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Abstract. Brain signals refer to the biometric information collected from the human brain.

The research on brain signals aims to discover the underlying neurological or physical status of

the individuals by signal decoding. The emerging deep learning techniques have improved the

study of brain signals significantly in recent y ears. In this work, we first present a taxonomy

of non-invasive brain signals and the basics of deep learning algorithms. Then, we provide the

frontiers of applying deep learning for non-invasive brain signals analysis, by summarizing a

large number of recent publications. Moreover, upon the deep learning-powered brain signal

studies, we report the potential real-world applications which benefit not only disabled people

but also normal individuals. Finally, we discuss the opening challenges and future directions.
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1. Introduction

Brain signals measure the instinct biometric information

from the human brain, which reflects the user’s passive

or active mental state. Through precise brain signal

decoding, we can recognize the underlying psychological

and physical status of the user and further improve his/her

life quality. Based on the signal collection, brain signals

contain invasive signals and non-invasive signals. The

former are acquired by electrodes deployed under the scalp

while the latter are collected upon human scalp without

electrodes being inserted. In this survey, we mainly

consider non-invasive brain signals1.

1.1. General Workflow

Figure 1 shows the general paradigm of brain signal

decoding, which receives brain signals and produces

the user’s latent informatics. The workflow includes

several key components: brain signal collection, signal

preprocessing, feature extraction, classification, and data

analysis. The brain signals are collected from humans

and sent to the preprocessing component for denoising

and enhancement. Then, the discriminating features are

extracted from the processed signals and sent to the

classifier for further analysis.

The collection methods differ from signal to signal.

For example, EEG signals measure the voltage fluctuation

resulting from ionic current within the neurons of the

brain. Collecting EEG signals requires placing a series

of electrodes on the scalp of the human head to record

the electrical activity of the brain. Since the ionic

current generated within the brain is measured at the scalp,

obstacles (e.g., skull) greatly decrease the signal quality—

the fidelity of the collected EEG signals, measured as

Signal-to-Noise Ratio (SNR), is only approximately 5% of

that of original brain signals [1]. The collection methods of

more non-invasive signals can be found in Appendix A.

Therefore, brain signals are usually preprocessed be-

fore feature extraction to increase the SNR. The preprocess-

ing component contains multiple steps such as signal clean-

ing (smoothing the noisy signals or resolving the inconsis-

tencies), signal normalization (normalizing each channel of

the signals along time-axis), signal enhancement (removing

direct current), and signal reduction (presenting a reduced

representation of the signal).

1Without specification, the brain signals mentioned in this work refer

to non-invasive signals.

Figure 1: Generally workflow of brain signal analysis. It is

named as a Brain-Computer Interface if the classified signal

are used to control smart equipment (dashed lines).

Feature extraction refers to the process of extracting

discriminating features from the input signals through

domain knowledge. Traditional features are extracted

from time-domain (e.g., variance, mean value, kurtosis),

frequency-domain (e.g., fast Fourier transform), and time-

frequency domains (e.g., discrete wavelet transform).

They will enrich distinguishable information regarding

user intention. Feature extraction is highly dependent

on the domain knowledge. For example, neuroscience

knowledge is required to extract distinctive features from

motor imagery EEG signals. Manual feature extraction

is also time-consuming and difficult. Recently, deep

learning provides a better option to automatically extract

distinguishable features.

The classification component refers to the machine

learning algorithms that classify the extracted features into

logical control signals recognizable by external devices.

Deep learning algorithms are shown to be more powerful

than traditional classifiers [2, 3, 4].

The classification results reflect the user’s psycholog-

ical or physical status and can inspire further information

analysis. This is widely used in real-world applications

such as neurological disorder diagnosis, emotion measur-

ing, and driving fatigue detection. Appropriate treatment,

therapy, and precaution could be conducted based on the

analysis results.

In specific, the system is called a Brain-Computer

Interface (BCI) while the decoded brain signals are

converted into digital commands to control the smart

equipment and react with the user (dashed lines in Figure 1).

BCI2 systems interpret the human brain patterns into

2Apart from BCI, there are a number of similar terms to define the

system that machines are directly controlled by human brain signals,
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messages or commands to communicate with the outer

world [5]. BCI is generally a closed-loop system with an

external device (e.g., wheelchair and robotic arm), which

can directly serve the user. In contrast, brain signal analysis

doesn’t require a specific device as long as the analysis

results can benefit society and individuals.

In this survey, we summarize the state-of-the-art

studies which adopt deep learning models: 1) for feature

extraction only; 2) for classification only; 3) for both

feature extraction and classification. The details will be

introduced in Section 4. Brain signal underpins many

novel applications that are important to people’s daily

life. For example, the brain signal-based user identification

system, with high fake-resistance, allows normal people

to enjoy enhanced entertainment and security [6]; for

people with psychological/physical deceases or disabilities,

brain signals enable them to control smart device such as

wheelchairs, home appliances, and robots. We present a

wide range of deep learning-based brain signal applications

in Section 5.

1.2. Why Deep Learning?

Although traditional brain signal system has made tremen-

dous progress [7, 8], it still faces significant challenges.

First, brain signals are easily corrupted by various biologi-

cal (e.g., eye blinks, muscle artifacts, fatigue, and the con-

centration level) and environmental artifacts (e.g., noises)

[7]. Therefore, it is crucial to distill informative data from

corrupted brain signals and build a robust system that works

in different situations. Second, it faces the low SNR of non-

stationary electrophysiological brain signals [9]. The low

SNR cannot be easily addressed by traditional preprocess-

ing or feature extraction methods due to the time complex-

ity of those method and the risk of information loss [10].

Third, feature extraction highly depends on human exper-

tise in the specific domain. For example, it requires the ba-

sic biological knowledge to investigate sleep state through

Electroencephalogram (EEG) signals. Human experience

may help on certain aspects but fall insufficient in more gen-

eral circumstances. An automatic feature extraction method

is highly desirable. Moreover, most existing machine learn-

ing research focuses on static data and therefore, cannot

classify rapidly changing brain signals accurately. For in-

stance, the state-of-the-art classification accuracy for multi-

class motor imagery EEG is generally below 80% [11]. It

requires novel learning methods to deal with dynamical data

streams in brain signal systems.

Until now, deep learning has been applied extensively

in brain signal applications and shown success in addressing

the above challenges [12, 13]. Deep learning has

two advantages. First, it works directly on raw brain

signals, thus avoiding the time-consuming preprocessing

like Brain-Machine Interface (BMI), Brain Interface (BI), Direct Brain

Interface (DBI), Adaptive Brain Interface (ABI), and so on.

and feature extraction. Second, deep neural networks can

capture both representative high-level features and latent

dependencies through deep structures.

1.3. Why this Survey is Necessary?

We conduct this survey for three reasons. First, there

lacks a comprehensive survey on the non-invasive brain

signals. Table 1 shows a summary of the existing survey

on brain signals. As our best knowledge, the limited

existing surveys [14, 24, 7, 11, 5, 8, 15] only focus on

partial EEG signals. For example, Lotte et al. [11]

and Wang et al. [18] focus on general EEG without

analyzing EEG subtypes; Cecotti et al. [28] focus on

Event-Related Potentials (ERP); Haseer et al. [29] focus on

functional near-infrared spectroscopy (fNIRS); Mason et al.

[15] brief the neurological phenomenons like event-related

desynchronization (ERD), P300, SSVEP, Visual Evoked

Potentials (VEP), Auditory Evoked Potentials (AEP) but

have not organized them systematically; Abdulkader et

al. [7] present a topology of brain signals but have

not mentioned spontaneous EEG and Rapid Serial Visual

Presentation (RSVP); Lotte et al. [5] have not considered

ERD and RSVP; VEP should be a subtype of ERP in [8].

Ahn et al. [21] review the performance variation in MI-EEG

based BCI systems. Roy et al. [17] list some deep learning-

based EEG studies but present little technical inspirations

and have less analysis on deep learning algorithms, they

also failed to investigate other non-invasive brain signals

beyond EEG. In particular, compared to [17], this work

provides a better introduction of deep learning including the

basic concepts, algorithms, and popular models (Section 3

and Appendix B). Moreover, this paper discusses the high-

level guidelines in brain signal analysis in terms of the brain

signal paradigms, the suitable deep learning frameworks

and the promising real-world applications (Section 6).

Second, few research has investigated the association

between deep learning ([30, 31]) and brain signals ([32, 7,

11, 5, 8, 15]). To the best of our knowledge, this paper is in

the first batch of comprehensive survey on recent advances

on deep learning-based brain signals. We also point out

frontiers and promising directions in this area.

Lastly, the existing surveys focus on specific areas

or applications and lack an overview of broad scenarios.

For example, Litjens et al. [16] summarize several

deep neural network concepts aiming at medical image

analysis; Soekadar et al. [20] review the BCI systems

and machine learning methods for stroke-related motor

paralysis based on Sensori-Motor Rhythms (SMR); Vieira

et al. [33] investigate the application of brain signals on the

neurological disorder and psychiatric.

1.4. Our Contributions

This survey can mainly benefit: 1) the researchers

with computer science background who are inter-
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Table 1: The existing survey on brain signals in the last decade. The column ‘Comprehensiveness’ indicates whether the

survey covers all subcategories of non-invasive brain signals or not. MI EEG refers to Motor Imagery EEG signals.

No. Reference Comprehensiveness Signal Deep Learning Publication
Time Area

2 [14] No fMRI Yes 2018
Mental Disease

Diagnosis

3 [11] Partial EEG (MI EEG, P300) No 2007 Classification

4 [5] Partial EEG (MI EEG, P300) Partial 2018 Classification

5 [15] Partial EEG (ERD, P300, SSVEP, VEP, AEP) No 2007

6 [16] No MRI, CT Partial 2017
Medical Image

Analysis

7 [17] No EEG Yes 2019

8 [8] No EEG No 2007 Signal Processing

9 [18] Partial EEG No 2016 BCI Applications

10 [7] Yes No 2015

11 [19] No EEG Partial 2018

12 [20] No EEG, fMRI No 2015
Neurorehabilitation

of Stroke

13 [21] No MI EEG No 2015

14 [22] No fMRI No 2014

15 [23] No ERP (P300) No 2017
Applications

of ERP”

16 [24] No fMRI Yes 2018
Applications

of fMRI

17 [25] No ERP No 2017 Classification

18 [26] Partial EEG No 2019 Brain Biometrics

19 [27] Partial EEG No 2018 BCI Paradigms

20 Current Study Yes
EEG and the subcategories,

fNIRS, fMRI, MEG
Yes

ested in the brain signal research; 2) the biomedi-

cal/medical/neuroscience experts who want to adopt deep

learning techniques to solve problems in basic science.

To our best knowledge, this survey is the first

comprehensive survey of the recent advances and frontiers

of deep learning-based brain signal analysis. To this end,

we have summarized over 200 contributions, most of which

were published in the last five years. We make several key

contributions in this survey:

• We review brain signals and deep learning techniques

to help readers gain a comprehensive understanding of

this area of research.

• We discuss the popular deep learning techniques and

state-of-the-art models for brain signals, providing

practical guidelines for choosing the suitable deep

learning models given a specific subtype of signal.

• We review the applications of deep learning-based

brain signal analysis and highlight some promising

topics for future research.

The rest of this survey is structured as followed.

Section 2 briefly introduces an taxonomy of brain signals

in order to help the reader build a big picture in this field.

Section 3 overviews the commonly used deep learning

models to present the basic knowledge for researchers

(e.g., neurological and biomedical scholars ) who are not

familiar with deep learning. Section 4 presents the state-

of-the-art deep learning techniques for brain signals and

Section 5 discusses the applications related to brain signals.

Section 6 provides a detailed analysis and gives guidelines

for choosing appropriate deep learning models based on

the specific brain signal. Section 7 points out the opening

challenges and future directions. Finally, Section 8 gives

the concluding remarks. We provide a tutorial3 on how to

use popular deep learning models to analyze brain signals.

2. Brain Imaging Techniques

In this section, we present a brief introduction of typical

non-invasive brain imaging techniques. More fundamental
details about non-invasive brain signal (e.g., concepts,
characteristics, advantages, and drawbacks) are provided
in Appendix A.

Figure 2 shows a taxonomy of non-invasive brain sig-

nals based on the signal collection method. Non-invasive

signals divides into Electroencephalogram (EEG), Func-

tional near-infrared spectroscopy (fNIRS), Functional mag-

netic resonance imaging (fMRI), and Magnetoencephalog-

raphy (MEG) [34]. Table 2 summarizes the characteristics

of various brain signals. In this survey, we mainly focus on

EEG signals and its subcategories because they dominate

the non-invasive signals. EEG monitors the voltage fluctu-

ations generated by an electrical current within human neu-

rons. The electrodes attached on scalp can measure vari-

ous types of EEG signals, including spontaneous EEG [35]

3https://github.com/xiangzhang1015/ML BCI tutorial
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Non-Invasive
Brain Signals

MEG

fMRI
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Evoked Potential
(EP)

Steady State
Evoked Potentials

(SSEP)
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Visually Evoked

Potentials (SSVEP)

Steady State
Auditory Evoked

Potentials (SSAEP)
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Event-Related
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Visual Evoked
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Rapid Serial Visual
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Rapid Serial Auditory
Presentation (RAVP)
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Motor Imagery
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Figure 2: The taxonomy of non-invasive brain signals. The dashed quadrilaterals (RAVP, SEP, SSAEP, and SSSEP) are

not included in this survey because there is no existing work focusing on them involving deep learning algorithms. P300,

which is a positive potential recorded approximately 300 ms after the onset of presented stimuli, is not listed in this signal

tree because it is included by ERP (which refers to all the potentials after the presented stimuli). In this classification, other

brain imaging technique beyond EEG (e.g., MEG and fNIRS) could also include visual/auditory tasks theoretically, but we

omitted them since there is no existing work adopting deep learning on these tasks.

and evoked potentials (EP) [36]. Depending on the sce-

nario, spontaneous EEG further diverges into sleep EEG,

motor imagery EEG, emotional EEG, mental disease EEG,

and others. Similarly, EP divides into event-related poten-

tials (ERP) [28] and steady-state evoked potentials (SSEP)

[37] according to the frequency of external stimuli. Each

potential contains visual-, auditory-, and somatosensory-

potentials based on the external stimuli types.

Regarding the other non-invasive techniques, fNIRS

produces functional neuroimages by employing near-

infrared (NIR) light to measure the aggregation de-

gree of oxygenated hemoglobin (Hb) and deoxygenated-

hemoglobin (deoxy-Hb), both of which have higher ab-

sorbers of light than other head components such as skull

and scalp [38]; fMRI monitors brain activities by detecting

the blood flow changes in brain areas [14]; MEG reflects

brain activities via magnetic changes [39].

3. Overview on Deep Learning Models

In this section, we formally introduce the deep learning

models including concepts, architectures, and techniques

that are commonly used in the field of brain signal

researches. Deep learning is a class of machine learning

techniques that uses many layers of information-processing

stages in hierarchical architectures for pattern classification

and feature/representation learning [31]. More detailed
information about the deep learning techniques which
are common-used in brain signal analysis can be find in
Appendix B.

Deep learning algorithms contain several subcate-

gories based on the aim of the techniques (Figure 3):

• Discriminative deep learning models, which classify

the input data into a pre-known label based on the

adaptively learned discriminative features. Discrim-
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Table 2: Summary of non-invasive brain signals’ characteristics.

Signals EEG fNIRS fMRI MEG
Spatial resolution Low Intermediate High Intermediate

Temporal resolution High Low Low High

Signal-to-Noise Ratio Low Low Intermediate Low

Portability High High Low Low

Cost Low Low High High

Characteristic Electrical Metabolic Metabolic Magnetic

Deep Learning
Models

Generative
Models

Hybrid Models
Representative

Models
Discriminative

Models

VAE GANMLP CNN

GRULSTM

RNN RBM DBNAE

DBN-AE DBN-RBMD-RBMD-AE

Figure 3: Deep learning models. They can be divided into discriminative, representative, generative and hybrid models

based on the algorithm functions. Discriminative models (Appendix B.1) mainly include Multi-Layer Perceptron (MLP),

Recurrent Neural Networks(RNN), and Convolutional Neural Networks (CNN). The two mainstreams of RNN are Long

Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU). Representative models (Appendix B.2) can be divided

into Authoencoder (AE), Restricted Boltzmann Machine (RBM), and Deep Belief Networks (DBN). D-AE denotes Deep-

Autoencoder which refers to the Autoencoder with multiple hidden layers. Likewise, D-RBM denotes Deep-Restricted

Boltzmann Machine with multiple hidden layers. Deep Belief Network can be composed of AE or RBM, therefore, we

divided DBN into DBN-AE and DBN-RBM. Generative models (Appendix B.3) that are commonly used in non-invasive

brain signal analysis include Variational Autoencoder (VAE) and Generative Adversarial Networks (GAN).

Table 3: Summary of deep learning model types

Deep Learning Input Output Function Training method
Discriminative Input data Label Feature extraction, Classification Supervised

Representative Input data Representation Feature extraction Unsupervised

Generative Input data New Sample Generation, Reconstruction Unsupervised

Hybrid Input data – – –

inative algorithms are able to learn distinctive fea-

tures by non-linear transformation, and classification

through probabilistic prediction4. Thus these algo-

rithms can play the role of both feature extraction

and classification (corresponding to Figure 1). Dis-

criminative architectures mainly include Multi-Layer

4The classification function is achieved by the combination of a

softmax layer and one-hot label encoding. The one-hot label encoding

refers to encoding the label by the one-hot method, which is a group of

bits among which the only valid combinations of values are those with a

single high (1) bit and all the others low (0) bits. For instance, a set of

labels 0, 1, 2, 3 can be encoded as (1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), (0,

0, 0, 1).

Perceptron (MLP) [40], Recurrent Neural Networks

(RNN) [41], Convolutional Neural Networks (CNN)

[42], along with their variations.

• Representative deep learning models, which learn the

pure and representative features from the input data.

These algorithms only have the function of feature

extraction (Figure 1) but cannot make classification.

Commonly used deep learning algorithms for repre-

sentation are Autoencoder (AE) [43], Restricted Boltz-

mann Machine (RBM) [44], Deep Belief Networks

(DBN) [45], along with their variations.

• Generative deep learning models, which learn the
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joint probability distribution of the input data and the

target label. In the brain signal scope, generative

algorithms are mostly used to generate a batch of

brain signals samples to enhance the training set.

Generative models commonly used in brain signal

analysis include Variational Autoencoder (VAE)5 [46],

Generative Adversarial Networks (GANs) [47], etc.

• Hybrid deep learning models, which combine more

than two deep learning models. For example,

the typical hybrid deep learning model employs a

representation algorithm for feature extraction and

discriminative algorithms for classification.

The summary of the characteristics of each deep

learning subcategories are listed in Table 3. Almost all the

classification functions in neural networks are implemented

by a softmax layer, which will not be regarded as an

algorithmic component in this survey. For instance, a model

combining a DBN and a softmax layer will still be regarded

as a representative model instead of a hybrid model.

4. State-of-The-Art DL Techniques for Brain Signals

In this section, we thoroughly summarize the advanced

studies on deep learning-based brain signals (Table 4). The

hybrid models are divided into three parts: the combination

of RNN and CNN, the combination of representative and

discriminative models (denoted as ‘Repre + Discri’), and

others hybrid models.

4.1. EEG

Due to the advantages of high portability and low price,

EEG signals have attracted much attention. Most of the

latest publications on non-invasive brain signals are related

to EEG. In this section, we summarize two aspects of

EEG signals: spontaneous EEG and evoked potentials. As

implied by the name, the former are spontaneous and the

latter requires outside stimuli.

4.1.1. Spontaneous EEG We present the deep learning

models for spontaneous EEG according to the application

scenarios as follows.

(1) Sleep EEG. Sleep EEG is mainly used for rec-

ognizing the sleep stage and diagnosing sleep disorders

or cultivating the healthy habit [48, 49]. According to

Rechtschaffen and Kales (R&K) rules, the sleep stage in-

cludes wakefulness, non-REM (rapid eye movement) 1,

non-REM 2, non-REM 3, non-REM 4, and REM. The

American Academy of Sleep Medicine (AASM) recom-

mends segmentation of sleep in five stages: wakefulness,

non-REM 1, non-REM 2, slow wave sleep (SWS), and

REM. The non-REM 3 and non-REM 4 are combined into

5VAE is a variation of AE. However, they are working on different

aspects. Therefore, we separately introduce AE and VAE.

SWS since there is no clear distinction between them [49].

Generally, in the sleep stage analysis, the EEG signals are

preprocessed by a filter which has various passband in dif-

ferent papers, but all notched at 50 Hz. The EEG signals

are usually segmented into 30s windows.

(i) Discriminative models. CNN are frequently used

for sleep stage classification on single-channel EEG [25,

50]. For example, Viamala et al. [51] manually extracted

the time-frequency features and achieved a classification

accuracy of 86%. Others used RNN [52] and LSTM

[53] based on various features from the frequency domain,

correlation, and graph theoretical features.

(ii) Representative models. Tan et al. [54] adopted

a DBN-RBM algorithm to detect sleep spindle based on

Power Spectral Density (PSD) features extracted from sleep

EEG signals and achieved an F-1 of 92.78% on a local

dataset. Zhang et al. [49] further combined DBN-RBM

with three RBMs for sleep feature extraction.

(iii) Hybrid models. Manzano et al. [55] presented

a multi-view algorithm in order to predict sleep stage

by combining CNN and MLP. The CNN was employed

to receive the raw time-domain EEG oscillations while

the MLP received the spectrum singles processed by the

Short-Time Fourier Transform (STFT) among 0.5-32 Hz.

Fraiwan et al. [56] combined DBN with MLP for neonatal

sleep state identification. Supratak et al. [57] proposed

a model by combing a multi-view CNN and LSTM for

automatic sleep stage scoring, in which the former was

adopted to discover time-invariant dependencies while the

latter (a bidirectional LSTM) was adopted the temporal

features during the sleep. Dong et al. [58] proposed a

hybrid deep learning model aiming at temporal sleep stage

classification and took advantage of MLP for detecting

hierarchical features along with LSTM for sequential

information learning.

(2) MI EEG. Deep learning models have shown the

superior on the classification of Motor-Imagery (MI) EEG

and real-motor EEG [59, 60].

(i) Discriminative models. Such models mostly use

CNN to recognize MI EEG [61]. Some are based on

manually extracted features [62, 63]. For instance, Lee et al.

[64] and Zhang et al. [65] employed CNN and 2-D CNN,

respectively, for classification; Zhang et al. [65] learned

affective information from EEG signals to built a modified

LSTM control smart home appliances. Others also used

CNN for feature extraction [66]. For example, Wang et

al. [67] first used CNN to capture latent connections from

MI-EEG signals and then applied weak classifiers to choose

important features for the final classification; Hartmann et

al. [59] investigated how CNN represented spectral features

through the sequence of the MI EEG samples. MLP has

also been applied for MI EEG recognition [68], which

showed higher sensitivity to EEG phase features at earlier

stages and higher sensitivity to EEG amplitude features at

later stages.
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(ii) Representative models. DBN is widely used as a

basis for MI EEG classification for its high representative

ability [80, 79]. For example, Ren et al. [78] applied a

convolutional DBN based on RBM components, showing

better feature representation than hand-crafted features. Li

et al. [77] processed EEG signals with discrete wavelet

transformation and then applied a DBN-AE based on

denoising AE. Other models include the combination of AE

model (for feature extraction) and a KNN classifier [75],

the combination of Genetic Algorithm (for hyper-parameter

tuning) and MLP (for classification) [84], the combination

AE and XGBoost for multi-person scenarios [76], and

the combination of LSTM and reinforcement learning for

multi-modality signal classification [85, 2].

(iii) Hybrid models. Several studies proposed hybrid

models for the recognition of MI EEG [81]. For example,

Tabar et al. [4] extracted high-level representations from the

time, frequency domain and location information of EEG

signals using CNN and then used a DBN-AE with seven

AEs as the classifier; Tan et al. [82] used a denoising AE

for dimensional reduction, a multi-view CNN combined

with RNN for discovering latent temporal and spatial

information, and finally achieved an average accuracy of

72.22% on a public dataset.

(3) Emotional EEG. The emotion of an individual

can be evaluated in three aspects: valence, arousal, and

dominance. The combination of the three aspects form

emotions such as fear, sadness, and anger, which can be

revealed by EEG signals.

(i) Discriminative models. MLP are traditionally used

[137, 87] while CNN and RNN are increasingly popular

in EEG based emotion prediction [89, 90]. Typical CNN-

based work in this category includes hierarchical CNN

[89, 92] and augmenting the training set for CNN [91]. Li

et al. [89] were the first to propose capturing the spatial

dependencies among EEG channels via converting multi-

channel EEG signals into a 2-D matrix. Besides, Talathi

[110] used a discriminative deep learning model composed

of GRU cells. Zhang et al. [88] proposed a spatial-

temporal recurrent neural network, which employs a multi-

directional RNN layer to discover long-range contextual

cues and a bi-directional RNN layer to capture sequential

features produced by the previous spatial RNN.

(ii) Representative models. DBN, especially DBN-

RBM, is widely used for the unsupervised representation

ability in emotion recognition [100, 106, 103]. For instance,

Xu et al. [99, 101] proposed a DBN-RBM algorithm with

three RBMs and an RBM-AE to predict affective state;

Zhao et al. [126] and Zheng et al. [102] cobmined

DBN-RBM with SVM and Hidden Markov Model (HMM),

respectively, addressing the same problem; Zheng et al.

[96, 97] introduced a D-RBM with five hidden RBM layers

to search the important frequency patterns and informative

channels in affection recognition; Jia et al. [98] eliminated

channels with high errors and then used D-RBM for

affective state recognition based on representative features

of the residual channels.

The emotion is affected by many subjective and

environmental factors (e.g., gender and fatigue). Yan et

al. [95] investigated the discrepancy of emotional patterns

between men and women by proposing a novel model

called Bimodal Deep AutoEncoder (BDAE) which received

both EEG and eye movement features and shared the

information in a fusion layer which connected with an

SVM classifier. The results showed that the females have

higher EEG signal diversity on the fearful emotion while

males on sad emotion. Moreover, for women, the inter-

subject differences in fear is more significant then other

emotions [95]. To overcome the mismatched distribution

among the samples collected from different subjects or

different experimental sessions, Chai et al. [94] proposed an

unsupervised domain adaptation technology which is called

subspace alignment autoencoder (SAAE) by combing an

AE and a subspace alignment solution. The proposed

approach obtained a mean accuracy of 77.88% in person

independent scenario.

(iii) Hybrid models. One common-used hybrid

model is a combination of RNN and MLP. For example,

Alhagry et al. [108] employed an LSTM architecture

for feature extraction from emotional EEG signals and

the features are forwarded into an MLP for classification.

Furthermore, Yin et al. [107] proposed a multi-view

ensemble classifier to recognize individual emotions using

multimodal physiological signals. The ensemble classifier

contains several D-AEs with three hidden layers and a

fusion structure. Each D-AE receives one physiological

signal (e.g., EEG) and then sends the outputs of D-AE to

a fusion structure which is composed of another D-AE. At

last, an MLP classifier makes the prediction based on the

mixed features. Kawde et al. [105] implemented an affect

recognition system by combining a DBN-RBM for effective

feature extraction and an MLP for classification.

(4) Mental Disease EEG. A large number of

researchers exploited EEG signals to diagnose neurological

disorders, especially epileptic seizure [109].

(i) Discriminative models. The CNN is widely used

in the automatic detection of epileptic seizure [112, 114,

116, 93]. For example, Johansen et al. [118] adopted

CNN to work on the high-passed (1 Hz) EEG signals of

epileptic spike and achieved an AUC of 94.7%. Acharya

et al. [113] employed a CNN model with 13 layers

on depression detection, which was evaluated on a local

dataset with 30 subjects and achieved the accuracies of

93.5% and 96.0% based on the left- and right- hemisphere

EEG signals, respectively. Morabito et al. [115] tried to

exploit a CNN structure to extract suitable features of multi-

channel EEG signals to classify Alzheimer’s Disease from

the patients with Mild Cognitive Impairment and healthy

control group. The EEG signals are filtered in bandpass

(0.1 ∼ 30 Hz) and achieved an accuracy of around 82% for
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three-class classification. Eapid Eye Movement Behavior

Disorder (RBD) may cause many mental disorder diseases

like Parkinson’s disease (PD). Ruffini et al. [111] described

an Echo State Networks (ESNs) model, a particular class

of RNN, to distinguish RBD from healthy individuals. In

some research, the discriminative model is only employed

for feature extraction. For example, Ansari et al. [119] used

CNN to extract the latent features and fed into a Random

Forest classifier for the final seizure detection of neonatal

babies. Chu et al. [149] combined CNN and a traditional

classifier for schizophrenia recognition.

(ii) Representative models. For disease detection,

one commonly used method is adopting a representative

model (e.g., DBN) followed by a softmax layer for

classification [127]. Page et al. [125] adopted DBN-AE

to extract informative features from seizure EEG signals.

The extracted features were fed into a traditional logistic

regression classifier for seizure detection. Al et al. [131]

proposed a multi-view DBN-RBM structure to analyze

EEG signals from depression patients. The proposed

approach contains multiple input pathways, composed of

two RBMs, while each corresponded to one EEG channel.

All the input pathways would merge into a shared structure

which is composed of another RBMs. Some papers would

like to preprocess the EEG signals through dimensionality

reduction methods such as PCA [129] while others prefer

to directly fed the raw signals to the representative model

[122]. Lin et al. [122] proposed a sparse D-AE with three

hidden layers to extract the representative features from

epileptic EEG signals while Hosseini et al. [129] adopted a

similar sparse D-AE with two hidden layers.

(iii) Hybrid models. A popular hybrid method is

a combination of RNN and CNN. Shah et al. [128]

investigated the performance of CNN-LSTM on seizure

detection after channel selection and the sensitivities range

from 33% to 37% while false alarms ranges from 38%

to 50%. Golmohammadi et al. [130] proposed a

hybrid architecture for automatic interpretation of EEG by

integrating both the temporal and spatial information. 2D

and 1D CNNs capture the spatial features while LSTM

networks capture the temporal features. The authors

claimed a sensitivity of 30.83% and a specificity of 96.86%

on the well-known TUH EEG seizure corpus. In the

detection of early-stage Creutzfeldt-Jakob Disease (SJD),

Morabito et al. [123] combined D-AE and MLP together.

The EEG signals of SJD were first filtered by bandpass

(0.5∼70 Hz) and then fed into a D-AE with two hidden

layers for feature representation. At last, the MLP

classifier obtained the accuracy of 81∼ 83% in a local

dataset. Convolutional autoencoder, replacing the fully-

connected layers in a standard AE by convolutional and

de-convolutional layers, is applied to extract the seizure

features in an unsupervised manner [124].

(5) Data augmentation. The generative models such

as GAN could be used for data augmentation in brain

signal classification [132]. Palazzo et al. [133] first

demonstrated that the information contained in brainwaves

are empowered to distinguish the visual object and then

extracted more robust and distinguishable representations

of EEG data using RNN. At last, they employed the

GAN paradigm to train an image generator conditioned by

the learned EEG representations, which could convert the

EEG signals into images [133]. Kavasidis et al. [134]

aiming at converting EEG signals into images. The EEG

signals were collected when the subjects were observing

images on a screen. An LSTM layer was employed to

extract the latent features from the EEG signals, and the

extracted features were regarded as the input of a GAN

structure. The generator and the discriminator of the

GAN were both composed of convolutional layers. The

generator was supposed to generate an image based on the

input EEG signals after the pre-training. Abdelfattach et

al. [132] adopted a GAN on seizure data augmentation.

The generator and discriminator are both composed of

fully-connected layers. The authors demonstrated that

GAN outperforms other generative models such as AE and

VAE. After the augmentation, the classification accuracy

increased dramatically from 48% to 82%.

(6) Others. Some researches have explored a wide

range of exciting topics. The first one is how EEG signals

are affected by audio/visual stimuli. This differs from the

potentials evoked by audio/visual stimulations because the

stimuli in this phenomenon always exist instead of flicking

in a particular frequency. Stober et al. [188, 142] claimed

that the rhythm-evoked EEG signals are informative enough

to distinguish the rhythm stimuli. The authors conducted

an experiment where 13 participants were stimulated by 23

rhythmic stimuli, including 12 East African and 12 Western

stimuli. For the 24-category classification, the proposed

CNN achieved a mean accuracy of 24.4%. After that,

the authors exploited convolutional AE for representation

learning and CNN for recognition and achieved an accuracy

of 27% for 12-class classification [157]. Sternin et al. [148]

adopted CNN to capture discriminative features from the

EEG oscillations to distinguish whether the subject was

listening or imaging music. Similarly, Sarkar et al. [165]

designed two deep learning models to recognize the EEG

signals aroused by audio or visual stimuli. For this binary

classification task, the proposed CNN and DBN-RBM with

three RBMs achieved the accuracy of 91.63% and 91.75%,

respectively. Furthermore, the spontaneous EEG could be

used to distinguish the user’s mental state (logical versus

emotional) [172].

Moreover, some researchers focus on the impact on

EEG of cognitive load [138] or physical workload [221].

Bashivan et al. [159] first extract informative features

through wavelet entropy and band-specific power, which

would be fed into a DBN-RBM for further refining. At last,

an MLP is employed for cognitive load level recognition.

The authors, in another work [171], also denoted to find the
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general features which are constant in inter-/intra- subjects

scenarios under various mental load. Yin et al. [150]

collected the EEG signals from different mental workload

levels (e.g., high and low) for binary classification. The

EEG signals are filtered by a low-pass filter, transformed to

the frequency domain and be calculated the power spectral

density (PSD). The extracted PSD features were fed into a

denoising D-AE structure for future refining. They finally

got an accuracy of 95.48%. Li et al. [155] worked on the

recognition of mental fatigue level, including alert, slight

fatigue, and severe fatigue.

In addition, EEG based driver fatigue detection is an

attractive area [158, 151, 147]. Huang et al. [140] designed

a 3D CNN to predict the reaction time in drowsiness

driving. This is meaningful to reduce traffic accident.

Hajinoroozi et al. [153] adopted a DBN-RBM to handle

the EEG signals which were processed by ICA. They

achieved an accuracy of around 85% in binary classification

(‘drowsy’ or ‘alert’). The strength of this paper is that it

evaluated the DBN-RBM on three levels: time samples,

channel epochs, and windowed samples. The experiments

illustrated that the channel epoch level outperformed the

other two levels. San et al. [154] combined deep learning

models with a traditional classifier to detect driver fatigue.

The model contains a DBN-RBM structure followed by an

SVM classifier, which achieved the detection accuracy of

73.29%. Almogbel et al. [145] investigated the drivers’

mental state under different low workload levels. A

proposed CNN is claimed to detect the driving workload

directly based on the raw EEG signals.

The research of the detection of eye state has shown

exceeding accuracy. Narejo et al. [152] explored the

detection of eye state (closed or open) based on EEG

signals. They tried a DBN-RBM with three RBMs and a

DBN-AE with three AEs and achieved a high accuracy of

98.9%. Reddy et al. [136] tried a simpler structure, MLP,

and got a slightly lower accuracy of 97.5%.

Furthermore, to make this survey more complete, we

provide a brief introduction of Event-related desynchro-

nization/synchronization (ERD/ERS). ERD/ERS refers to

the phenomena that the magnitude and frequency distri-

bution of the EEG signal power changes during a specific

brain state [36]. In particular, ERD denotes the power

decrease of ongoing EEG signals while ERS represents

the power increase of EEG signals. This characteristic

of ERD/ERS of brain signals can be used to detect the

event which caused the EEG fluctuation. For example,

[222] presents the ERD/ERS phenomena in motor cortex

recorded during a motor-imagery task.

ERD/ERS mainly appears in sensory, cognitive and

motor procedures, which is not widely used in brain

research due to the drawbacks like unstable accuracy cross

subjects [36]. In most of the situations, the ERD/ERS is

regarded as a specific feature of EEG powers for further

analysis [81, 4]. The task causes an ERD in the mu band

(8-13 Hz) of EEG and an ERS in the beta band (13-30

Hz). In particular, the ERD/ERS were calculated as relative

changes in power concerning baseline: ERD/ERS =
(Pe−Pb)/Pb, where Pe denotes the signals power over one-

second segment when the event occurring and Pb denotes

the signal power in a one-second segment during baseline

which is before the event [71]. Generally, the baseline refers

to the rest state. For example, Sakhavi et al. calculated the

ERD/ERS map and analyzed the different patterns among

different tasks. The analysis demonstrated that the dynamic

of energy should be considered because the static energy

does not contains enough information [86].

There are several overlooked yet promising areas.

Baltatzis et al. [141] adopted CNN to detect school

bullying through the EEG when watching the specific

video. They achieved 93.7% and 88.58% for binary and

four-class classification. Khurana et al. [223] proposed

deep dictionary learning that outperformed several deep

learning methods. Volker et al. [143] evaluated the use of

Deep CNN in flanker task, which achieved an averaging

accuracy of 84.1% on the seen subject and 81.7 on the

unseen subject. Zhang et al. [160] combined CNN and

graph network to discover the latent information from the

EEG signal.

Miranda-Correa et al. [104] proposed a cascaded

framework by combing RNN and CNN to predict

individuals’ affective level and personal factors (Big-

five personality traits, mood, and social context). An

experiment conducted by Putten et al. [146] attempted

to identify the user’s gender based on their EEG signals.

They employed a standard CNN algorithm and achieved

the binary classification accuracy of 81% over a local

dataset. The detection of emergency braking intention

could help to reduce the responses time. Hernandez et

al. [144] demonstrated that the driver’s EEG signals

could distinguish braking intention and normal driving

state. They combined a CNN algorithm which achieved the

accuracy of 71.8% in binary classification. Behncke et al.

[139] applied deep learning, a CNN model, in the context

of robot assistive devices. They attempted to use CNN to

improve the accuracy of decoding robot errors from EEG

while the subject was watching the robot both during an

object grasping and a pouring task.

Teo et al. [135] tried to combine the brain signal and

recommender system, which predicted the user’s preference

by EEG signals. There were sixteen participants took the

experiments which collected the EEG signals when the

subject was presented 60 bracelet-like objects as rotating

visual stimuli (a 3D object). Then, an MLP algorithm was

adopted to classify the user like or dislike the object. This

exploration got the prediction accuracy of 63.99%. Some

researchers have tried to explore a common framework

which can be used for various brain signal paradigms.

Lawhern et al. [73] introduced EEGNet based on a compact

CNN and evaluated its robustness in various brain signal
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contexts [73].

4.1.2. Evoked Potential Next, we introduce the latest

researches on evoked potentials including ERP and SSEP.

(1) ERP. In most situations, the ERP signals are

analyzed through P300 phenomena. Meanwhile, almost

all the studies on P300 are based on the scenario of ERP.

Therefore, in this section, a majority of the P300 related

publications are introduced in the subsection of VEP/AEP

according to the scenario.

(i) VEP. VEP is one of the most popular subcategories

of ERP [23, 224, 163]. Ma et al. [225] worked on motion-

onset VEP (mVEP) by extracting representative features

through deep learning and adopted genetic algorithm

combined with a multi-level sensing structure to compress

the raw signals. The compressed signals were sent to a

DBN-RBM algorithm to capture the more abstract high-

level features. Maddula et al. [170] filtered the P300 signals

with visual stimuli by a bandpass filter (2 ∼ 35 Hz) and

then fed into a proposed hybrid deep learning model for

further analysis. The model includes a 2D CNN structure

to capture the spatial features followed by an LSTM layer

for temporal feature extraction. Liu et al. [168] combined

a DBN-RBM representative model with an SVM classifier

for concealed information test and achieved a high accuracy

of 97.3% over a local dataset. Gao et al. [167] employed

an AE model for feature extraction followed by an SVM

classifier. In the experiment, each segment contains 150

points, which were divided into five time-steps, and each

step had 30 points. This model achieved an accuracy

of 88.1% over a local dataset. A wide range of P300

related studies is based on P300 speller [173], which allows

the user to write characters. Cecotti et al. [177] tried

to increase the P300 detection accuracy for more precise

word-spelling. A new model was presented based on CNN,

which including five low-level CNN classifiers with the

different feature set, and the final high-level results are

voted by the low-level classifiers. The highest accuracy

reached 95.5% over the dataset II from the third BCI

competition. Liu et al. [164] proposed a Batch Normalized

Neural Network (BN3) which is a variant of CNN in

P300 speller. The proposed method consists of six layers,

and the batch normalization was operated in each batch.

Kawasaki et al. [162] employed an MLP model to detect

P300 segments from non-P300 segments and achieved the

accuracy of 90.8%.

(ii) AEP. A few works focused on the recognition of

AEP. For example, Carabez et al. [187] proposed and tested

18 CNN structures to classify single-trial AEP signals. In

the experiment, the volunteers were required to wear on

an earphone which produces auditory stimulus designed

based on the oddball paradigm. The experimental analysis

demonstrated that the CNN frameworks, regardless of the

number of convolutional layers, were effective to extract

the temporal and spatial features and provided competitive

results. The AEP signals are filtered by 0.1 ∼ 8 Hz and

downsampled from 256 Hz to 25 Hz. The experimental

results showed that the downsampled data work better.

(iii) RSVP. Among various VEP diagrams, RSVP has

attracted much attention [183]. In the analysis of RSVP,

a number of discriminative deep learning models (e,g.,

CNN [177, 178, 182] and MLP [174]) has achieved a

big success. A common preprocessing method used in

RSVP signals is frequency filtering. The pass bands are

generally ranged from 0.1 ∼ 50 Hz [176, 185]. Cecotti

et al. [12] worked on the classification of ERP signals in

RSVP scenario and proposed a modified CNN model for the

detection of the specific target in RSVP. In the experiment,

the images of faces and cars were regarded as target or non-

target, respectively. The image presenting frequency is 2

Hz. In each session, the target probability was 10%. The

proposed model offered an AUC of 86.1%. Hajinoroozi et

al. [179] adopted a CNN model targeting the inter-subject

and inter-task detection of RSVP. The experimental results

showed that CNN worked good in cross-task but failed to

get satisfying performance in the cross-subject scenario.

Mao et al. [175] compared three different deep neural

network algorithms in the prediction of whether the subject

had seen the target or not. The MLP, CNN, and DBN

models obtained the AUC of 81.7%, 79.6%, and 81.6%,

respectively. The author also applied a CNN model to

analyze the RSVP signals for person identification [180].

The representative deep learning models are also

applied in RSVP. Vareka et al. [186] verified if deep

learning performs well for single trial P300 classification.

They conducted an RSVP experiment while the subjects

were asked to recognize the target from non-target and

distracters. Then a DBN-AE was implemented and

compared with some non-deep learning algorithms. The

DBN-AE was composed of five AEs while the hidden

layer of the last AE only has two nodes which can be

used for classification through softmax function. Finally,

the proposed model achieved the accuracy of 69.2%.

Manor et al. [181] applied two deep neural networks to

deal with the RSVP signals after lowpass filtering (0 ∼
51 Hz). Discriminative CNN achieved the accuracy of

85.06%. Meanwhile, the representative convolutional D-

AE achieved the accuracy of 80.68%.

(2) SSEP. Most of deep learning-based studies in

SSEP area focus on SSVEP like [191]. SSVEP refers to

brain oscillations evoked by the flickering visual stimuli,

which generally produced from the parietal and occipital

regions [192]. Attia et al. [196] aimed at finding an

intermediate representation of SSVEP. A hybrid method

combined CNN and RNN was proposed to capture the

meaningful features from the time domain directly, which

achieved the accuracy of 93.59%. Waytowich et al. [192]

applied a compact CNN model to directly work on the

raw SSVEP signals without any hand-crafted features. The

reported cross subject mean accuracy was approximately
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80%. Thomas et al. [190] first filter the raw SSVEP signals

through a bandpass filter (5 ∼ 48 Hz) and then operated

discrete FFT on consecutive 512 points. The processed data

were classified by a CNN (69.03%) and an LSTM (66.89%)

independently.

Perez et al. [197] adopted a representative model, a

sparse AE, to extract the distinct features from the SSVEP

from multi-frequency visual stimuli. The proposed model

employed a softmax layer for the final classification and

achieved the accuracy of 97.78%. Kulasingham et al.

[195] classified SSVEP signals in the context of guilty

knowledge test. The authors applied DBN-RBM and DBN-

AE independently and achieved the accuracy of 86.9% and

86.01%, respectively. Hachem et al. [189] investigated

the influence of fatigue on SSVEP through an MLP model

during wheelchair navigation. The goal of this study was

to seek the key parameters to switch between manual,

semi-autonomous, and autonomous wheelchair command.

Aznan et al. [193] explored the SSVEP classification,

where the signals were collected through dry electrodes.

The dry signals were more challenging for the lower SNR

than standard EEG signals. This study applied a CNN

discriminative model and achieved the highest accuracy of

96% over a local dataset.

4.2. fNIRS

Up to now, only a few of researchers paid attention on

deep learning-based fNIRS. Naseer et al. [38] analyzed

the difference between two mental tasks (mental arithmetic

and rest) based on fNIRS signals. The authors manually

extracted six features from the prefrontal cortex fNIRS and

compared six different classifiers. The results demonstrated

that the MLP with the accuracy of 96.3% outperformed

all the traditional classifiers, including SVM, KNN, naive

Bayes, etc. Huve et al. [198] classified the fNIRS

signals, which were collected from the subjects during three

mental states, including substractions, word generation, and

rest. The employed MLP model achieved the accuracy

of 66.48% based on the hand-crafted features (e.g., the

concentration of OxyHb/DeoxyHb). After that, the authors

study the mobile robot control through fNIRS signals and

got the binary classification accuracy of 82% (offline) and

66% (online) [199]. Chiarelli et al. [71] exploited the

combination of fNIRS and EEG for left/right MI EEG

classification. Sixteen features extracted from fNIRS

signals (eight from OxyHb and eight from DeoxyHb) were

fed into an MLP classifier with four hidden layers.

On the other hand, Hiroyasu et al. [201] attempted

to detect the gender of the subject through their fNIRS

signals. The authors employed a denoising D-AE with

three hidden layers to extract distinctive features to be fed

into an MLP classifier for gender detection. The model

was evaluated over a local dataset and gained the average

accuracy of 81%. In this study, the authors also pointed

out that, compared with Positron Emission Tomography

(PET) and fMRI, fNIRS has higher time resolution and

more affordable [201].

4.3. fMRI

Recently, several deep learning methods have been applied

to fMRI analysis, especially on the diagnosis of cognitive

impairment [14, 33].

(1) Discriminative models. Among the discriminative

models, CNN is a promising model to analyze fMRI

[206]. For example, Havaei et al. built a segmentation

approach for brain tumor based on fMRI with a novel CNN

algorithm which can capture both the global features and

the local features simultaneously [205]. The convolutional

filters have different size. Thus, the small-size and large-

size filter could exploit the local and global features,

independently. Sarraf et al. [226, 207] applied deep CNN

to recognize Alzheimer’s Disease based on fMRI and MRI

data. Morenolopez et al. [227] employed a CNN model

to deal with fMRI of brain tumor patients for three-class

recognition (normal, edema, or active tumor). The model

was evaluated over BRATS dataset and obtained the F1

score of 88%. Hosseini et al. [117] employed CNN for

feature extraction. The extracted features were classified by

SVM for the detection of an epileptic seizure.

Furthermore, Li et al. proposed a data completion

method based on CNN. In particular, utilizing the

information from fMRI data to complete PET, then train the

classifier based on both fMRI and PET [208]. In the model,

the input data of the proposed CNN is the fMRI patch, and

the output is a PET patch. There are two convolutional

layers with ten filters mapping the fMRI to PET. The

experiments illustrated that the classifier trained by the

combination of fMRI and PET (92.87%) outperformed the

one trained by solo fMRI (91.92%) Moreover, Koyamada et

al. used a nonlinear MLP to extract common features from

different subjects. The model is evaluated over a dataset

from the Human Connectome Project (HCP) [202].

(2) Representative models. A wide range of publica-

tions demonstrated the effectiveness of representative mod-

els in recognition of fMRI data [213]. Hu et al. [217] used

demonstrated that deep learning outperforms other machine

learning methods in the diagnosis of neurological disorders

such as Alzheimer’s disease. Firstly, the fMRI images were

converted to a matrix to represent the activity of 90 brain

regions. Secondly, a correlation matrix is obtained by cal-

culating the correlation between each pair of brain regions

to represent the functional connectivity between different

brain regions. Furthermore, a targeted AE is built to clas-

sify the correlation matrix, which is sensitive to AD. The

proposed approach achieved an accuracy of 87.5%. Plis et

al. [211] employed a DBN-RBM with three RBM compo-

nents to extract the distinctive features from ICA processed

fMRI and finally achieved an average F1 measure of above

90% over four public datasets. Suk et al. compared the
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effectiveness of DBN-RBM and DBN-AE on Alzheimer’s

disease detection and the experimental results showed that

the former obtained the accuracy of 95.4%, which is slightly

lower than the latter (97.9%) [210]. Suk et al. [209] applied

a D-AE model to extract latent features from the resting-

state fMRI data on the diagnosis of Mild Cognitive Impair-

ment (MCI). The latent features are fed into a SVM clas-

sifier which achieved the accuracy of 72.58%. Ortiz et al.

[212] proposed a multi-view DBN-RBM to receives the in-

formation of MRI and PET simultaneously. The learned

representations were sent to several simple SVM classifiers

which were ensembled to form a high-level stronger classi-

fier by voting.

(3) Generative models. The reconstruction of natural

image (e.g., fMRI) has been attracted lots of attention

[215, 88, 203]. Seeliger et al. [214] proposed a deep

convolutional GAN for reconstructing visual stimuli from

fMRI, which aimed at training a generator to create an

image similar to the visual stimuli. The generator contains

four convolutional layers in order to convert the input fMRI

to a natural image. Han et al. [215] focused on the

generation of synthetic multi-sequence fMRI using GAN.

The generated image can be used for data augmentation

for better diagnostic accuracy or physician training to help

better understand various diseases. The authors applied

the existing Deep Convolutional GAN (DCGAN) [228] and

Wasserstein GAN (WGAN) [229] and found that the former

works better. Shen et al. [203] presented another image

recovery approach by minimizing the distance between the

real image and the image generated based on real fMRI.

4.4. MEG

Garg et al. [218] worked on the refining of MEG signals by

removing the artifacts like eye-blinks and cardiac activity.

The MEG singles were decomposed by ICA first and then

classified by a 1-D CNN model. At last, the proposed

approach achieved the sensitivity of 85% and specificity of

97% over a local dataset. Hasasneh et al. [220] also focused

on artifacts detection (cardiac and ocular artifacts). The

proposed approach uses CNN to capture temporal features

and MLP to extract spatial information. Shu et al. [219]

employed a sparse AE to learn the latent dependencies

of MEG signals in the task of single word decoding.

The results demonstrated that the proposed approach is

advantageous for some subjects, although it did not produce

an overall increase in decoding accuracy. Cichy et al. [204]

applied a CNN model to recognize visual object based on

MEG and fMRI signals.

5. Brain Signal-based Applications

Deep learning models have contributed to various of

brain signal applications as summarized in Table 5. The

papers focused on signal classification without application

background are not listed in this table. Therefore, the

publication amounts in this table are less than in Table 4.

5.1. Health Care

In the health care area, the deep learning-based brain

signal systems mainly works on the detection and diagnosis

of mental diseases such as sleep disorders, Alzheimer’s

Disease, epileptic seizure, and other disorders. In the

first place, for the sleep disorder detection, most studies

are focused on the sleep stage detection based on sleep

spontaneous EEG. In this situation, the researchers do

not need to recruit patients with sleep disorder because

the sleep EEG signals can be easily collected from

healthy individuals. In terms of the algorithm, it can

be observed from Table 5 that the DBN-RBM and CNN

are widely adopted for feature selection and classification.

Ruffini et al. [111] walk one step further by detecting

the REM Behavior Disorder (RBD), which may cause

neurodegenerative diseases such as Parkinson’s disease.

They achieved an average accuracy of 85% in recognition

of the RBD from healthy controls.

Moreover, fMRI is widely applied in the diagnosis

of Alzheimer’s Disease. By taking advantage of the high

spatial resolution of fMRI, the diagnosis achieved the

accuracy of above 90% in several studies. Another reason

that contributes to competitive performance is the binary

classification scenario. Apart from that, there are several

publications diagnose the AD based on spontaneous EEG

[115, 126].

Besides, the diagnosis of epileptic seizure attracted

much attention. The seizure detection mainly based on

spontaneous EEG. The popular deep learning models in

this scenario contain the independent CNN and RNN,

along with hybrid models combined RNN and CNN. Some

models integrated the deep learning models for feature

extraction and traditional classifier for detection [127, 125].

For example, Yuan et al. [121] applied a D-AE in feature

extraction followed by SVM for seizure diagnosis. Ullah

et al. [112] adopted the voting for post-processing, which

proposed several different CNN classifiers and predicted the

final result by voting.

Furthermore, there are a lot of other healthcare issues

can be solved by brain signal research. The cardiac artifacts

in MEG can be automatically detected by deep learning

models[218, 220]. Several modified CNN structures are

proposed to detect brain tumor based on fMRI from the

public BRATS dataset [205, 206]. Researchers have

demonstrated the effectiveness of deep learning models in

the detection of a wide number of mental diseases such

as depression [113], Interictal Epileptic Discharge (IED)

[230], schizophrenia [211], Creutzfeldt-Jakob Disease

(CJD) [123], and Mild Cognitive Impairment (MCI) [209].
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(a) Brain signals (b) Deep learning models

Figure 4: Illustration of the publications proportion for

crucial brain signals and deep learning models.

5.2. Smart Environment

The smart environment is a promising application scenario

for brain signals in the future. With the development

of Internet of Things (IoT), an increasing number smart

environment can be connected to brain signals. For

example, the assisting robot can be used in smart home

[65, 2], in which the robot can be controlled by brain signals

of the individuals. Moreover, Behncke et al. [139] and

Huve et al. [199] investigated the robot control problem

based on the visual stimulated spontaneous EEG and fNIRS

signals. The brain signal controlled exoskeleton could help

the disabilities who damaged the motor system in sub-limb

in walking and daily activities [191]. In the future, the

research on brain-controlled appliances may be beneficial to

the elders or disabilities in smart home and smart hospital.

5.3. Communication

One of the biggest advantages of brain signals, compared

to other human-machine interface techniques, is that brain

signal enables the patient who lost most motor abilities

like speaking to communicate with the outer world. The

deep learning technology improved the efficiency of brain

signal based communications. One typical diagram which

enables individual typing without any motor system is P300

speller, which can convert the user’s intent into text [162].

The powerful deep learning models empower the brain

signal systems to recognize the P300 segment from the non-

P300 segment while the former contains the communication

information of the user [166]. In a higher level, the

representative deep learning models can help to detect what

character the user is focusing on and print it on the screen to

chat with others [166, 170, 164]. Additionally, Zhang et al.

[10] proposed a hybrid model that combined RNN, CNN,

and AE to extract the informative features from MI EEG to

recognize what letter the user wants to speak.

5.4. Security

Brain signals can be used in security scenarios such

as identification (or recognition) and authentication (or

verification). The former conducts multi-class classification

to recognize a person’s identity [6]. The latter conducts

binary classification to decide whether a person is

authorized [61].

The majority of the existing biometric identifica-

tion/authentication systems rely on individuals’ intrinsic

physiological features such as face, iris, retina, voice, and

fingerprint [6]. They are vulnerable to various attacks

based on anti-surveillance prosthetic masks, contact lenses,

vocoder, and fingerprint films. EEG-based biometric per-

son identification is a promising alternative given its highly

resilient to spoofing attacks—individual’s EEG signals are

virtually impossible for an imposter to mimic. Koike et al.

[161] have adopted deep neural networks to identify the

user’s ID based on the VEP signals; Mao et al. [180] ap-

plied CNN for person identification based on RSVP signals;

Zhang et al. [6] proposed an attention-based LSTM model

and evaluated it over both public and local datasets. EEG

signals are also combined with gait information in a hybrid

deep learning model for a dual-authentication system [61].

5.5. Affective Computing

Affective states of a user provide critical information

for many applications such as personalized information

(e.g., multimedia content) retrieval or intelligent human-

computer interface design [99]. Recent research illustrated

that deep learning models can enhance the performance in

affective computing. The most widely used circumplex

model believe the emotions are distributed in two dimen-

sions: arousal and valence. The arousal refers to the inten-

sity of the emotional stimuli or how strong is the emotion.

The valence refers to the relationship within the person who

experiences the emotion. In some other models, the domi-

nance and liking dimensions are deployed.

Some research [89, 90, 91] attempts to classify

users’ emotional state into two (positive/negative) or three

categories (positive, neutral, and negative) based on EEG

signals using deep learning algorithms such as CNN and

its variants [87]. DBN-RBM is the most representative

deep learning model to discover the concealed features from

emotional spontaneous EEG [99, 96]. Xu et al. [99] applied

DBN-RBM as feature extractors to classify affective states

based on EEG.

Further, some researchers aim to recognize the pos-

itive/negative state of each specific emotional dimension.

For example, Yin et al. [107] employed an ensemble clas-

sifier of AE in order to recognize the user’s affection. Each

AE uses three hidden layers to filter out noises and to de-

rive stable physiological feature representations. The pro-

posed model was evaluated over the benchmark, DEAP, and

achieved the arousal of 77.19% and valence of 76.17%.

5.6. Driver Fatigue Detection

Vehicle drivers’ ability to keep alert and maintain optimal

performance will dramatically affect the traffic safety [145].
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Table 5: Summary of deep learning-based brain signal applications. The ‘local’ dataset refers to private or not available

dataset. The public datasets (along with download links) will be introduced in Section 5.9. In the signals, S-EEG, MD

EEG, and E-EEG separately denote sleep EEG, mental disease EEG, and emotional EEG. The single ‘EEG’ refers to

the other subcategory of spontaneous EEG. In the models, RF and LR denote to random forest and logistic regression

algorithms, respectively. In the performance column, ‘N/A’, ‘sen’, ‘spe’, ’aro’, ‘val’, ‘dom’, and ‘like’ denote not-found,

sensitivity, specificity, arousal, valence, dominance, and liking, respectively. For each application scenario, the literature

are sorted out by signal types and deep learning models.

Brain Signal Applications Reference Signals Deep Learning
Models Dataset Performance

Health
Care

Sleep
Quality
Evaluation

Shahin et al. [69] S-EEG MLP

University

Hospital

in Berlin

0.9

Biswai et al. [52] S-EEG RNN Local 0.8576

Ruffini et al. [111] S-EEG RNN Local 0.85

Vilamala et al. [51] S-EEG CNN Sleep-EDF 0.86

Tsinalis et al. [25] S-EEG CNN Sleep-EDF 0.82

Sors et al. [50] S-EEG CNN SHHS 0.87

Chambon et al. [48] S-EEG Multi-view CNN MASS session 3 N/A

Manzano et al. [55] S-EEG CNN + MLP Sleep-EDF 0.732

Fraiwan et al. [56] S-EEG DBN-AE + MLP Local 0.804

Tan et al. [54] S-EEG DBN-RBM Local 0.9278 (F1)

Zhang et al. [49] S-EEG DBN + voting UCD 0.9131

Fernandez et al. [70] S-EEG CNN SHHS 0.9 (F1)

Supratak et al. [57] S-EEG CNN + LSTM
MASS/

Sleep-EDF
0.862/0.82

AD
Detection

Morabito et al. [115] MD EEG CNN Local 0.82

Zhao et al. [126] MD EEG DBN-RBM Local 0.92

Suk et al. [210] fMRI
DBN-AE;

DBN-RBM
ADNI

0.979;

0.954

Sarraf et al. [207] fMRI CNN ADNI 0.9685

Li et al. [208] fMRI CNN + LR ADNI 0.9192

Hu et al. [217] fMRI D-AE + MLP ADNI 0.875

Ortiz et al. [212] fMRI, PET
DBN-RBM

+ SVM
ADNI 0.9

Seizure
Detection

Hosseini et al. [120] EEG CNN Local 0.96

Yuan et al. [109] MD EEG Attention-MLP CHB-MIT 0.9661

Tsiouris et al. [53] MD EEG LSTM CHB-MIT >0.99

Talathi et al. [110] MD EEG GRU BUD 0.996

Acharya et al. [114] MD EEG CNN UBD 0.8867

Schirmeister et al. [116] MD EEG CNN TUH 0.854

Hosseini et al. [117] MD EEG CNN Local N/A

Johansen et al. [118] MD EEG CNN Local 0.947 (AUC)

Ansari et al. [119] MD EEG CNN + RF Local 0.77

Ullah et al. [112] MD EEG CNN + voting UBD 0.954

Wen et al. [124] MD EEG AE Local 0.92

Lin et al.[122] MD EEG D-AE UBD 0.96

Yuan et al. [121] MD EEG D-AE + SVM CHB-MIT 0.95

Page et al. [125] MD EEG DBN-AE + LR N/A 0.8 ∼ 0.9

Turner et al. [127] MD EEG
DBN-RBM

+ LR
Local N/A

Hosseini et al. [129] MD EEG D-AE + MLP Local 0.94

Golmohammadi et al. [130] MD EEG RNN+CNN TUH
Sen: 0.3083;

Spe: 0.9686

Shah et al. [128] MD EEG CNN+ LSTM TUH
Sen: 0.39;

Spe: 0.9037
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Table 5. Summary of deep learning-based brain signal applications (Continued). IEF and CJD refer to Interictal Epileptic

Discharge and Creutzfeldt-Jakob Disease, respectively.

Brain Signal Applications Reference Signals Deep Learning
Models Dataset Performance

Health
Care

Others:
IED Antoniades et al. [231] EEG AE + CNN Local 0.68

CJD Morabito et al. [123] MD EEG D-AE Local 0.81 ∼ 0.83

Depression Acharya et al. [113] MD EEG CNN Local 0.935 ∼ 0.9596

Al et al. [131] MD EEG
DBN-RBM

+ MLP
Local 0.695

Brain Tumor
Morenolopez et al. [227] fMRI CNN BRATS 0.88 (F1)

Shreyas et al. [206] fMRI CNN BRATS 0.83

Havaei et al. [205] fMRI Muli-scale CNN BRATS 0.88 (F1)

Schizophrenia Plils et al. [211] fMRI DBN-RBM Combined 0.9 (F1)

Chu et al. [149]
CNN + RF

+ Voting
Local 0.816, 0.967, 0.992

Mild Cognitive
Impairment (MCI) Suk et al. [209] fMRI AE + SVM ADNI2 0.7258

Cardiac
Detection

Garg [218] MEG CNN Local
Sen: 0.85,

Spe: 0.97

Hasasneh et al. [220] MEG CNN + MLP Local 0.944

Smart
Environment

Robot Control Behncke et al. [139] EEG CNN Local 0.75

Smart
Home Zhang et al. [65] MI EEG RNN EEGMMI 0.9553

Exoskeleton
Control Kwak et al. [191] SSVEP CNN Local 0.9403

Huve et al. [199] fNIRS MLP Local 0.82

Communication

Zhang et al. [10] MI EEG
LSTM+CNN

+AE
Local 0.9452

Kawasaki et al. [162] VEP MLP Local 0.908

Cecotti et al. [166] VEP CNN

The third BCI

competition,

Dataset II

0.945

Liu et al. [164] VEP CNN

The third BCI

competition,

Dataset II

0.92 ∼ 0.96

Cecotti et al. [166] VEP CNN + Voting

The third BCI

competition,

Dataset II

0.955

Maddula et al. [170] VEP RCNN Local 0.65∼0.76

Security Identification
Zhang et al. [6] MI-EEG

Attention-based

RNN
EEGMMI + local 0.9882

Koike et al. [161] VEP MLP Local 0.976

Mao et al. [180] RSVP CNN Local 0.97

Authentication Zhang et al. [61] MI EEG Hybrid EEGMMI + local 0.984

Affective Computing

Frydenlund et al. [87] E-EEG MLP DEAP N/A

Zhang et al. [88] E-EEG RNN SEED 0.895

Li et al. [201] E-EEG CNN SEED 0.882

Liu et al. [90] E-EEG CNN Local 0.82

Li et al. [89] E-EEG
Hierarchical

CNN
SEED 0.882

Chai et al. [94] E-EEG AE SEED 0.818

Xu et al. [99] E-EEG
DBN-AE,

DBN-RBM
DEAP >0.86 (F1)

Jia et al. [98] E-EEG DBN-RBM DEAP
0.8 ∼
0.85 (AUC)

Li et al. [100] E-EEG DBN-RBM DEAP

Aro:0.642,

Val:0.584,

Dom 0.658

Xu et al. [101] E-EEG DBN-RBM DEAP

Aro:0.6984,

Val:0.6688,

Lik: 0.7539
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Table 5. Summary of deep learning-based brain signal applications (Continued).

Brain Signal Applications Reference Signals Deep Learning
Models Dataset Performance

Affective Computing

Zheng et al. [102] E-EEG
DBN-RBM

+ HMM
Local 0.8762

Zhang et al. [96, 97] E-EEG
DBN-RBM

+ MLP
SEED 0.8608

Gao et al. [106] E-EEG
DBN-RBM

+ MLP
Local 0.684

Yin et al. [107] E-EEG
Multi-view D-AE

+ MLP
DEAP

Aro: 0.7719;

Val: 0.7617

Mioranda et al. [104] E-EEG RNN + CNN AMIGOS ¡0.7

Alhagry et al. [108] E-EEG LSTM + MLP DEAP

Aro:0.8565,

Val:0.8545,

Lik: 0.8799

Liu et al. [95] EEG AE
SEED,

DEAP
0.9101, 0.8325

Kawde et al. [105] EEG DBN-RBM DEAP

Aro: 0.7033;

Val: 0.7828;

Dom: 0.7016

Drive Fatigue Detection

Hung et al. [140, 140] EEG CNN Local 0.572 (RMSE)

Hung et al. [140] EEG CNN Local

Almogbel et al. [145] EEG CNN Local 0.9531

Hajinoroozi et al. [147, 147] EEG CNN Local 0.8294

Hajinoroozi et al. [153] EEG DBN-RBM Local 0.85

San et al. [154] EEG DBN-RBM + SVM Local 0.7392

Chai et al. [158] EEG DBN + MLP Local 0.931

Du et al. [151] EEG D-AE + SVM Local 0.094 (RMSE)

Hachem et al. [189] SSVEP MLP Local 0.75

Mental Load Measurement

Yin et al. [150] EEG D-AE Local 0.9584

Bashivan et al. [159] EEG DBN-RBM Local 0.92

Li et al. [155] EEG DBN-RBM Local 0.9886

Bashivan et al. [171] EEG R-CNN Local 0.9111

Bashivan et al. [172] EEG DBN + MLP Local N/A

Naseer et al. [38] fNIRS MLP Local 0.963

Hennrich et al. [200] fNIRS MLP Local 0.641

Other
Appli-
-cations

School Bullying Baltatzis et al. [141] EEG CNN Local 0.937

Music Detection

Stober et al. [142] EEG CNN Local 0.776

Stober et al. [157] EEG AE + CNN Open MIIR 0.27 for 12-class

Stober et al. [188] EEG CNN Local 0.244

Sternin et al. [148] EEG CNN Local 0.75

Number
Choosing Waytowich et al. [192] SSVEP CNN Local 0.8

Visual Object
Recognition

Cichy et al. [204] fMRI, MEG CNN N/A N/A

Manor et al. [176] RSVP CNN Local 0.75

Cecotti et al. [177] RSVP CNN Local 0.897 (AUC)

Hajinoroozi et al. [179] RSVP CNN Local 0.7242 (AUC)

Shamwell et al. [185] RSVP CNN Local 0.7252 (AUC)

Perez et al. [197] SSVEP AE Local 0.9778

Guilty
Knowledge
Test

Kulasingham et al. [195] SSVEP
DBN-RBM;

DBN-AE
Local

0.869;

0.8601

Concealed
Information
Test

Liu et al. [168] EEG DBN-RBM Local 0.973

Flanker Task Volker et al. [143] EEG CNN Local 0.841

Eye State Narejo et al. [152] EEG DBN-RBM UCI 0.989

Reddy et al. [136] EEG MLP Local 0.975

User Preference Teo et al. [135] EEG MLP Local 0.6399

Emergency
Braking Hernandez et al. [144] EEG CNN Local 0.718

Gender
Detection

Putten et al. [146] EEG CNN Local 0.81

Hiroyasu et al. [201] fNIRS D-AE + MLP Local 0.81
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EEG signals have proven useful in evaluating the human’s

cognitive state in different context. Generally, a driver is

regarded as in an alert state if the reaction time is lower

than 0.7 seconds and in fatigue state if it is higher than 2.1

seconds. Hajinoroozi et al. [153] considered the detection

of driver’s fatigue from EEG signals by discovering the

distinct features. They explored an approach based on DBN

for dimension reduction.

Detecting driver fatigue is crucial because the drowsi-

ness of the driver may lead to disaster. Driver fatigue de-

tection is feasible in practice. In the hardware aspect, the

collection equipment of EEG singles is off-the-shelf and

portable enough to be used in a car. Moreover, the price

of an EEG headset is affordable for most people. In the

algorithm aspect, deep learning models have enhanced the

performance of fatigue detection. As we summarized, the

EEG based driving drowsiness can be recognized with high

accuracy (82% ∼ 95%).

Future scope of drive fatigue detection is in the self-

driving scenario. As we know, in the most situation of

self-driving (e.g., Automation level 36), the human driver is

expected to respond appropriately to a request to intervene,

which indicates that the driver should keep alert state.

Therefore, we believe the application of brain signal-based

drive fatigue detection will benefit the development of the

self-driving car.

5.7. Mental Load Measurement

The EEG oscillations can be used to measure the mental

workload level, which can sustain decision making and

strategy development in the context of human-machine

interaction [150]. Additionally, the appropriate mental

workload is essential for maintaining human health and

preventing accidents. For example, the abnormal mental

workload of the human operator may result in performance

degradation which could cause catastrophic accidents

[232]. Evaluation of operator Mental Workload levels

via ongoing EEG is quite promising in Human-Machine

collaborative task environment to alarm the temporal

operator performance degradation.

Several researchers have been paid attention to this

topic. The mental workload can be measured from fNIRS

signals or spontaneous EEG. Naseer et al. adopted a

6https://en.wikipedia.org/wiki/Self-driving car
7https://physionet.org/physiobank/database/sleep-edfx/
8https://massdb.herokuapp.com/en/
9https://physionet.org/pn3/shhpsgdb/

10https://physionet.org/pn6/chbmit/
11https://www.isip.piconepress.com/projects/tuh eeg/html/downloads.shtml
12https://physionet.org/pn4/eegmmidb/
13http://www.bbci.de/competition/ii/
14http://www.eecs.qmul.ac.uk/mmv/datasets/amigos/readme.html
15http://bcmi.sjtu.edu.cn/ seed/download.html
16https://www.eecs.qmul.ac.uk/mmv/datasets/deap/
17https://owenlab.uwo.ca/research/the openmiir dataset.html
18http://adni.loni.usc.edu/data-samples/access-data/
19https://www.med.upenn.edu/sbia/brats2018/data.html

MLP algorithm for fNIRS-based binary mental task level

classification (mental arithmetic and rest) [38]. The

experiment results showed that the MLP outperformed

the traditional classifiers like SVM, KNN, and achieved

the highest accuracy of 96.3%. Bashivan et al. [159]

presented a statistical approach, a DBN model, for the

recognition of mental workload level based on single-trial

EEG. Before the DBN, the authors manually extracted

the wavelet entropy and band-specific power from three

frequency bands (theta, alpha, and beta). At last,

the experiments demonstrated the recognition of mental

workload achieved an overall accuracy of 92%. Zhang

et al. [156] investigate the mental load measurement

across multiple mental tasks via a recurrent-convolutional

framework. The model simultaneously learns EEG features

from the spatial, spectral, and temporal dimensions, which

results in the accuracy of 88.9% in binary classification

(high/low workload levels).

5.8. Other Applications

There are plenty of interesting scenarios beyond the above

where deep learning-based brain signals can apply, such as

recommender system [135] and emergency braking [144].

One possible topic is the recognition of a visual object,

which may be used in guilty knowledge test [195] and

concealed information test [168]. The neurons of the

participant will produce a pulse when he/she suddenly

watch a similar object. Based on the theory, the visual

target recognition is mainly used RSVP signals. Cecotti

et al. [177] aimed to build a common model for target

recognition, which can work for various subjects instead of

a specific subject.

Besides, researchers have investigated to distinguish

the subject’s gender by the fNIRS [201] and spontaneous

EEG [146]. Hiriyasu et al. [201] adopted deep learning to

recognize the gender of the subject based on the cerebral

blood flow. The experiment results suggested that the

cerebral blood flow changes in different ways for male and

female. Putten et al. [146] tried to discover the sex-specific

information from the brain rhythms and adopted a CNN

model to recognize the participant’s gender. This paper

illustrated that fast beta activity (20 ∼25 Hz) is one of the

most distinctive attributes.

5.9. Benchmark Datasets

We have extensively explored the benchmark datasets

usable for deep learning-based brain signals (Table 6). We

provide a bunch of public datasets with download links,

which cover most brain signal types. In particular, BCI

competition IV (BCI-C IV) contains five datasets via the

same link. For better understanding, we present the number

of subjects, the number of class (how many categories),

sampling rate, and the number of channels of each dataset.

In the ‘# Channel’ column, the default channel is for EEG



A Survey on Deep Learning-based Non-Invasive Brain Signals 20

Table 6: The summary of public dataset for brain signal studies. The ‘# Sub’, ‘# Cla’, and S-Rate denote the number

of subject, number of class, and sampling rate, respectively. FM denote finger movement while BCI-C denote the BCI

Competition. The ‘# channel‘ refers to the number of brain signal channels.

Brain Signals Name Link # Sub # Cla S-Rate # Channel

EEG

Sleep
EEG

Sleep-EDF7: Telemetry 22 6 100 2

Sleep-EDF: Cassette 78 6 100, 1 2

MASS-18 53 5 256 17

MASS-2 19 6 256 19

MASS-3 62 5 256 20

MASS-4 40 6 256 4

MASS-5 26 6 256 20

SHHS9 5804 N/A 125, 50 2

Seizure
EEG

CHB-MIT10 22 2 256 18

TUH11 315 2 200 19

MI
EEG

EEGMMI12 109 4 160 64

BCI-C II13, Dataset III 1 2 128 3

BCI-C III, Dataset III a 3 4 250 60

BCI-C III, Dataset III b 3 2 125 2

BCI-C III, Dataset IV a 5 2 1000 118

BCI-C III, Dataset IV b 1 2 1001 119

BCI-C III, Dataset IV c 1 2 1002 120

BCI-C IV, Dataset I 7 2 1000 64

BCI-C IV, Dataset II a 9 4 250 22

BCI-C IV, Dataset II b 9 2 250 3

Emotional
EEG

AMIGOS14 40 4 128 14

SEED15 15 3 200 62

DEAP16 32 4 512 32

Others
EEG Open MIIR17 10 12 512 64

VEP BCI-C II, Dataset II b 1 36 240 64

BCI-C III, Dataset II 2 26 240 64

fMRI ADNI18 202 3 N/A N/A

BRATS192013 65 4 N/A N/A

MEG BCI-C IV, Dataset III 2 4 400 10

signals. Some datasets contain more biometric signals (e.g.,
ECG), but we only list the channels related to brain signals.

6. Analysis and Guidelines

In this section, we first analyze what is the most suitable

deep learning models for each brain signal. Then, we

summarize the popular deep learning models in brain signal

research. At last, we investigate the brain signals in terms

of application. We hope this survey could help our readers

to select the most effective and efficient methods when

dealing with brain signals. Please recall Table 4 where we

summarize the brain signals and the corresponding deep

learning models of the state-of-the-art papers. Figure 4

illustrated of the publications proportion for crucial brain

signals and deep learning models.

6.1. Brain Signal Acquisition

Among the non-invasive signals, the studies on EEG is far

more than the sum of all the other brain signal paradigms

(fNIRS, fMRI, and MEG). Furthermore, there are about

70% of the EEG papers pay attention to the spontaneous

EEG (133 publications). For better understanding, we split

the spontaneous EEG into several aspects: the sleep, the

motor imagery, the emotional, the mental disease, the data

augmentation, and others.

First, the classification of the sleep EEG mainly

depends on the discriminative and the hybrid models.

Among the nineteen studies about sleep stage classification,

there are six employed CNN and the modified CNN models

independently while two papers adopted RNN models.

There are three hybrid models built on the combination of

CNN and RNN.

Second, in terms of the research on MI EEG (30

publications), the independent CNN and CNN-based hybrid

models are widely used. As for the representative models,

DBN-RBM is often applied to capture the latent features

from the MI EEG signals.

Third, there are twenty-five publications related to

spontaneous emotional EEG. More than half of them

employed representative models (such as D-AE, D-RBM,
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especially DBN-RBM) for unsupervised feature learning.

The most typical state recognition works recognize the

user’s emotion as positive, neutral, or negative. Some

researchers take a further step to classify the valence, and

the arouse rate, which is more complex and challenging.

Fourth, the research on mental disease diagnosis is

promising and attracting. The majority of the related

research focuses on the detection of epileptic seizure and

Alzheimer’s Disease. Since the detection is a binary

classification problem which is rather easier than multi-

class classification, many studies can achieve a high

accuracy like above 90%. In this area, the standard CNN

model and the D-AE are prevalent. One possible reason is

that CNN and AE are the most well-known and effective

deep learning models for classification and dimensionality

reduction.

Fifth, several publications pay attention to the GAN

based data augmentation. At last, about thirty studies

are investigating other spontaneous EEG such as driving

fatigue, audio/visual stimuli impact, cognitive/mental load,

and eye state detection. These studies extensively apply

standard CNN models and variants.

Moreover, apart from spontaneous EEG, evoked

potentials also attracted much attention. On the one hand,

in ERP, VEP and the subcategory RSVP has drawn lots

of investigations because visual stimuli, compared to other

stimuli, is easier to be conducted and more applicable in

the real world (e.g., P300 speller can be used for brain

typing). For VEP (twenty-one publications), there are

elven studies applied discriminative models, and six works

adopted hybrid models. In terms of RSVP, the sole CNN

dominates the algorithms. Apart from them, five papers

focused on the analysis of AEP signals. On the other hand,

among the steady-state related researches, only SSVEP has

been studied by deep learning models. Most of them only

applied discriminative models on the recognition of the

target image.

Furthermore, beyond the diverse EEG diagrams, a

wide range of papers paid attention to fNIRS and fMRI.

The fNIRS images are rarely studied by deep learning, and

the major studies just employed the simple MLP models.

We believe more attention should be paid to the research

on fNIRS for the high portability and low cost. As for the

fMRI, twenty-three papers proposed deep learning models

to the classification. The CNN model is widely used

for its outstanding performance in feature learning from

images. There are also several papers interested in image

reconstruction based on fMRI signals. One reason why

fMRI is so hot is that several public datasets are available

on the Internet, although the fMRI equipment is expensive.

The MEG signals are mainly used in the medical area,

which is insensitive to the deep learning algorithm. Thus,

we only found very few studies on MEG. The sparse AE

and CNN algorithms have a positive influence on the feature

refining and classification of MEG.

6.2. Selection Criteria for Deep Learning Models

Our investigation shows that discriminative models are

most frequent in the summarized publications. This is

reasonable at a high level because a large proportion of

brain signal issues can be regarded as a classification

problem. Another observation is that CNN and its variants

are adopted in more than 70% of the discriminative models,

for which we provide reasons as follows.

First, the design of CNN is powerful enough to extract

the latent discriminative features and spatial dependencies

from the EEG signals for classification. As a result, CNN

structures are adopted for classification in some studies

while adopted for feature extraction in some other studies.

Second, CNN has been achieved great success in

some research areas (e.g., computer vision), which makes

it extremely famous and feasible (public codes). Thus, the

brain signal researchers have more chance to understand

and apply CNN on their works.

Third, some brain signal diagrams (e.g., fMRI)

are naturally formed as two-dimension images that are

conducive to be processedg by CNN. Meanwhile, other 1-D

signals (e.g., EEG) could be converted into 2-D images for

further analysis by CNN. Here, we provide several methods

converting 1-D EEG signals (with multiple channels) to

the 2-D matrix: 1) convert each time-point20 to a 2-D

image; 2) convert a segment into a 2-D matrix. In the first

situation, suppose we have 32 channels, and we can collect

32 elements (each element corresponding to a channel) at

each time-point. As described in [89], the collected 32

elements could be converted into a 2-D image based on the

spatial position. In the second situation, suppose we have

32 channels, and the segment contains 100 time-points. The

collected data can be arranged as a matrix with the shape of

[32, 100] where each row and column refers to a specific

channel and time-point, respectively.

Fourth, there are a lot of variants of CNN which are

suitable for a wide range of brain signal scenarios. For

example, the single-channel EEG signals can be processed

by 1-D CNN. In terms of RNN, only about 20% of

discriminative model-based papers adopted RNN, which is

much less than we expected since RNN has demonstrated

powerful in temporal feature learning. One possible reason

for this phenomena is that processing a long sequence by

RNN is time-consuming and the EEG signals are generally

formed as a long sequence. For example, the sleep signals

are usually sliced into segments with 30 seconds, which

has 3000 time-points under 100 Hz sampling rate. For

a sequence with 3000 elements, through our preliminary

experiments, RNN takes more than 20 folds training time

than CNN. Moreover, MLP is not popular due to its

inferior effectiveness (e.g., non-linear ability) to the other

algorithms its simple deep learning architecture.

20Time-point represents one sampling point. For example, we can have

100 time-points if the sampling rate is 100 Hz.
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As for representative models, DBN, especially DBN-

RBM, is the most popular model for feature extraction.

DBN is widely used in brain signal for two reasons: 1) it

learns the generative parameters that reveal the relationship

of variables in neighboring layers efficiently; 2) it makes it

straightforward to calculate the values of latent variables

in each hidden layer [233]. However, most works that

employed the DBN-RBM model were published before

2016. It can be inferred that the researchers prefer to use

DBN for feature learning followed by a non-deep learning

classifier before 2016; but recently, an increasing number of

studies would like to adopt CNN or hybrid models for both

feature learning and classification.

Moreover, generative models are rarely employed in-

dependently. The GAN- and VAE-based data augmentation

and image reconstruction are mainly focused on fMRI and

EEG signals. It is demonstrated that the trained classifier

will achieve more competitive performance after data aug-

mentation. Therefore, this is a promising research prospect

in the future.

Last but not the least, there are fifty-three publications

proposed hybrid models for brain signal studies. Among

them, the combinations of RNN and CNN take about one-

fifth proportion. Since RNN and CNN are illustrated

having excellent temporal and spatial feature extraction

ability, it is natural to combine them for both temporal and

spatial feature learning. Another type of hybrid models

is the combination of representative and discriminative

models. This is easy to understand because the former is

employed for feature refining, and the latter is employed for

classification. There are twenty-eight publications which

almost covered all the brain signals proposed this type of

hybrid deep learning models. The adopted representative

models are mostly AE or DBN-RBM; at the meanwhile, the

adopted discriminative models are mostly CNN. Apart from

that, there are twelve papers proposed other hybrid models

such as two discriminative models. For example, several

studies proposed the combination of CNN and MLP where

a CNN structure is used for extract spatial features and an

MLP is used for classification.

6.3. Application Performance

In order to have a closer observation of the recent advances

on deep learning-based brain signal analysis, we analyze

the brain signal acquisition methods and the deep learning

algorithms in terms of application performance. In some

cases, various studies adopt the same deep architecture

working on the same dataset but results in different

performance, which maybe caused by the different pre-

processing methods and hyper-parameter settings.

To begin with, the most appealing and hot field is

that using brain signal analysis on health care area. For

sleep quality evaluation, the dominate brain signals are

spontaneous EEG which are measured while the patient is

sleeping. The single RNN or CNN models seem have a

good discriminative feature learning ability and lead to a

comprehensive performance. Generally, most of the deep

learning algorithms can achieve the accuracy of above 85%

in the context of multiple sleep stage scenario. Upon this,

the combined hybrid models (e.g., CNN integrates with

LSTM) can only have incremental improvements.

One key method to detect Alzheimer’s Disease is brain

signal analysis by measuring the functions of specific brain

regions. In detail, the diagnosis can be conducted by

spontaneous EEG signals or fMRI images. For MD EEG,

DBN is supposed to outperform CNN since the EEG signals

contains more temporal instead of spatial information. As

for the fMRI pictures, CNN have great advantages in the

grid-arranged spatial information learning, which makes it

obtain a very comprehensive classification accuracy (above

90%). As for epileptic seizure, the diagnosis are generally

based on EEG signals. The single RNN classifier (e.g.,
LSTM or GRU) seems work better than its counterparts due

to the excellent temporal dependency representing ability.

Here, the complex hybrid models indeed outperform the

single component. For example, [130] achieves a better

specification than [116] on the same dataset because of

combing with RNN. Most of the epileptic seizure detection

models claim a rather high classification accuracy (above

95%). One possible reason is that the binary recognition

scenario is much easier than multi-class classification.

The brain signal-controlled smart environment only

appear in a small number of publications. Among them, the

brain signals are collected through very different methods.

This is an emerging but promising field because it is

easy to integrate with smart home and smart hospital to

benefit the individuals whether healthy or disable. Another

advantage of brain signals is bridging people’s inside and

outer world by communication techniques. In this area,

lots of investigations are focusing on the VEP signals

because the visual evoked potential is obvious and easy

to be detected. One important data source is from the

third BCI competition. In addition, brain signal analysis

can be widely implement in security systems since the

brain signals are invisible and very hard to be mimicked.

The characteristic of high fake-resistance enables brain

signal a raising star in the identification/authentication in

confidential scenarios. The drawbacks of brain signal-

based security systems are the expensive equipment and

inconvenient (e.g., the subject have to wear an EEG headset

to monitor the brainwaves).

Affective computing has drawn much attention in

recent years. The EEG signals have high temporal

resolution and able to capture the quick-varying emotions.

Therefore, almost all the studies are based on spontaneous

EEG signals. The signals are gathered when the subject is

watching video which is supposed to arouse the subject’s

specific emotion. Another reason for this phenomenon

is that there are several open-source EEG-based affecting

analysis datasets (e.g., DEAP and SEED) which greatly
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promote the investigation in this area. The EEG-based

affective computing contains two mainstreams. One

of them focuses on developing powerful discriminative

classifiers (such as hierarchical CNN) which are designed

to perform feature extraction and classification in the same

step. The other tries to learn the latent features through deep

representative models (e.g., DBN-RBM) and then send the

learned representations into a powerful classifier (such as

HMM and MLP). It can be observed that the former models

([88, 201]) seem outperform the latter methods ([96]) with

a small margin on the SEED dataset.

Drive fatigue detection can be easily integrated in

the platforms such as self-driving vehicles. Nevertheless,

there are only a few publications in this area due to the

expensive experimental cost and the lack of accessible

dataset. Moreover, there are a lot of interesting applications

(e.g., guilty knowledge test and gender detection) have been

explored by deep learning models.

7. Open Issues

Although deep learning has lifted the performance of brain

signal systems, technical and usability challenges remain.

The technical challenges concern the classification ability

in complex scenarios, and the usability challenges refer to

limitations in large scale real-world deployment. In this

section, we introduce these challenges and point out the

possible solutions.

7.1. Explainable General Framework

Until now, we have introduced several types of brain signals

(e.g., spontaneous EEG, ERP, fMRI) and deep learning

models that have been applied for each type. One promising

research direction for deep learning-based brain signal

research is to develop a general framework that can handle

various brain signals regardless of the number of channels

used for signal collection, the sample dimensions (e.g., 1-

D or 2-D sample), and stimulation types (e.g., visual or

audio stimuli), etc. The general framework would require

two key capabilities: the attention mechanism and the

ability to capture latent feature. The former guarantees the

framework can focus on the most valuable parts of input

signals, and the latter enables the framework to capture the

distinctive and informative features.

The attention mechanism can be implemented based

on attention scores or by various machine learning

algorithms such as reinforcement learning. The attention

scores can be inferred from the input data and work as a

weight to help the framework to pay attention to the parts

with high attention scores. Reinforcement learning has

shown to be able to find the most valuable part through

a policy search [85]. CNN is the most suitable structure

for capturing features at various levels and ranges. In

the future, CNN could be used as a fundamental feature

learning tool and be integrated with suitable attention

mechanisms to form a general classification framework.

One additional direction we may consider is how to

interpret the feature representation derived by the deep

neural network, what is the intrinsic relationship between

the learned features and the task-related neural pattern,

or neuropathology of mental disorders. More and more

people are realizing that interpretation could be even more

important than prediction performance, since we usually

just treat deep learning as a black box.

7.2. Subject-Independent Classification

Until now, most brain signal classification tasks focus on

person-dependent scenarios, where the training samples

and testing samples are collected from the identical

individual. The future direction is to realize person-

independent classification so that the testing data will never

appear in the training set. High-performance person-

independent classification is compulsory for the wide

application of brain signals in the real world.

One possible solution to achieving this goal is to build

a personalized model with transfer learning. A personalized

affective model can adopt a transductive parameter transfer

approach to construct individual classifiers and to learn a

regression function that maps the relationship between data

distribution and classifier parameters [234]. Another poten-

tial solution is mining the subject-independent component

from the input data. The input data can be decomposed into

two parts: a subject-dependent component, which depends

on the subject and a subject-independent component, which

is common for all subjects. A hybrid multi-task model can

work on two tasks simultaneously, one focusing on per-

son identification and the other on class recognition. A

well-trained and converged model is supposed to extract the

subject-independent features in the class recognition task.

7.3. Semi-supervised and Unsupervised Classification

The performance of deep learning highly depends on the

size of training data, which, however, requires expensive

and time-consuming manual labeling to collect abundant

class labels for a wide range of scenarios such as sleep EEG.

While supervised learning requires both observations and

labels for the training, unsupervised learning requires no

labels, and semi-supervised learning only requires partial

labels [98]. They are, therefore, more suitable for problems

with little ground truth.

Zhang et al. proposed an Adversarial Variational

Embedding (AVAE) framework that combines a VAE++

model (as a high-quality generative model) and semi-

supervised GAN (as a posterior distribution learner) [235]

for robust and effective semi-supervised learning. Jia et

al. proposed a semi-supervised framework by leveraging

the data distribution of unlabelled data to prompt the

representation learning of labelled data [98].
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Two methods may enhance the unsupervised learning:

one is to employ crowd-sourcing to label the unlabeled

observations; the other is to leverage unsupervised domain

adaption learning to align the distribution of source brain

signals and the distribution of target signals with a linear

transformation.

7.4. Online Implementation

Most of the existing brain signal systems focus on offline

procedure which means that the training and testing dataset

are pre-collected and evaluated offline. However, in the

real-world scenarios, the brain signal systems are supposed

to receive live data stream and produce classification results

in real time, which is still very challenging.

For EEG signals, in the online system, compared to

the offline procedure, the gathered live signals are more

noisy and unstable due to lots of factors such as the

less-concentrating of the subject [236] and the inherent

destabilization of the equipment (e.g., fluctuating sampling

rate). Through our empirical experiments, online brain

signal systems generally perform a lower accuracy of

10% than their counterparts. One future scope of online

implementation is to develop a batch of robust algorithms

in order to handle the influence factors and discover the

latent distinctive patterns underlying the noisy live brain

signals. [237] implemented an EEG-based online system

that achieves comparable performance, however, this work

only investigates a very high-level target (i.e., human

attention). Discovering the latent invariant representations

through covariance matrices of EEG signals can help to

mitigate the influence of extinct perturbations [238]. Some

post-processing methods (e.g., voting and aggregating)

[166, 149] can help to improve the decoding performance

by averaging the results from multiple continues samples.

However, these methods will inevitably bring higher

latency. Thus, the post-processing requires a trade-off

between the high-accuracy and low-latency.

For fNIRS and fMRI, the online evaluation is relatively

less challenging since they have a rather low temporal

resolution. The online images with less dynamic can be

regarded as static images to some extent, which makes

the online system approximating to the offline system.

Furthermore, most fMRI and MEG signals are used to

evaluate the user’s neurological status (e.g., detect the

effects of tumor) which does not require an instantaneous

response. Thus, they have less demand for a real-time

monitoring system.

7.5. Hardware Portability

Poor portability of hardware has been preventing brain

signals from wide application in the real world. In most

scenarios, users would like to use small, comfortable, or

even wearable brain signal hardware to collect brain signals

and to control appliances and assistant robots.

Currently, there are three types of EEG collection

equipment: the unportable, the portable headset, and ear-

EEG sensors. The unportable equipment has high sampling

frequency, channel numbers, and signal quality but is

expensive. It is suitable for physical examination in a

hospital. The portable headsets (e.g., Neurosky, Emotiv

EPOC) have 1 ∼ 14 channels and 128∼ 256 sampling

rate but has inaccuracy readings and cause discomfort after

long-time use. The ear-EEG sensors, which are attached to

the outer eat, have gained increasing attention recently but

remain mostly at the laboratory stage [239]. The ear-EEG

sensors contain a series of electrodes which are placed in

each ear canal and concha [240]. The EEGrids, to the best

of our knowledge, is the only commercial ear-EEG. It has

multi-channel sensor arrays placed around the ear using an

adhesive 21 and is even more expensive. A promising future

direction is to improve the usability by developing a cheaper

(e.g., lower than 200$) and more comfortable (e.g., can last

longer than 3 hours without feeling uncomfortable) wireless

ear-EEG equipment.

8. Conclusion

In this paper, we thoroughly summarize the recent advances

in deep learning models for non-invasive brain signal

analysis. Compared with traditional machine learning

methods, deep learning not only enables to learn high-

level features automatically from brain signals but also

have less dependency on domain knowledge. We organize

brain signals and dominant deep learning models, followed

by discussing state-of-the-art deep learning techniques for

brain signals. Moreover, we provide guidelines to help

researchers to find the suitable deep learning algorithms for

each category of brain signals. Finally, we overview deep

learning-based brain signal applications and point out the

open challenges and future directions.
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Appendices
A. Non-invasive Brain Signals

Here, we present a detailed introduction of brain signals as

shown in Figure 2. Non-invasive brain imaging technique

can be collected using electrical, magnetic or metabolic

methods, which mainly include Electroencephalogram

(EEG), Functional near-infrared spectroscopy (fNIRS),

Functional magnetic resonance imaging (fMRI), and

Magnetoencephalography (MEG).

A.1. Electroencephalography (EEG)

Electroencephalography (EEG) is the most commonly used

non-invasive technique for measuring brain activities. EEG

monitors the voltage fluctuations generated by an electrical

current within human neurons. Electrodes placed on

the scalp measure the amplitude of EEG signals. EEG

signals have a low spatial resolution due to the effect of

volume conduction which refers to the complex effects

of measuring electrical potentials a distance from the

source generators [241, 242]. EEG electrode locations

generally follow the international 10-20 system [243]. The

specific placement of electrodes is presented in Figure 5

[10]. The EEG signals are collected while the subject

is undertaking imagination task. Each line represents the

signal stream collected from a single EEG electrode (also

called ‘channel‘) over time.

The temporal resolution of EEG signals is much better

than the spatial resolution. The ionic current changes

rapidly, which offers a temporal resolution higher than

1000 Hz. The SNR of EEG is generally very poor due

to both objective and subjective factors. Objective factors

include environmental noises, the obstruction of the skull

and other tissues between cortex and scalp, and different

stimulations. Subjective factors contain the subject’s mental

stage, fatigue status, the variance among different subjects,

and so on.

EEG recording equipment can be installed in a cap-

like headset. The EEG headset can be mounted on the user’s

head to gather signals. Compared to other equipment used

to measure brain signals, EEG headsets are portable and

more accessible for most applications.

The EEG signals collected from any typical EEG

hardware have several non-overlapping frequency bands

(Delta, Theta, Alpha, Beta, and Gamma) based on the

strong intra-band correlation with a distinct behavioral state

[10]. Each EEG pattern contains signals associated with

particular brain information. Table 7 shows EEG frequency

patterns and the corresponding characteristics. Here, the

degree of awareness denotes the perception of individuals

when presented with external stimuli.

Compared to other signals (e.g., fMRI, fNIRS, MEG),

EEG has several important advantages: 1) the hardware has
higher portability with much lower price; 2) the temporal

resolution is very high (milliseconds level). Among other

non-invasive techniques, only MEG has the same level

of temporal resolution; 3) EEG is relatively tolerant of

subject movement and artifacts, which can be minimized

by existing signal processing methods; 4) the subject

doesn’t need to be exposed to high-intensity (>1 Tesla)

magnetic fields, therefore, EEG can serve subjects that

have metal implants in their body (such as metal-containing

pacemakers).

As the most commonly used signals, there are a large

number of sub-classes of EEG signals. In this section,

we present a methodical introduction of EEG sub-class

signals. As shown in Figure 2, we divided EEG signals into

spontaneous EEG and evoked potentials. Evoked potentials

can be split into event-related potentials and steady-state

evoked potentials based on the frequency of the external

stimuli [7]. Each potential contains visual-, auditory-, and

somatosensory- potentials based on the external stimuli

types. The dashed quadrilaterals in Figure 2, such as

Intracortical, SEP, SSAEP, SSSEP, and RSAP, are not

included in this survey because there are very few existing

studies working on them with deep learning algorithms. We

list these signals for systematic completeness.

(a) EEG electrode locations (b) EEG signals

Figure 5: EEG electrode locations on scalp (10-20 system)

[244] and the gathered EEG signals [10]. The electrodes’

names are marked by their position: Fp (pre-frontal), F

(frontal), T (temporal), P (parietal), O (occipital), and C (

central).



33

Table 7: EEG patterns and corresponding characters. Awareness Degree denotes the degree of being aware of an external

world. The awareness degree mentioned here is mainly defined in physiology instead of psychology.

Patterns Frequency (Hz) Amplitude Brain State Awareness Degree Produced Location
Delta 0.5-4 Higher Deep sleep pattern Lower Frontally and posteriorly

Theta 4-8 High Light sleep pattern Low Entorhinal cortex, hippocampus

Alpha 8-12 Medium Closing the eyes, relax state Intermediate Posterior regions of head

Beta 12-30 Low Active thinking, focus, high alert, anxious High Most evident frontally, motor areas

Gamma 30-100 Lower During cross-modal sensory processing Higher Somatosensory, auditory cortices

(a) ERP components (b) P300 speller

Figure 6: P300 waves [248] and visual P300 speller [249].

A.1.1. Spontaneous EEG Typically, when we talk about

the term ‘EEG,’ we refer to spontaneous EEG which

measures the brain signals under a specific state without

external stimulation [245, 246, 247]. In particular,

spontaneous EEG includes the EEG signals while the

individual is sleeping, undertaking a mental task (e.g.,

counting), suffering brain disorders, undertaking motor

imagery tasks, in a certain emotion, etc.

The EEG signals recorded while a user stares at a

color/shape/image belong to this category. While the

subject is gazing at a specific image, the visual stimuli are

steady without any change. This scenario differs from the

visual stimuli in evoked potential, where the visual stimuli

are changing at a specific frequency. Thus, we regard

the image stimulation as a particular state and regard it

as spontaneous EEG. Spontaneous EEG-based systems are

challenging to train, due to the lower SNR and the larger

variation across subjects [35].

According to the gathering scenarios, the spontaneous

EEG contains several subordinates: sleeping, motor

imagery, emotional, mental disease and others.

A.1.2. Evoked Potential (EP) Evoked Potentials (EP) or

evoked responses refers to the EEG signals which are

evoked by an external stimulus instead of spontaneously.

An EP is time-locked to the external stimulus while the

aforementioned spontaneous EEG is non-time-locked. In

contrast to spontaneous EEG, EP generally has higher

amplitude and lower frequency. As a result, the EP signals

are more robust across subjects.

According to the stimulation method, there exist two

categories of EP: the Event-Related Potential (ERP) and

the Steady State Evoked Potential (SSEP). ERP records the

EEG signals in response to an isolated discrete stimulus

event (or event change). To achieve this isolation, stimuli in

an ERP experiment are typically separated from each other

by a long inter-stimulus interval, allowing for the estimation

of a stimulus-independent baseline reference [250]. The

stimuli frequency of ERP is generally lower than 2 Hz.

In contrast, SSEP is generated in response to a periodic

stimulus at a fixed rate. The stimuli frequency of SSEP

generally ranges within 3.5-75 Hz.

Event-related potential (ERP). There are three kinds

of evoked potentials in extensive research and clinical

use: Visual Evoked Potentials (VEP); Auditory Evoked

Potentials (AEP); and Somatosensory Evoked Potentials

(SEP) [28]. The VEP signals are mainly on the occipital

lobe, and the highest signal amplitudes are collected at the

Calcarine sulcus.

1) Visual Evoked Potentials (VEP). Visual Evoked

Potentials are a specific category of ERP which is caused

by visual stimulus (e.g., an alternating checkerboard pattern

on a computer screen). VEP signals are hidden within the

normal spontaneous EEG. To separate VEP signals from the

background EEG readings, repetitive stimulation and time-

locked signal-averaging techniques are generally employed.

Rapid Serial Visual Presentation (RSVP) [251] can

be regarded as one kind of VEP. An RSVP diagram is

commonly used to examine the temporal characteristics of

attention. The subject is required to stare at a screen where

a series of items (e.g., images) are presented one-by-one.

There is a specific item (called the target) separates from

the rest of the other items (called distracters). The subject

knows which is the target before the RSVP experiment. For

instance, the distracters can be a color change or letters

among numbers. RSVP contains a static mode (the items

appear on the screen and then disappear without moving)

and a moving mode (the items appear on the screen, move

to another place, and finally disappear). Nowadays, brain

signal research mainly focuses on the static mode RSVP.

Usually, the frequency of RSVP is 10Hz which means that

each item will stay on the screen for 0.1 seconds.

2) Auditory Evoked Potentials (AEP). Auditory

Evoked Potentials are a specific subclass of ERP in which

responses to auditory (sound) stimuli are recorded. AEP

is mainly recorded from the scalp but originates at the

brainstem or cortex. The most common AEP measured is

the auditory brainstem response (ABR) which is generally

employed to test the hearing ability of newborns and
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infants. In the brain signal area, AEP is mainly used in

clinical tests for its accuracy and reliability in detecting

unilateral loss [252]. Similar to RSVP, Rapid Serial

Auditory Presentation (RSAP) refers to the experiments

with rapid serial presentation of sound stimuli. The task

for the subject is to recognize the target audio among the

distracters.

3) Somatosensory Evoked Potentials (SEP). Generally,

Somatosensory Evoked Potentials is abbreviated as SSEP

or SEP. In this paper, we choose SEP as the abbreviation

in case of the conflict with Steady-State Evoked Potentials

(SSEP). SEP are another commonly used subcategory of

ERP which is elicited by electrical stimulation of the

peripheral nerves. SEP signals conclude a series of

amplitude deflection that can be elicited by virtually any

sensory stimuli.

P300. P300 (also called P3) is an important component

in ERP [253]. Here we introduce P300 signal separately

since it is widely-used in brain signal analysis. Figure 6a

shows the ERP signal fluctuation in the 500 ms after

the stimuli onset. The waveform mainly concludes five

components, P1, N1, P2, N2, and P3. The capital character

P/N represents positive/negative electrical potentials. The

following number refers to the occurrence time of the

specific potential. Thus, P300 denotes the positive potential

of ERP waveform at approximately 300 ms after the

presented stimuli. Compared to other components, P300

has the highest amplitude and is easiest to detect. Thus, a

large number of brain signal studies focus on P300 analysis.

P300 is more of an informative feature instead of a type of

brain signal (e.g., VEP). Therefore, we do no list P300 in

Figure 2. P300 can be analyzed in most of ERP signals

such as VEP, AEP, SEP.

In practice, P300 can be elicited by rare, task-relevant

events in an ‘oddball’ paradigm (e.g., P300 speaker). In the

oddball paradigm, the subject receives a series of stimuli

where low-probability target items are mixed with high-

probability non-target items. Visual and auditory stimuli

are the most commonly used in the oddball paradigm.

Figure 6b shows an example of visual-based P300 speller

which enables the subject the spell letters/numbers directly

through brain signals [249]. The 26 letters of the alphabet

and the Arabic numbers are displayed on a computer screen

which serves as the keyboard. The subject focuses attention

successively on the characters they wish to spell. The

computer detects the chosen character online in real time.

This detection is achieved by repeatedly flashing rows and

columns of the matrix. When the elements containing

the selected characters are flashing, a P300 fluctuation is

elicited. In the 6 × 6 matrix screen, the rows and columns

flash in mixed random order. The flash duration and interval

among adjacent flashes are generally set as 100 ms [254].

The columns and rows flash separately. First, the columns

flash six times with each column flashing one time. Second,

the rows will flash for six times. After that, this paradigm
repeats for several times (e.g., N times). The P300 signals

of the total 12N flash will be analyzed to output a single

outcome (i.e., one letter/number).

Steady State Evoked Potentials (SSEP). Steady State

Evoked Potential is another subcategory of evoked poten-

tials, which are periodic cortical responses evoked by cer-

tain repetitive stimuli with a constant frequency. It has been

demonstrated that the brain oscillations generally maintain

a steady level over time while the potentials are evoked by

steady state stimuli (e.g., a flickering light with fixed fre-

quency). Technically, SSEP is defined as a form of response

to repetitive sensory stimulation in which the constituent

frequency components of the response remain constant over

time in both amplitude and phase [37]. Depending on

the type of stimuli, SSEP divides into three subcategories:

Steady-State Visually Evoked Potentials (SSVEP), Steady-

State Auditory Evoked Potentials (SSAEP), and Steady-

State Somatosensory Evoked Potentials (SSSEP). In the

brain signal area, most studies are focused on visual evoked

steady potentials, and only rarely do papers focus on au-

ditory and somatosensory stimuli. Therefore, in this sur-

vey, we mainly introduce SSVEP rather than SSAEP and

SSSEP.

Commonly Used Visual-Related Potentials. Visual

evoked potentials are the most common used potentials.

Therefore, it is essential to distinguish the three different

visual evoked potential paradigms: VEP, RSVP, SSVEP.

Here, we theoretically introduce the characteristics of each

paradigm and then give three demonstration videos to

provide a better understanding. First, the frequencies are

different: the frequency of VEP is less than 2Hz while

the frequency of RSVP is around 10Hz, and the frequency

of SSVEP ranges from 3.5 to 75Hz. Second, they have

various presentation protocols. In the VEP paradigm,

different visual patterns will be presented on the screen to

check the user’s brain signals changes. For instance, in

this video22, the image pattern is full of the screen and

changes dramatically. In RSVP diagram, several items will

be presented on a screen one-by-one. All the items are

shown in the same place and share the same frequency. For

example, the video23 shows an RSVP scenario which is

called speed reading. In SSVEP paradigm, several items

will be presented on a screen at the same time while

the items are shown at variant positions with different

frequencies. For example, in this demonstration video24,

there are four circles distributed on the up, down, left, and

right sides of a screen and the frequency of each item differs

from each other.

22https://www.youtube.com/watch?v=iUW l5YAEEM
23https://www.youtube.com/watch?v=5yddeRrd0hA&t=36s
24https://www.youtube.com/watch?v=t96rl1SFHlI



35

A.2. Functional Near-infrared Spectroscopy (fNIRS)

Functional near-infrared spectroscopy (fNIRS) is a non-

invasive functional neuro-imaging technology using near-

infrared (NIR) light [38]. In specific, fNIRS employs

NIR light to measure the aggregation degree of oxygenated

hemoglobin (Hb) and deoxygenated-hemoglobin (deoxy-

Hb) because Hb and deoxy-Hb have higher absorbence

of light than other head components such as the skull

and scalp. fNIRS relies on blood-oxygen-level-dependent

(BOLD) response or hemodynamic response to form a

functional neuro-image. The BOLD response can detect

the oxygenated or deoxygenated blood level in the brain

blood. The relative levels reflect the blood flow and neural

activation, where increased blood flow implies a higher

metabolic demand caused by active neurons. For example,

when the user is concentrating on a mental task, the

prefrontal cortex neurons will be activated, and the BOLD

response in the prefrontal cortex area will be stronger [200].

Single or multiple emitter-detector pairs measure the

Hb and deoxy-Hb: the emitter transmits NIR light through

the blood vessels to the detector. Most existing studies

use fNIRS technologies to measure the status of prefrontal

and motor cortex. The former response to mental tasks

and music/image imagery while the latter is a response to

motor-related tasks (e.g., motor imagery). The monitored

Hb and deoxy-Hb change slowly since the blood speed

varies in a relatively slow ratio compared to electrical

signals. Temporal resolution refers to the smallest time of

neural activity reliably separated by the signal. The fNIRS

has lower temporal resolution compared with electrical or

magnetic signals. The spatial resolution depends on the

number of emitter-detector pairs. In current studies, three

emitters and eight detectors would suffice for adequately

acquiring the prefrontal cortex signals; and six emitters and

six detectors would suffice for covering the motor cortex

area [29]. fNIRS has a drawback in that it cannot be used

to measure cortical activity occurring deeper than 4cm in

the brain, due to the limitations in light emitter power and

spatial resolution.

A.3. Functional Magnetic Resonance Imaging (fMRI)

Functional magnetic resonance imaging (fMRI) monitors

brain activities by detecting changes associated with blood

flow in brain areas [14]. Similar to fNIRS, fMRI relies

on the BOLD response. The main differences between

fNIRS and fMRI are as follows [24]. First, as the name

implies, fMRI measures BOLD response through magnetic

instead of optical methods. Hemoglobin differs in how it

responds to magnetic fields, depending on whether it has

a bound oxygen molecule. The magnetic fields are more

sensitive to and are more easily distorted by deoxy-Hb than

Hb molecules. Second, the magnetic fields have higher

penetration than NIR light, which gives fMRI greater ability

to capture information from deep parts of the brain than
fNIRS. Third, fMRI has a higher spatial resolution than

fNIRS since the latter’s spatial resolution is limited by the

emitter-detector pairs. However, the temporal resolutions

of fMRI and fNIRS are at an equal level because they both

constrained by the blood flow speed.

fMRI has several flaws compared to fNIRS: 1) fMRI

requires an expensive scanner to generate magnetic fields;

2) the scanner is heavy and has poor portability. In order

to measure the signal of interest, CNR (Contrast-to-Noise

Ratio) has been investigated to measure the image quality

of fMRI because researchers are more interested in the

contrast between images rather than the raw images. So

for fMRI data, using the CNR of the time series instead of

(t)SNR is more preferred because CNR compares a measure

of the activation fluctuations to the noise [255].

A.4. Magnetoencephalography (MEG)

Magnetoencephalography (MEG) is a functional neu-

roimaging technique for mapping brain activity by record-

ing magnetic fields produced by electrical currents occur-

ring naturally in the brain, using very sensitive magnetome-

ters [256]. The ionic currents of active neurons will cre-

ate weak magnetic fields. The generated magnetic fields

can be measured by magnetometers like SQUIDs (super-

conducting quantum interference devices). However, pro-

ducing a detectable magnetic field requires massive (e.g.,

50,000) active neurons with similar orientation. The source

of the magnetic field measured by MEG is the pyramidal

cells which are perpendicular to the cortex surface.

MEG has a relatively low spatial resolution since

the signal quality highly depends on the measurement

factors (e.g., brain area, neuron orientations, neuron depth).

However, MEG can provide very high temporal resolution

(≥1000Hz) since MEG directly monitors the brain activity

from the neuron level, which is in the same level of

intracortical signals. MEG equipment is expensive and not

portable which limits its real-world deployment.
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B. Basic Deep Learning in Brain Signal Analysis

In this part, we will give relative detail introduction of

various deep learning models for the reason that a part of

the potential readers who are from non-computer area (e.g.,

biomedical) are not familiar to deep learning.

For simplification, we first define an operation T (·) as

T (x) = w ∗ x+ b (1)

T (x,x′) = w ∗ x+ b+w′ ∗ x′ + b′ (2)

where x and x′ denote two variables while w, w′, b, and

b′ denote the corresponding weights and basis.

B.1. Discriminative Deep Learning Models

Since the main task of brain signal analysis is brain signal

recognition, the discriminative deep learning models are

the most popular and powerful algorithms. Suppose we

have a dataset of brain signal samples {X,Y} where X

denotes the set of brain signal observations and Y denotes

the set of sample ground truth (i.e., labels). Suppose an

specific sample-label pair {x ∈ R
N ,y ∈ R

M} where

N and M denote the dimension of observations and the

number of sample categories, respectively. The aim of

discriminative deep learning models is to learn a function

with the mapping: x → y. In short, the discriminative

models receive the input data and output the corresponding

category or label. All the discriminative models introduced

in this section are supervised learning techniques which

require the information of both the observations and the

ground truth.

B.1.1. Multi-Layer Perceptron (MLP) The most basic

neural network is fully-connected neural networks (Fig-

ure 7a) which only contains one hidden layer. The input

layer receives the raw data or extracted features of brain sig-

nals while the output layer shows the classification results.

The term ‘fully-connected’ denotes each node in a specific

layer is connected with all the nodes in the previous and

next layer. This network is too ‘shallow‘ and generally not

regarded as ‘deep‘ neural networks.

Multilayer Perceptron is the simplest and the most

basic deep learning model. The key difference between

MLP and the fully-connected neural network is that MLP

has more than one hidden layers. All the nodes are fully-

connected with the nodes of the adjacent layers but without

connection with the other nodes of the same layer. MLP

includes multiple hidden layers. As shown in Figure 7b,

we take a structure with two hidden layers as an example to

describe the data flow in MLP.

The input layer receives the observation x and feeds

forward to the first hidden layer,

xh1 = σ(T (x)) (3)

where xh1 denotes the data flow in the first hidden

layer and σ represents the non-linear activation function.

There are several commonly used activation functions such

as sigmoid/Logistic, Tanh, ReLU, we choose sigmoid

activation function as an example in this section. Then, the

data flow to the second hidden layer and the output layer,

xh2 = σ(T (xh1)) (4)

y′ = σ(T (xh2)) (5)

where y′ denotes the predict results in one-hot format. The

error (i.e., loss) could be calculated based on the distance

between y′ and the ground truth y. For instance, the

Euclidean-distance based error can be calculated by

error = ‖y′ − y‖2 (6)

where ‖·‖2 denotes the Euclidean norm. Afterward, the

error will be back-propagated and optimized by a suitable

optimizer. The optimizer will adjust all the weights

and basis in the model until the error converges. The

most widely used loss functions includes cross-entropy,

negative log likelihood, mean square estimation, etc. The

most widely used optimizers include Adaptive moment

estimation (Adam), Stochastic Gradient Descent (SGD),

Adagrad (Adaptive subgradient method), etc.

Several terms may be easily confused with each other:

Artificial Neural Network (ANN), Deep Neural Network

(DNN), and MLP. These terms have no strict difference

and often mixed in literature and commonly used as

synonyms. Generally, ANN and DNN can be used to

describe deep learning models overall, including not only

fully-connected networks but also other networks (e.g.,

recurrent, convolutional networks), but MLP can only refer

to fully-connected network. Additionally, ANN contains all

the models of neural networks, can be either shallow (one

hidden layer) or deep (multiple hidden layers) while DNN

doesn’t cover shallow neural network [30, 31].
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Figure 7: Illustration of standard neural network and

multilayer perceptron. (a) The basic structure of the fully-

connected neural network. The input layer receives the

raw data or extracted features of brain signals while the

output layer shows the classification results. The term

‘fully-connected’ denotes each node in a specific layer is

connected with all the nodes in the previous and next layer.

(b) MLP could have multiple hidden layers, the more, the

deeper. This is an example of MLP with two hidden layers,

which is the simplest MLP model.

B.1.2. Recurrent Neural Networks (RNN) Recurrent

Neural Network is a specific subclass of discriminative deep

learning model which are designed to capture temporal

dependencies among input data [41]. Figure 8a describes

the activity of a specific RNN node in the time domain. At

each time ranges from [1, t+ 1], the node receives an input

I (the subscript represents the specific time) and a hidden

state c from the previous time (except the first time). For

instance, at time t it receives not only the input It but also

the hidden state of the previous node ct−1. The hidden state

can be regarded as the ‘memory’ of the nodes which can

help the RNN ‘remember’ the historical input.

Next, we will report two typical RNN architectures

which have attracted much attention and achieved great

success: long short-term memory and gated recurrent units.

They both follow the basic principles of RNN, and we will

pay our attention to the complicated internal structures in

each node. Since the structure is much more complicated

than general neural nodes, we call it a ‘cell.’ Cells in RNN

are equivalent to nodes in MLP.

Long Short-Term Memory (LSTM). Figure 9a shows the

structure of a single LSTM cell at time t [257]. The LSTM

cell has three inputs (It, Ot−1, and ct−1) and two outputs

(ct and Ot). The operation is as follows:

It, Ot−1, ct−1 → ct, Ot (7)

It denotes the input value at time t, Ot−1 denotes the

output at the previous time (i.e., time t − 1), and ct−1

denotes the hidden state at the previous time. ct and Ot

separately denote the hidden state and the output at time

t. Therefore, we can observe that the output Ot at time

t not only related to the input It but also related to the

information at the previous time. In this way, LSTM is

empowered to remember the important information in the

time domain. Moreover, the essential idea of LSTM is to
control the memory of specific information. For this aim,

LSTM cell adopts four gates: the input gate, forget gate,

output gate, and input modulation gate. Each gate is a

weight to control how much information can flow through

this gate. For example, if the weight of the forget gate is

zero, the LSTM cell would remember all the information

passed from the previous time t−1; if the weight is one, the

LSTM cell would remember nothing. The corresponding

activation function determines the weight. The detailed data

flow as follows:

f = σ(T (It, Ot−1)) (8)

i = σ(T (It, Ot−1)) (9)

o = σ(T (It, Ot−1)) (10)

m = tanh(T (It, Ot−1)) (11)

ct = f ∗ ct−1 + i ∗m (12)

ht = o ∗ tanh(ct) (13)

where i, f , o and m represent the input gate, forget gate,

output gate and input modulation gate, respectively.

Gated Recurrent Units (GRU). Another widely used RNN

architecture is GRU [258]. Similar to LSTM, GRU attempts

to exploit the information from the past. GRU does

not require hidden states, however, it receives temporal

information only from the output of time t − 1. Thus, as

shown in Figure 9b, GRU has two inputs (It and Ot−1) and

one output (Ot). The mapping can be described as:

It, Ot−1 → Ot (14)

GRU contains two gates: reset gate r and update gate z.

The former decides how to combine the input with previous

memory. The latter decides how much of previous memory

to keep around, which is similar to the forget gate of LSTM.

The data flow as follows:

z = σ(T (It, Ot−1)) (15)

r = σ(T (It, Ot−1)) (16)

Ōt = tanh(T (It, r ∗Ot−1)) (17)

Ot = (1− z) ∗Ot−1 + z ∗ Ōt (18)

It can be observed that there’s an intermediate variable Ōt

which is similar to the hidden state of LSTM. However, Ōt

only works on this time point and unable to pass to the next

time point.

We here give a brief comparison between LSTM and

GRU since they are very similar. First, LSTM and GRU

have comparable performance as studied by literature. For

any specific task, it is recommended to try both of them

to determine which provides better performance. Second,

GRU is lightweight since it only has two gates and without

the hidden state. Therefore, GRU is faster to train and

requires few data for generalization. Third, in contrast,

LSTM generally works better if the training dataset is big
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Figure 8: Illustration of RNN and CNN models. (a) The

recurrent procedure of the RNN model. This procedure

describes the recurrent procedure of a specific node in time

range [1, t + 1]. The node at time t receives two inputs

variables (It denotes the input at time t and ct−1 denotes

the hidden state at time t − 1) and exports two variables

(the output Ot and the hidden state ct at time t). (b) The

paradigm of CNN model which includes two convolutional

layers, two pooling layers, and one fully-connected layer.

(a) Structure of a LSTM cell. (b) Structure of a GRU cell.

Figure 9: Illustration of detailed LSTM and GRU cell

structures. (a) LSTM cell receives three inputs (It denotes

the input at time t, Ot−1 denotes the output of previous

time, and ct−1 denotes the hidden state of the previous time)

and exports two outputs (the output of this time Ot and

the hidden state of this time ct). LSTM cell contains four

gates in order to control the data flow, which are the input

gate, output gate, forget gate, and input modulation gate.

(b) GRU cell receives two inputs (the input of this time It
and the output of the previous time Ot−1) and exports its

output Ot. GRU cell only contains two gates which are the

reset gate and the update gate. Unlike the hidden state ct in

LSTM cell, there is no transmittable hidden state in GRU

cell except one intermediate variable Ōt.

enough. The reason is that LSTM has better non-linearity

than GRU since LSTM has two more control gates (input

modulation gate and forget gate). As a result, LSTM,

compared with GRU, is more powerful to discover the latent

distinct information from large-level training dataset.

B.1.3. Convolutional Neural Networks (CNN) Convolu-

tional Neural Networks is one of the most popular deep

learning models specialized in spatial information explo-

ration [42]. This section will briefly introduce the work-

ing mechanism of CNN. CNN is widely used to discover

the latent spatial information in applications such as image

recognition, ubiquitous, and object searching due to their

salient features such as regularized structure, good spatial
locality, and translation invariance. In the area of brain sig-

nal, specifically, CNN is supposed to capture the distinctive

dependencies among the patterns associated with different

brain signals.

We present a standard CNN architecture as shown

in Figure 8b. The CNN contains one input layer, two

convolutional layers with each followed by a pooling layer,

one fully-connected layer, and one output layer. The square

patch in each layer shows the processing progress of a

specific batch of input values. The key to the CNN is

to reduce the input data into a form which is easier to

recognize, with as little information loss as possible. CNN

has three stacked layers: the convolutional Layer, pooling

Layer, and fully-connected Layer.

The convolutional layer is the core block of CNN,

which contains a set of filters to convolve the input data

followed by a nonlinear transformation to extract the

geographical features. In the deep learning implementation,

there are several key hyper-parameters should be set in the

convolutional layer, like the number of filters, the size of

each filter, etc. The pooling layer generally follows the

convolutional layer. The pooling layer aims to reduce the

spatial size of the features progressively. In this way, it can

help to decrease the number of parameters (e.g., weights

and basis) and the computing burden. There are three kinds

of pooling operation: max, min, average. Take max pooling

for example. The pooling operation outputs the maximum

value of the pooling area as a result. The hyper-parameters

in the pooling layer includes the pooling operation, the size

of the pooling area, the strides, etc. In the fully-connected

layer, as in the basic neural network, the nodes have full

connections to all activations in the previous layer.

The CNN is the most popular deep learning model in

brain signal research, which can be used to exploit the latent

spatial dependencies among the input brain signals like

fMRI image, spontaneous EEG, and so on. More details

will be reported in Section 4.
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Figure 10: Illustration of several standard representative

deep learning models. (a) A basic autoencoder contains

one hidden layer. The process from the input layer to

the hidden layer is an encoder while the process from the

hidden layer to the output layer is a decoder. (b) Restricted

Boltzmann Machine, the encoder and the decoder share

the same transformation weights. The input layer and the

output layer are merged into the visible layer. (c) Deep AE

with hidden layers. Generally, the number of hidden layers

is odd, and the middle layer is the learned representative

features. (d) Deep RBM has one visible layer and multiple

hidden layers, the last layer is the encoded representation.

B.2. Representative Deep Learning Models

The term of representative deep learning refers to use deep

neural network for representation learning. It aims to learn

representations of input data that makes it easier to perform

a downstream task (e.g., classification, generation, and

clustering) [259].

The essential blocks of representative deep learning

models are autoencoders, and restricted Boltzmann ma-

chines25. Deep Belief Networks are composed of AE or

RBM. The representative models including AE, RBM26,

and DBN, are unsupervised learning methods. Thus, they

can learn the representative features from only the input ob-

servations x without the ground truth y. In short, repre-

sentative models receive the input data and output a dense

representation of the data. There are various definitions in

different studies for several models (such as DBN, Deep

RBM, and Deep AE), in this survey, we choose the most

understandable definitions and will present them in detail

in this section.

B.2.1. Autoencoder (AE) As shown in Figure 10a, A

autoencoder is a neural network that has three layers: the

25AE and RBM are generally regarded as kind of deep learning

although they only have three and two layers, respectively.
26We regard AE, and RBMas representative methods as most

researches in brain researches adopt them for feature representation.

input layer, the hidden layer, and the output layer [43]. It

differs from the standard neural network, in that the AE is

trained to reconstruct its inputs, which forces the hidden

layer to try to learn good representations of the inputs.

The structure of AE contains two blocks. The first

block is called the encoder, which embeds the observation

to a latent representation (also called ‘code’),

xh = σ(T (x)) (19)

where xh represents the hidden layer. The second block is

called the decoder, which decodes the representation into

the original space,

y′ = σ(T (xh)) (20)

where y′ represents the output.

AE forces y′ to be equal to the input x and calculates

the error based on the distance between them. Thus, AE

can compute the loss function only by x without the ground

truth y
error = ‖y′ − x‖2 (21)

Compared to Equation 6, this equation does not involve the

variable y because it takes the input x as the ground truth.

This is why AE is able to perform unsupervised learning.

Naturally, one variant of AE is Deep-AE (D-AE)

which has more than one hidden layer. We present the

structure of D-AE with three hidden layers in Figure 10c.

From the figure, we can observe that there is one more

hidden layer in both the encoder and the decoder. The

symmetrical structure ensures the smoothness of encoding

and decoding procedure. Thus, D-AE generally has an odd

number of hidden layers (e.g., 2n + 1) where the first n
layers belong to the encoder, the (n + 1)-th layer works as

the code which belongs to both encoder and decoder, and

the last n layers belong to the decoder. The data flow of

D-AE (Figure 10c) can be represented as

xh1 = σ(T (x)) (22)

xh2 = σ(T (xh2)) (23)

where xh2 denotes the median hidden layer (the code).

Then decode the hidden layer, we can get

xh3 = σ(T (xh2)) (24)

y′ = σ(T (xh3)) (25)

It is almost the same as AE except that D-AE has more

hidden layers. Apart from D-AE, AE has many other

variants like denoising autoencoder, sparse autoencoder,

contractive AE, etc. Here we only introduce the D-AE

because it is easily confused with the AE-based deep belief

network. The key difference between them will be provided

in Section B.2.3.

The core idea of AE and its variants is simple, which is

that condensing the input data x into a code xh (generally
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Figure 11: Illustration of deep belief networks. (a) DBN

composed of autoencoders. DBN-AE contains multiple

AE components (in this case, two AE), with the hidden

layer of the previous AE working as the input layer of

the next AE. The hidden layer of the last AE is the

learned representation. (b) DBN composed of RBM. In

this illustration, there are two RBM components with the

hidden layer of the first RBM working as the visible

layer of the second RBM. The last hidden layer is the

encoded representation. While DBN-RBM and D-RBM

(Figure 10d) have similar architecture, the former is trained

greedily while the latter is trained jointly .

the code layer has lower dimension) and then reconstructing

the data based on the code. If the reconstructed y′ can

approximate to the input data x, it can be demonstrated that

the condensed code xh carries enough information about x,

thus, we can regard xh as a representation of the input data

for future operation (e.g., classification).

B.2.2. Restricted Boltzmann Machine (RBM) Restricted

Boltzmann Machine is a stochastic artificial neural network

that can learn a probability distribution over its set of inputs

[44]. It contains two layers including one visible layer

(input layer) and one hidden layer, as shown in Figure 10b.

From the figure, we can see that the connection lines

between the two layers are bidirectional. RBM is a variant

of Boltzmann Machine with stronger restriction of being

without intra-layer connections. In a general Boltzmann

machine, the nodes in the same hidden layer will connect.

Similar to AE, the procedure of RBM also includes two

steps. The first step condenses the input data from the

original space to the hidden layer in a latent space. After

that, the hidden layer is used to reconstruct the input data

in an identical way. Compared to AE, RBM has a stronger

constraint which is that the encoder weights and the decoder

weights should be equal. We have

xh = σ(T (x)) (26)

x′ = σ(T (xh)) (27)

In the above two equations, the weights of T (·) are the

same. Then, the error for training can be calculated by

error = ‖x′ − x‖2 (28)

We can observe from the Figure 10d that the Deep-RBM

(D-RBM) is an RBM with multiple hidden layers. The

input data from the visible layer firstly flow to the first

hidden layer and then the second hidden layer. Then,

the code will flow backward into the visible layer for

reconstruction.

B.2.3. Deep Belief Networks (DBN) A Deep Belief

Network (DBN) is a stack of simple networks, such as

AEs or RBMs [260]. Thus, we divided DBN into DBN-

AE (also called stacked AE) which is composed of AE and

DBN-RBM (also called stacked RBM) which is composed

of RBM.

As shown in Figure 11a, the DBN-AE contains two

AE structures while the hidden layer of the first AE works

as the input layer of the second AE. This diagram has two

stages. In the first stage, the input data feed into the first

AE follows the rules introduced in Section B.2.1. The

reconstruction error is calculated and back propagated to

adjust the corresponding weights and basis. This iteration

continues until the AE converges. We get the mapping,

x1 → xh1 (29)

Then, we move on to the second stage where the

learned representative code in the hidden layer xh1 will be

used as the input layer of the second AE, which is

x2 = xh1 (30)

and then, after the second AE converges, we have

x2 → xh2 (31)

where xh2 denotes the hidden layer of the second AE,

meanwhile, it is the final outcome of the DBN-AE.

The core idea of AE is that of learning a representative

code with lower dimensionality but containing most

information of the input data. The idea behind DBN-AE

is to learn a more representative and purer code.

Similarly, the DBN-RBM is composed of several

single RBM structures. Figure 11b shows a DBN with two

RBMs where the hidden layer of the first RBM is used as

the visible layer of the second RBM.

Compare the DBN-RBM (Figure 11b) and D-RBM

(Figure 10d). They almost have the same architecture.

Moreover, DBN-AE (Figure 11a) and D-AE (Figure 10c)

have similar architecture. The most important difference

between the DBN and the deep AE/RBM is that the former

is trained greedily while the latter is trained jointly. In

particular, for the DBN, the first AE/RBM is trained first,

after it converges, the second AE/RBM is trained[44]. For

the deep AE/RBM, jointly training means that the whole

structure is trained together, no matter how layers it has.
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Figure 12: Illustration of generative deep learning models.

(a) VAE contains two hidden layers. The first hidden layer

is composed of two components: the expectation and the

standard deviation, which are learned separately from the

input layer. The second hidden layer represents the encoded

information. ε denotes the standard normal distribution. (b)

GAN mainly contain two crucial components: the generator

and the discriminator network. The former receives a latent

random variable to generate a fake brain signal while the

latter receives both the real and the generated brain signals

and attempts to determine if its generated or not. In the are

of brain signals, GAN reconstructs or augments data instead

of classification.

B.3. Generative Deep Learning Models

Generative deep learning models are mainly used to

generate training samples or data augmentation. In other

words, generative deep learning models play a supporting

role in the brain signal field to enhance the training

data quality and quantity. After the data augmentation,

the discriminative models will be employed for the

classification. This procedure is created to improve the

robustness and effectiveness of the trained deep learning

networks, especially when the training data is limited. In

short, the generative models receive the input data and

output a batch of similar data. In this section, we will

introduce two typical generative deep learning models:

variational Autoencoder (VAE) and Generative Adversarial

Networks (GAN).

B.3.1. Variational Autoencoder (VAE) Variational Au-

toencoder, proposed in 2013 [46], is an important vari-

ant of AE, and one of the most powerful generative algo-

rithms. The standard AE and its other variants can be used

for representation but fail in generation for the reason that

the learned code (or representation) may not be continuous.

Therefore, we cannot generate a random sample which is

similar to the input sample. In other words, the standard

AE does not allow interpolation. Thus, we can replicate the

input sample but cannot generate a similar one. VAE has

one fundamentally unique property that separates it from

other AEs, and it is this property that makes VAE so use-

ful for generative modeling: the latent spaces are designed

to be continuous which allows easy random sampling and

interpolation. Next, we will introduce how VAE works.

Similar to the standard AE, VAE can be divided into
an encoder and decoder where the former embeds the input

data to a latent space and the latter transfers the data from

the latent space to the original space. However, the learned

representation in the latent space is forced to approximate a

prior distribution ¯p(z) which is generally set as Standard

Gaussian distribution. Based on the reparameterization

trick [46], the first hidden layer of VAE is designed to have

two parts where one denotes the expectation μ and another

denotes the standard deviation σ, thus we have

μ = σ(T (x)) (32)

σ = σ(T (x)) (33)

Then, the latent code in the hidden layer is not directly

calculated but sampled from a Gaussian distribution

N (μ,σ2). The statistic code

z = μ+ σ ∗ ε (34)

where ε ∼ N (0, I). The representation z is forced to a

prior distribution, and the distance errorKL is measured

by Kullback–Leibler divergence,

errorKL = DKL(z, ¯p(z)) (35)

where ¯p(z) denotes the prior distribution. In the decoder,

z is decoded into the output y′,

y′ = σ(T (z)) (36)

and the reconstruction error is

errorrecon = ‖y′ − x‖2 (37)

The overall error for VAE is combined by the DL

divergence and the reconstruction error,

error = errorKL + errorrecon (38)

The key point of VAE is that all the latent represen-

tations z are forced to obey the normal distribution. Thus,

we can randomly sample a representation z′ ∈ ¯p(z) from

the prior distribution and then reconstruct a sample based

on z′. This is why VAE is so powerful in generation.
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B.3.2. Generative Adversarial Networks (GAN) Genera-

tive Adversarial Networks [47] is proposed in 2014 and

achieved great success in a wide range of research areas

(e.g., computer vision and natural language processing).

GAN is composed of two simultaneously trained neural net-

works with a generator and a discriminator. The generator

captures the distribution of the input data, and the discrimi-

nator is used to estimate the probability that a sample came

from the training data. The generator aims to generate fake

samples while the discriminator aims to distinguish whether

the sample is genuine. The functions of the generator and

the discriminator are opposite; that’s why GAN is called

‘adversarial.’ After the convergence of both the generator

and the discriminator, the discriminator ought to be unable

to recognize the generated samples. Thus, the pre-trained

generator can be used to create a batch of samples and use

them for further operations such as as classification.

Figure 12b shows the procedure of a standard GAN.

The generator receives a noise signal s which is randomly

sampled from a multimodal Gaussian distribution and

outputs the fake brain signals xF . The distributor receives

the real brain signals xR and the generated fake sample

xF , and then it predicts whether the received sample is

real or fake. The internal architecture of the generator

and discriminator are designed depending on the data

types and scenarios. For instance, we can build the

GAN by convolutional layers on fMRI images since CNN

has an excellent ability to extract spatial features. The

discriminator and the generator are trained jointly. After

the convergence, numerous brain signals xG can be created

by the generator. Thus, the training set is enlarged from xR

to {xR,xG} to train a more effective and robust classifier.

B.4. Hybrid Model

Hybrid deep learning models refers to models which are

composed of at least two deep basic learning models where

the basic model is a discriminative, representative, or

generative deep learning model. Hybrid models comprise

two subcategories based on their targets: classification-

aimed (CA) hybrid models and the non-classification-aimed

(NCA) hybrid models.

Most of the deep learning related studies in brain

signal area are focused on the first category. Based on

the existing literature, the representative and generative

models are employed to enhance the discriminative models.

The representative models can provide more informative

and low dimensional features for the discrimination while

the generative models can help to augment the training

data quality and quantity which supply more information

for the classification. The CA hybrid models can be

further subdivided into: 1) several discriminative models

combined to extract more distinctive and robust features

(e.g., CNN+RNN); 2) representative model followed by a

discriminative model (e.g., DBN+MLP); 3) generative +

representative model followed by a discriminative model;
4) generative + representative model followed by a non-

deep learning classifier. In which, a representative model

followed by a non-deep learning classifier is regarded as a

representative deep learning model.

A few NCA hybrid models aim for brain signal

reconstruction. For example, St-yves et al. [261]

adopted GAN to reconstruct visual stimuli based on fMRI

images.


