“© 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for
all other uses, in any current or future media, including reprinting/republishing this material for
advertising or promotional purposes, creating new collective works, for resale or redistribution to
servers or lists, or reuse of any copyrighted component of this work in other works.”



Smart Grid Security Enhancement by using Belief
Propagation

B M Ruhul Amin, Member, IEEE, Seyedfoad Taghizadeh, Member, IEEE, Sasa Maric, Member, IEEE, M
J Hossain, Senior Member, IEEE, and Robert Abbas Member, IEEE,

Abstract—While the pace of emerging smart grids is increasing
worldwide, the novel cutting edge technologies such as internet of
things (IoT) and fifth generation (5G) communication networks,
require more advanced cyber secure protections. False data injection
attacks (FDIA) is a critical cyber-attack which can cause disrupt
operations and subsequently black outs. Cleverly constructed false
measurement vectors can circumvent the bad data detector (BDD)
unit and mislead the state estimation process by creating stealthy
type FDIAs. This paper proposes a novel belief propagation (BP)
based algorithm to detect FDIA in smart grids. The proposed BP
method in this paper operates via utilizing local sensor measurement
data to calculate a local belief and send it as a message signal to
the control center. Then the control center determines a final/global
belief and compares the result with a predefined threshold value
derived from the uncompromised measurement database. As a result,
the BP based algorithm is able to detect the stealthy type FDIAs
which bypass the BDD in state estimation process. Another novel
feature of the proposed BP based algorithm is to detect FDIAs
without using any historical cyber-attack data which are sketchy
due to security constraints and infinitesimal in occurrence numbers.
From the obtained results, it is explicit that proposed technique
successfully detects random and stealthy FDIA attacks with relatively
higher detection rate than the state-of-the-art machine learning
classifiers such as Naive Bayes, Support-Vector Machines (SVM),
RandomForest, OneR and AdaBoost. The proposed algorithm is
tested on the IEEE 14 bus system by utilizing the load data from
New York independent system operator.

Index Terms—Smart Grid Security, False Data Injection Attack
(FDIA), Belief Propagation (BP).

NOMENCLATURE
T Bad data detection threshold
T Attack detection threshold
0 System state vector
M Transformation matrix
e Gaussian measurement error vector
h(0) Function of state variables
J(6) Objective function
Z¢ Measurement vector at time ¢
z Measurement vector
Zgwm Time series measurement matrix
Oq Estimated system state vector during attack

0 Estimated system state vector

P degree of freedom

a Attack vector

H System Jacobian matrix

R Known measurement co-variance

r Measurement residue

W Reciprocal of the measurement error variances
zZ Real power measurement matrix

Zy Compromised measurement vector
O Phase angle at bus k
O Phase angle at bus m
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fn; False negative

fpi False positive

Ny, Number of buses connected to bus m
Py,  Active power flow from bus k£ to m
Py Active power injection at bus k

tp; True positive

v Power flow measurement error

w Power injection measurement error
Tl Bus reactance

¢ Global belief

L Local belief

Global compatibility function
Local compatibility function
mf Final message

Zti Measurement of i-th meter at time ¢
5G Fifth generation

BDD Bad data detector

BP Belief propagation

CUMSUM Cumulative sum

EMS Energy management system
FDIA False data injection attack
FNR False negative rate

FPR  False positive rate

IoT Internet of things

ISO  Independent system operator
MILP Mixed integer linear programming

MITM Man-in-the-middle

NYISO New York independent system operator
OPF  Optimal power flow

PCA  Principal component analysis

PMU Phasor measurement unit

ROC Receiver operating characteristics

RTU Remote terminal unit

SCADA Supervisory control and data acquisition

SVM  Support vector decomposition
TNR  True negative rate

TPR  True positive rate

WLS  Weighted least square

I. INTRODUCTION

YBER-ATTACKS are significantly increasing in power in-

dustries around the globe in recent years [1]. Fortifying cyber
defence is pivotal to the next generation power industry, well-
known as a smart grid. As the electricity grid becomes increasingly
distributed and reliant on emerging telecommunication and control
technologies (e.g. 5G wireless and narrow band internet of technol-
ogy (IoT) networks), vulnerabilities to cyber-attacks will increase,
and more sophisticated approaches for detection and management
will be required. Failing to detect cyber-attacks in such synergistic
power systems can disrupt operations, hamper communication and
stall the economy for hours e.g., Ukraine blackout 2015 [2], [3].
It is highly necessary to identify types, impacts, and solutions of
cyber-attacks to ensure the secure operation of power systems.



A. Background and Related Works

Cyber-attack in power system could be initiated by insiders
such as spiteful employees or outsiders such as professional
hackers, organized criminals, etc. The attacker can exploit the
flaws and vulnerabilities in software and communication protocols
to electronically invade the power system operational networks.
The proper cyber security measures need to be developed and
implemented to substations, control centers, power generating sta-
tions, transmission and distribution infrastructures. Cyber-security
applications cover all digital meters, protective devices, control
center database, monitoring computers, software related to the
analysis of the system status and measurement data, generation
of the control actions, forecasting, predictions, real-time pricing
of the energy management system and so forth. Cyber-attacks
could be launched to mislead the state estimation process of the
energy management system (EMS) in power systems. The state
estimator uses network data, real-time measurements, load and
production forecasts as inputs and, based on these information,
predicts the most likely state of the network at a given moment.
The monitoring and control of power systems fully rely on the
successful estimation of systems’ states, i.e., voltage magnitudes
and angles. In practice, measurement residue based bad data
detector (BDD) is employed in the state estimation process to
detect anomalies in the measurement data set [4]. However authors
in [5] have investigated how a false data injection attack (FDIA)
can cause vulnerability in the state estimation process via utilizing
the system topology and connectivity information which remains
stealthy and bypasses the traditional BDD.

Besides, a significant number of research projects are being
carried out to defend the FDIAs in power systems. The defense
techniques are mainly categorized as detection based approach and
protection based approach. The state estimation can be protected
from FDIA by protecting all meter measurements or protecting
a strategically selected set of sensor measurements. A greedy
algorithm is proposed in [6] to facilitate the placement of secure
measurement units e.g., phasor measurement units (PMUs) to
defend against FDIAs. To determine the least number of pro-
tected measurements, a bi-level mixed integer linear programming
(MILP) based model is proposed in [7]. The number of protected
sensors will keep increasing to ensure the protection of larger
systems. Therefore, a graphical method is proposed in [8] to
find the optimized number of meter measurements in order to
protect a selected number of state variables that have greater
social/economic impacts. Another least budget defense strategy
is discussed in [9]. However, all these methods are constraints by
either protecting a set of measurements or by compromising the
security index with limited budget.

Therefore, detection techniques are more realistic alongside
the protection techniques to ensure maximum security of the
system. In [10], a strategy is proposed, which rationally shuts
down some pre-selected transmission lines in order to make
transition in network’s topology and subsequently identify the
possible stealthy attacks. Although this strategy is claimed to be
effective, it arises concerns about the possible transients, reduc-
ing life time of switching equipment and undesirable blackouts
caused by shutting down some transmission lines. Authors in
[11] and [12] considered the FDIA as sparse in nature due to
the limited resources of the attacker for compromising a large
number of meters and proposed novel detection methods based
on the separation of nominal power grid states and anomalies to
detect the attacks. In reality, the attacker can inject false data
by invading communication channel or gaining access to the
supervisory control and data acquisition (SCADA) database and
for these attack cases, the attack vector is not bound to be sparse.

An adaptive cumulative sum (CUMSUM) method is analyzed in
[13], where authors considered a detection technique by directly
evaluating the changes of measurement residue distribution during
attack. The proposed method is unfeasible for larger networks
as the computational complexity increases exponentially with the
number of meters. In [14], authors proposed a robust sequential
detector based on the generalized likelihood ratio for larger range
of load variations and attack strategies. However, the stealthy type
FDIAs which can bypass the measurement residue based BDD
modules are not considered in the above mentioned method. A
deep learning based scheme is adopted in [15] to detect FDIA
for the purpose of power theft. Wavelet transform and deep
neural networks could also be utilized to capture inconsistency in
spatial and temporal correlations during normal and cyber-attack
situations [16]. In a previous work [17], authors compared the
performance of some state-of-the-art machine learning algorithms
to detect and distinguish FDIAs and faults.

The Machine learning algorithm is a good choice to detect
anomalies in any data set. However, a large amount of training data
are required in machine learning or deep learning based methods
to achieve successful detection rate. Though the power system
operational data are available, but the historical cyber-attack data
is very less. Among those infinitesimal data, most of the historical
attack data are unavailable due to security constraints. In addition,
attacks vary significantly and newer attacks will be able to bypass
the machine learning and deep learning based detectors due to the
lack of enough training data.

B. Contribution

A robust belief propagation (BP) based detection method is
proposed in this paper to detect false FDIAs in the state estimation
process. BP is a message passing algorithm which is often used
in Bayesian networks and Markov random fields for performance
inference [18]. It is highly effective and has low computational
complexity which makes it an ideal solution for applications
such as medical diagnosis, image processing [19], and intrusion
detection [20], [21]. In [20] and [21], a BP based intrusion
detection technique is utilized in cognitive radio network. To the
best of authors’ knowledge, BP algorithm has never been proposed
to detect cyber-anomalies in power systems. In this paper, the
standard BP algorithm is modified based on the bi-polarity of the
power system measurement data. Appropriate selecting the belief
threshold level is defined from the long historical uncompromised
data to distinguish the attack measurements from the normal
measurements. The below contributions are achieved while using
the proposed BP method:

o BP method uses long historical normal operation data instead
of using historical cyber-attack data. This provides simplicity
in operation and lower computational burden.

o BP method successfully detects stealthy type cyber-attack
data which can circumvent the conventional residue based
BDDs.

o BP method exhibits higher detection rate than the existing
state-of-art machine-learning algorithms.

To validate these contributions, the proposed BP algorithm is
implemented on the IEEE 14 bus system by utilizing the real time
load data from New York independent system operator. Employing
the real-life data of NYISO in the test system will facilitate the
engineers to realize the real-life scenarios intensively and prompt
security measures before the critical situation occurs in power sys-
tems. The operation of the proposed method is evaluated through
various case studies and its operation is compared with the state-
of-art machine learning algorithms such as Naive Bayes, Support-
Vector Machines (SVM), RandomForest, OneR and AdaBoost.



C. Paper Organization

The rest of the paper is organized as follows: The energy
management system (EMS) model is presented in Section II. The
stealthy FDIA construction is described in Section III. Section
IV depicts the formulation of the proposed BP based detection
method. Data generation, case studies and results are discussed in
Section V. Finally, Section VI concludes the paper.

II. ENERGY MANAGEMENT SYSTEM (EMS) MODEL

Efficient and coordinated control mechanism is a requisite for
sustainable and reliable operation of power systems. Ambiguous
and erroneous monitoring of the system status and measurements
can prompt misleading control actions by the power system EMS.
For proper monitoring and control, two types of data set are
collected by the EMS control center. One type of data set is
the topological and configuration data e.g., transformer settings,
line impedance and status data regarding the circuit-breakers and
switches. Other type of data is the measurement data at different
nodes and branches. Both types of data are collected and analyzed
for estimating present states of the system. The substantial control
actions such as load forecasting, economic dispatch, contingency
analysis, optimal power flow (OPF), etc. are determined based on
these estimated states of the system. The smart remote terminal
units (RTUs), digital communication channels and software based
control center are subject to cyber-attacks. The cyber-vulnerable
nodes for FDIA are depicted in Fig. 1.

Communication
Channel
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Fig. 1: Cyber-vulnerable nodes in SCADA based EMS subject to
malicious data injection attacks

The state estimation process, and the bad data detector function-
ality are described below for further understanding of the EMS
operations.

A. State Estimation

In the state estimation process, the network topology and pa-
rameters are considered as perfectly known and usually the voltage
phasors (magnitudes and angles) are considered as system states.
Full-non linear power flow equations are computationally intensive
for an attacker to use and having full access to a significant amount
of system information is required. Therefore, a simplified DC
approximation model is adopted in this research for the explicit

representation of the state estimation process and attack generation
processes which could be much easier problem for an attacker. In
the DC model, the bus voltages are normalized as equal to 1 and
one of the voltage angles is considered as reference. So, the system
state vector is represented as:

0 =[01,0,..0n_1]" (1

The measurement vector z received from RTUs can be expressed
as:

z=h(0)+e 2)
where, h(0) = [h1(0), ha(0), ..., hym(0)]T is the function of state
variables and e = [e1,ea, ..., €, is the Gaussian measurement

error vector with known co-variance R. The real power flow in
DC state estimation process is obtained by neglecting all shunt
elements and branch resistances.

The power flow measurements can be obtained by performing
DC power flow analysis and expressed as:

_Hk:_em

Tkm

Pem +v (3)
where, 0y, and 60, are phase angles at bus k and m, x,, is the
branch reactance, and v is the measurement error. Similarly, power
injection measurement at bus k can be expressed as:

Pi= > Pim+uw )

meEN,

where, N,,, is the number of buses connected to bus m. Hence, the
DC model for the real power measurement matrix can be expressed
as:

z=HO +e (5)

where, z includes only the real power flow and real power injection
measurements. The system Jacobian matrix H is a function of
branch reactances only.

As H € IR™*" is a full rank matrix and further assuming m >
n, the rank of H = n. So, the solution for € can be formulated by
using weighted least square (WLS) estimator and expressed as:

2
argmin J(6) = in - HOH (6)
0

o2
and the solution for 6 is given as:
6 = (H"WH) 'H"Wz (7

where, W = R™! is the reciprocal of the measurement error
variances.
Now, the measurement residual can be calculated as;

r=z—HO ®)

This measurement residue is used as a key parameter to detect
incorrect data in the BDD module.

B. Bad Data Detection

Data can be lost or modified through the communication
channel. In the WLS based state estimation, the chi-square (y?)
test is a common practice to detect bad data. As the estimated
measurements are required for residue calculation, the chi-square
test is only possible after estimating the system states. It is
assumed that the noise samples in the communication channel
are independent and follow a normal distribution with zero mean.
Therefore, the objective function J (6) will follow the chi-square
distribution with ¢» = (m —n) degree of freedom. By utilizing the
Chi-square distribution table, a detection threshold X2 can

(m—n),p
be achieved considering a detection confidence with probability p



(e.g. 95%). If the objective function, J(6) > X(Q,m_nm, then bad
data is suspected in the measurements, otherwise the measurements
are free from bad data and the estimated states are considered for
control actions.

III. STEALTHY FDI ATTACK CONSTRUCTION

In most cases, the traditional BDD detects random data in-
jections in the measurement data set and the state estimation
process does not converge. However, if attackers are successful
in collecting full or partial system data they can inject malicious
data in such a way that the state estimation process converges
and the malicious or compromised data circumvent the EMS’s
BDD [5], [22], [23], [24], [25]. The FDIA is also possible without
the prior knowledge of the system topology and transmission line
impedance by using measurement signals only [26], [27], [28].
The detail models of both attack types are discussed in following
subsections.

A. Knowledge based FDI attack model

A man-in-the-middle (MITM) type FDIA is considered in this
research work. The MITM attacker mindset is to construct such
an attack vector a that the compromised measurement vector
zZ, = z + a circumvent the BDD module and mislead the state
estimation process to generate false states of the system. For
instance, a stealthy attack vector a is constructed based on the
known system Jacobian Matrix H [5]. For the compromised
measurement vector z,, the estimated states vector éa can be
computed as:

6, = (H"WH) H"Wg,
= (H"WH) " 'H"W(z+a) 9)
=6+ (H"WH) 'H"Wa
If a = Hc, the 2-Norm of the measurement residual can be
calculated as:
||za — HO,|| = ||z +a — H(O + (H'WH) ~"H"Wa)||
=||lz—HO + (a — H(H"WH) "H"Wa)||
= ||z — HO + (Hc — He)||
= |lz— HO|| < T

10)

where, T = X?m—n),p is the BDD’s threshold. As the 2-Norm
measurement residue in both normal and attack cases are same
and below the chi-square threshold, the BDD will be unable to
detect the malicious injection in the measurement data.

B. Blind FDI attack model

From the discussion of the previous section it is explicit that the
attack vector can be constructed by using the system information
such as network topology and transmission line impedances.
Usually these information of the system are confidential and peri-
odically updated over time. However, a more practical approach is
to use measurement signals to construct the stealthy attack vector.

A principal component analysis (PCA) technique can be adopted
to construct stealthy attack vector utilizing the measurement sig-
nals only. PCA is a statistical process which utilizes an orthog-
onal transformation to convert a set of observations of possibly
correlated variables into a set of values of linearly uncorrelated
variables. This technique can be utilized to approximate the
Jacobian matrix H from the measurement data in order to construct
successful attack vectors. Let us assume, Zgy,, 1S a time series
measurement matrix where each row represents a time instant
and each column corresponds to measurement attributes. After a
successful application of PCA to the measurement set Zjx.,, a

transformation matrix M and a vector of principal components x
are achieved. The PCA transformation can be expressed as:

M Z=x (11)

As from the above system model discussion it is known that the

Jacobian H is an n rank matrix, only n number of eigenvectors

could be considered in Jacobian matrix construction. Therefore the

measurement matrix can be expressed as:
Mii Mo

)

M, | |21

12)

Mm,l Mm,Q Mm,n Tn

where, the approximated Jacobian matrix is a m X n amtrix.
Now, the attacker can easily construct attack vector @,., =

H,,.,c from measurement signals, which will circumvent the BDD

without detection. For the proof of stealthiness and further details

of PCA approximation method readers are referred to the article

[27].

IV. PROPOSED BELIEF PROPAGATION BASED DETECTION
ALGORITHM

Traditionally, BDDs are used to detect and identify malicious
data in the power system. However, an attacker can construct
attack vectors utilizing the topology of the system or measurement
signals which bypass the traditional BDDs [5]. In this Section, a
BP framework is described to detect FDIAs in the power system.

In the proposed framework, an iterative approach is considered
to calculate the belief in every time instance. A belief can be
defined as similarity function between the current measurement
and the previous measurement. In order to diagnose and mitigate
attacks effectively, beliefs are calculated in two levels, locally and
globally. A local belief is calculated for each measurement sensor
by utilizing the current measurement and historical measurement
and a compatibility function. The purpose of the compatibility
function is to generate local message for the control center. A
global belief is calculated by considering all the local messages
containing their beliefs and corresponds to the probability whether
the measurement vector is under attack or not. A global compati-
bility function is also utilized to maintain the global belief between
defined levels. The global belief is compared with a threshold value
generated from the long historical uncompromised operational
data. If the final belief is greater than the threshold, the state
estimation process continues. Otherwise, the attack is detected
and the compromised measurement vector is discarded from the
estimation process. The detection procedure is repeated for the next
measurement vector. If the attack vectors are continuously coming
for longer time period, the system will go to safe mode operation
by using default or forecast data. Continuing state estimation
process after attack detection could be an area of future research.

The complete detection process is depicted in the Fig. 2 and the
formulation of the local and the global belief are described in the
following sections:

A. Local Belief

In the EMS, states of the system are obtained and observed by
the independent system operator (ISO) at a regular time interval.
For the DC state estimation technique used in this paper, the power
injections in buses and the power flows through the branches are
considered as measurement data. The measurement vector at time
t is expressed as:

T
Zt = [Zt,17zt,2a"'azt,ia"'azt,N] (13)
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Fig. 2: Proposed EMS with BP detection algorithm

where, N is the total number of measurements. and z;; is the
measurement of ¢-th meter at time t¢.

Now, a local function ¢; is defined which corresponds to the
local belief at meter . In this proposed modified BP algorithm, an
iterative approach is utilized to detect FDIAs in the measurement
data set. For the first iteration (I = 0), there is no historical
information. Therefore, an uncompromised initial measurement,
20,; 1s considered to calculate the first local function. The first
iteration starts from the measurement z; ;, and the local function
for i-th meter for the iteration (I = 1) is formulated as:

L7y _ _|a—b|

where, a,b,p € IR and p < a < b. It is denoted that for z;; <
Z(t4+1),i> @ = 2z and b = zq1) 55 for zpp1y < 204, @ = Z(41)4
and b = 2, ;. The constant p, is utilized to avoid false local belief
calculation during polarity change of measurement data. This local
function is an indicator of the difference between the current and
previous measurement.

A compatibility function is derived to process the local belief for
the local message generation purpose. The compatibility function
is defined as:

(14)

1 e
Fa0) ifa=5>

vELI-1) =30  if k() <0 (15)
1 otherwise

where, the parameters have the same meaning as described in the
local belief calculation in (14).

B. Global Belief

The local belief does not represent the cyber situation of the
overall system and the local function might give erroneous results
for unexpected shutdown of large loads. A precise detection for the
overall system can be achieved by using an upper-level detection
method while using the local belief. Therefore, a global function
called global belief is defined in this paper to detect FDIAs for the
overall system. However, the overall peak demand of the system
does not change abruptly between two consecutive time intervals
and the demand variations reduced for shorter time intervals.

Besides, the state estimation is performed only on the steady-state
condition of the power system. Therefore, situations like faults are
not considered in this study.

The global belief is calculated in a similar way to the local belief
by using present and prior information and compatibility function.
The information of the local function is treated as a message.
Similar to the conventional BP method, all messages from all local
functions are sent to the SCADA master to compile and calculate
the final global message. The message containing local information
of a sensor ¢ is defined as:

mf(l) = o (F(,1—1) (16)
L

where, m;*(I) is a message from sensor ¢ in the [-th iteration.
After receiving all the messages from the sensors, a final message
is calculated as:

N
1
F(py L
mm—ﬁgmm (17)
The final message of iteration [ — 1 and [ are utilized to
generate the global belief. The formulation is similar to (14) and

is expressed as:
|la — 0|
¢zG )= 1- )
g b —pl

where, a,b,p € R and p < a < b and when, mf (1—1) > mf(l),
a=ml(l) and b = mI (I —1); when, mF'(l) > ml'(1—1),a=
mf' (1 —1) and b = mI(1).

In similar to (15), the final compatibility function for iteration
(1) is expressed as:

(18)

i

rb%(l) ifa=0>
VELI-1)=40  if¢F(l) <0 (19)
1 otherwise

where, the parameters have the same meaning as described in
the global belief calculation in (18). Final belief is determined
by multiplying the global belief with the compatibility function
derived in (19). The final belief can be expressed as:



oF (1) =& (1,1 - 1)6F (1) (20)

Where, 1 (1,1 — 1) is the global belief and ¢ (1) is the global
belief compatibility function.

An attack detection threshold 7, can be obtained by observing
final beliefs of a long historical data. For example, one year
historical normal operational data represents all possible power
flows and injections variations during days, months and seasons.

Now, if the global belief of the present measurement vector is
below the threshold 7, attack is detected and the security alarm ac-
tivated. Otherwise, the system is attack-free and the measurement
is ready for the state estimation process. The complete process of
the modified BP based detection technique is shown in Fig. 3 and
summarized in Algorithm 1.

Algorithm 1 Defence Against FDI Attacks
1: Initialize [ =0
2:  Initial power measurement obtained, zg
3 Atl>1,
4:  Obtain Measurement z;
Calculate ¢ using Eq. 14
Calculate ¥ using Eq. 15
Compile local messages using Eq. 16
Send local messages to the control center
Calculate final message m!"(l) using Eq. 17
Calculate Global Belief ¢ using Eq. 18
Obtain Final Belief ¢ (1) by Eq. 19 and Eq. 20
if ' (1) <7
Attack Detected
Buzz the alarm & Stop
else
Measurement data is attack free
Go for state estimation
l=1+1
end
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V. RESULT AND DISCUSSION

In this research work, the IEEE 14 bus test system is adopted
to generate the measurement vector and evaluate the performance
of the proposed BP based detection algorithm. There are 14 buses
(nodes) and 20 branches (line sections) in the test model shown in
Fig. 4. Total 54 measurements are obtained from 20 incoming
and 20 outgoing power flow sensors and 14 power injection
sensors respectively. The real time load data from the New York
independent system operator (NYISO) are adopted to simulate
the power system behavior in a more realistic manner [29]. The
measurement samples are taken in every 5 minutes interval. A
MATLAB tool MATPOWER is utilized to simulate the test model
and analyze the performance of detection techniques [30].

A. False Data Injection Attack Construction

The BDD module in the power system EMS uses chi-square
test to detect anomalies or bad data in the measurement data set.
The IEEE 14 bus system has 54 measurements and 13 states,
thus the degree of freedom is 41. Considering 95% confidence
level and above mentioned degree of freedom, the threshold value
of the BDD module is 56.94 [4]. Measurements having residual
value less than the chi-square threshold are considered as normal
data. Otherwise, measurements are considered as bad data and the
state estimation process does not converge. For the proposed IEEE
14 bus test system, residual value of the original measurement
data set is 4.45 and for measurement with randomly generated
zero mean Gaussian noise is 5.85, which are quite below than
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Fig. 3: Proposed BP detection algorithm flowchart
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the threshold value. If random attack vectors are injected to
the original measurements then the residual value is above the



threshold value, hence detected by the BDD module and the
estimated states will not follow the original states. For evaluating
the detection performance of the proposed algorithms, stealthy
attack vectors are constructed by utilizing the known system
topology matrix [5]. As shown in Fig. 5, the attack measurements
are completely different than the original measurements (Fig. 5a)
and the estimated states do not follow the original states (Fig. 5b).
However, the estimated measurements are following the original
measurements and the residue value during attack is similar as
the residue value during normal operation. As a consequence,
the attack measurement vector remain hidden in the traditional
chi-square test based BDD module. In conclusion, it is explicit
that stealthy attacks are possible to construct which successfully
circumvent the traditional BDD module.
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Fig. 5: (a) original measurements, received attacked measurements
and estimated measurements during attack and, (b) original states
and estimated states during attack.

B. Belief Calculation and Threshold Determination
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Beliefs are calculated for no noise, with noise and attack
scenarios by using the proposed BP algorithm. No noise scenario
means the original measurements and with noise scenario means
addition of Gaussian noise with original signals due to the use of
communication channel for data transmission. The calculation is
performed for 24 hours time period of a randomly selected regular
day. Total 290 instances of 5 minutes interval are considered for
the measurements signals. Local beliefs are calculated for each
of the measurement nodes and global belief is determined from
the calculated local beliefs. It is explicit from Fig. 6 that most
of the final beliefs of original measurement (no noise) sets are
closer to 1 and few beliefs are below 0.9 due to the heavy load
fluctuations during peak hours. While noise is added to the original
measurement signals, a decrease in the belief levels are noticed
as shown in Fig. 6. However, most of the beliefs of original
and noisy signals are above 0.8, whereas most of the beliefs of
random and stealthy attack data are below 0.6. Therefore, it is
clear from Fig. 6 that the beliefs of the original signal, signal
with noise, random attack signal and stealthy attack signal fall in
distinguishable distribution levels.
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Fig. 7: Detection rate variation with the change of threshold value

The detection rate variation of original data, noisy data, random
attack data and stealthy attack data are plotted in Fig. 7. As shown,
the detection rate of the original signal is above 0.8. Therefore,
all the normal data will be detected by the BP algorithm, if the
threshold value is selected between 0.8 and 1. The detection rate
of noisy data is above 0.65, hence the threshold value of beyond
0.65 results in detecting the noisy data. Considering the detection
level of the normal and noisy data, the threshold value should
be selected between 0.6 to 0.65 to make sure that the stealthy
and random attack data, which are located below 0.6, are detected
while normal and noisy data are ignored.

The accuracy (correctly and incorrectly detected normal and
cyber attack data) of the BP algorithm versus changing the detec-
tion threshold value is analyzed and the results are summarised in
Table I. In the table, the true positive rate (TPR) represents the
rate of correctly detected attack which is also called the sensitivity
of the classification test. Similarly, the true negative rate (TNR)
means the rate of correctly detected normal data which is also
called the specificity of the classification test. In addition, the
false negative rate (FNR) means that the rate of falsely detected
attack and the false positive rate (FPR) means the rate of falsely
detected normal data. From Table I, the TPR increases as the
threshold value increases and TNR decreases with the increase
of the threshold levels. Similarly, FPR and FNR exhibit opposite
trends while increasing the the threshold value. According to such
a trade off between TPR and TNR and also FPR and FNR,
the optimal value of 0.65 is determined via using numerical
optimization algorithm, thus at the optimal belief threshold (0.65),
the correctly attack detection rate is 99.94% and correctly original
measurement detection rate is 99.98%, while FPR and FNR are
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Fig. 8: Cyber-attack detection for different case scenarios

located near to zero.

TABLE I: Detection rate of the original measurements and attack
measurements for different belief threshold levels

Belief | e False True False
Positive Negative Negative Positive
Threshold Rate (%) Rate (%) Rate (%) Rate (%)
0.50 58.18 41.82 100 00
0.55 83.08 16.92 100 0.00
0.60 98.05 01.95 100 0.00
0.65 99.94 0.06 99.98 0.00
0.70 100 0.00 99.85 0.15
0.75 100 0.00 99.28 0.72
0.80 100 0.00 97.33 2.67
0.90 100 0.00 76.71 23.29

C. Performance Evaluation of the Proposed Algorithm in detecting
Random and Stealthy Attacks

The detection of falsely injected data are conducted for two
different case studies as: single instance data set is corrupted for
multiple time instances and multiple consecutive instance data are
corrupted for consecutive time instances. For the first case, random
false data are injected at sample no. 100, 105, 110, 115 and 120
and stealthy false data are injected at sample no. 200, 205, 210, 215
and 220. From the Fig. 8a, the final belief during both of the attacks
(random and stealthy) is below the threshold 0.65, hence detected
by the proposed BP algorithm. On the other hand, although the
measurement residue during the random attack is above the chi-
square threshold of 56.94 and is successfully detected by the
BDD, during the stealthy attack from 200 to 220, the measurement
residual is below the threshold and bypasses the BDD. This result
can validate the ability of the proposed BP algorithm in detecting
the random and stealthy attacks. Similar results are observed for
multiple consecutive attacks and illustrated in the Fig. 8b.

D. Performance Evaluation of the Proposed Algorithm Compared
with the Machine Learning Algorithms

In this section, performance of the proposed BP based detec-
tion algorithm is discussed in contrast to some of the state-of-
the-art machine learning algorithm classifiers. Machine learning

algorithms develop a mathematical model based on the supplied
training data set and then make predictions on supplied data.
The most efficient learner detects most of the supplied instance
data correctly. The performance of the classifier depends on the
learning method of the classifier and the quality of the training
data. In this paper, five distinct types of popular classifiers are
used to distinguish attack from the normal power system data.
The classifiers and their categories are as follow:

« Probabilistic classification (Naive Bayes) [31]

« Non-probabilistic binary classification (SVM) [32]

o Decision tree learning (Random Forest)[33]

e Rule induction (OneR) [34]

o Boosting, a meta-algorithm for learning (AdaBoost) [35]

Total 424674 measurement instances are obtained from one
year data flow where 212338 measurement instances are normal
operational data (no noise and with noise) and 212336 are random
and stealthy attack data. A machine learning tool WEKA is utilized
to perform the case studies [36]. Three case scenarios are studied
to clearly realize the effectiveness of the proposed algorithm.

As already mentioned, machine-learning based algorithms re-
quire to be trained by both normal operational data and historical
attack data to detect attacks with the highest detection accuracy,
whereas the proposed BP algorithm requires only normal opera-
tional data. To validate this, in case 1, only normal operational
data (both original and noisy) are used on purpose to train the
machine-learning classifiers and their detection accuracy rates are
summarised in Table II. As shown, the machine-learning based
algorithms exhibit low detection rate accuracy. Among them,
SVM with (78.9923 %) shows the highest detection rate accuracy,
whereas the proposed BP algorithm exhibits the maximum detec-
tion accuracy rate of 99.94 % which is because of its advanced
algorithm that works based on normal operational data and does
not require any historical attack data set.

A receiver operating characteristic (ROC) is plotted by using
the true positive rate and false positive rate of the classifiers and
the results are illustrated in Fig. 9. The results of all the above
mentioned classifiers and proposed BP algorithm show that the
proposed BP algorithm has the highest rate of correctly detected



TABLE II: Correctly classified instances (%) by using different machine learning algorithms

Cases/Machine Learning Algorithms Naive Bayes SVM 1}::;2;‘: OneR AdaBoost Proposed BP
Case 1 (Learned from the historical normal 47.4139 78.9923 50.2768 69.9418 49,6201
operational data) 99.94
Case 2 (Learned from normal operational data 25.0002 73.0324 75.0003 73.6906 72.8857 (Using belief
and historical attack data with stealthy attack) threshold)
Case 3 (Leaned from normal operational data 97.4063 99.0082 99.9993 97.7734 49.8189
and historical attack without stealthy attack)

attack among all the machine-learning based classifiers.
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Fig. 9: ROC curve of proposed BP and different Machine Learning
algorithms

In case 2, classifiers are trained with both normal operational
data and historical cyber-attack data. In this test, it is considered
that there are some stealthy attack data in the system, which
are bypassed and not recognised by the BDD. As a result, the
classifiers are not able to detect the stealthy data and even some
of the normal operation data. The percentage of correctly classified
instances (detection accuracy rates) are shown in Table II and as
can be seen, none of the models achieve more than 75% detection
rate accuracy. In the case 3, both cyber-attack data and normal
operational data are used to train the classifiers, while there is
no stealthy attack data in the system. At this case, which is not
always realistic (no stealthy attack and availability of historical
attack data), the machine-learning based classifiers can achieve
above 95% detection rate which is similar to the proposed BP
algorithm (Table I & 1II). As a consequence, the results of the
preformed cases show that the proposed BP algorithm exhibits the
highest rate accuracy with the least available data (only normal
operational data) and with the existence of stealthy attacks in the
system.

In order to provide a clearer picture of the classifiers’ per-
formance, three parameters: Precision, Recall and F-measure are
calculated for the proposed BP algorithm and the state-of-art
machine learning algorithms (Random Forest, Naive Bayes, OneR,
Adaboost, and SVM). The Precision parameter measures the
positive predictive value, and can be obtained from the confusion
matrix of a classifier by using the following equation

Zl tpi
=1 tp;+fp;
l

where, [ is the number of classes, i = 1,2, ..., n, tp; is the number
of true positives and fp; is the number of false positives.
The Recall parameter measures the true positive rate, and can be

calculated by
l tp;
Zi:l tpit+fni

l

where, fn; is the false negative number and other parameters has
the same meaning as Eq. (21).

Precision = 21

Recall = 22)

The F-Measure parameter is the harmonic mean of precision and
recall. F-Measure is calculated by using the following equation

2 % Precision x Recall

F — Measure = 23)

Precision + Recall

These three parameters (Precision, Recall and F-Measure) are
variable according to the robustness of a classifier. Approaching
1.0 indicates the highest robustness of the classifier.
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Fig. 10: Precision, Recall and F-Measure over classification
schemes

The performances of the classifiers are evaluated for the first two
cases (case 1 and case 2) as mentioned in Table II and the results
are depicted in Fig. 10. Case 3 is intentionally ignored due to
the need for historical stealthy attack data which are realistically
unavailable for classifier training purposes. Fig. 10a shows that
the value of Precision of all the classifiers for case 1 and case 2
are below 0.9 showing the lack of robustness of the conventional
methods. In contrast, the value of Precision is almost 1.0 for both



the cases while using the proposed BP detection algorithm. The
same superior performance of the proposed BP is also clearly
visible in Fig. 10b and Fig. 10c for the parameters Recall and
F-measure.

VI. CONCLUSION

Stealthy attack data can cause negative consequences to the
control decisions in a power system. In this paper, a BP based
detection technique is adopted to detect stealthy type FDIAs which
can bypass the traditional BDD module. Unlike other training
based detection algorithm, the BP method works without any
historical attack data. The proposed BP method is implemented
on the IEEE 14 bus system by using the real time load data of
NYISO and its performance is analyzed through different case
scenarios. Key findings of the performed analysis are summarized
as follows:

o The proposed BP algorithm successfully detects random and
stealthy attacks during two case scenarios of corrupted single
set data and multiple consecutive instance data.

o Using just normal operational data and during the existence
of stealthy attacks in the system, the proposed BP algorithm
achieves 99.94% attack detection rate accuracy which is
significantly higher than the detection rate accuracy of state-
of-the-art machine learning classifiers such as Naive Bayes,
SVM, RandomForest, OneR and AdaBoost.

o The higher detection rate (robustness) of the proposed BP
method than the existing state-of-art machine learning clas-
sifiers is validated via analyzing three parameters Precision,
Recall and F-Measure.

Consequently, the simplicity of the proposed BP algorithm, its
lower computational burden and subsequently higher detection rate
accuracy, make it a robust and effective alternative for increasing
the level of security and protection in smart grids. The future scope
of this research is to extend the proposed method in distinguishing
cyber-attacks from the common credible contingencies such as
normal faults.
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