for sustenance and trade. While
the genus Gambierdiscus has been linked with CFP, it is commonly found on tropical reef systems in microalgal
assemblages with other genera of toxin-producing, epiphytic and/or benthic dinoflagellates — Amphidinium,
Coolia, Fukuyoa, Ostreopsis and Prorocentrum. Identifying a biomarker compound that can be used for the early
detection of Gambierdiscus blooms, specifically in a mixed microalgal community, is paramount in enabling the
development of management and mitigation strategies. Following on from the recent structural elucidation of
44-methylgambierone, its potential to contribute to CFP intoxication events and applicability as a biomarker
compound for Gambierdiscus spp. was investigated. The acute toxicity of this secondary metabolite was de-
termined by intraperitoneal injection using mice, which showed it to be of low toxicity, with an LDs, between 20
and 38 mg kg~ '. The production of 44-methylgambierone by 252 marine microalgal isolates consisting of 90
species from 32 genera across seven classes, was assessed by liquid chromatography-tandem mass spectrometry.
It was discovered that the production of this secondary metabolite was ubiquitous to the eight Gambierdiscus
species tested, however not all isolates of G. carpenteri, and some species/isolates of Coolia and Fukuyoa.
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the Pacific Ocean, Indian Ocean, Caribbean Sea and the Gulf of Mexico
(Friedman et al., 2017). While the existence of CFP has been known for

1. Introduction

Ciguatera fish poisoning (CFP) is the most common non-microbial,
food-borne illness in the world. It can be extremely debilitating, with
symptoms potentially lasting years. Intoxications manifest as a wide
array of symptoms including gastrointestinal discomfort (e.g. nausea
and diarrhoea), neurological impairment (e.g. parathesia and dys-
aesthesia) and/or cardiovascular complications (e.g. hypotension and
bradycardia) (Friedman et al., 2017; Diogene, 2018). The syndrome is
prevalent in the circumtropical regions of the world, including areas of
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centuries (Friedman et al., 2008), the true level of incidence is not
known. It is estimated that 25,000-50,000 people are affected annually,
with epidemiological studies indicating that < 20% of actual cases are
reported (ILM, 2014).

Ciguatera fish poisoning is caused by the consumption of reef fish
contaminated with ciguatoxins (CTXs) and possibly other compounds,
including maitotoxins (MTXs). These compounds are produced by the
epiphytic, benthic dinoflagellate genus Gambierdiscus and are some of
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the most potent non-peptide toxins known (Friedman et al., 2008). In
addition to CTXs and MTXs (Rhodes et al., 2014), other bioactive,
ladder-shaped polyether secondary metabolites such as gambieric acids
(Morohashi et al., 2000), gambierol (Morohashi et al., 1999), gam-
bieroxide (Watanabe et al., 2013) and gambierones (Murray et al.,
2019) are produced by Gambierdiscus. However, the role that these
compounds play in intoxication events is currently unknown.

Ciguatoxins have been demonstrated to bioaccumulate and bio-
transform into more toxic analogues as they move up the marine food
chain, from herbivorous fish grazing on coral (e.g. parrot fish, Scaridae
spp.) or macroalgae (e.g. mullet, Mugil cephalus) (Yasumoto et al., 1971,
1977; Ledreux et al., 2014; Clausing et al., 2018), to the higher trophic
level omnivorous (e.g. wrasse, Cheilinus spp.) and carnivorous reef fish
species that predate upon them (e.g. Spanish mackerel, Scomber-
omorus spp.) (Murray et al., 2016; Kohli et al., 2017). While CTXs have
been shown to bioaccumulate in fish of all trophic levels, with pub-
lished estimates of CFP vectors ranging from 60 (Gaboriau et al., 2014)
to 90 (Kohli et al., 2015) to over 400 species (FAO, 2014), it is the
carnivorous fish species that are most commonly implicated in CFP
cases as they are often targeted by commercial and recreational fishers.
As a result, carnivorous fish species are responsible for 68% of in-
toxication events in French Polynesia and 85% in New Caledonia
(Caillaud et al., 2010). The role of the additional secondary metabolites
produced by Gambierdiscus in intoxication events is currently unknown.

Ciguatera fish poisoning is particularly prolific throughout the tro-
pical and sub-tropical waters of the South Pacific and affects many
indigenous island communities intrinsically linked to the reef system
for sustenance and trade. In addition, climate change is causing an in-
crease in global ocean temperatures, resulting in an expansion of the
sub-tropical latitudes (Rhodes et al., 2020). Consequently, the habitable
regions for Gambierdiscus are expanding. These regions now include the
New South Wales coastline (Australia), the Rangitahua/Kermadec Is-
lands (a New Zealand territory) and mainland Aotearoa/New Zealand
(Rhodes and Smith, 2019). To date, only one Gambierdiscus species has
been reported from New Zealand's mainland and was reported from a
single cell attached to floating macroalgae, Sargassum (Chang, 1996).
No culturing was undertaken with the single cell and therefore no
chemical analysis nor phylogenic investigation was performed. It is
however noted that Pacific-CTX (P-CTX) producing strains of Gam-
bierdiscus polynesiensis have been isolated from the Kermadec Islands
(Rhodes et al., 2020).

Gambierdiscus is found attached to macroalgae (e.g. in the Pacific
region it favours filamentous red and calcareous green species), coral-
line turfs, dead corals and volcanic sands around the world
(Rhodes et al., 2017a). It is regarded as an opportunistic dinoflagellate
that proliferates following damage to the reef system from tropical
hurricanes, crown of thorn starfish outbreaks or coral bleaching events
(Rongo and van Woesik, 2013; Xu et al., 2016). Adding to the com-
plexity of CFP is that Gambierdiscus is commonly found co-habitating in
assemblages with other toxin-producing benthic dinoflagellates from
the genera Amphidinium, Coolia, Fukuyoa, Ostreopsis and Prorocentrum
(Hachani et al., 2018; Yong et al., 2018; Rhodes and Smith, 2019).
These genera of microalgae produce multiple toxic secondary metabo-
lites including palytoxins (Ishii et al., 1997), okadaic acid
(Malagoli et al., 2008), dinophysistoxins (Carmody et al., 1996) and
amphidinols (Echigoya et al., 2005). While significant research has
been conducted on these metabolites to determine their toxicity, they
are currently not considered to play a role in CFP events.

The World Health Organisation considers the CFP syndrome a ne-
glected disease worldwide and in 2015, to help promote research ac-
tivities on CFP, the United Nations Educational, Scientific and Cultural
Organisation (UNESCO) formulated a global research strategy (I0C/
IPHAB Global Ciguatera Strategy 2015-2019) through its
Intergovernmental Oceanographic Panel on Harmful Algal Blooms
(IPHAB). This document highlighted several priority research areas,
including the urgent need for improved monitoring capabilities for
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CTXs and MTXs, along with the development of tools for early warning/
monitoring of toxic Gambierdiscus blooms (I0OC/UNESCO, 2015). One
such tool could be the identification of a biomarker compound(s) in the
environment, as this would enable the development of better manage-
ment and mitigation strategies.

Biomarker compounds have been used for epidemiological in-
vestigations for decades and in more recent years have been adopted as
an early detection method for the planktonic paralytic shellfish poi-
soning dinoflagellate genus Alexandrium (Chan et al., 2006). However,
identifying a biomarker for CFP is complicated as the causative CTXs
are produced at very low levels, are analytically difficult to detect and
their production has only been confirmed using liquid chromatography-
tandem mass spectrometry (LC-MS/MS) in one species, G. polynesiensis
(Chinain et al., 2010; Rhodes et al., 2014). As a result, there is currently
no biomarker compound that can be used to confirm CFP intoxication
in humans nor has one been identified for the early detection of toxic
Gambierdiscus blooms in the environment (Friedman et al., 2008). In an
effort to develop biomarkers for CFP, progress has been made in animal
studies using blood samples, however, these are not appropriate in
human clinical scenarios (Friedman et al., 2017).

One secondary metabolite that is more easily detectable by LC-MS/
MS than CTXs is 44-methylgambierone (Fig. 1). This compound has
previously been reported as putative maitotoxin-3 (MTX-3) and was
recently structurally characterised from G. australes (Murray et al.,
2019) and G. belizeanus (Boente-Juncal et al., 2019). To better under-
stand whether 44-methylgambierone plays a role in CFP intoxication
events, its acute toxicity to mice was determined by intraperitoneal
injection. To evaluate the potential of 44-methylgambierone to be used
as a biomarker for the presence of Gambierdiscus spp. in areas of high
CFP risk, this study screened its production in 252 microalgal isolates
consisting of 90 species from 32 genera across seven classes using LC-
MS/MS.

2. Materials and methods
2.1. Chemicals and reagents

High purity methanol (MeOH) and acetonitrile (MeCN) were ob-
tained from Thermo-Fisher (Fisher-Optima). Purified water (18.2 MQ)
was produced with a Milli-Q system (Millipore, Canada). Ammonium
hydroxide (= 25%) was from Honeywell Research Chemicals.

2.2. Acute toxicity of 44-methylgambierone by intraperitoneal injection

2.2.1. Quantitative nuclear magnetic resonance spectrometry
44-methylgambierone reference material was produced in-house
from a cultured G. australes isolate (CAWD149) using the purification
procedure described in Murray et al. (2019). The reference material was
dissolved in 0.5 mL of deuterated methanol (CD3;0D) and transferred to
a 5 mm NMR tube. The millimole level of the reference sample, and
subsequently the mg mL™ concentration, of 44-methylgambierone in

OH Gambierone -R =H
HO 44-Methylgambierone - R = CH5

Fig. 1. Structures of gambierone and 44-methylgambierone, previously re-
ported as maitotoxin-3 (MTX-3; Murray et al., 2019).
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the reference solution was determined by quantitative nuclear magnetic
resonance spectroscopy (QNMR) using a Bruker AVIII-HD 8000 MHz
NMR spectrometer and electronic reference to assess in-vivo con-
centrations (ERETIC2) QNMR software (Wider and Dreier, 2006). Ex-
ternal standard quantification was performed using a dioxane solution
(1.58 mg mL~! in CD;OD). Eight sets of triplicate ERETIC2 QNMR
analyses were performed over several days using 90- or 30-degree
pulses with 60- or 30 s pulse delays respectively (total n = 24).
Quantification was performed using the integrated peak areas of the
four methyl proton signals of 44-methylgambierone which occurred at
1.23 (s), 1.21 (s), 1.15 (s) and 1.02 (d) ppm (equivalent to 12 protons)
and the dioxane proton signal at 3.68 ppm (equivalent to eight pro-
tons). The concentration of the 44-methylgambierone reference solu-
tion was determined to be 2.33 = 0.02 mg mL™~?, with a precision of
0.9% relative standard deviation.

2.2.2. Animals

Female Swiss albino mice (18-22 g) were bred at AgResearch,
Ruakura, New Zealand. The mice were housed individually during the
experiments and were allowed unrestricted access to food (Rat and
Mouse Cubes, Speciality Feeds Ltd., Glen Forrest, Western Australia)
and water. All experiments were approved by the Ruakura Animal
Ethics Committee established under the Animal Protection (code of
ethical conduct) Regulations Act, 1987 (New Zealand), Project Number
14,320, approval date 2 November 2017.

2.2.3. Toxicity assessment

Acute toxicity was determined using the principles of Organisation
for Economic Co-operation and Development (OECD) guideline 425
(OECD, 2006). This guideline employs an up-and-down procedure
whereby one animal is dosed and if it survives the dose for the next
animal is increased, whereas if it dies, the dose for the next animal is
decreased. To determine the LDsg, dosing is continued until four live-
death reversals have been achieved.

Toxicity was determined by intraperitoneal injection. Each mouse
was weighed prior to dosing and the appropriate quantities of test
compound calculated to yield the required dose on a mg kg~ ' basis.
The dose was prepared by taking the appropriate volume of stock so-
lution (pure 44-methylgambierone in 90% aq. MeOH), drying it down
under nitrogen and immediately re-dissolving in 1% Tween 60 in
normal saline (1 mL) with the aid of sonication. This solution was in-
jected into mice. All dosing was conducted between 8 and 9.30 am to
avoid any diurnal variations in response. Mice were monitored in-
tensively during the day of dosing and any that survived were mon-
itored for a 14-day period which included a daily measurement of food
consumption and bodyweight. After 14 days, the animals were eu-
thanized by carbon dioxide inhalation and necropsied. The weights of
the liver, kidneys, spleen, heart, lungs, stomach (full and empty) and
the whole gut were measured and expressed as a percentage of body-
weight.

2.3. Screening of microalgal cultures for 44-methylgambierone production

2.3.1. Microalgal culturing and sample extraction

Microalgal isolates (252 in total) consisted of 90 species from 32
genera across seven classes. Depending on the specific nutritional re-
quirements of each genus, cultures were grown in either 25% f/2, 33%
/2, /2 (Guillard and Ryther, 1962), GP, 50% GP, K, modified K, L1
(Bigelow, 1985) or metals mix SWII medium (Matsuda et al., 1996;
Nishimura et al., 2019) diluted in sterile seawater (autoclaved and fil-
tered; 0.22-um). Depending on the origin of the isolate, the cultures
were grown at either 17 °C ( = 2 °C; for temperate isolates) or 25 °C
(+ 2 °C; for sub-tropical and tropical isolates) with
40-70 pmol m~2 s~ ! photon irradiance and a 12:12 h light:dark cycle.
Isolates were sourced from previous research expeditions; the Cawthron
Institute Culture Collection of Microalgae (CICCM); or donated as
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frozen cell pellets by researchers from French Polynesia, Hong Kong,
Spain and Australia. Cultures were harvested in the late exponential or
stationary phase and contained at least 1 x 10° cells. The cells were
harvested by centrifugation (3200 X g, 4 °C, 10 min), the growth
medium decanted, and the resulting cell pellets frozen at —20 °C.

Each cell pellet was extracted twice with 90% aq. MeOH at a ratio of
1 mL per 2 X 10° cells using ultrasonication for 10 min in a 59 kHz
water bath (model 160HT, Soniclean Pty, Australia). Cellular debris
was pelleted by centrifugation (3200 x g, 4 °C, 5 min) and the su-
pernatant was transferred to another vial before the cell pellets were re-
extracted in the same manner. The resulting extract supernatants were
pooled to give a final extract equivalent to approximately 1 x 10° cells
mL~'. The combined extracts were stored at —20 °C for 24-48 h to
precipitate insoluble matrix co-extractives, which were removed using
centrifugation (3200 X g, 4 °C, 5 min) prior to analysis. An aliquot of
the clarified extract was transferred into a 2 mL glass autosampler vial
for analysis by LC-MS/MS using a modified version of the method de-
scribed in Murray et al. (2018).

2.3.2. Liquid chromatography-tandem mass spectrometry conditions

Analysis was performed on a Waters Xevo TQ-S triple quadrupole
mass spectrometer coupled to a Waters Acquity UPLC i-Class with flow-
through needle sample manager. Chromatographic separation used a
Waters Acquity UPLC BEH phenyl column (1.7-um, 100 X 2.1 mm
column) held at 50 °C. The column was eluted at 0.55 mL min~* with
Milli-Q water (A) and acetonitrile (B) mobile phases, each containing
0.2% (v/v) of a 25% ammonium hydroxide solution. Fresh mobile
phases were prepared daily to ensure optimal sensitivity and stable
retention times. The initial solvent composition was 5% B with a linear
gradient to 50% B from 0 — 2.5 min, ramped up to 95% B by 3 min and
held at 95% B until 3.2 min, followed by a linear gradient back to 5% B
at 3.5 min. The column was then re-equilibrated with 5% B until 4 min.
The autosampler chamber was maintained at 10 °C and the injection
volume was 1 pL. The mass spectrometer used an electrospray ionisa-
tion source operated in negative-ion mode. Other settings were: capil-
lary voltage 3.0 kV, cone voltage 40 V, source temperature 150 °C,
nitrogen gas desolvation flowrate 1000 L h ™! at 600 °C, cone gas 150 L
h~! and the collision cell was operated with 0.15 mL min~ ' argon. 44-
Methylgambierone was monitored using the following transitions: m/z
1037.6 > 96.8 (Channel 1) and 899.6 > 96.8 (Channel 2), with col-
lision energies of 60 and 48 eV respectively, and using a dwell time of
30 ms.

Data acquisition and processing were performed with TargetLynx
software (Waters, Milford, US). 44-Methylgambierone was identified in
sample extracts based on the retention time (2.61 min) and a fragment
ion ratio of 3:1 (Channel 1 / Channel 2; as determined using reference
material). The isolates were analysed qualitatively yielding a result of
presence/absence for 44-methylgambierone, with an ‘absent’ result
equating to less than 2 ng mL™! in an extract generated from a cell
pellet of 1 x 10° cells mL ™%, or 0.02 pg cell .

3. Results
3.1. Acute toxicity of 44-methylgambierone by intraperitoneal injection

Single mice were dosed with 44-methylgambierone at dose rates of
0.89, 4.45, 20 and 38 mg kg~ !. The mice dosed at 0.89, 4.45 and 20 mg
kg~! showed no adverse effects on the day of dosing and their move-
ment, behaviour, appearance and respiration appeared normal
throughout the 14 days of the study. At necropsy, none of these mice
showed any abnormalities and the organ weights, as expressed as% of
bodyweight, were all normal. On the day of dosing, the mouse dosed at
38 mg kg ! also looked normal. However, over the first 24 h period, it
was found to have eaten very little and although it was moving nor-
mally, its behaviour was slightly abnormal (hunched posture) by day
two. At 48 h post-dosing, the mouse was alert and moving normally but
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it still had a very low food intake. At 56 h post-dosing, the mouse was
hunched, and its breathing was laboured. To avoid long-term suffering,
this animal was euthanised and necropsied in accord with the re-
quirements of the OECD Humane Endpoints Guidance Document
(OECD, 2000). Under OECD guideline 425, this euthanised animal can
be considered in the same way as an animal which died during the test.
The food intake and bodyweight data suggest that this mouse, dosed
with 38 mg kg~ ! of 44-methylgambierone, suffered from anorexia and
the reduced hepatic and splenic weights observed were consistent with
that diagnosis. Necropsy of this mouse showed that the stomach,
caecum and intestines contained a dark green, runny material. Due to
the limited availability of 44-methylgambierone, a full LDs, determi-
nation could not be completed. However, since the mouse dosed at
20 mg kg~ ! was healthy and death was induced at a dose rate of 38 mg
kg~ !, the LDso of 44-methylgambierone sits between 20 and 38 mg
kgL

3.2. 44-methylgambierone production by common co-habitating benthic
microalgae

Isolates from the six main dinoflagellate genera that co-habitate in
the Pacific region (Amphidinium, Coolia, Fukuyoa, Gambierdiscus,
Ostreopsis and Prorocentrum; 190 isolates in total from 34 species) were
collected during previous research expeditions to the Kermadec Islands
(Raoul Island, North Meyer Island and Macauley Island), the Cook
Islands and the Federated States of Micronesia, or cell pellets were re-
ceived as gifts from researchers in French Polynesia, Hong Kong, Spain
and Australia.

44-Methylgambierone production was ubiquitous to all
Gambierdiscus species analysed from Australia, the Cook Islands, French
Polynesia, the Kermadec Islands and Micronesia. These species included
G. australes, G. caribaeus, G. carpenteri, G. cheloniae, G. honu, G. lapillus,
G. pacificus and G. polynesiensis (total 78 isolates; Table 1). However, it
is noted that for G. carpenteri, isolates from the Cook Islands and French
Polynesia produced this secondary metabolite whereas G. carpenteri
isolates from Australia did not (total 5 Australian isolates; Table 1).

In addition, of the three Fukuyoa species tested, a single isolate of F.
paulensis from New Zealand produced 44-methylgambierone, as did two
of the three F. ruetzleri isolates from Hong Kong. The two isolates of F.
sp. HK Type 1 from Hong Kong were negative. Only two of the five
species of Coolia tested produced 44-methylgamberieone (C. malayensis
and C. tropicalis), while the isolates of C. canariensis, C. monotis and C.
palmyrensis were all negative. For C. malayensis, all isolates from
Australia produced the secondary metabolite, as did two of the five
isolates from New Zealand, but the isolates from the Cook Islands and
Hong Kong did not. For C. tropicalis, all isolates from the Cook Islands
and Hong Kong produced 44-methylgambierone, while only two of the
three from Australia did. The isolates of Amphidinium, Ostreopsis and
Prorocentrum tested did not produce 44-methylgambierone (Table 1).

3.3. . 44-methylgambierone production by other marine microalgae genera

The Cawthron Institute curates a unique collection of microalgal
isolates that includes many benthic and planktonic dinoflagellates,
along with other classes of marine microalgae. To complete this survey
of 44-methylgambierone production by marine microalgae, isolates (62
in total) from an additional 56 species spanning 26 genera across seven
classes were analysed. None produced 44-methylgambierone (Table 2).

4. Discussion

The acute toxicity assessment of 44-methylgambierone showed that
the LDs, of this secondary metabolite is between 20 and 38 mg kg ™! by
intraperitoneal injection. This toxicity is relatively low in comparison to
that of the CTXs implicated in CFP such as P-CTX-1B that has an LDsq of
just 0.00036 mg kg~ ! by intraperitoneal injection (Yogi et al., 2014).
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Maitotoxins have previously been considered unlikely to contribute to
CFP due to their hydrophilicity and low bioaccumulation in the viscera
of reef fish (Kohli et al., 2014). Additionally, although toxic by in-
traperitoneal injection, MTXs have low oral toxicity. 44-methylgam-
bierone was previously classified as MTX-3. It is also hydrophilic in
nature, so is similarly unlikely to bioaccumulate in reef fish flesh. This
study has determined that the intraperitoneal toxicity of 44-methyl-
gambierone is very low, demonstrating that it is highly unlikely to play
a role in CFP. Anorexia observed in the mouse dosed with 44-methyl-
gambierone at 38 mg kg™, and liquid stomach contents observed at
necropsy, were consistent with observations by Munday et al. (2017)
who dosed mice with Gambierdiscus species which expressed CTXs and
MTXs. Some isolates in that study only expressed 44-methylgam-
bierone, indicating the symptomology observed was a result of this
secondary metabolite.

During the present study, the use of 44-methylgambierone as a
biomarker was investigated. Preliminary research showed that its pro-
duction appeared to be widespread in Gambierdiscus species and a LC-
MS/MS signal was easily observed in culture extracts. However, little
research had been conducted on the expression of this secondary me-
tabolite by other marine microalgae. An ideal biomarker is one that is
ubiquitous to a single genus, unique and is easily detected. To test the
potential use of 44-methylgambierone as a biomarker, LC-MS/MS was
used to assess its production amongst a wide range of marine micro-
algae. The 44-methylgambierone reference material used for the acute
toxicity assessment was generated after the microalgal isolates were
analysed. 44-Methylgambierone levels were not able to be quantified
using the data that was available as the reference standard was not
analysed alongside the isolates in order to compensate for day-to-day
variations in the LC-MS/MS signal. Therefore, results are expressed as a
qualitative measurement only. This study confirmed 44-methylgam-
bierone production in all previously analysed isolates (Munday et al.,
2017; Larsson et al., 2018; Leung et al., 2018). At the time of these
earlier publications, results were reported as putative MTX-3 with the
LC-MS/MS analysis being performed at Cawthron Institute (the isolates
are identified in Table 1). It is now possible to report this compound as
44-methylgambierone.

The analysis of 44-methylgambierone from Gambierdiscus cultures
demonstrated ubiquitous production across all species tested;
G. australes, G. caribaeus, G. carpenteri, G. cheloniae, G. honu, G. lapillus,
G. pacificus and G. polynesiensis. However, an interesting observation
was that not all isolates of G. carpenteri produced it. All G. carpenteri
isolates from Australia (total 5 isolates) were negative, while other
G. carpenteri isolates from Pacific locations (the Cook Islands and
French Polynesia) were all positive for the production of 44-methyl-
gambierone. It is noted that G. carpenteri is not a CTX producer, so
depending on the intended application (i.e. identifying CFP hot spots),
the negative isolates might not pose an issue. In the literature, addi-
tional Gambierdiscus spp., not tested during this study, have been shown
to produce 44-methylgambierone (reported as putative MTX-3). These
include G. balechii, G. belizeanus, G. carolinianus, G. excentricus,
G. scabrosus, G. silvae, G. toxicus (Pisapia et al., 2017); G. holmesii and G.
lewisii (Kretzschmar et al., 2019). Collectively, these results confirm
that 44-methylgambierone production is ubiquitous to the 17 species
tested to date, with only G. jejuensis remaining untested.

To date, only three Fukuyoa species have been described and two
were analysed during this study (F. paulensis and F. ruetzleri). Five of the
eight Coolia species described were also analysed during this study (C.
canariensis, C. malayensis, C. monotis, C. palmyrensis and C. tropicalis).
The results showed that some isolates of F. paulensis (New Zealand),
F. ruetzleri (Hong Kong), C. malayensis (New Zealand and Australia) and
C. tropicalis (Cook Islands, Australia and Hong Kong) produced 44-
methylgambierone. The production of this secondary metabolite by the
genus Coolia supports the findings recently published by
Yan et al. (2020) and limits its use as a Gambierdiscus-specific bio-
marker. To complete the study on 44-methylgambierone production by
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Table 1
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Summary of the 190 benthic dinoflagellate isolates from 34 species spanning 6 genera tested for 44-methylgambierone production.

Genus Species Location Number of isolates 44-methylgambierone production
Gambierdiscus australes Cook Islands 8" +
Kermadec Islands 43 +
caribaeus Micronesia 1 +
carpenteri Cook Islands 4 +
French Polynesia 3 +
Australia 5° -
cheloniae Cook Islands 27 +
honu Cook Islands 2° +
Kermadec Islands 2 +
lapillus Cook Islands 2 +
pacificus Cook Islands 3° +
Australia 1 +
polynesiensis Cook Islands 1* +
Kermadec Islands 1 +
Fukuyoa sp. HK Type 1 Hong Kong 2¢ -
paulensis New Zealand 1° +
ruetzleri Hong Kong 3¢ +/-(2/3)
Coolia canariensis Hong Kong 2 -
malayensis New Zealand 5 +/-(2/5)
Australia 3 +
Cook Islands 3 -
Hong Kong 1 -
monotis Spain 1 -
palmyrensis Australia 2 -
Hong Kong 2 -
tropicalis Cook Islands 5 +
Australia 3 +/-(2/3)
Hong Kong 2 +
Amphidinium cf. boggayum New Zealand 1 -
carterae Hong Kong 1 -
New Zealand 1 -
massartii Cook Islands 1 -
thermaeum Cook Islands 1 -
trulla New Zealand 1 -
sp. Australia 3 -
Cook Islands 1 -
Ostreopsis rhodesiae Australia 7 -
siamensis New Zealand 10 -
Australia 3 -
Prorocentrum concavum Hong Kong 2 -
dentatum Hong Kong 2 -
gracile Hong Kong 2 -
HK sp. 2 Hong Kong 2 -
koreanum Hong Kong 2 -
lima New Zealand 26 -
Kermadec Islands 1 -
Australia 2 -
cf. lima Hong Kong 2 -
mexicanum Hong Kong 2 -
rhathymum Australia 2 -
triestinum Hong Kong 2 -

? Results from these isolates have been previously published as MTX-3 (Munday et al., 2017).
b Results from these isolates have been previously published as MTX-3 (Larsson et al., 2018).
¢ Results from these isolates have been previously published as MTX-3 (Leung et al., 2018).

Fukuyoa and Coolia, further analyses need to be made on F. yasumotoi,
C. areolata, C. guanchica and C. santacroce. No isolates analysed from the
genera Amphidinium, Ostreopsis and Prorocentrum tested positive.
Fukuyoa and Gambierdiscus have a close phylogenetic relationship
and in fact Fukuyoa was originally classified as Gambierdiscus before
being reclassified as a separate genus by Gomez et al. (2015). It is
therefore not surprising that both genera produce 44-methylgam-
bierone. Coolia and Ostreopsis are within the same family as Fukuyoa
and Gambierdiscus (Ostreopsidaceae) but not as closely related
(Rhodes et al., 2017b). It is interesting that whereas some species of
Coolia produced 44-methylgambierone none of the Ostreopsis species
tested did. Amphidinium and Prorocentrum show even higher genetic
divergence away from Gambierdiscus (compared to that of Coolia) and it
was anticipated (correctly) that these commonly found co-habitating
genera would not produce 44-methylgambierone. While these benthic

genera are producers of other structurally unrelated compounds, their
contribution to CFP intoxications is still unclear. Further research into
identifying the genes involved in the production of 44-methylgam-
bierone may shed some light on why the production of this secondary
metabolite is observed in many isolates of three genera of co-habitating
benthic dinoflagellates (Gambierdiscus, Fukuyoa and Coolia) and not
others.

To gain some understanding on the specificity of 44-methylgam-
bierone as a biomarker compound, additional benthic and planktonic
dinoflagellates and other classes of marine microalgae from the CICCM
were also analysed. A total of 56 species spanning 26 genera across
seven classes were assessed and all were negative for 44-methylgam-
bierone production.

While these results show that 44-methylgambierone cannot be used
as an exclusive indicator of toxic Gambierdiscus blooms, it may still be
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Table 2
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Summary of the 62 isolates from 56 species spanning 26 genera across 7 classes tested for 44-methylgambierone production from the Cawthron Institute Culture

Collection of Microalgae (CICCM).

Class Genus Species Location Number of isolates ~ CICCM code 44-methylgambierone production
Bacillariophyceae (Diatoms)  Paralia marina New Zealand 1 CAWB38 -
Pseudo-nitzschia pungens New Zealand 1 CAWB125 -
Coccolithophyceae Chrysochromulina  apheles New Zealand 1 CAWPO05 -
camella New Zealand 1 CAWP16 -
ericina New Zealand 1 CAWP31 -
simplex New Zealand 1 CAWP20 -
Phaeocystis globosa New Zealand 1 CAWP26 -
cf. pouchetii New Zealand 1 CAWP24 -
Pleurochrysis dentata New Zealand 1 CAWP39 -
Cryptophyceae Cryptomonas sp. New Zealand 1 CAWCro01 -
Dictyochophyceae Pseudochattonella  verruculosa New Zealand 1 CAWDCO03 -
Dinophyceae
(Dinoflagellates) Akashiwo sanguinea New Zealand 1 CAWDO1 -
Alexandrium fraterculus New Zealand 1 CAWD52 -
margalefii New Zealand 1 CAWD10 -
minutum New Zealand 1 CAWD11 -
ostenfeldii New Zealand 1 CAWD135 -
pacificum New Zealand 1 CAWD260 -
pseudogonyaulax New Zealand 1 CAWD54 -
Amphidinium carterae New Zealand 1 CAWD22 -
cf. boggayum New Zealand 1 CAWD164 -
massartii Cook Islands 1 CAWD231 -
thermaeum Cook Islands 1 CAWD265 -
trulla New Zealand 1 CAWD68 -
sp. Cook Islands 1 CAWD162 -
Gonyaulax cf. elegans New Zealand 1 CAWD143 -
hyalina New Zealand 1 CAWD100 -
sp. New Zealand 1 CAWD141 -
Gymnodinium aureolum New Zealand 1 CAWD59 -
catenatum New Zealand 1 CAWD102 -
dorsalisulcum New Zealand 1 CAWD225 -
impudicum New Zealand 1 CAWD139 -
cf. microreticulatum  New Zealand 1 CAWD191 -
simplex New Zealand 1 CAWD86 -
sp. New Zealand 1 CAWD172 -
Heterocapsa niei New Zealand 1 CAWDS88 -
triquetra New Zealand 1 CAWD36 -
Karenia bidigitata New Zealand 1 CAWDS80 -
brevis USA 1 CAWDO8 (Wilson strain) -
brevisulcata New Zealand 1 CAWD82 -
mikimotoi New Zealand 1 CAWD192 -
papilionacea New Zealand 1 CAWD91 -
selliformis New Zealand 1 CAWD79 -
umbella New Zealand 1 CAWD131 -
Karlodinium veneficum New Zealand 1 CAWD93 -
Lepidodinium chlorophorum New Zealand 1 CAWDG62 -
Lingulodinium polyedrum New Zealand 1 CAWD240 -
Protoceratium reticulatum New Zealand 1 CAWD127 -
Scrippsiella sp. New Zealand 1 CAWD67 -
Takayama helix New Zealand 1 CAWD128 -
tasmanica New Zealand 1 CAWD115 -
Togula jolla New Zealand 1 CAWDA41 -
Vulcanodinium rugosum New Zealand 7 CAWD163 -
CAWD166
CAWD167
CAWD168
CAWD170
CAWD171
CAWD178
Pavlovophyceae Pavlomulina® kotuku® New Zealand 1 CAWP21 -
Raphidophyceae Chattonella marina var. antigqua ~ New Zealand 1 CAWRI18 -
Fibrocapsa Jjaponica New Zealand 1 CAWRO02 -
Heterosigma akashiwo New Zealand 1 CAWRO08 -

? The genus and species name referenced are tentative only due to the proposal for these names not being published yet.

useful as a biomarker compound for in-situ screening of at-risk areas.
While a positive result would most likely indicate a high microalgal
abundance of Gambierdiscus species, it is noted that a negative result
would also be useful in showing an area might be of low risk from toxic
CFP blooms. One technique that has shown promise is solid-phase ab-
sorption toxin tracking (SPATT) (MacKenzie et al., 2004) for in-situ

sampling. Proof of concept for the detection of 44-methylgambierone
was demonstrated by Roué et al., in 2018, where the secondary meta-
bolite was detected in cultures and from in-field deployment of SPATT
bags at a known CFP hotspot (Roué et al., 2018). The use of this en-
vironmental sampling technology therefore shows some promise. Fur-
ther in-field investigations are now required to ascertain if there is a
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correlation between the detection of 44-methylgambierone and the
microalgal assemblages on the reef system.

5. Conclusion

The acute toxicity of 44-methylgambierone by intraperitoneal in-
jection to mice was low (LDs, between 20 and 38 mg kg~ 1), suggesting
that 44-methylgambierone is unlikely to contribute to CFP. Its pro-
duction was assessed using LC-MS/MS in 252 microalgal isolates con-
sisting of 90 species from 32 genera across seven classes. It was shown
to be ubiquitous to all Gambierdiscus species tested, and some species/
isolates of Fukuyoa and Coolia. These results indicate that 44-methyl-
gambierone cannot be used as a selective biomarker for toxic
Gambierdiscus blooms. However, because of its considerably easier de-
tection compared to CTXs and MTXs it may still have use as a screening
tool in high risk areas to allow the early identification of benthic mi-
croalgal assemblages, that could include toxic Gambierdiscus species.
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