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Abstract—Photo Response Non-Uniformity (PRNU) based
camera attribution is an effective method to determine the
source camera of a visual object (an image or a video). To
apply this method, images or videos need to be obtained from
a camera to create a “camera fingerprint” which then can be
compared against the PRNU of the query media whose origin is
under question. The fingerprint extraction process can be time
consuming when a large number of video frames or images
have to be denoised. This may need to be done when the
individual images have been subjected to high compression or
other geometric processing such as video stabilization. This paper
investigates a simple, yet effective and efficient technique to create
a camera fingerprint when so many still images need to be
denoised. The technique utilizes Spatial Domain Averaged (SDA)
frames. An SDA-frame is the arithmetic mean of multiple still
images. When it is used for fingerprint extraction, the number of
denoising operations can be significantly decreased with little or
no performance loss. Experimental results show that the proposed
method can work more than 50 times faster than conventional
methods while providing similar matching results.

Index Terms—PRNU, video forensics, camera fingerprint
extraction, image forensics.

I. INTRODUCTION

Photo Response Non-Uniformity (PRNU) based source
camera attribution is a well-studied and successful method
in media forensics for finding the source camera of an
anonymous image or video [1]. The method is based on the
unique PRNU noise of a camera sensor array stemming from
manufacturing imperfections. This PRNU noise can act as
a camera fingerprint. The PRNU approach is often used in
two scenarios: camera verification and camera identification.
Camera verification aims to establish if a suspect camera takes
a given query image or a video. This is done by correlating
the noise estimated from the query image or video with the
fingerprint of the camera. The camera fingerprint is usually
computed by taking pictures from the camera under controlled
conditions. For camera identification, the potential source
camera of the query image or video is determined from a
large database of camera fingerprints. One can view camera
identification as essentially the same as performing n camera
verification tasks where n is the number of camera fingerprints
in the database. However, when performing identification, it
is assumed that the camera fingerprints are pre-computed.

In both verification and identification, it is often the case that
there is no camera available to create fingerprints under con-
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trolled conditions. Instead, camera fingerprints are estimated
from a set of publicly available media assumed to be from the
same camera. Such media can have a very diverse range of
quality and content and often lacks metadata.

For efficient fingerprint matching in large databases, various
approaches have been proposed. Fridrich et al. [2] proposed
the use of fingerprint digests in which a subset of fingerprint
elements having the highest sensitivity are used instead of the
entire fingerprint. Bayram et al. [3] introduced binarization
where each fingerprint element is represented by a single
bit. Valsesia et al. [4] proposed the idea of applying random
projections to reduce the fingerprint dimension. Bayram et.
al. [5] introduced group testing via composite fingerprint
that focuses on decreasing the number of correlations rather
than decreasing the size (storage) of a fingerprint. Recently,
Taspinar et al. [6] proposed a hybrid approach that utilizes
both decreasing the size of a fingerprint and the number of
correlations. All these methods were designed and tested for
images, however, they can also be used for videos.

Although the image-centric PRNU-based method can be
extended to video [7]–[9], source camera attribution with video
presents several new challenges. First, a video frame is much
more compressed than a typical image. Therefore, the PRNU
signal extracted from a video frame is of significantly lower
quality than one obtained from an image. As a result, a more
significant number of video frames are required to compute
the fingerprint. Chuang et. al. [7] found that it is best to
use all the frames instead of using only the I- or P-frames
to compute a fingerprint. Using a large number of frames
can introduce significant computation overhead. For example,
calculating a fingerprint from 60 I-frames of a one-minute HD
video requires one to two minutes, whereas 30 to 40 minutes
is required if all frames are used.

In the case of camera identification, the amount of compu-
tation can be prohibitive in practical scenarios. For example,
for computing fingerprints from a thousand one-minute Full
HD videos (i.e., ≈ 1800 frames each) using a PC may take
more than 3 − 4 days when all resources are used. Clearly,
with billions of visual objects uploaded every day on the
Internet, large scale camera source identification becomes
quickly infeasible. Although camera fingerprints stored in a
database may have to be computed just once by a system,
computing a fingerprint estimate at run-time from a query
video can be prohibitive when faced with a reasonable number
of query videos presented to the camera identification system
in a day.

Besides source camera identification, digital stabilization
operations performed within modern cameras also present a
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significant challenge for PRNU-based source camera verifi-
cation for video [8], [10], [11]. Video stabilization results
in sensor-pixel misalignments between individual frames of
the video as the geometric transformations performed to
compensate for camera motion and spatially align each frame
are different. An accurate camera fingerprint cannot be ob-
tained using misaligned frames as is done with non-stabilized
video even if the video quality is very high. Although some
preliminary methods address source camera verification for
stabilized video, [8], [10], these methods are either limited
in scope or have low performance (low true positive rate)
and high computation overhead. An alternate approach to
address the stabilization issue for a fairly long video (at
least a couple of minutes) [12] is to use a large number of
frames for computing the fingerprint. The idea is that with a
large number of frames, there will be a sufficient number of
aligned pixels at each spatial location that can result in the
computation of an accurate fingerprint. As discussed above,
this approach, however, can again introduce high computation
overhead unsuitable for practical use.

As a third example, modern devices such as smartphones
capture different types of media with different resolutions. For
example, most cameras don’t use the full sensor resolution
when capturing a video and downsize the sensor output to a
lower resolution by proprietary and often unknown in-camera
processing techniques. For such a challenging task, PRNU
based source camera matching may often fail if only I-frames
are used.

This paper proposes a computationally efficient way to
compute a camera fingerprint from a large number of vi-
sual objects, such as individual frames of a video or highly
compressed images taken from a social media platform. In
contrast to the three-step conventional fingerprint computation
method (which first estimates PRNU noise from each frame
using a denoising filter and then averages several estimated
individual PRNU noise estimates to get a reliable fingerprint
estimate. Finally applies a post-processing step to reduce
the non-unique artefacts [13], [14]), the proposed method
uses a four step approach: frame averaging, denoising, noise
averaging and post-processing. The frame averaging step gets
the arithmetic mean of the frames in the spatial domain,
resulting in Spatial Domain Averaged frames (SDA-frames)
(Fig. 2). Then, in the second step, each SDA-frame is denoised,
and an averaging of the estimated PRNU noise is done to arrive
at the fingerprint estimate. A post-processing step is applied
to the fingerprint estimate to remove non-unique artifacts
such as the JPEG blockiness artifact. These post-processing
steps are normalizing the PRNU noise with the zero-mean
operation and applying Wiener filtering [13], [14]. The goal
here is to minimize the number of denoising operations (as
denoising is the most expensive step) and also get rid of scene
dependent noise by averaging multiple frames. Experiments
with VISION dataset [15] and NYUAD-MMD [16] show
that the proposed method provides significant speedup in
computing fingerprints. It achieves a significantly higher true
positive rate than a fingerprint computed by I-frames only and
much lower computation cost than a fingerprint obtained from
all available frames while yielding similar performance.

The rest of the paper has been organized as follows.
Section II summarizes the PRNU-based method and provides
an overview of how digital video stabilization works. Sec-
tion III explains the proposed fingerprint extraction method
using SDA-frames as well as an analysis comparing it with
the conventional approach. The insights obtained from the
analysis are experimentally validated in Section IV. Section V
examines applications for which SDA-frames based technique
can be used and reports the improvement that can be achieved
using an SDA-based method for those cases. Section VI
provides a discussion on future work and concludes the paper.

II. BACKGROUND AND RELATED WORK

In this section, we provide a brief review of PRNU-based
source camera attribution and video stabilization.

A. PRNU-based Source Camera Attribution

PRNU-based camera attribution is established on the fact
that the output of the camera sensor, I , can be modeled as

I = I(0) + I(0)K + ψ (1)

where I(0) is the noise-free still image, K is the PRNU noise,
and ψ is the combination of additional noise, such as readout
noise, dark current, shot noise, content-related noise, and
quantization noise. The multiplicative PRNU noise pattern,
K, is unique for each camera and can be used as a camera
fingerprint which enables the attribution of visual objects to its
source camera. Using a denoising filter F (such as a Wavelet
filter) on a set of images (or video frames) of a camera, we
can estimate the camera fingerprint by first getting the noise
residual, Wk, (i.e., the estimated PRNU) of the kth image
as Wk = Ik − Î

(0)
k , Î

(0)
k = F (Ik), and then averaging the

noise residuals of all the images. For determining if a specific
camera has taken a given query image, we first obtain the
noise residual of the query image using F and then correlate
the noise residual with the camera fingerprint estimate.

For images, the PRNU-based method has been well studied.
Following the seminal work in [1], much research has been
done to improve the scheme [17]–[21], and also make camera
identification effective in practical situations [2], [3], [5], [6],
[22]. Researchers have also studied the effectiveness of the
PRNU-based method by proposing various counter forensics
and anti-counter-forensics methods [23], [24]. It has also
shown that the PRNU method can withstand a multitude of
image processing operations, such as cropping, scaling [25],
compression [26], [27], blurring [26], and even printing and
scanning [28].

In contrast, there has been lesser work dedicated to PRNU-
based camera attribution from a video [29]. Mo Chen et
al. [30] first extended PRNU-based approach to camcorder
videos. They used Normalized Cross-Correlation (NCC) to
correlate fingerprints calculated from two videos, as the videos
may be subject to translation shift, e.g., due to letter-boxing.
To compensate for the blockiness artifacts introduced by heavy
compression (such as MPEG-x and H26-x compression), they
discard the boundary pixels of a block (e.g., a JPEG block).
In [31], McCloskey proposed a confidence weighting scheme
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that can improve PRNU estimation from a video by mini-
mizing the contribution from regions of the scene that are
likely to distort PRNU noise (e.g., excluding high-frequency
content). Chuang et al. [7] studied PRNU-based source camera
identification with a focus on smart-phone cameras. Since
smart-phones are subject to high compression, they considered
only I-frames for fingerprint calculation and correlation. Chen
et al. [9] proposed a method to find PRNU noise from wireless
streaming videos, which are subject to blocking and blurring.
In their approach, they divided a video frame into multiple
blocks and did not consider the blocks having significant
blocking or blurring artifacts. Chaung et al. [7] showed that
the best possible fingerprint could be computed when all the
frames are considered (instead of using only the I- or P-
frames). However, to the best of our knowledge, efficient
computation of fingerprint from a given video is a relatively
unexplored area.

B. Affine Transformation in Video Stabilization

Fig. 1: Video Stabilization Pipeline. This figure is a modified
version of a figure that appeared in [32].

An out-of-camera digital video stabilization process con-
tains three major stages: camera motion estimation, motion
smoothing, and motion correction (Fig. 1) [33] [32]. In the
motion estimation step, the global inter-frame motion between
adjacent frames of a non-stabilized video is modeled from the
optical flow vectors of the frames using an affine transforma-
tion. In the motion smoothing step, unintentional translations,
rotations, shearing, are filtered out from the global motion
vectors using a low pass filter. Finally, in the motion correc-
tion step, a stabilized video is created by shifting, rotating,
shearing, or zooming frames according to the parameters in
the filtered motion vector. Since each video frame can use
different parameters, pixels can be misaligned with the sensor
array. For example, one frame can be rotated with an angle -1
degree while another by 0.5 degrees.

Digital video stabilization presents a big challenge for
PRNU-based camera attribution. The frame specific affine
transformations described above make the PRNU method
ineffective as there is a misalignment between frames. The
brute-force methods [10], [24] proposed to address the sta-
bilization issue have had limited success and resulted in

low performance. These brute-force methods try to overcome
the desynchronization issue by first finding the stabilization
parameters through an exhaustive search and then performing
the corresponding inverse affine transformation. Such methods,
therefore, have very high computation overhead. Recently,
Mandelli et al. [11] improved over brute-force approaches by
using a best-fit reference frame in the parameter searching
process rather than using the first frame of the given video.
The best-fit reference frame is obtained by looking for a frame
that matches the largest number of frames. Their approach also
has high computation overhead.

III. SPATIAL DOMAIN AVERAGING

As mentioned in the introduction, this paper proposes spatial
domain averaging for computing camera fingerprints, which
reduces the number of denoising operations when many visual
objects are available. In the proposed method, efficient com-
putation of a fingerprint is achieved by first creating averaged
frames from a large collection, and using these averaged
frames for computing the fingerprint. For example, given a
video with m frames, g non-intersecting equal-sized subgroups
are formed each with d = m

g frames. A Spatial Domain
Averaged frame (SDA-frame) is created from each subgroup by
getting the mean of the d frames in the subgroup. Then, in the
second step, each SDA-frame is denoised, and an averaging
of the estimated PRNU noise patterns is done to arrive at the
final camera fingerprint estimate. In this manner, the number
of frames that are denoised gets reduced by a factor of d. An
SDA-frame obtained from three different images is shown in
Fig. 2.

(a) 1st (b) 2nd (c) 3rd (d) SDA-frame

Fig. 2: SDA-frame is the average of 1st, 2nd, and 3rd frames.

The proposed method is inspired by the fact that although
the denoising filter is designed to remove random noise from
an image originating from the camera sensors (e.g., readout
noise, shot noise, dark current noise etc.), as well as noise
caused by processing (e.g., quantization and compression), it
is not able to do a perfect job. Therefore, some scene content
leaks into the extracted noise pattern. Averaging in the spatial
domain acts as a preliminary filter that smoothens the image
and potentially reduces the content noise that leaks into the
extracted noise pattern. Of course, the effectiveness of the
approach then depends on the nature of the two noise signals.
Below we analyzed this fact and characterized the relationship
between the noise signal arrived at by using the conventional
approach and the SDA-approach.

Further, when using the proposed approach, many questions
arise. First, does frame-averaging lead to a drop in the accuracy
of the fingerprint computed as compared to the conventional
method, assuming the same number of images are used for
both? If so, what is the trade-off between the decrease in com-
putation and the loss in accuracy? Can accuracy be increased
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by utilizing more images in the SDA method? If so, what is
the optimal combination of averaging and denoising that leads
to the least computation while yielding the best performance?
Then, we investigated these questions, both theoretically and
experimentally. We first provide a mathematical analysis using
a simple framework in the two subsections below. We then val-
idate our study in the next section by providing experimental
results. The results show that spatial domain averaging strategy
can indeed result in significant savings in computation while
maintaining performance and, in some cases, improving it.

The rest of this section provides an analysis of spatial
domain averaging. To this end, we first give a summary of
the conventional method and then analyze the SDA method.

A. Conventional method

As discussed in Section II, in the conventional method, the
camera fingerprint is estimated from n images from a known
camera. Each image I can be modeled as I = I(0)+I(0)K+ψ,
where ψ is the random noise accumulated from a variety of
sources (as in (1)) and K is the PRNU noise.

To estimate K, a denoising filter, F , such as [34], BM3D
[35], is used to estimate the noise free signal I(0). Using such
a filter, we denote the noise residual as W = I(0)K + ψ + ξ,
where ξ is the content noise. This noise is essentially due
to sub-optimal denoising filter that is unable to completely
eliminate the content from PRNU noise. Then, from n known
images, the camera fingerprint estimate, K̂, can be obtained
using Maximum Likelihood Estimation (MLE) as

K̂ =

∑n
i=1Wi.Ii∑n
i=1 I

2
i

(2)

where Wi is noise pattern extracted from Ii.
Note that in the estimated camera fingerprint, K̂, ψ and

ξ are the unwanted noise. The quality of K̂ can be assessed
from its variance V ar(K̂) [36]. The lower the variance is (i.e.,
images with smooth content), the higher the quality becomes.
Assuming that ψ and ξ are independent White Gaussian Noise
with variances σ2

1 and σ2
2 respectively, V ar(K̂) can be found

as (using Cramer-Rao Lower Bound as shown by Fridrich et
al. [36])

V ar(K̂) ≥ σ2
1 + σ2

2∑n
i=1 I

2
i

. (3)

Thus a better PRNU is obtained from lower σ2
1 and σ2

2 (i.e.,
high luminance and low textured image [36]).

B. Proposed SDA method

In this subsection, we derive the variance of the estimated
camera fingerprint obtained using frame averaging. We then
compare this variance with that obtained by the conventional
approach (in (3)).

Suppose I1, I2, . . . , Im are m images used to compute
the camera fingerprint using the SDA method. With frame
averaging, these m images are divided into g = m

d disjoint
sets of equal size with d pictures in each set. From each set,
an SDA-frame is computed. Thereafter, the process is similar
to the conventional approach. Each SDA-frame is denoised,

and the camera fingerprint is computed from g noise residuals
using MLE.

Suppose, ISDAi is the SDA-frame obtained from the ith

image set. Then

ISDAi =

∑id
j=(i−1)d+1 Ij

d

=

∑id
j=(i−1)d+1(I

(0)
j + I

(0)
j K + ψj)

d

We can write the above equation as

ISDAi = I
(0),SDA
i + I

(0),SDA
i K + ψSDAi , (4)

where I
(0),SDA
i is the noise free image, and ψSDAi is the

random noise (from pre-filtering sources) in the SDA-frame.
This noise can be written as

ψSDAi =

∑id
j=(i−1)d+1 ψj

d
.

Suppose σ2
1 is the variance of ψ’s (which is assumed to be

White Gaussian Noise). Then, the variance of ψSDAi turns out
to be σ2

1

d .
Suppose WSDA is the noise residual of each SDA-frame,

ISDA. Then,

WSDA = ISDA − F (ISDA)
= I(0),SDAK + ψSDA + ξ′,

where F is the denoising filter, and ξ′ = I(0),SDA−F (ISDA)
is the content noise due to the sub-optimal nature of the
denoising filter. Note that ξ′ is assumed to be independent of
PRNU signal I(0),SDAK (although ξ′ contains content layover
I(0),SDA−F (ISDA) as ξ′ is negligible compared to ISDA0 K
[36].

We know that ξ′ is dependent on the smoothness of the
SDA-frames. If the frames contain textured content, ξ′ is high.
Assuming that SDA-frames have similar smoothness to the
input frames from which they are created, we consider that ξ′

and ξ have the same variance σ2
2 .

Using MLE, the camera fingerprint can now be estimated
from g SDA-frames ISDA1 , ISDA2 , . . . , ISDAg as

ˆKSDA =

∑g
i=1W

SDA
i .ISDAi∑g

i=1

(
ISDAi

)2 .

Using Cramer-Rao Lower Bound, the variance of the esti-
mated fingerprint ˆKSDA becomes

V ar( ˆKSDA) ≥
σ2
1

d + σ2
2∑g

i=1

(
ISDAi

)2 . (5)

In an ideal case, we want that the averaging operation
does not degrade the quality of the estimated PRNU from
the SDA-frames. In other words, we want that V ar( ˆKSDA)
is approximately equal to the variance from the conventional
method V ar(K̂). That is, in other words, using the results
from (3) and (5), it is desired that

σ2
1

d + σ2
2∑g

i=1

(
ISDAi

)2 ≈ σ2
1 + σ2

2∑n
i=1 I

2
i

.
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By simplifying the above equation, we get

σ2
1

d + σ2
2

σ2
1 + σ2

2

≈
∑g
i=1

(
ISDAi

)2∑n
i=1 I

2
i

.

Suppose ∑g
i=1(I

SDA
i )2∑n

i=1 I
2
i

=
g

n
× k

where

k =
(
∑g
i=1(I

SDA
i )2)/g

(
∑n
i=1 I

2
i )/n

.

Note that the value of k is a temporary variable that is less than
or equal to 1 as the numerator

∑g
i=1(I

SDA
i )2)/g is less than

equal to the denominator
∑n
i=1 I

2
i )/n. Putting these values in

the above equation, we get

g

n
× k ≈

σ2
1

d + σ2
2

σ2
1 + σ2

2

.

Putting g = m
d in the above equation, we get

m× k
d× n

≈ σ2
1 + d× σ2

2

d× (σ2
1 + σ2

2)
.

or,

m ≈ n

k
× σ2

1 + d× σ2
2

σ2
1 + σ2

2

(6)

We then discard the temporary variable, k, from the equa-
tion. Since 0 < k ≤ 1, the final equation becomes

m ≤ n×
(σ2

1 + d× σ2
2

σ2
1 + σ2

2

)
(7)

From (7), we can derive the following concluding remarks:
• Since d ≥ 1, the right-hand side of the equation is

at least 1. Therefore, the number of images required
in the proposed SDA method (i.e., m) will be more
than or equal to the number of images required in the
conventional method (i.e., n).

• For smooth images σ2
2 is close to zero. So, the impact

of SDA-depth, d, will be negligible for such images.
Therefore, SDA and conventional approaches will have
similar performance. However, the SDA technique will
be d times faster in the best case.

• For textured images, when the number of for both tech-
niques is equal (i.e., m = n), because σ2 is greater than
zero, the conventional approach is expected to outperform
SDA approach.

• Since σ2
2 is greater than zero for textured images, the

ratio of images for SDA divided by the conventional ap-
proach, mn , will increase as the SDA-depth, d, increases.
Therefore, the SDA approach is expected to require more
images to achieve the same performance for textured
images.

Notice that it is hard to characterize the relationship of σ1
and σ2. Also, σ1 depends on various factors such as shot noise,
exposure time, temperature, illumination, image content, and
so on. Therefore, we are not focusing on their relationship
in this research. In the following section, we experimentally
validate the observations listed above.

IV. VALIDATION OF ANALYSIS

In this section, we experimentally verify the main conclu-
sions arrived at by the analysis performed in the previous
section. In this section, we used images shared in VISION
dataset [15] which contains visual objects from 35 cameras
of 11 brands and 27 models. The experiments conducted in
this section used only the pristine images, specifically, those
tagged as “nat” and “flat” which indicate the images are
textured or flatfield, respectively. This dataset contains a total
of 11732 images and 650 videos. The implementations were
done using Matlab 2018a on Windows 7 PC with 32 GB
memory and Intel Xeon(R) E5-2687W v2 @3.40GHz CPU.
The wavelet denoising algorithm [34] was used to obtain
fingerprint and PRNU noise. PCE and NCC methods were
used for comparison. A preset threshold of 60 [37] was used
for PCE values for estimating the True Positive Rates (TPR).
Values higher than this threshold were taken to conclude
that the two visual objects originated from the same camera.
All experiments conducted in this section used a block-wise
correlation approach. The details of this approach will be given
below.

A. Studying the effect of smoothness

To verify the observations of the analysis related to
the smoothness of the images used to compute a camera
fingerprint, we created three classes of texture level: low(i.e.,
flatfield), medium (mid), high texture. We used SURF features
to do this clustering with respect to the texture level [38].
Although texture level is hard to characterize in an image,
we estimated the number of SURF features in each image,
and grouped training images accordingly. For each camera
in the VISION dataset, we first sorted the images with re-
spect to the number of SURF features. Then three training
classes (i.e., low, mid, and high) were created, all of which
contained 50 images. The average numbers of SURF features
in these classes are 2, 1312, and 13736 for low, mid, and
high, respectively. The rest of the images of each camera
are considered as test images. For each of these types, five
experiments were conducted by using a random set of 5, 10,
20, 30, and 50 images for computing the fingerprint. So, for
example, when we chose 30 flatfield images, we created one
fingerprint using the conventional approach by denoising each
of the 30 images and then averaging the PRNU noise patterns
which is followed by a post-processing step to create the
final fingerprint estimate. Another fingerprint estimate using
the SDA approach was computed by averaging the same 30
images in the spatial domain and then denoising this SDA-
frame of depth 30 along with the post-processing to directly
arrive at another fingerprint estimate. Therefore, a total of 30
fingerprints were obtained for each camera (3 categories of
images with different texture level; 2 fingerprint extraction
techniques; 5 different cardinalities of image sets used for
fingerprint computation).

Each of these 30 fingerprints was correlated with the PRNU
noise obtained from the test images in the dataset taken with
the same camera. To create an abundance of test cases and
diversity of FEs, we divided each full-resolution fingerprint
into 500 × 500 disjoint blocks. We correlated them with the
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corresponding blocks in the test images to match the PRNU
noise. As a result, a total of 131, 614 comparisons were made
as “true cases”.

(a) The effect of texture in terms of PCE

(b) The effect of texture in terms of TPR for τ = 60

Fig. 3: Performance for varying number of low, mid, and high
textured images

Fig. 3a shows how image content affects the PCE for finger-
prints obtained from 5, 10, 20, 30 or 50 low-, mid- and high-
textured images. The figure shows that with flatfield images,
despite the significantly lower number of denoising operations
performed by the SDA approach, the results obtained are
similar to the conventional approach. This observation holds,
regardless of the number of images averaged for fingerprint
extraction. The performance of the SDA approach drops as
the texture level of images increases. However, this difference
can be overcome by increasing the number of images used
for the SDA technique but still keeping the number of de-
noising operations lower than the conventional approach. We
investigate this issue in the next subsection.

If we consider the above results in terms of TPR, the SDA
approach starts doing better as the PCE is thresholded around
a set value (60 in our case) to arrive at the attribution result. So
a drop in PCE does not necessarily result in a wrong decision.
This improvement can be observed in Fig. 3b, which shows
TPR for the same experiments when the threshold is set to 60
as proposed in [37]. The other implications of these figures
are already well-known in the field (i.e., flatfield images are
better than textured, and as the number of images increases,
the quality of fingerprint also increases, which results in a
higher PCE and TPR.)

For the sake of clarification, in Table I, we present the results
of Fig. 3 for only fingerprints extracted from 50 images. The
table shows that the difference between SDA and conventional
method increases as the texture level increases. This figure
supports the first implication of the theoretical analysis in
Section III.

TABLE I: Performance of the proposed SDA method and the
conventional method for low, mid and high textured images
when a fingerprints is computed from 50 images.

Texture Level
low mid high

PCE
SDA 1374 834 425
conv 1451 1160 824

SDA/conv 0.947 0.719 0.516

TPR
SDA 97.2 96.7 90.5
conv 97.5 97.2 95.5

SDA/conv 0.997 0.995 0.948

To see the full picture, we have correlated images of ith

camera with (i+1)th camera in VISION dataset. Hence, a total
of 180, 384 correlation of 500× 500 blocks were made. This
experiment helps us to see if the SDA method harms the false
positive rate (FPR). Fig. 4 shows two ROC curves obtained
for flat and textured images. As seen, for both flatfield and
textured images, the results are similar to the ones in Fig. 3.
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Fig. 4: ROC curve for textured and flatfield images when 10
images are used for FEs

Finally, we estimate how much speedup can be achieved
using the SDA method compared to the conventional one.
Table II shows the average time it takes to extract a “full
resolution” fingerprint estimate by the two methods in the
above experiment. For each of the 35 cameras in VISION
dataset, we created 10 fingerprints (i.e., for both SDA and
conventional methods using 5, 10, 20, 30, and 50 images). We
then estimated the average time for each fingerprint. Moreover,
to avoid further complications in this estimation, we used a
single-threaded implementation in this experiment. Notice that
in both cases, the same number of images, m, is read from the
disk but for the SDA technique only one denoising operation
is needed.

In contrast, for the conventional way, m denoising op-
erations are done. This implies that as the training images
increase, the speedup also increases. As an example, a speedup
of 13.5 times can be achieved by averaging 50 images using
the SDA method.

TABLE II: Average time for extracting fingerprint using SDA
and conventional methods (in sec)

5 10 20 30 50

SDA 5.0 6.0 8.2 10.4 14.5
Conventional 21.6 40.8 80.0 118.8 196.6

Speedup 4.3 6.8 9.7 11.5 13.6
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Notice that the reason why time requirement for the SDA
method is increasing as the number of images increases is due
to the I/O time.

B. Fingerprint equivalence for textured images

In the previous subsection, we have shown that when
the training images are flatfield, both SDA and conventional
methods are performing similarly. Hence, the speedup gained
in Table II can be used as a reference for that case. However,
for textured images, the TPRs and FPRs are not equivalent.
Therefore, better estimates are required for that case.

Section III has shown that more images are needed by the
SDA method than conventional for textured images. Thus other
estimations are required to understand the correspondence
of the methods for textured images. In this experiment, our
goal is to investigate the relationship between the number of
images required by SDA compared to the number needed by
the conventional approach to yield similar performance for
textured images while still retaining a speedup in fingerprint
computation. This experiment was again performed using
images from the VISION dataset [15].

We created a training set from 50 textured images for each
camera in the VISION dataset. 19 fingerprints were created
using 2, 3, . . . 20 images using the conventional approach. We
also created 49 fingerprints using the SDA method using
2, 3, . . . 50 images. As done in the previous experiment, each
fingerprint was partitioned into disjoint 500×500 blocks, and
correlations were computed with the corresponding blocks of
the test PRNU noise pattern.
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Fig. 5: Fingerprint equivalence for SDA and conventional ap-
proaches. x-axis indicates number of images for conventional.
The left of y-axis (red) is the number of images required for
SDA and the right one (blue) is the speedup gained in this
case.

Fig. 5 shows the number of images required by the SDA
approach to achieve at least the same TPR as the conventional
approach. Moreover, it shows the speedup gained in these
cases. For example, when a fingerprint is created from 20
textured images using the conventional way, the same TPR
can be achieved using 48 images in the SDA approach. In this
way, the fingerprint extraction is approx. 3.85 times faster for
the SDA approach. The figure shows that using 2 − 3 times

more images for the SDA method, up to 4 times speedup can
be achieved with no loss in TPR when the images are textured.

C. Effect of SDA-depth on image fingerprint

In Section III, we have shown that as the SDA-depth in-
creases, when the number of images for fingerprint extraction
is constant, the TPR is expected to drop. To verify this remark,
we used 50 textured images for fingerprint extraction. We
didn’t include any flatfield image in this set, as flatfield images
result in a negligible difference in performance between SDA
and conventional fingerprints.

We then created fingerprints using 50 textured images from
each camera in the VISION dataset. We set SDA-depth to
1, 2, 5, 10, 25 and 50. Therefore, we created 50, 25, 10, 5, 2,
and 1 SDA-frames, respectively. The SDA-frames were de-
noised and then averaged. Finally, a post-processing step is
applied to each SDA-FE to obtain the final fingerprint estimate.
So, each fingerprint is computed from 50 training images
and the rest of the images were used as test images. We
correlated each fingerprint with the PRNU noise extracted
from the test images in a block-wise manner as done in
previous experiments. Notice that SDA-1 is the same as the
conventional approach.

TABLE III: TPR and PCE for various SDA depths

SDA-1 SDA-2 SDA-5 SDA-10 SDA-25 SDA-50
PCE 893.9 701.5 536.1 460.2 395.7 350.7

TPR % 96.5 95.2 92.9 91.3 89.4 87.3

Table III shows that as the SDA-depth increases, the average
PCE decreases. For textured images, the more images we
combine to create an SDA-frame, the lower the PCE and TPR
values that will result. This supports the third observation of
the analysis in Section III.

This section has provided a validation of Section III by
experimentally supporting all three observations derived from
the analysis. Namely, when images are not textured, hence
resulting in low post-filtering noise, both the SDA and con-
ventional fingerprints from the same images perform similarly,
which can lead up to 13.5 times speedup. On the other hand,
textured images and larger SDA-depth results in requiring a
higher number of images to achieve the same performance as
the conventional method. Yet, a speedup by a factor of 4 can
still be achieved in most cases.

In the next section, we apply the proposed approach to
more practical problems, and show that SDA fingerprints
can perform with significantly higher accuracy or result in
significant speedup compared to state-of-the-art fingerprint
extraction techniques.

V. APPLICATION TO COMPUTING VIDEO FINGERPRINTS

In this section, we investigate a more practical use case
of the proposed SDA technique, where it makes a more
significant impact that is its usage for videos. As Section II
explains, two of the most common ways to extract a fingerprint
from a video are using only I-frames or using all frames (or the
first n frames). While the former results in low performance,
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the latter can be impractical in many real-life applications due
to very high computational needs. For example, fingerprints
from 50 1−minute videos (i.e., approximately 1800 frame
per video) using a single-thread may take up to a day to
compute. In this section, we provide experimental results
that demonstrate how using the SDA approach can deliver
significant improvements to the time needed for computing
fingerprint estimates from video while retaining at least the
same performance as conventional approaches.

In each experiment below, three different types of finger-
prints (i.e., I-frames only, SDA-frames and ALL-frames) were
obtained from each video. For the sake of simplicity, we refer
to them as I-FE (i.e., Fingerprint Estimate), SDA-FE, and
ALL-FE, respectively. Moreover, in some cases, we add an
indication of the SDA-depth when we need to highlight it.
For example, SDA-50-FE indicates that the video frames were
divided into groups of 50, and each group averaged to create
an SDA-frame.

In the first experiment, we examine source matching for
videos. That is given two videos, can we determine if they
are from the same camera. Next, we investigate a more
complicated case that involves mixed media. In this subsection,
we also analyze an important question related to mixed media:
“What is a good balance of SDA-depth which optimizes speed
and performance?”. In the next two subsections, we examine
the performance achieved with video and images obtained
from social media such as Facebook and YouTube. Finally,
we show how the proposed technique can be used for source
attribution with moderate length stabilized videos (i.e., up to
4 minutes) from which obtaining a “reliable” FE might take
a couple of hours each using all frames.

Two datasets were used in all the experiments, the NYUAD-
MMD, and VISION datasets. The NYUAD-MMD contains
visual objects from 78 smartphone cameras (19 brands, 62
different models). From these cameras, a total of 6892 images,
and 301 non-stabilized videos (most of them being 40+
seconds) of different resolutions, as allowable by the camera
settings, were collected. This makes it a challenging dataset
for mixed media attribution. Moreover, we added 5 more
cameras that have stabilized videos that are longer than 4
minutes. Hence, we used this dataset for experiments using
mixed media and stabilized video. All the visual objects in
this dataset are pristine (i.e., no out-camera operations are
applied.) The VISION dataset, on the other hand, contains
visual objects from 35 cameras. It contains both stabilized and
non-stabilized videos. Depending on the experiment, we used
a different subset of the database. The videos in this dataset
are generally high quality with high luminance, and most of
them are at least 1-minute long. Along with these original
visual objects, this dataset contains copies of those objects
compressed by social media such as Facebook and YouTube.
Hence, we used this dataset in experiments involving social
media.

Note that, as opposed to the previous section, which used
a block-wise correlation, these experiments were done using
full frames of the videos and images.

A. Matching Two Non-Stabilized Videos

In the first experiment, we examine source matching for
videos using FE computed from the three different approaches
that have been presented. Our goal was to estimate the length
of videos and the resulting computation time needed to achieve
greater than 99% TPR for I-FEs, SDA-FEs, and ALL-FEs.
This way, a clear comparison of the three approaches could
be made.

FE from the non-stabilized videos of the VISION dataset
was first created. As [15] presents, 19 cameras have non-
stabilized videos, whereas the rest contain stabilized videos.
There is a total of 351 videos from those 19 cameras that
are tagged as one of nine different “categories”. Those are
“flat”, “indoor”, and “outdoor” videos under three different
movements: “still”, “move”, and “panrot”. These videos are
typically high quality with HD or Full HD resolutions. Be-
cause every camera in VISION dataset only had a single video
resolution, cropping and resizing is not involved in estimating
the “true cases”.

An FE was extracted from the first 5, 10, . . . 40 seconds of
each video using the two techniques mentioned in Section II
and the proposed method. On average, each video had approx-
imately one I-frame per second. We selected an SDA-depth of
30 resulting in an SDA-frame from each second of a video.
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Fig. 6: TPR for different lengths of video using I-FEs, SDA-
FEs, and ALL-FEs

Fig. 6 shows TPR using I-FE, SDA-FE, and ALL-FE
with respect to increasing video length. As seen, SDA-FEs
outperforms ALL-FEs in this setting for all video lengths. The
difference varies between 0.5 (for 5 sec videos) and 1.7%(for
15 sec videos). Both FEs achieve significantly higher TPR than
I-FEs. For example, for 10 seconds video, SDA-FEs and ALL-
FEs result in 94.1% and 95.6% TPR, respectively, whereas
I-FEs can only reach 67.2% TPR.

While a TPR of more than 95% can be achieved with 10-
second videos using SDA- and ALL-FEs, at least 30-second
videos are needed to accomplish the same TPR for I-FEs. This
difference is because SDA-FE and ALL-FEs use all the 300
frames in a 10-second video (i.e., I-, B- or P-frames), whereas
the I-FEs use only 30 I-frames on average and “waste” the
rest of the frames. Hence, for this setting, I-FEs fail to reach
a comparable accuracy as the other two methods. Thus, it is
fair to say SDA- and ALL-FEs outperform the I-FEs in terms
of TPR for the preset PCE threshold.
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In addition to Fig. 6, we added ROC curves for FEs obtained
from 15-second videos that compares all three methods.

For estimating the correlation of the false cases, we selected
the cameras having the non-stabilized videos. We sorted the
cameras with respect to their brand and models. For example,
after the sorting, the two “Samsung Galaxy S3 Mini” VISION
dataset (i.e., “D01” and “D26”) came together so that we can
correlate them. The reason behind this sorting is when we
correlate the same model cameras, and it may better reflect
the effect of non-unique artifacts. Hence, it may help us better
understand the limitations of the techniques. The same strategy
we mentioned above is then followed (i.e., correlating FEs
from ith camera with the (i+1)th camera in the sorted camera
list.)
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Fig. 7: ROC curves for correlation of two FEs computed from
20-second videos

These results are similar to Fig. 6 that both SDA-FEs
perform slightly better than ALL-FEs and both outperform
I-FEs.

TABLE IV: Computation time for video fingerprint extraction
(in sec)

type I/O denoising total
I-FE 13∗ 37 50

SDA-FE 25 37 62
ALL-FE 25 1382 1407

In addition to the performance estimation, we compared the
required time for the extraction of each FE from a 40-second
Full HD video captured @30 FPS. Table IV compares the
average times for them. It takes 50, 62, and 1407 seconds
for an I-FE, SDA-FE, and ALL-FE, respectively. Notice that,
although a lower number of frames are read for I-FEs, the
I/O time is quite high compared to the others. This is because
finding and extracting I-frames from a video is taking extra
time.

When we evaluate the required time to achieve ≈ 90%
TPR, we need 5 seconds of video for SDA-FEs and ALL-
FEs, whereas I-FEs require more than 20 seconds of video.
This suggests that the times required for SDA-FEs and ALL-
FEs are approx. 8 and 176 seconds, respectively. Hence, the
SDA technique is at least 3 times faster than I-FEs and
requires 8 times shorter videos, yet still achieves a higher
TPR. Moreover, it performs up to 1.7% higher than ALL-
FEs in terms of TPR and speeds up approximately 22.5 times
in this setting. Additionally, while SDA-FEs can achieve 99%

TPR with 20 seconds videos, the same can be achieved with
30 seconds for ALL-FEs. Therefore, close to 34 times speedup
can be achieved in this case when SDA-depth is set to 30.

Notice that these results involve videos that did not undergo
any processing such as scaling, compression in social media,
and so on. Therefore, it is possible to have lower performance
with more difficult datasets, such as when videos are dark or
processed. However, our intention here was to demonstrate
the effectiveness of the SDA approach first for the simplest
of cases. We examine more challenging situations in further
experiments below.

B. Mixed Media Attribution
As we have seen in the previous subsection, using I-FEs

may cause a significant drop in TPR, whereas 20−30 seconds
of video is enough to achieve more than 99% TPR for both
SDA-FEs or ALL-FEs. In this subsection, we investigate a
more challenging scenario where a video FE needs to be
matched with a single query image. In [16], source attribution
with mixed-media was investigated using the NYUAD-MMD
dataset, which is a very challenging dataset containing images
and videos of various resolutions from 78 of cameras. Here, we
performed “Train on videos and test on images” experiment
for I-FEs, SDA-FEs, and ALL-FEs. That is, a camera FE
was computed from the video, and the query image was
cropped and resized. Then, its PRNU matched with the FE.
The resizing and cropping parameters to perform the matching
were obtained from the “Train on images, test on videos”
experiment done in [16].

The videos in this dataset were typically around 40 seconds
long, each having approximately 1200 frames. The dataset
contains a total of 301 non-stabilized videos and 6892 images
from those cameras. Each video FE was correlated with the
PRNU noise of all the test images from the same camera to
estimate “true cases”, which ended up with 23571 correlations.
Then, each video FE from ith camera was compared with the
PRNU noise of images from (i+1)th camera for resizing and
cropping parameters that maximize the PCE for the image FE
(i.e., the FE obtained from all images of the camera using
conventional approach). This way, we estimated the “false
cases” resulted in 17755 correlations.

In the previous experiment, we had used a fixed SDA-
depth, d, of 30. In this experiment, we used different SDA-
depths to investigate its impact on performance and speed.
Given a video of m frames (in our case approximately
1200 frames), we divided the frames into groups of d =
1, 5, 10, 30, 50, 200, 1200. Therefore, the number of SDA-
frames, g, became 1200, 240, 120, 40, 24, 6, 1 respectively.
When g = 1, the technique becomes the same as using all
frames, whereas when p = 1200, only a single SDA-frame is
created by averaging all 1200 frames. After obtaining the PCE
of the “true” and “false” cases, we created a ROC curve for
each video FE type/depth. Fig. 8 shows the ROC curves for
each of the SDA-FEs of different depths, as well as I-FE and
ALL-FE. The results show that ALL-FE results in the highest
performance, whereas I-FE performs significantly poorer com-
pared to others. The proposed SDA method performs close to
the ALL-FE method for all depths.
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Fig. 8: The ROC curves for varying SDA-depths

Table V shows more detailed results. |PCE| stands for the
average of the PCE ratios with respect to I-FEs. For example,
when an ALL-FE from ith video is correlated with the noise of
jth image, its PCE is, on average, 3.2 times higher compared
to the I-FE obtained from the same video. The reason we used
such a normalization instead of average PCE is that outliers
have a big impact on average PCE. Moreover, the table shows
the TPR for the PCE threshold of 60, the average time to
extract a FE, and the speedup compared to ALL-FEs. As seen,
the results indicate that the TPR of the SDA method is very
close to ALL-FE. However, a speedup of up to 52 times can
be achieved using the SDA method.

TABLE V: Detailed information for mixed media attribution

I- ALL- 5 10 30 50 200 1200
|PCE| 1.0 3.2 3.1 2.9 2.6 2.6 2.5 2.4
TPR(%) 64.0 83.1 82.3 81.3 80.0 79.8 80.1 79.8
time(s) 50 1407 276 142 62 48 32 27
speedup 28.1 1.0 5.1 9.9 22.7 29.3 44.0 52.1

Similar to the previous experiment using I-FEs have signif-
icantly lower accuracy (at least 16% lower TPR). Moreover,
when SDA-depth ≥ 30, SDA-FEs are faster to extract as
compared to I-FEs. Notice that when ALL-FEs are used,
it takes approximately five days to create all the FEs from
the 301 videos in the NYUAD-MMD dataset using a single-
threaded implementation. This type of performance will be
impractical for many applications.

C. Train and test on YouTube videos

This experiment explores the performance achieved when
two video FEs from YouTube are correlated. Although this
experiment is essentially the same as the Section V-A, it is
relevant in practice as high compression is involved. Note
that a key motivation of the SDA approach is that when high
compression is used, a large number of frames are needed for
computing a reliable FE. We created FE from all non-stabilized
YouTube videos in the VISION dataset (i.e., the ones labeled
flatYT, indoorYT, and outdoorYT) using only I-frames, SDA-
50, SDA-100, SDA-200, and ALL-frames. Here, we used the
first 10, 20, . . . 60 seconds of the YouTube videos to extract

FEs. Each 60 second video had approximately 1800 frames
that were used for SDA- or ALL-FEs, whereas they contained
31.3 I-frames on average. After fingerprint extraction, we
correlated each video FE with others of the same type and
same length taken by the same camera. For example, an I-FE
from 20 seconds of video is correlated with all I-FEs obtained
from the rest of the 20 seconds videos from the same camera.
The same was done for SDA- and ALL-FEs. This way, a total
of 3124 correlations were done for each type.
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Fig. 9: The effect of FE type and video length on TPR for
YouTube videos

Fig. 9 shows the TPR for varying lengths of video for
each FE type. The figure shows that I-FEs perform very
poorly for all cases, and any FE type created from a video
of more than 20 seconds outperforms I-FEs. While ALL-FEs
perform better than SDA-FEs for the same-length videos, this
difference can be overcome by increasing the video length
but still using much fewer denoising operations. For example,
SDA−50 obtained from 50 second videos or SDA−100 from
60 seconds videos, perform approximately the same as ALL-
FEs obtained from 30 seconds (within +−1% TPR range).
Hence, instead of using 900 frames for ALL-FEs, using 1800
frames for SDA−100 can result in significant speedup with no
loss in TPR. While an ALL-FE from 900 frame of a Full HD
video takes 1045 seconds to compute, and SDA−100 FE from
1800 frames, which only does 18 denoising instead of 900,
takes 56 seconds to compute. Therefore, a speedup of close to
19 times can be achieved with SDA−100 with a 1% increase in
TPR. Notice that, because most videos are around 60 seconds
in the VISION dataset, it limits the maximum length we could
use in our experiments.

Along with the above experiment, we compared all videos
with the videos of the next camera. This way, we were able
to obtain the correlation of false cases, which were a total
of 6283 correlations. Fig. 10 shows the ROC curve obtained
from the comparison of these true and false cases. In terms of
AUC, SDA-FE, and ALL-FE methods perform similarly, and
they are superior compared to I-FEs. However, there is a small
difference between ALL-FEs compared to SDA-FEs for very
low FPRs which can also be seen in Fig. 9.

D. Train on Facebook images, test on YouTube videos

From the previous experiments, we know that the SDA
method can help achieve a significant speedup for both videos
and images with a small loss in performance, which can be
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Fig. 10: ROC curve for correlation of 60 seconds YouTube
videos

overcome by increasing the number of still images used for
fingerprint extraction if available. In this experiment, our goal
was to show that the proposed method can be successfully
applied to other social media. Specifically, in this subsec-
tion, we extract FEs from Facebook images and match them
with the FE of YouTube videos. We call this the “Train on
Facebook images, test on YouTube videos” experiment. The
importance of this experiment is both media sharing services
contain billions of visual objects, and computing ALL-FEs
from these collections can have very high time complexity.
Therefore, faster fingerprint extraction methods (along with
search techniques) that speed up attribution are badly needed.

In this experiment, for the cameras in the VISION dataset
that had non-stabilized videos, we created a FE from 100
Facebook images (i.e., the ones labeled FBH) using con-
ventional fingerprint computation method. We then used the
FEs from non-stabilized YouTube videos (those created in the
previous experiment). We again used I-frames, SDA-50, SDA-
200, SDA-600, and ALL-frames that were computed from the
first 60 seconds of YouTube videos. We then correlated the
image FE of a camera with the FE of each video of each type
using the efficient search proposed in [16], and a total of 343
pairs were compared for each FE type. Table VI shows the
TPR of these correlations. Similar to “Train on videos, test on
images” experiment, these results show that for FEs obtained
from Facebook images matches with 81.34% TPR with the
YouTube videos for SDA-50 which is higher than both ALL-
FEs and I-FEs. On the other hand, FEs from I-frames yield
approximately 30% lower TPR. These results show that the
SDA approach is a good replacement overusing I-FEs or ALL-
FEs for this scenario.

TABLE VI: TPR of FEs extracted from Facebook images vs
FEs from YouTube videos extracted using different methods

I-FE SDA-50 SDA-200 SDA-600 ALL-FE
TPR % 51.6 81.4 79.9 78.1 79.6

E. Matching two stabilized videos

A recent work [12] has shown that a FE obtained from
a long stabilized video can successfully be matched with
other videos from the same camera. However, thousands of

frames must be denoised, which may not be practical in many
circumstances. A potential alternative for this problem is the
use of the SDA method, which may lead to a significant
speedup. To evaluate this, we captured stabilized videos from
5 cameras (not included in NYUAD-MMD). These cameras
are Huawei Honor, Samsung S8, Samsung S9, iPhone 6plus,
and iPhone 7plus. A total of 37 videos were captured, which
added up to 260 minutes.

We extracted FEs from the frames of 20, 40, . . . 240 second
video lengths using conventional (I-frame and ALL-Frame)
method as well as SDA method for SDA-depths of 30, 50,
and 200. These depths were deemed to be reasonable choices
from previous experiments. As shown in [8], [10], [11],
the first frame of the videos are typically not geometrically
transformed. Since we divide the video into pieces, some video
pieces do not have an untransformed frame. So, we discarded
the first frame of each video to avoid inconsistencies. We
correlated each FE with the other FEs of different videos from
the same camera that is created using the same number of
frames. For example, SDA-30-FEs of 20 second videos are
correlated with the same type FEs from the same camera.

Fig. 11 shows the TPR for three cameras (i.e., Huawei
Honor, Samsung S8, and iPhone 6plus) and the total average
of all the five cameras.
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Fig. 11: TPR for stabilized videos for varying SDA-depths
(All subfigures share the same axis limits)

The results show that as videos get longer, ALL-FEs
and SDA-FEs achieve higher TPR. Moreover, the effect of
increased SDA-depth is more significant for this case in
comparison to non-stabilized videos. While for some cameras,
ALL-FEs and SDA-FEs perform similarly (e.g., Huawei and
Samsung cameras), for others (e.g., iPhone cameras), there
is a significant difference between the two. For example, for
Samsung S8 SDA-200-FE from 120 seconds video, perform
similarly as 180 seconds ALL-FE. Therefore, for this particu-
lar case, SDA-200 can speedup 66 times

(
i.e. 180

120 ×
1407
32

)
(see

Table V for times). On the other hand, for iPhone 6 plus, ALL-
FEs from 60 seconds video and 160 seconds SDA-50 have
similar TPR. Therefore, 11 times

(
i.e., 60

160 ×
1407
48

)
speedup

can be achieved in this case. Hence, a speedup between these
numbers (i.e., 11 and 60) can be achieved without any loss in
TPR if a long video is available.

Furthermore, we also performed an additional experiment
with the stabilized videos from the VISION dataset. In this
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experiment, we estimated both TPR and FPR. In the VISION
dataset, there are 16 cameras with stabilized videos. Each
stabilized video is approximately one minute long. Since we
needed a longer stabilized video, we combined four one-
minute videos and produced one four-minute video. A camera
fingerprint was then computed from each four-minute video.
For true cases, the fingerprint was then correlated with a
fingerprint computed from the same camera (two fingerprints
do not contain common video). For false cases, the fingerprint
was correlated with a fingerprint computed from a different
camera. There were a total of 3200 correlations for both
true and false cases (i.e., 200 correlations for each of the 16
cameras.).

Fig. 12 shows how ALL-FE and SDA-FE perform. As
shown in the figure, both ALL- and SDA-FEs have a higher
area under curve (AUC) than I-FEs. However, the SDA-FE
method requires a significantly lower computation cost than
the ALL-FE method.
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Fig. 12: ROC curves for 4-minute stabilized videos taken from
VISION dataset

Overall, this section shows that the proposed SDA-FEs
outperforms the commonly used I-frame-only technique in all
the cases for videos. These include mixed media, stabilized
videos, and social media. On the other hand, the SDA-FEs
achieves comparable results as ALL-FEs with up to 52 times
speedup in these experiments. We also show the impact of
SDA-depth on the performance that can be achieved in various
cases.

VI. CONCLUSION AND FUTURE WORK

This paper has investigated camera fingerprint extraction
using Spatial Domain Averaged frames, which are the arith-
metic mean of multiple still images. By adding one extra
step of averaging before denoising, a significant speedup can
be achieved for fingerprint extraction. We show that this
technique can successfully be used for images, non-stabilized
videos as well as stabilized video to speedup the fingerprint
extraction process. The proposed method is especially useful
when the number of denoising operations needed can be very
high. For example, when dealing with non-stabilized or highly
compressed stabilized videos or images from social media.

It is often considered that for video source attribution, using
only I-frames for fingerprint extraction (I-FEs) is “enough” to
achieve high performance. However, in this research, we have

shown that I-FEs performs poorly compared to ALL-FEs in
all cases. On the other hand, using ALL-FEs is impractical
due to the substantial computation time needed for practical
scenarios where thousands of videos can be available. The
proposed SDA approach comes into play here to resolve the
problem of I-FEs (i.e., accuracy) and ALL-FEs (i.e., speed).
Both SDA- and ALL-FEs perform similarly in most cases.
When the SDA method performs worse, this can be overcome
by using more of the available frames, if any.

The proposed technique can be used for other source
attribution related problems where many denoising operations
are needed. For instance, this method can be applied when
many “partially misaligned” still images, and a suspect camera
is available. For example, a seam carved video contains many
partially misaligned frames with its source camera. In such
a scenario, instead of denoising all frames of the video, the
SDA technique can be used as a way to speed up this process.
Moreover, determining whether a video is stabilized or not is
another issue which requires a number of denoising operations.
As an alternative to using only I-frames, the proposed SDA
technique could successfully work with only 2 denoising
operations.

Another avenue for future research is to create an SDA-FE
in a weighted manner such that performance achieve with the
SDA method can be increased. Two of the potential ways to
accomplish this are weighting I-, P- and B- frames differently,
and weighting the frames in a block-by-block manner. For
example, it has been shown that flatfield images perform better
with the SDA method compared to textured ones. Using this
idea, one may weight textured regions differently from the
smooth areas.
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