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Asymptotic Soft Filter Pruning
for Deep Convolutional Neural Networks

Yang He, Xuanyi Dong, Guoliang Kang, Yanwei Fu, Chenggang Yan, and Yi Yang∗

Abstract—Deeper and wider Convolutional Neural Networks
(CNNs) achieve superior performance but bring expensive
computation cost. Accelerating such over-parameterized neural
network has received increased attention. A typical pruning
algorithm is a three-stage pipeline, i.e., training, pruning, and
retraining. Prevailing approaches fix the pruned filters to zero
during retraining, and thus significantly reduce the optimization
space. Besides, they directly prune a large number of filters
at first, which would cause unrecoverable information loss. To
solve these problems, we propose an Asymptotic Soft Filter
Pruning (ASFP) method to accelerate the inference procedure
of the deep neural networks. First, we update the pruned filters
during the retraining stage. As a result, the optimization space
of the pruned model would not be reduced but be the same as
that of the original model. In this way, the model has enough
capacity to learn from the training data. Second, we prune
the network asymptotically. We prune few filters at first and
asymptotically prune more filters during the training procedure.
With asymptotic pruning, the information of the training set
would be gradually concentrated in the remaining filters, so
the subsequent training and pruning process would be stable.
Experiments show the effectiveness of our ASFP on image
classification benchmarks. Notably, on ILSVRC-2012, our ASFP
reduces more than 40% FLOPs on ResNet-50 with only 0.14%
top-5 accuracy degradation, which is higher than the soft filter
pruning (SFP) by 8%.

Index Terms—Filter Pruning, Image Classification, Neural
Networks

I. INTRODUCTION

CONVOLUTIONAL Neural Networks (CNNs) have
demonstrated state-of-the-art performance in computer

vision tasks [1]–[12]. The superior performance of deep CNNs
usually comes from the deeper and wider architectures [1],
[13]–[16], which cause the prohibitively expensive compu-
tation cost. The storage, memory, and computation of these
cumbersome models significantly exceed the computing lim-
itation of current mobile devices or drones. [17] shows that
running a 1 billion connection neural network at 20Hz would
require 12.8W just for DRAM access. Besides, the authors
of [18], [19] claim that VGGNet [13] requires 321.1 MBytes
memory and 236 mW power for a batch of three frames and
processes 0.7 frame per second even when it is deployed on
the optimized energy-efficient chip. Therefore, it is essential
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Fig. 1: Hard filter pruning v.s. soft filter pruning. We mark the pruned
filter as the orange dashed box. For the hard filter pruning, the
pruned filters are always fixed during the whole training procedure.
Therefore, the model capacity is reduced and thus harms the perfor-
mance because the dashed blue box is useless during training. On
the contrary, our soft pruning method allows the pruned filters to
be updated during the training procedure. In this way, the model
capacity is recovered from the pruned model and thus leads a better
accuracy.

to maintain the deep CNN models to have a relatively low
computational cost but ensure high accuracy in real-world
applications.

Pruning deep CNNs [20]–[22] is an important direction for
accelerating the networks. Recent efforts have been made ei-
ther on directly deleting some weight values of filters [17] (i.e.,
weight pruning) or totally discarding some filters (i.e., filter
pruning) [23]–[25]. However, weight pruning results in the
unstructured sparsity of filters. Since the unstructured model
cannot leverage the existing high-efficiency BLAS (Basic
Linear Algebra Subprograms) libraries, weight pruning is not
efficient in saving the memory usage and computational cost.
In contrast, filter pruning enables the model with structured
sparsity, taking full advantage of BLAS libraries to achieve
more efficient memory usage and more realistic acceleration.
Therefore, filter pruning is more favored in accelerating the
networks.

Nevertheless, most filter pruning algorithms suffer from
two problems: (1) the model capacity reduction and (2) the
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unrecoverable filter information loss. Specifically, as shown
in Figure 1, most researchers conduct the “hard filter pruning
(HFP)” [23]–[25], then the pruned filters are directly deleted
and have no possibility to be recovered. The discarded filters
will reduce the optimization space and model capacity, and
thus it is unfavorable for the pruned network to learn enough
knowledge. To alleviate this problem, they use pre-training to
maintain a good performance, which in turn induces much
more training time. Furthermore, existing methods directly
prune a large number of filters, which contain information
of training set, at first. This process leads to severe and
unrecoverable information loss and thus inevitably degrades
the performance.

To solve the above two problems, we propose ASFP, which
prunes the convolutional filters dynamically. Particularly, be-
fore the first training epoch, the filters with small `2-norm
are selected and set to zero. Then we retrain the model, and
the previously pruned filters could be updated. Before the next
training epoch, we will prune a new set of filters with small `2-
norm. These training processes are continued until converged.
Lastly, some filters with smallest `2-norm will be selected and
pruned without further updating. This soft manner enables the
compressed network to have a larger optimization space and
model capacity. Hence it is easier for the model to learn from
the training data, and achieve higher accuracy even without
the pre-training process.

In addition, we prune the network asymptotically ——
pruning few filters at first, and more filters at later training
epochs. If few filters are pruned at first, little pre-trained
information would be lost, so it is easy for the model to
recover from pruning. With the following iterative training and
soft pruning, the training set information would be gradually
concentrated in some important filters. At the same time,
the training and pruning process would be stable, as the
information is lost gradually instead of suddenly.

We highlight the following three contributions of ASFP:
(1) We propose a soft manner to allow the previous pruned
filters to be reconstructed during training. This soft manner
could significantly maintain the model capacity, which enables
the network to be trained and pruned simultaneously from
scratch.
(2) To avoid severe information loss, we propose to asymptot-
ically prune the filters, which makes the subsequent training
and pruning process more stable.
(3) Experiments on CIFAR-10 and ImageNet demonstrate the
effectiveness and efficiency of the proposed ASFP.

II. RELATED WORK

CNN accelerating methods can be roughly divided into
four categories, namely, matrix decomposition, low-precision
weights, weight pruning, and filter pruning.

1) Matrix Decomposition: To reduce the computation costs
of the convolutional layers, previous work propose to rep-
resenting the weight matrix of the convolutional network as
a low-rank product of two smaller matrices [26]–[31]. Then
the calculation of production of one large matrix turns to the
production of two smaller matrices. However, the computa-
tional cost of tensor decomposition operation is expensive,

which is not friendly to train deep CNNs. Besides, there
exists an increasing usage of 1×1 convolution kernel in some
recent neural networks, such as the bottleneck block structure
of ResNet [16], cases where it is difficult to apply matrix
decomposition.

2) Low Precision: Some other researchers focus on low-
precision implementation to compress and accelerate CNN
models [32]–[36]. Zhou et al. [33] propose trained ternary
quantization to reduce the precision of weights in neural
networks to ternary values. The authors of [34] present
incremental network quantization, targeting to convert pre-
trained full-precision CNN model into a low-precision version
efficiently. In this situation, only low-precision weights are
stored and used during the inference procedure, with the
storage and computation cost being dramatically reduced.

3) Weight Pruning: Recent work [17], [32], [37] prunes
weights of neural networks. For example, [17] proposed an it-
erative weight pruning method by discarding the small weights
whose values are below the threshold. [38], [39] leveraged
the sparsity property of feature maps or weight parameters to
accelerate the CNN models. However, weight pruning always
leads to unstructured models, so the model cannot leverage
the existing efficient BLAS libraries in practice. Therefore,
it is difficult for weight pruning to achieve realistic speedup.
Meanwhile, Bayesian methods [40] are also applied to network
pruning. However, these methods are evaluated on rather small
datasets such as MNIST [41] and CIFAR-10 [42].

4) Filter Pruning: Pruning the filters [23]–[25], [43] leads
to the removal of the corresponding feature maps, thus not
only reducing the storage usage on devices but also decreasing
the memory footprint consumption. Considering whether to
utilize the training data to determine the pruned filters, the
filter pruning methods are roughly divided into two categories,
data dependent and data independent filter pruning. The latter
method is more efficient than the former since training data
may not be available during the pruning process.

Data Dependent Filter Pruning. Some approaches [24],
[25], [43]–[49] utilize the training data to determine the pruned
filters. The authors of [45] minimize the reconstruction error
of activation maps to obtain a decomposition of convolutional
layers. Luo et al. [25] adopt the statistics information from the
next layer to guide the importance evaluation of filters.

Data Independent Filter Pruning. Concurrently with our
work, some data independent filter pruning strategies [23],
[50]–[52] have been explored. Li et al. [23] explore the
sensitivity of layers for filter pruning and utilize a `1-norm
criterion to prune unimportant filters. Ye et al. [51] prune
models by enforcing sparsity on the scaling parameters of
batch normalization layers. However, for all these filter prun-
ing methods, the representative capacity of the neural network
after pruning is seriously affected by smaller optimization
space. Besides, the information loss at the beginning is signif-
icant and unrecoverable.

III. METHODOLOGY

A. Preliminary
We formally introduce the symbol and notations in this

section. The deep CNN network can be parameterized by
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Fig. 2: Pruning and training schedule of HFP and SFP. Before
training, we first select some filters with pre-defined importance
evaluations. HFP directly deletes these filters before training, while
for SFP, those are set to zero and kept. During training (epoch 1 to
N), the model size is smaller than the original one for HFP. While
for SFP, the zero value filters (filter 2 and 5) become non-zero after
training epoch 1. Then we evaluate the importance of filters again
and prune filter 3 and 4. The model size would not be reduced but
be the same as the original one. When training is finished, the final
pruned model is the model at epoch N for HFP. While for SFP, we
delete the zero value filters (filter 3 and 6) at epoch N to get the final
pruned model.

{W(i) ∈ RNi+1×Ni×K×K , 1 ≤ i ≤ L} 1. W(i) denotes
a matrix of connection weights in the ith layer. Ni denotes
the number of input channels for the ith convolution layer. L
denotes the number of layers. The shapes of input tensor U
and output tensor V are Ni×Hi×Wi and Ni+1×Hi+1×Wi+1,
respectively. The convolutional operation of the ith layer can
be written as:

Vi,j = Fi,j ∗U , for 1 ≤ j ≤ Ni+1, (1)

where Fi,j ∈ RNi×K×K represents the jth filter of the ith
layer, and Vi,j represents the jth output feature map of the
ith layer. W(i) consists of {Fi,j , 1 ≤ j ≤ Ni+1}.

Pruning filters can remove the output feature maps. In this
way, the computational cost of the neural network will reduce
remarkably. Let us assume the pruning rate is Pi for the ith
layer. The number of filters of this layer will be reduced from
Ni+1 to Ni+1(1 − Pi), thereby the size of the output tensor
Vi,j can be reduced to Ni+1(1− Pi)×Hi+1 ×Wi+1.

B. Pruning with Hard Manner

Given a dataset D = {(xi,yi)}ni=1 and a desired sparsity
level κ (i.e., the number of remaining non-zero filters), HFP

1Fully-connected layers can be viewed as convolutional layers with k = 1

can formulated as:

min
F

`(F ;D) = min
F

1

n

n∑
i=1

`(F ; (xi,yi)) , (2)

s.t. F ∈ RN×K×K , N(F) ≤ κ .

Here, `(·) is the standard loss function (e.g., cross-entropy
loss), F is the set of filters of the neural network, and N is
the cardinality of the filter set. Typically, HFP firstly prunes
filters of a single layer of a pre-trained model and fine-tune
the pruned model to complement the performance degradation.
Then they prune the next layer and fine-tune the model again
until the last layer is pruned. Once the filters are pruned, HFP
will not update these filters again.

The full training schedule of HFP is shown in the first
column of Figure 2, and the detailed pruning process of HFP is
shown in the first row of Figure 3. First, some of the filters with
small `p-norm (filter 2 and 4 in HFP-a, marked in blue) are
selected and pruned. After retraining, these pruned filters are
not able to be updated again thus the `p-norm of these filters
would be zero during all the training epochs (filter 2 and 4 in
HFP-b). Meanwhile, the remaining filters (filter 1, 3 and N in
HFP-c, marked in green) might be updated to another value
after retraining to make up for the performance degradation
due to pruning. After several epochs of retraining to converge
the model, a compact model is obtained to accelerate the
inference.

C. Pruning with Soft Manner

SFP can dynamically remove the filters in a soft manner.
Specifically, the key is to keep updating the pruned filters
in the training stage. The full training schedule of SFP is
shown in the second column of Figure 2. Such an updating
manner brings several benefits. It not only keeps the model
capacity of the pruned models as the original models but also
avoids the greedy layer by layer pruning procedure and enables
pruning all convolutional layers at the same time. For SFP, the
constrain in the Eq. 2 changes to:

‖F‖0 ≤ κ, N(F) = Ni+1. (3)

Here, ‖ · ‖0 is the standard L0 norm. After soft pruning, the
number of filters N(F) is still the same as that of the original
model (Ni+1).

The second row of Figure 3 explains the detailed process
of SFP. First, the `2-norms of all filters are computed for
each weighted layer and used as our filter selection criterion.
Second, some filters with a small `p-norm (filter 2 and 4 in
SFP-a, marked in blue) are selected, and we prune those filters
by setting the corresponding filter weights as zero (filter 2
and 4 in SFP-b). Then we retrain the model. As we allow the
pruned filters to be updated during retraining, the pruned filters
become nonzero again (filter 2 and 4 in SFP-c) due to back-
propagation. After iterations of pruning and reconstruction to
converge the model, we delete the unimportant filters and
obtain a compact and efficient model.
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Fig. 3: Overview of HFP (first row), SFP (second row) and ASFP (third row). (a): filter instantiations before pruning. (b): filter instantiations
after pruning. (c): filter instantiations after reconstruction. The filters are ranked by their `p-norms and the small ones (purple rectangles)
are selected to be pruned.

D. Asymptotic Soft Filter Pruning (ASFP)

It is known that all the filters of the pre-trained model have
the information of the training set. Therefore, pruning those
informative filters would cause information loss. This situation
is especially difficult for pruning the models that pre-trained
on large datasets, or pruning a large number of filters of small
models, as the lost information is rather massive. Therefore,
we propose to pruning the neural network asymptotically.

Specifically, we use a small pruning rate at early epochs,
and gradually increase the pruning rate later, until we reach
the goal pruning rate Pi at the last retraining epoch. The
optimization problem of ASFP:

min
F

`(F ;D) = min
F

1

n

n∑
i=1

`(F ; (xi,yi)) , (4)

s.t. ‖F‖0 ≤ κepoch, N(F) = Ni+1.

Here, κepoch means the sparsity level changes with the training
epoch. Comparing Eq. 3 and Eq. 4, the difference between SFP
and ASFP is whether the pruning rate is changing with epochs.
For SFP, the κ in Eq. 3 is a pre-defined constant regarding the
number of remaining non-zero filters, so it would not change
during the training process. In contrast, κepoch in Eq. 4 is a
function of epoch and would change with the epoch number
of training. Therefore, SFP is a special case of ASFP when
the pruning rate Pi during all training epochs are the same.
The details of ASFP is illustratively explained in Algorithm 1.

1) Asymptotic Filter Selection: We use the `p-norm to
evaluate the importance of each filter as Eq. 5. In general, the
convolutional results of the filters with the smaller `p-norm
would lead to relatively lower activation values, and thus have
a less numerical impact on the final prediction of deep CNN
models. In term of this understanding, such filters of small `p-
norm will be given higher priority of being pruned than those
of higher `p-norm:

‖Fi,j‖p = p

√√√√ Ni∑
n=1

K∑
k1=1

K∑
k2=1

|Fi,j(n, k1, k2)|p. (5)

In practice, we use the `2-norm based on the empirical
analysis.

Different from SFP [50] that the pruning rate equals the goal
pruning rate P goal

i during retraining, we use different pruning
rate P

′

i at every epoch. The definition of P
′

i is list as follows:

P
′

i = H(P goal
i , D, Pmin

i , epoch), (6)

where P goal
i represents the goal pruning rate for the ith layer,

D and Pmin
i are pre-defined parameter which will be explicitly

explained later. As exponential parameter decay is widely used
in optimization [53] to achieve a stable result, we change the
pruning rate exponentially. The equation is as follows:

P
′

i = a× e−k×epoch + b, (7)

In order to solve three parameters a, k, b of the above expo-
nential equation, three points consists of (epoch, P

′

i ) pair are
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Algorithm 1: Algorithm Description of ASFP

Input : training data X and training epoch epochmax;
the model with parameters W = {W(i), 0 ≤ i ≤ L};
pruning rate P goal

i , Pmin
i and pruning rate decay D;

Output: The compact model and its parameters W∗

1 for epoch← 1 to epochmax by 1 do
2 Update the model parameter W based on X;
3 for i← 1 to L by 1 do
4 Calculate P

′

i with Eq. 6;
5 Get the number of filters in i layer Ni+1 with W;
6 Zeroize Ni+1P

′

i filters with small `2-norm;
7 end
8 end
9 Obtain the compact model with parameters W∗ from W

needed. Certainly, the first point is (0, Pmin
i ), which means the

pruning rate is Pmin
i for the first training epoch. In addition, to

achieve the goal pruning rate Pi at the final retraining epoch,
the point (epochmax, P goal

i ) is essential. Now we have to
define the third point (epochmax × D, 3P goal

i /4), to solve
the equation. This means that when the epoch number is
epochmax × D, the pruning rate increase to 3/4 of the goal
pruning rate P goal

i .

2) Filter Pruning: We set the value of selected Ni+1P
′

i

filters to zero (see the filter pruning step in Figure 3). This can
temporarily eliminate their contribution to the network output.
We prune all the weighted layers at the same time. In this way,
we can prune each filter in parallel, which would cost negligi-
ble computation time. In contrast, previous methods [24], [25]
always conduct a greedy layer by layer pruning and retraining,
which would cost more computation time, especially when the
model depth increases. Moreover, we use the same pruning
rate for all the weighted layers, P goal

i = P . Therefore, we
only require one hyper-parameter P to balance acceleration
and accuracy. This can avoid the inconvenient hyper-parameter
search or the complicated sensitivity analysis shown in [23].

3) Reconstruction: After the pruning step, we train the net-
work for one epoch to reconstruct the pruned filters. In order
to keep the representative capacity and the high performance
of the model, those pruned filters are updated to non-zero
by back-propagation, as shown in Figure 3. In this way, the
pruned model has the same capacity as the original model
during the training. In contrast, hard filter pruning leads to a
decrease of feature maps, so the model capacity is reduced
and the performance is influenced. With large model capacity,
we could integrate the pruning step into the normal training
schema, that is, training and pruning the model synchronously.

4) Obtaining Compact Model: ASFP iterates over the filter
selection, filter pruning, and reconstruction steps. After model
convergence, we can obtain a sparse model containing many
“zero filters”. The features maps corresponding to those “zero
filters” will always be zero during the inference procedure.
Therefore, there will be no influence to remove these filters
as well as the corresponding feature maps.
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Fig. 4: Pruning residual block with pruning rate 50%. Red and
green number means the remaining output channel number and
input channel number after pruning, respectively. “BN” and “ReLU”
represents the batch norm layer and non-linear layer, respectively.

E. Pruning Strategy for Convolutional Network

Pruning the traditional convolutional architectures [1], [13]
is easy to understand, but it is elusive for pruning recent
structural variants, such as ResNet [16]. In Figure 4, pruning
the residual blocks is illustrated. If we set the pruning rate
as 50%, the output dimension of three layers would decrease
by 50% (the red numbers). The input dimension of the last
two layers would change according to the output dimension
of the previous layer (the green numbers). What we should
especially care about is the element-wise additive of the
residual connections and the output of convolutional layers. In
Figure 4, the channel number of the residual connections and
the output of convolutional layers is 256 and 128, respectively.
The element-wise additive should change to:

Oindex =

{
Rindex +Cindex if index ∈ I

Rindex else
(8)

where I is the index of 128 remaining channels, C is the
convolutional output after the batch norm layer (128 channels),
R is the residual output (256 channels), and O is the output
of the whole residual block.

F. Computation Complexity Analysis

1) Theoretical Speedup Analysis: Suppose the filter pruning
rate of the ith layer is Pi, which means the Ni+1 × Pi filters
are set to zero and pruned from the layer, and the other Ni+1×
(1 − Pi) filters remain unchanged. Besides, suppose the size
of the input and output feature map of ith layer is Hi ×Wi

and Hi+1 × Wi+1. Then after filter pruning, the dimension
of useful output feature map of the ith layer decreases from
Ni+1 ×Hi+1 ×Wi+1 to Ni+1(1−Pi)×Hi+1 ×Wi+1. Note
that the output of ith layer is the input of (i+ 1)th layer.
And we further prunes the (i+ 1)th layer with a filter pruning
rate Pi+1, then the calculation of (i+ 1)th layer is decrease
from Ni+2×Ni+1×k2×Hi+2×Wi+2 to Ni+2(1−Pi+1)×
Ni+1(1−Pi)×k2×Hi+2×Wi+2. In other words, a proportion
of 1 − (1 − Pi+1) × (1 − Pi) of the original calculation is
reduced, which will make the inference procedure of CNN
models much faster.
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2) Realistic Speedup Analysis: In theoretical speedup anal-
ysis, other operations such as batch normalization and pool-
ing are negligible compared to the convolution operations.
Therefore, we consider the FLOPs (Floating-point operations
per second) of convolution operations for computation com-
plexity comparison, which is commonly used in the previous
work [23], [25]. In the real scenario, reduced FLOPs cannot
bring the same level of realistic speedup because non-tensor
layers (e.g., batch normalization and pooling layers) also need
the inference time on GPU [25]. In addition, the limitation of
IO delay, buffer switch, and efficiency of BLAS libraries also
lead to the wide gap between theoretical and realistic speedup
ratio. We compare the theoretical and realistic speedup in
Section IV-D.

IV. EXPERIMENT

A. Benchmark Datasets and Experimental Setting

Dataset. Our method is evaluated on two benchmarks:
CIFAR-10 [42] and ILSVRC-2012 [55]. CIFAR-10 contains
50,000 training images and 10,000 test images, which are cate-
gorized into ten classes. ILSVRC-2012 is a large-scale dataset
containing 1.28 million training images and 50k validation
images of 1,000 classes.

Architecture. As discussed in [24], [25], [54], multiple-
branch ResNet [16] is less redundant than VGGNet [13], so it
is more difficult to accelerate ResNet. Therefore, we focus on
pruning the challenging ResNet model. To validate our method
on the single-branch network, we also prune the VGGNet
following [23].

Training setting. In the CIFAR-10 experiments, we use
the default parameter setting in [56] and follow the training
schedule in [57]. For CIFAR-10 dataset, we test our ASFP
on ResNet-56 and 110. On ILSVRC-2012, we follow the
same parameter settings as [16], [56]. The data argumentation
strategies are the same as PyTorch implementation [58]. We
test ASFP on ResNet-18, 34, 50 and we use the pruning
rate 30% for all the models. We also analyze the difference
between pruning the pre-trained model and scratch model. For
pruning the model from scratch, We use the normal training
schedule without additional fine-tuning process. For pruning
the pre-trained model, we reduce the learning rate to one-tenth
of the original learning rate. To conduct a fair comparison of
pruning from scratch and pre-trained models, we use the same
training epochs to train/fine-tune the network. The previous
work [23] uses fewer epochs to fine-tune the pruned model,
but it converges too early and harms the accuracy, as shown
in section IV-B.

Pruning setting. For VGGNet on CIFAR-10, we use the
same pruning rate as [23]. For experiments on ResNet, we
follow [50] and prune all the convolutional layers with the
same pruning rate at the same time. We do not prune the pro-
jection shortcuts for simplification, which only need negligible
time and do not affect the overall cost. Therefore, only one
hyper-parameter, the pruning rate Pi = P is used to balance
acceleration and accuracy.

To asymptotically change the pruning rate, we set the
parameters in Eq. 6 as D = 1/8 and Pmin

i = 0. This setting is

denoted as ASFP-P0.2 For example, if we use the goal pruning
rate P goal

i = 30%, then the pruning rate curve according
to epoch is shown in Figure 5. If we set Pmin

i = P goal
i ,

ASFP is same as SFP. The pruning operation is conducted at
the end of every training epoch. We run some experiments
three times and report the “mean ± std”. The performance is
compared with other state-of-the-art acceleration algorithms,
e.g., MIL [54], PFEC [23], CP [24], ThiNet [25], SFP [50],
NISP [46]. We choose to directly cite the numbers from
original papers for a fair comparison.

Explanation for Tables. The results of ResNet are listed
in Table I and Table III. In “Pre-train?” column, “Y” and “N”
indicate whether to use the pre-trained model as initialization
or not. The “Accu. Drop” is the accuracy of the pruned model
minus that of the baseline model, so negative number means
the accelerated model has higher accuracy than the baseline
model. A smaller number of ”Accu. Drop” is better. For
CIFAR-10, we run every experiment for three times to get the
mean and standard deviation of the accuracy. For Imagenet,
we just list the one-view accuracy.

Explanation for Baselines. The baseline network is the
same for different pruning methods, and accuracy numbers
are cited from the original paper. The different accuracies
are due to different hyper-parameter settings (e.g. different
data augmentations, different learning rate schedules, etc.) and
different implementation frameworks (e.g. Caffe, TensorFlow
and Pytorch). For example, in Thinet [25], all the images are
resized into 256 × 256, then center-cropped to 224 × 224.
However, in CP [24], the images are resized such that the
shorter side equals to 256. In this case, we choose to use the
“Accu. Drop” (in Table I) rather than the “Accelerated Accu.”
(in Table I) to fairly evaluate the effectiveness of our method.

Optimization Time of ASFP. In this paper, we care more
about the acceleration during the inference time rather than
the training time. However, we would like to show that the
additional time cost of ASFP is negligible compared to a
hard pruning method. Take the scratch model for an example.
HFP and ASFP both need 200 epochs to training CIFAR-10
from scratch to converge, so the additional time cost of ASFP
comes from the operation of pruning (Eq. 4). Two steps are
needed in such a process. 1) Obtaining the pruning rate P

′

i . 2)
Ranking and pruning the filters. For step one, the exponent
pattern of the pruning rate is pre-defined, and it could be
directly accessed during training. For step two, after we get
the importance scores of the filters, we zeroize the filters with
smaller importance scores to conduct the pruning operation.
All these steps bring minor computation cost. For HFP, it
takes about 171.01s for training ResNet-110 for one epoch on
GTX 1080. For ASFP, the total time for one epoch is 171.45s.
Therefore, the time difference between soft pruning and hard
pruning is negligible.

B. VGGNet on CIFAR-10

The result of pruning from scratch and pre-trained VGGNet
is shown in Table II. Not surprisingly, ASFP achieves better

2For the following sections, the “ASFP” (without suffix) means “ASFP-P0”
if not particularly indicated.
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TABLE I: Overall performance of pruning ResNet on CIFAR-10.

Depth Method Pre-train? Baseline Accu. (%) Accelerated Accu. (%) Accu. Drop (%) FLOPs Pruned FLOPs(%)

56

PFEC [23] 7 93.04 91.31 1.75 9.09E7 27.6
CP [24] 7 92.80 90.90 1.90 - 50.0
SFP [50] 7 93.59 (±0.58) 92.26 (±0.31) 1.33 5.94E7 52.6

ASFP (40%) 7 93.59 (±0.58) 92.44 (±0.07) 1.15 5.94E7 52.6
PFEC [23] 3 93.04 93.06 -0.02 9.09E7 27.6

CP [24] 3 92.80 91.80 1.00 - 50.0
SFP [50] 3 93.59 (±0.58) 93.35 (±0.31) 0.24 5.94E7 52.6

ASFP (40%) 3 93.59 (±0.58) 93.12 (±0.20) 0.47 5.94E7 52.6

110

PFEC [23] 7 93.53 92.94 0.61 1.55E8 38.6
MIL [54] 7 93.63 93.44 0.19 - 34.2
SFP [50] 7 93.68 (±0.32) 92.62 (±0.60) 1.04 1.21E8 52.3

ASFP (20%) 7 93.68 (±0.32) 93.94 (±0.56) -0.24 1.82E8 28.2
ASFP (40%) 7 93.68 (±0.32) 93.20 (±0.10) 0.48 1.21E8 52.3
PFEC [23] 3 93.53 93.30 0.20 1.55E8 38.6
SFP [50] 3 93.68 (±0.32) 93.86 (±0.21) -0.18 1.50E8 40.8
SFP [50] 3 93.68 (±0.32) 92.90 (±0.18) 0.78 1.21E8 52.3

ASFP (30%) 3 93.68 (±0.32) 93.37 (±0.12) 0.31 1.50E8 40.8
ASFP (40%) 3 93.68 (±0.32) 93.10 (±0.06) 0.58 1.21E8 52.3
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Fit. func: f(x) = 30.000e0.055x + 70.000
three points to get the function

Fig. 5: Asymptotically changed pruning rate when the goal pruning
rate is 30%. Three blue points are the three pairs to generate the
exponential function of pruning rate (the solid curve).

performance than [23] in both settings. With our pruning
criterion, we could achieve slightly better accuracy than [23]
when pruning the random initialized VGGNet (93.37% vs.
93.31%). In addition, The pruned model without fine-tuning
has better performance than [23] (81.66% vs. 77.45%). After
fine-tuning 40 epochs, our model achieves similar accuracy
with [23]. Notably, if more fine-tuning epochs (160) are
utilized, the accuracy of [23] is almost unchanged (93.28%
vs. 93.22%), which means their models have no much more
capacity to learn. On the contrary, our method could achieve
much better performance (94.02% vs. 93.28%) with more fine-
tuning epochs, which shows the model capacity of our ASFP
is much larger than [23].

TABLE II: Pruning from scratch and pre-trained VGGNet on CIFAR-
10. “FT” means “fine-tuning” the pruned model.

Setting \ Acc (%) PFEC [23] Ours
Baseline 93.58 (±0.03) 93.58 (±0.03)

Prune from scratch 93.31 (±0.03) 93.37 (±0.08)
Prune from pre-train without FT 77.45 (±0.03) 81.66 (±0.03)

FT 40 epochs 93.22 (±0.03) 93.27 (±0.08)
FT 160 epochs 93.28 (±0.03) 94.02 (±0.15)

C. ResNet on CIFAR-10

Table I shows the results on CIFAR-10. Our ASFP could
achieve a better performance than other state-of-the-art hard

filter pruning methods. For example, PFEC [23] accelerate
ResNet-110 by 38.6% speedup ratio with 0.61% accuracy drop
when pruning the scratch models. In contrast, our ASFP can
accelerate ResNet-110 to 52.3% speed-up with only 0.48%
accuracy drop. When pruning the pre-trained ResNet-110,
the accuracy drop of our ASFP is smaller than PFEC [23]
when pruning the same number of ratio. When pruning the
scratch ResNet-56, we can achieve more acceleration ratio
than CP [24] (52.6% vs. 50.0%) with less accuracy drop
(1.15% vs. 1.90%) Notably, we can even improve 0.24%
accuracy when pruning 28.2% FLOPs of scratch ResNet-56.

When the pruning rate is small, we find the performance
of SFP [50] and ASFP is competitive. But ASFP outperforms
SFP when a large portion of FLOPs are pruned. The com-
prehensive comparison is shown in Figure 6. This is because
ASFP is suitable for the situation when a large quantity of
the information is removed by pruning. These results validate
the effectiveness of our ASFP algorithm, which can produce a
more compressed model with comparable performance to the
original model.

D. ResNet on ILSVRC-2012

Result Explanation. Table III shows that ASFP outper-
forms other state-of-the-art methods. For pruning from a ran-
dom initialized ResNet-18, our ASFP achieves more inference
speedup than MIL [54] (41.8% v.s. 34.6%), but the top-5
accuracy drop of our pruned model is less than that of their
model (1.62% v.s. 2.30%). For pruning pre-trained ResNet-34,
our ASFP achieves a much better acceleration than PFEC [23]
(41.1% v.s. 24.2%) with comparable accuracy drop. For pre-
trained ResNet-50, SFP leads to 8.27% top-5 accuracy drop for
41.8% speedup, but our ASFP could achieve negligible top-
5 accuracy drop (0.14%) with the same speedup ratio. The
maintained model capacity and asymptotic pruning of ASFP
are the main reasons for the improved accuracy and efficiency.

Realistic Acceleration. In order to test the realistic speedup
ratio, we measure the forward time of the pruned models
on one GTX 1080 Ti GPU with a batch size of 64. The
results are shown in Table IV. The gap between theoretical
and realistic speed may come from non-tensor layers and the



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 8

TABLE III: Overall performance of pruning ResNet on ImageNet.

Depth Method Pre-
train?

Top-1 Accu.
Baseline(%)

Top-1 Accu.
Accelerated(%)

Top-5 Accu.
Baseline(%)

Top-5 Accu.
Accelerated(%)

Top-1 Accu.
Drop(%)

Top-5 Accu.
Drop(%)

Pruned
FLOPs(%)

18

MIL [54] 7 69.98 66.33 89.24 86.94 3.65 2.30 34.6
SFP [50] 7 70.23 (±0.06) 67.25 (±0.13) 89.51 (±0.10) 87.76 (±0.06) 2.98 1.75 41.8

ASFP (30%) 7 70.23 (±0.06) 67.41 89.51 (±0.10) 87.89 2.82 1.62 41.8
SFP [50] 3 70.23 (±0.06) 60.79 89.51 (±0.10) 83.11 9.44 6.40 41.8

ASFP (30%) 3 70.23 (±0.06) 68.02 89.51 (±0.10) 88.19 2.21 1.32 41.8

34

SFP [50] 7 73.92 71.83 91.62 90.33 2.09 1.29 41.1
ASFP (30%) 7 73.92 71.72 91.62 90.65 2.20 0.97 41.1
PFEC [23] 3 73.23 72.17 - - 1.06 - 24.2
SFP [50] 3 73.92 72.29 91.62 90.90 1.63 0.72 41.1

ASFP (30%) 3 73.92 72.53 91.62 91.04 1.39 0.58 41.1

50

SFP [50] 7 76.15 74.61 92.87 92.06 1.54 0.81 41.8
ASFP (30%) 7 76.15 74.88 92.87 92.39 1.27 0.48 41.8

CP [24] 3 - - 92.20 90.80 - 1.40 50.0
ThiNet [25] 3 72.88 72.04 91.14 90.67 0.84 0.47 36.7
NISP [46] 3 - - - - - 0.89 44.0
SFP [50] 3 76.15 62.14 92.87 84.60 14.01 8.27 41.8

ASFP (30%) 3 76.15 75.53 92.87 92.73 0.62 0.14 41.8
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(a) ResNet-56 from Pre-train.
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(b) ResNet-110 from Pre-train.
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(c) ResNet-110 from Scratch.

Fig. 6: Model performance regarding different ratio of pruned FLOPs. The green line indicates the model without pruning. The blue and the
orange lines represent the model under ASFP and SFP, respectively.

TABLE IV: Comparison of the theoretical and realistic speedup. We
only count the time consumption of the forward procedure.

Model Baseline
time (ms)

Pruned
time (ms)

Realistic
Speed-up(%)

Theoretical
Speed-up(%)

ResNet-18 37.10 26.97 27.4 41.8
ResNet-34 63.97 45.14 29.4 41.1
ResNet-50 135.01 94.66 29.8 41.8

limitation of IO delay, buffer switch and the efficiency of
BLAS libraries [54].

E. Comparing SFP and ASFP

Performance Regrading Ratio of Pruned FLOPs. In
Figure 6, we test the accuracy of ResNet-56 and ResNet-
110 under different ratios of pruned FLOPs. For pruning pre-
trained initialization, as shown in Figure 6(a) and Figure 6(b),
ASFP could obtain better performance than SFP on almost
all ratio of pruned FLOPs. Even for pruning models with the
random initialization, as shown in Figure 6(c), our method
could still outperform SFP. All the results verify that ASFP
provides a more effective way to reduce the information loss
and thus improves the network performance.

Stable Training Process of ASFP. The model accuracies
during training for SFP and ASFP are shown in Figure 7. We
run this comparison experiment on ResNet-18 and ResNet-
50, and the pruning rate is 30%. We find that the performance
gap is not stable for SFP during almost all the 100 retraining

epochs. On the contrary, the performance gap of ASFP is
much more stable than that of SFP. For SFP, directly pruning
a large number of filters leads to severe information loss. It is
difficult for the network to recover from this, and it leads to
an unstable training process. In contrast, ASFP would result in
a small amount of information loss, consequently increasing
the stability of the pruning process.

F. Ablation Study

Extensive ablation study is also conducted to further analyze
each component of our model.

1) Filter Selection Criteria: The magnitude based criteria
such as `p-norm are widely used to filter selection because
computational resources cost is small [23]. We compare the
`2-norm and `1-norm, and the results are shown in Table V.
We find that the performance of `2-norm criteria are slightly
better than that of `1-norm criteria. The result of `2-norm is
dominated by the largest element, while the result of `1-norm
is also largely affected by other small elements. Therefore,
filters with some large weights would be preserved by the `2-
norm criteria. Consequently, the corresponding discriminative
features are kept so the accuracy of the pruned model is better.

2) Varying Pruned FLOPs: We evaluate the accuracy of
different pruned FLOPs for ResNet-110, and show the results
in Figure 6. When the ratio of pruned FLOPs is less than 40%,
ASFP and SFP achieve similar accuracy. However, when the
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Fig. 7: The training process of ResNet-18 and ResNet-50 and on ImageNet regarding SFP
and ASFP. The solid blue line and red dashed line indicate the accuracy of the model before
and after pruning, respectively. The black line is the performance gap due to pruning, which
is calculated by the accuracy after pruning subtracting that before pruning.
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Fig. 8: Ablation study of ASFP. (Solid line
and shadow denote the mean and standard
deviation of three experiments, respectively.)

TABLE V: Accuracy of CIFAR-10 on ResNet-110 under different
pruning rate with different filter selection criteria.

Pruning rate(%) 10 20 30
`1-norm 93.68 ± 0.60 93.68 ± 0.76 93.34 ± 0.12
`2-norm 93.89 ± 0.19 93.93 ± 0.41 93.38 ± 0.30

ratio of pruned FLOPs is more than 40%, ASFP could obtain
much better performance than SFP. This is because pruning
a large number of filters leads to severe information lose and
ASFP is especially effective for this case. In contrast, when
only a small portion of the information is lost, the maintained
model capacity of SFP is enough for good results. For the
pruning rate between 0% and about 23%, the accuracy of
the accelerated model is higher than the baseline model. This
shows that our ASFP and SFP both have a regularization effect
on the neural network.

3) Selection of the Pruned Layers: Previous work always
prunes a portion of the layers of the network. Besides, different
layers always have different pruning rates. For example, [23]
only prunes insensitive layers, [25] skips the last layer of
every block of the ResNet, and [25] prunes more aggressively
for shallower layers and prune less for deep layers.

Similarly, we compare the performance of pruning the first
and second layer of all basic blocks of ResNet-110. We set
the pruning rate as 30%. The model with all the first layers
of blocks pruned has an accuracy of 93.96 ± 0.13%, while
the model with all the second layers of blocks pruned has an
accuracy of 93.38± 0.44%. If we carefully select the pruned
layers based on the sensitivity, performance improvement
may be potentially obtained. However, tuning these hyper-
parameters is not the focus of this manuscript.

4) Sensitivity of the ASFP Interval: By default, we conduct
our ASFP operation at the end of every training epoch, we
call the ASFP interval equals one under this setting. However,
different ASFP intervals may lead to a different performance,
so we explore the sensitivity of ASFP interval. We use ResNet-
110 under a pruning rate of 30% as a baseline, and change
the ASFP interval from one epoch to ten epochs. The result
is shown in Figure 8(a). We find the model accuracy of most
(80%) intervals surpasses the accuracy of one epoch interval.
Therefore, we can even achieve better performance if we fine-
tune this parameter.

5) Sensitivity of Parameter D of ASFP: We change the
parameter D in the Eq. 6 to comprehensively understand ASFP,
and the results are shown in the Figure 8(b). We prune scratch
and pre-trained ResNet-56 on CIFAR-10 and set the pruning
rate as 40%. When changing the parameter D from 7 to 16,
we find the model accuracy has no large fluctuation (< 0.3%).
This shows that the final result of pruning is not sensitive to
the parameter D.

V. CONCLUSION & FUTURE WORK

In this paper, we propose an asymptotic soft filter pruning
approach (ASFP) to accelerate the deep CNNs. As the training
procedures go, we allow the pruned filters to be updated and
asymptotically adjust the pruning rate. The soft manner could
maintain the model capacity, and the asymptotic pruning could
make the pruning process more stable. Therefore, our ASFP
could achieve superior performance. Remarkably, without us-
ing the pre-trained model, our ASFP can achieve competi-
tive performance compared to the state-of-the-art approaches.
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Moreover, by leveraging the pre-trained model, our ASFP
achieves better results.

Although changing the pruning rate asymptotically would
be beneficial, it has several limitations. First, several additional
hyper-parameters are necessary to define the pruning rate
during training. Second, the schedule of the pruning rate is
hand-crafted and may not be the best schedule. Third, the the-
oretical demonstration of the information loss of the network
after pruning need to be investigated. Furthermore, ASFP can
be combined with other acceleration algorithms, e.g., matrix
decomposition and low-precision weights, to further improve
the performance. We will explore these directions in our future
work.
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