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Abstract 12 

In the context of global warming, increasing carbon productivity is an important 13 

way to balance environmental goals with economic growth and development. In this 14 

study, we measure the provincial industrial carbon productivity (ICP) in China. 15 

Employing spatial production-theoretical decomposition analysis and data from the 16 

industrial sector in each province of China, we investigate the regional disparities in 17 

ICP and the driving factors at the provincial and sectoral levels. The results indicate 18 

that the ICP discrepancies across different regions are obvious: the eastern region had 19 

the highest ICP, followed by the northeastern, central, and western regions. The 20 

capital-energy substitution effect and CO2 emission performance were two principal 21 
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contributors to increasing the regional disparities for most provinces. By contrast, the 22 

labor-energy substitution effect and energy consumption structure remained relatively 23 

backward and resulted in lower ICP than the average level in most provinces. 24 

Furthermore, 12 key industrial subsectors, including electricity generation sector, five 25 

energy-intensive manufacturing sectors and six nonenergy intensive manufacturing 26 

sectors, in 13 provinces (including Hebei, Liaoning, Heilongjiang, Anhui, and all the 27 

other western provinces) were identified as the main drivers of the lower than average 28 

ICP in these 13 provinces. For the12 industrial sectors in the 13 provinces, industrial 29 

structure, and CO2 emission performance were the main causes of their backward 30 

carbon productivity. Based on the findings of this study, several relevant suggestions 31 

for policymakers are provided. 32 

Keywords: Industrial carbon productivity; Production-theoretical decomposition 33 

analysis; Multi-region comparisons; Multi-sector comparisons 34 

1. Introduction 35 

Balancing carbon emission mitigation with economic growth in the industrial sector 36 

is the keystone for the ultimate achievement of China’s emissions targets. Since China 37 

is the world’s largest CO2 emitter, accounting for 27.8% of the world’s total share in 38 

2018, its efforts in mitigating climate change is vital for the global community in its 39 

battle against climate change (U.S. Energy Information Administration (EIA), 2019). 40 

The Chinese government has promised to peak its CO2 emissions near 2030, and to 41 

decrease CO2 emissions per unit of gross domestic product (GDP) by 60-65% 42 

(compared with the 2005 level) (Chinese Government, 2015). The rapidly growing 43 
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industrial sector, as the core pillar of China’s economy, is at the core of the emission 44 

reduction efforts. CO2 emissions from the industrial sector exceeded 68% of the 45 

country's total CO2 emissions in 2016, while the industrial value-added averaged only 46 

about 33% of GDP (National Bureau of Statistics of China (NBSC), 2017; Shan et al., 47 

2020). 48 

Improving China’s industrial carbon productivity (ICP) is a key measure of 49 

minimizing the costs (industrial value-added loss) of reducing industrial CO2 50 

emissions reduction and helping China to balance between industrial growth and 51 

emission mitigation. Based on the definition of Kaya and Yokobori (1999), ICP can 52 

be defined as the ratio of industrial value-added to CO2 emissions from the industrial 53 

sector (Li and Wang, 2019). Since the average ICP in China was just one-third of the 54 

world average from 2000 to 2011 (Long et al., 2016), the potential for improvement is 55 

regarded significant.  56 

Further studies on ICP by province and sector can generate additional information 57 

that is needed for China’s policy formulation. Since China is a large and centralized 58 

country, national policy targets are often allocated to provinces (Wang et al., 2020). 59 

Due to China’s vast territory, there are large disparities in natural resource 60 

endowments, economic development, and technological capabilities across regions 61 

and sectors (Yang et al., 2014). Identifying the industrial sectors with high abatement 62 

costs and formulating appropriate policies to encourage emission reduction can help 63 

China achieve its emission commitments at a low cost. Hence, a bottom-up process 64 

would be more effective (Shan et al., 2018), by identifying several local regions (each 65 
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province in China) and their respective low industrial sectors. Information obtained 66 

can then be used to establish policies aimed at increasing ICP. To effectively improve 67 

ICP, further research needs to be carried out to account for the significant 68 

heterogeneity, and thus marginal abatement cost, across regions1  and sectors. 69 

Moreover, identifying the key drivers in the industrial sector of each province can 70 

inform effective policy formulation (Nabavi-Pelesaraei et al., 2019). 71 

Our key motivation is to help policymakers to minimize the emission abatement 72 

cost in China through identifying the under-performed regions and their sectors. 73 

These underperformed regions and sectors can reduce emissions without comprising 74 

their outputs in the current technology and thus should be the priority of emissions 75 

reduction. Specifically, we focus on the following issues: (i) How the determinants of 76 

ICP disparities at both the provincial and sectoral levels are quantified; (ii) Which 77 

regions have ICP levels that are below the average level, and the major sectors 78 

causing this; and (iii) What drivers are causing industrial sectors’ carbon productivity 79 

levels to be below average? Based on the outcomes from aforementioned issues, we 80 

discuss possible reasons to offer policy. 81 

Our contributions to the literature are in three folds. Firstly, we extended the data to 82 

assess carbon productivity in 29 provinces and 22 industrial sectors and as well 83 

present detailed information on ICP in each province. Secondly, we compared 84 

multiple regions’ ICP identifying provinces with below-average ICP and for the first 85 

time identifying the key industrial sectors that have contributed to this low carbon 86 
                                                   

1The ‘region’ implicitly refers to a geographic area, which is a province in this study. 

Jo
urn

al 
Pre-

pro
of



5 

productivity. Thirdly, from the perspectives of production systems, provinces, and 87 

industrial sectors, we carried out an in-depth analysis of the driving factors behind 88 

low carbon productivity with respect to key industrial sectors which have caused 89 

some provinces to have lower than average ICP. 90 

This paper is organized as follows: Section 2 provides a literature review, and 91 

Section 3 features the methodology on spatial-production-theoretical decomposition 92 

analysis (PDA), the data sources, and variables. The research results are presented in 93 

Section 4, while Section 5 further discusses the results. Section 6bfinally, summarizes 94 

the main findings and policy implications. 95 

2. Literature review 96 

Carbon productivity is a key indicator for assessing the beneficial outputs gained 97 

concerning CO2 emissions, and ascertaining a country's contributions towards 98 

addressing global climate change (Y. Li et al., 2018). Carbon productivity needs to be 99 

improved from approximately 740 to 7300 $/t CO2eq by 2050 to achieve the 2050 100 

goal proposed by the Intergovernmental Panel on Climate Change (IPCC) for 101 

reducing greenhouse gases (GHG) (Beinhocker et al., 2008). As the industrial sector 102 

is the largest energy consumer and CO2 emitting sector in China, research on carbon 103 

productivity has recently been focused primarily on the industrial sector (Liu et al., 104 

2019). Since the Chinese government began to transform its economic development 105 

patterns and substantially increase its green investment, China’s ICP has significantly 106 

improved (Long et al., 2020). However, due to the large proportion of heavy industry 107 

and coal-based energy consumption, Chinese carbon productivity has been far lower 108 
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than that in developed countries (Bai et al., 2019). Many scholars have focused on the 109 

relationship between ICP and CO2 emissions (Beinhocker et al., 2008; Cheng et al., 110 

2018; Gazheli et al., 2016). Other scholars have also analyzed the carbon productivity 111 

of a special sector within the industrial sector, such as the textile industry, power 112 

industry, pulp and paper industry, and other sub-industrial sectors in China (Lin and 113 

Jia, 2019; Zhao and Lin, 2019; Zheng and Lin, 2020). 114 

The existing literature also focuses on the influencing factors of ICP. A summary of 115 

literature on the influencing factors of ICP arranged in chronological order is shown 116 

in Table1. Many scholars have proven that technological innovation has significantly 117 

positive effects on carbon productivity (Hu and Liu, 2016; Meng and Niu, 2012). Lu 118 

et al. (2015) analyzed the change in China’s industrial system carbon productivity 119 

from 2000 to 2012, and point out that the structure of CO2 emissions is a main 120 

influencing factor in the industrial system. Some scholars have examined the impacts 121 

of substitution effects between energy and non-energy inputs on production activities 122 

and emissions performance (GenovaitėLiobikienė and MindaugasButkus, 2017; Ma 123 

and Stern, 2016; Shabanzadeh-Khoshrody et al., 2016). Other factors of influencing 124 

carbon productivity have been studied, including industrial-scale structure, opening 125 

degree, energy structure effect, industrial structure, environmental regulations, GDP 126 

per capita, and R&D investment (see Table 1) (Hu and Wang, 2020; Li and Wang, 127 

2019). 128 

To the best of our familiarity, although many of the previous existing studies used 129 

the decomposition model to analyze differences in cross-regional carbon productivity, 130 
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no scholars have applied spatial PDA to compare interprovincial ICP in China. As for 131 

methodologies used to measure carbon productivity, the LMDI (Logarithmic Mean 132 

Divisia Index) method, the Laspeyres index method (Sun et al., 2018), and spatial 133 

analysis approaches have been widely used. Lu et al. (2015) applied the LMDI to 134 

analyze the factors influencing carbon productivity, reported that regional economic 135 

development patterns had no impact on the differences in regional carbon productivity 136 

in China. Index decomposition analysis (IDA) and structural decomposition analysis 137 

approach (SDA) were widely used to analyze multi-region comparisons (see Table 1). 138 

Compared with the IDA and SDA approaches, the Spatial-PDA has advantages in its 139 

theoretical basis, decomposition forms, and its ability to analyze detailed industrial 140 

sectoral carbon productivity (Wang et al., 2015). Recently, PDA and spatial 141 

decomposition models have been applied to uncover the influencing factors behind 142 

differences in absolute energy-emissions and intensity among regions using indicators 143 

such as emission performances (Zhang et al., 2020), energy performances (Wang et 144 

al., 2019), CO2 emissions, and energy intensity (Lin and Du, 2014). 145 

Another gap in the literature is that the existing literature does not comprehensively 146 

measure China’s region-level disparities in ICP and the driving factors. It is crucial to 147 

consider regional differences in development patterns and ICP when discussing how 148 

emission reduction targets can be achieved fairly and at the lowest cost (Zheng et al., 149 

2019). The relevant measurements focus mainly on the absolute amount of carbon 150 

productivity and the influencing factors rather than regional and sectoral disparities in 151 

carbon productivity, such as Du and Li (2019, and Hu and Wang (2020). China’s 152 
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carbon productivity and regional carbon productivity only have been examined in the 153 

transport industry (Yu et al., 2017). There is still disagreement over the factors which 154 

affect carbon productivity (Sun et al., 2018). Also, the research to date has neglected 155 

to identify the key industry sectors that have led to weak ICP in each region. 156 

Furthermore, most previous studies did not take the resource2  allocation in 157 

production systems into account when seeking the determinants of the disparities in 158 

ICP at the sectoral level. 159 

To fill these gaps, this study focuses on multi-region comparisons of China’s ICP 160 

from the perspective of production systems at the regional and sectoral levels and 161 

quantifies the sectoral differences within a particular province. Based on an extension 162 

of the comparison model, we used a multi-region spatial decomposition model (M-R) 163 

to compare each target region with the reference region given by the overall average 164 

of the entire group (Ang et al., 2015). A decomposition approach that integrates the 165 

PDA and M-R model was used not only to decompose regional ICP disparities into 166 

several pre-defined factors but also to quantify inter-factor substitution effects by 167 

specifying different distance functions (Wang et al., 2018). The model also 168 

maintained the advantages of the M-R spatial comparison strategy, e.g. satisfying the 169 

circularity property and ease of use, and could account for the sectoral heterogeneity. 170 

This model was in line with the research motivation of this paper. Therefore, we 171 

choose this model as the research method. 172 

Table 1 Summary of various studies on carbon productivity in chronological order 173 

                                                   
2Production resources mainly include capital, labor, energy, and CO2 emission rights. 
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Focus 
Key 

references 
Domain Model Key Findings 

Influencing 

factors 

Meng and 

Niu (2012) 
China 

Log Mean Divisia 

Index 

Technological innovation and industrial structure 

adjustment. 

Sun et al. 

(2018) 
China 

Laspeyres index 

method 

Regional development mode affects electric carbon 

productivity improvement. 

Li and Wang 

(2019). 

Province in 

China 

An extended STIRPAT 

model  

GDP per capita, technology level, trade openness, 

and foreign direct investment, energy consumption 

structure, industrial proportion, and urbanization 

level. 

Hu and 

Wang 

(2020) 

China Econometric model 
There is a threshold for the impact of environmental 

regulation on carbon productivity in China. 

Long et al. 

(2020) 

Province in 

China 

The generalized space 

three-stage 

least-squares estimator 

method (GS3SLS) 

Scale effect, structural effect, technical effect, and 

environmental effect. 

Multi-region 

comparisons  

Ang et 

al.(2015) 

Province in 

China 
IDA 

Region’s emission performance was decomposed 

into structure effect and energy intensity effect. 

Su and Ang 

(2016) 

Province in 

China 
SDA 

30 geographical regions in China are compared and 

ranked based on their emission performance. 

Long et al. 

(2016) 

Province in 

China 

Moran’s I index and 

spatial panel data 

models. 

Carbon productivity: high in the east and lower in 

the west; high in the south and lower in the north. 

Wang and 

Zhou (2018) 
Global PDA 

The driving forces of regional disparities in CO2 

emission intensity from viewpoints of production 

technology and technical efficiency were revealed. 

Sub-industrial 

sectors 

 

Sun et al. 

(2016) 

Electricity 

in China 

Multi-Dimensional 

Decomposition 

Electric carbon productivity can be decomposed into 

a technological improvement effect and structure 

adjustment effect. 

Zhao and 

Lin (2019) 

Textile 

industry in 

China 

DEA and the Biennial 

Malmquist–Luenberger 

(BML) 

The average growth rates of technical improvement, 

labor, capital for energy substitution, and output 

structural change are the main factors that improve 

energy productivity. 

3. Method and data sources 174 

3.1 Method 175 

Spatial PDA combined with PDA and a M-R model is usually carried out on a 176 

spatial dimension for a specific year, revealing the effect of production technology 177 
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and efficiency on energy and emissions (Wang and Zhou, 2018). Suppose the entire 178 

economy includes N regions (N is the number of regions, here N=29) and each region 179 

has M industrial sectors (S1, S2, …, here M=22), then based on the M-R model3, the 180 

average of measured regions is defined as a reference region. There are N+1 ( j= 1, …, 181 

N, N+1, and the reference region R is included) regions and M industrial sectors 182 

(i= 1, ..., M) in regions to be evaluated. In the process of economic production 183 

activities, the GDP of industrial sectors, ie industrial added value (Y), is regarded as 184 

desirable output. Energy-related CO2 emissions (C) are regarded as undesirable output 185 

and can be obtained after inputting production factors, i.e. aggregate capital (K) 186 

energy consumption (E), and labor (L) at the sector level (Nabavi-Pelesaraei et al., 187 

2013).  188 

According to Färe et al. (2005), the production technology can be defined as 189 

T=��K, L, E, Y, C�: �K, L, E� can produce �Y, C��                           (1) 190 

where T satisfies the assumptions: (i) if 191 

�K, L, E, Y, C�∈T and 0≤θ≤1, then �K, L, E, θy, θC�∈T  and (ii) if 192 

�K, L, E, Y, C�∈T, and C=0, then Y=0. Suppose the production technology is constant 193 

returns to scale (CRS), which has been widely adopted to modelling environmental 194 

production technology (Wang, 2013; Bostian et al., 2016). For each sector i, the 195 

environmental production technology is defined as follows. 196 

                                                   

3In the M-R model, the average level of all measured regions is defined as the 

reference region, and then the comparison is made between each target region and the 
reference region. For more details on this model, refer to Ang et al. (2015). 

Jo
urn

al 
Pre-

pro
of



11 

T={ (Ki, Li, Ei, Yi, Ci) : ∑ λjKij ≤Ki;j  ∑ λjLij≤Li;j   197 

∑ λjEij ≤Ei;j  ∑ λjYij≥Yi;j  ∑ λjCij =Ci;j  λj≥0, j=1, ..., N+1}                  (2) 198 

Two Shephard undesirable and desirable output distance functions can be derived 199 

by solving the following linear programs, which have been widely used in PDA (Zhou 200 

and Ang ,2008; Wang et al., 2015; Wang and Zhou, 2018). 201 

The undesirable output distance function is defined as: 202 

Din
C(Ki,Li,Ei,Yi,Ci)

-1= min βin 
s.t.{ ∑ λjKij ≤Kin;j ∑ λjLij ≤Lin;j ∑ λjEij ≤Ein;j ∑ λjYij≥Yin;j   203 

∑ λjCij =βinCin;j λj≥0, j= 1, ..., N+1}                                      (3) 204 

and the desirable output distance function can be defined as follows 205 

Din
Y (Ki,Li,Ei,Yi,Ci)

-1=maxθin 
s.t.{ ∑ λjKij ≤Kin;j  ∑ λjLij ≤Lin;j  ∑ λjEij ≤Ein;j  ∑ λjYij≥θinYin;j   206 

∑ λjCij =Cin;j  λj≥0, j= 1,..., N+1}                                        (4) 207 

where n represents the region under measurement, and 	 represents the intensity 208 

variable. The above distance function shows the distance from the technology frontier. 209 

Cin/βin
*  in Eq. (3) represents the minimum emissions level, while Yin/θin

*  in Eq. (4) 210 

represents the maximum desired output level, where * denotes optimal solutions 211 

(Wang and Zhou, 2018). 212 

Based on the definition of carbon productivity in Kaya and Yokobori (1999), the 213 

ICP of the jth region can be modeled as: 214 

Pj=
Yj

Cj
= ∑ Yij

Eij

M
i=1 ·

Eij

Cij
·

Cij

Cj
= ∑ Yij

Eij

M
i=1 ·

Eij

Cij
·Sij

C                                   (5) 215 

Here Pj denotes the carbon productivity of region j, Yij Eij⁄  represents the energy 216 

Jo
urn

al 
Pre-

pro
of



12 

efficiency of the �th sector in region j, and Eij Cij  ⁄ denotes energy consumption per 217 

unit of CO2 emissions of the � industrial sector in j region. Eij Cij  ⁄ is the energy 218 

emission ratio, which is the reciprocal of the energy-carbon conversion rate. The 219 

energy-carbon conversion rate is only affected by the energy mix, under the premise 220 

that the carbon emission factors of various types of energy remain unchanged (Xu et 221 

al., 2014). According to the Intergovernmental Panel on Climate Change (IPCC), CO2 222 

emission factors of various types of energy are generally constant. Therefore, the 223 

changes in energy emission ratios reflect changes in the energy mix. Sij
C in Eqs. (5) 224 

represents the proportion of CO2 emissions from a particular sub-sector i to total 225 

industrial CO2 emissions in region j, which is named as CO2 emissions structure 226 

(Str-C) and reflects industrial structure (Lu et al., 2014). 227 

Combining Eqs. (3), (4) and (5), ICP can be decomposed as follows (6) 228 

Pj= ∑ Yij

Eij

M
i=1 ·

Eij

Cij
·Sij

C  229 

=∑ Yij Dij
Y(Ki , Li , Ei , Yi , Ci)⁄

Eij


��� ∙ Eij

Cij Dij
C⁄ (Ki , Li , Ei , Yi , Ci)

∙ Dij
Y(Ki , Li , Ei , Yi , Ci)

Dij
C(Ki , Li , Ei , Yi , Ci� ∙ Sij

C 230 

=∑ � 1

Yij
(

1

Eij
)
-1 ∙ Dij

Y(Ki, Li, Ei, Yi, Ci)�
��
��� ∙ Eij

Cij Dij
C⁄ (Ki , Li , Ei , Yi , Ci)

∙ Dij
Y(Ki , Li , Ei , Yi , Ci)

Dij
C(Ki , Li , Ei , Yi , Ci� ∙ Sij

C 231 

=∑ � 1

Yij
∙ Dij

Y(kij , lij , 1, Yi, cij )���
��� ∙ Eij

Cij Dij
C⁄ (Ki , Li , Ei , Yi , Ci)

∙ Dij
Y(Ki , Li , Ei , Yi , Ci)

Dij
C(Ki , Li , Ei , Yi , Ci� ∙ Sij

C 232 

=∑ Dij
Y(kij , lij , 1, 1, cij )

-1
·

Eij

Cij Dij
C⁄ (Ki , Li , Ei , Yi , Ci)

∙ Dij
Y(Ki , Li , Ei , Yi , Ci)

Dij
C(Ki , Li , Ei , Yi , Ci� ∙ Sij

CM
i=1   233 

=∑ Dij
Y(kij , lij , 1, 1, cij )

-1
·PCFij

-1
·CPIij ·Sij

CM
i=1                                (6) 234 

where kij = K ij Eij⁄  denotes the capital-energy ratio (KE), l ij = L ij Eij⁄  is the 235 

labor-energy ratio (LE), and cij = Cij Eij⁄  is the carbon factor4 (CF) (Ang, 1999). 236 

                                                   
4The carbon factor is different from the emission factor. The emissions factor is the 
amount of carbon oxidized per unit of fuel consumed, and its main match is fuel. The 
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( , ) ,ln ln

,

a b

L a b a ba b

a a b

−
= ≠−

=






( Cij Dij
C⁄ (Ki,Li,Ei,Yi,Ci)) Eij�  is defined as the potential carbon factor (PCF) which 237 

reflects the potential level of the carbon factor when the technical efficiency of an 238 

entity in terms of emissions can be promoted to the best practice (Wang and Zhou, 239 

2018; Zhou and Ang, 2008). Dij
Y(Ki,Li,Ei,Yi,Ci) Dij

C(Ki,Li,Ei,Yi,Ci)�  is defined as the 240 

carbon performance index (CPI) and is the ratio of actual carbon productivity to 241 

potential carbon productivity, which is between 0 and 1. A larger CPI represents 242 

better CO2 emissions performance, which mainly reflects the technical efficiency of 243 

emission (Zhou et al., 2012). If the CPI is equal to unity, it means that the province 244 

has the best CO2 emissions performance in the special sector. 245 

Taking the average level of all regions, as a reference, the ratio in ICP between 246 

region j and the reference region r can be decomposed by using LMDI-I as follows. 247 

Pj

Pr
= ∑ Dij

Y(kij , lij , 1, 1, cij )
-1
·PCFij

-1·CPIij ·Sij
CM

i=1∑ Dir
Y(kir , lir , 1, 1, cir )

-1
·PCFir

-1
·CPIir ·Sir

CM
i=1

 

= exp�∑ wi
j, r ln

Dir
Y(kir , lir , 1, 1, cir )

Dij
Y(kij , lij , 1, 1, cij )

M
i=1 � ∙exp�∑ wi

j, r ln
PCFir

PCFij

M
i=1 �  248 

∙ ��� �∑ wi
j, r  �� CPIij

CPIir


���  ∙ ��� �∑ wi
j, r  �� Sij

C

Sir
C


��� � = Amix
j, r
· APCF

j, r
· ACPI

j, r
· A

str-C
j, r

        (7) 249 

wi
j,r=

L(Yij Cj ,⁄ Yir Cr⁄ )

L(Pj ,Pr)
                                                    (8) 250 

   251 

                                            (9) 252 

where A represents the multiplicative effects, w represents the weight function and L 253 

is the logarithmic mean function (Ang, 2015). The subscript mix represents the 254 

comprehensive effect involving the KE, LE, and CF difference, and str-C represents 255 

                                                                                                                                                  
“carbon factor” is the ratio of CO2 emissions to energy consumption and it can be 
disaggregated into the emission factor and the fuel share (Ang, 1999). 
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the CO2 emission structure effect. Hence the disparity in industrial carbon 256 

productivity between region j and r is mainly caused by these four effects. The result 257 

of multiplicative decomposition can express the relative contributions of regional ICP 258 

attributable to regional differences in one driving factor based on the same absolute 259 

amount (here is the national average) (Ang, 2004; Ang et al., 2015). 260 

To quantify the difference of three effects, i.e. KE, LE, and CF between region j 261 

and region r, it is necessary to carry out the second stage of decomposition. Putting 262 

the three factors in Amix
j,r  into Dir

Y(kir ,lir ,1,1,cir ) Dij
Y(kij ,lij ,1,1,cij )�  one by one in 263 

different combinations by using Laspeyres-linked methods (Wang et al., 2017), there 264 

are six decomposition results. This method coincides with the Siegel formula, and has 265 

been used by (Wang and Zhou, 2018). The decomposition form of the second stage 266 

can be expressed as Eq. (10). 267 

Dir
Y(kir , lir , 1, 1, cir )

Dij
Y(kij , lij , 1, 1, cij )
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�2 ∙ �Di
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�%
1
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= KEi
 j, r
·LEi

 j, r
·CFi

 j, r                                                       (10) 268 

The ratio of j and r in ICP can be decomposed as Eq. (11) 269 

Pj

Pr
= AKE

 j, r ∙ ALE
 j, r ∙ ACF

 j, r ∙ APCF
 j, r ∙ ACPI

 j, r ∙ A
str-C
 j, r

                                 (11) 270 
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Compared with the reference region r, the carbon factor effect (CFE), the 271 

labor-energy substitution effect (LESE) and the capital-energy substitution effect 272 

(KESE) of region j are ACF
j,r , ALE

j,r , AKE
j,r , respectively. The CFE is mainly influenced 273 

by the energy consumption structure. The KESE and LESE represents the level of 274 

substitution of capital for energy and labor for energy, respectively. If the 275 

decomposition value is greater than 1, it means that the relevant factors cause the gap 276 

between region ' and r to increase in terms of ICP and vice versa. Hence the 277 

disparity in ICP between region j and r was found to be caused mainly by these six 278 

effects (ref. Eqs. 11).  279 

3.2 Data sources and description  280 

Our research employs sectoral level data for various industries in 29 of China’s 281 

provinces/regions. (Unfortunately, the ICP for Hong Kong, Macao, Taiwan, Hainan 282 

and Tibet could not be calculated due to excessive gaps in the published data.) All 283 

input and output variables in this study were aggregated into a unified classification 284 

with 22 sectors (Appendix A2), and the price was converted to the 1997 constant level 285 

by using the double deflation method (United Nations, 1999). 5 286 

The spatial-PDA decomposition model involves six variables, i.e. industrial added 287 

value, capital, labor, energy consumption (E), energy-related CO2 emissions (C), and 288 

ICP (P). The industrial value added (in one hundred million CNY) collected from the 289 

China Industry Statistical Yearbook, 2017 (NBSC, 2017), eliminated the influence of 290 

price fluctuations. The data for capital (in one hundred million CNY) was gathered 291 

                                                   
5 The data can be shared upon reasonable request. 
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from China Fixed Assets Investment Statistics Yearbook, 2017 (NBSC, 2017a). The 292 

labor was measured using the average number of sectoral employed people working 293 

in each sector at the end and beginning of the year 2016 with the unit as 10,000 294 

people, and derived from China Population and Employment Statistics Yearbook, 295 

2017 (NBSC, 2017b). The data pertaining to the different types of energy consumed 296 

in the various regions and industrial sectors were collected from China Energy 297 

Statistical Yearbook (NBSC, 2017c) and Provincial Statistical Yearbooks (NBSC, 298 

2017d) and converted into a calorific value in Tega joule (TJ).  299 

The industrial CO2 emissions from 22 industrial sectors in each of the 29 provinces 300 

were estimated using the method from Shan et al. (2020). Although this method 301 

required high-quality and quantitative data sets, a more detailed emission inventory 302 

could be obtained, which included the emissions of 47 industrial subsectors and 17 303 

energy types in each region. In this research, we classified these 40 industrial sectors 304 

into 22 industrial sectors according to the method of Geng et al. (2013). The CO2 305 

emissions were caused mainly by fossil fuel combustion and industrial production. 306 

Industrial CO2 emissions from fossil fuel combustion were derived based on the 307 

relation: 308 

Cui= ∑ ∑ ADui∙ NCVu∙ EFu∙ Oui
22
i= 1

17
u=1                                   (12) 309 

where Cui refers to the CO2 emissions from fossil fuel u combusted in industrial sector 310 

i; ADui refers to the activity level of fossil fuel u in sector i; NCVu and EFu represent 311 

the net caloric value and emission factor of different fuel types, respectively. In this 312 

study, EFu  was based on the result of Liu et al. (2015), which was measured by 313 
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analyzing 602 coal samples from the 100 largest coal-mining areas in China (Liu et al., 314 

2015). Ouj represents a carbon oxidation ratio for different sectors and fuel types. 315 

Industrial CO2 emissions from industrial production on the other hand was 316 

computed as: 317 

Cv= ∑ ADv∙ EFvv                                                   (13) 318 

where Cv indicates CO2 emissions from industrial processes v; ADv indicates activity 319 

data; and EFv refers to the emissions factor. Most of this information was collected 320 

from IPCC (2006), except for the cement process from Liu et al. (2015). 321 

Accounting to Eq. (5), ICP was calculated as follows: 322 

P=Y/C                                                          (14) 323 

The statistical result of the input and output variables showed significant 324 

differences across the 29 provinces, with the maximum value being approximately 13 325 

times larger than the minimum value in ICP (see Table 2). r as a reference region was 326 

built by the average number of three input variables (K, L, E) and two output variables 327 

(Y, C) for the 29 provinces in the M-R model (see Table Appendix B). Moreover, the 328 

average value of all variables except ICP was larger than the median value, indicating 329 

a right-skewed data distribution. 330 

Table 2. The statistical description of industrial inputs and outputs of 29 provinces, 331 

2016 332 

 

Capital 

(108 CNY) 

Labor 

(104 persons) 

Energy 

Consumption 

 (1016 Joules) 

Industrial 

value-added 

(108 CNY) 

CO2 

emissions 

(104 tons) 

ICP 

(CNY/kg) 

Maximum 26442.71 2277.93  867.79  32650.89  73658.16  10.32 

Minimum 709.81  45.10  51.27  901.68  3902.35  0.77 

Mean 7820.72  570.83 308.40  9814.06  27688.33 3.54 
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Median 6370.01 345.14 236.28 7219.11 20118.87 3.70 

Standard 

deviation 6507.21  527.17  189.50  8194.00  18010.40  2.28 

4. Results 333 

4.1 Empirical results and analysis at the provincial level 334 

4.1.1 Spatial distribution characteristics 335 

Figure 1 portrays the variation tendencies present in industrial carbon emissions, 336 

China’s ICP, and the ICP of eastern, northeast, central, and western China from 2000 337 

to 2016. In terms of carbon emissions, there was an upward trend until 2013, and a 338 

downward trend after 2013 until 2016. It is clear that China's overall and regional ICP 339 

were generally on an upward trend, only to decrease briefly between 2008 and 2009. 340 

After 2009, it improved dramatically again, with the ICP reaching a peak in eastern 341 

China (4.7 CNY/Kg), the central region (3.4 CNY/Kg) and western region (2.5 342 

CNY/Kg) in 2016, respectively, whereas in the northeast region (3 CNY/Kg) in 2014. 343 

Figure 2 shows the industrial CO2 emissions and carbon productivity of the 29 344 

provinces and the reference region in China during the period studied. Regarding 345 

industrial CO2 emissions, Shandong (736.58 million tons), Hebei (658.89 million tons) 346 

and Jiangsu (654.50 million tons) were the top three provinces, while Shanghai 347 

(116.65 million tons), Qinghai (45.63 million tons), and Beijing (39.02 million tons) 348 

were the bottom three provinces. This is consistent with the results of Shan et al. 349 

(2020). The regional distribution of CO2 emissions and carbon productivity varied 350 

greatly due to the differences in GDP.  351 

China’s ICP of 3.54 yuan value added per unit of CO2 (CNY/kg) in 2016, was 352 

lower than China's overall carbon productivity, 4.576 CNY/Kg (Li and Wang, 2019). 353 

Jo
urn

al 
Pre-

pro
of



19 

The ICP of the reference region (3.54 CNY/Kg) ranked seventeenth among 30 regions. 354 

Beijing (10.32 CNY/kg), Guangdong (8.54 CNY/kg) and Shanghai (6. 48 CNY/kg) 355 

were the top cities in terms of ICP in 2016. Xinjiang (0.77 CNY/kg) had the worst 356 

ICP, followed by Ningxia (0.78 CNY/kg) and Shanxi (1.06 CNY/kg). The results 357 

indicate that the ICP of Beijing was 13.33 times that of Xinjiang. 358 

 359 

Figure 1. China’s industrial CO2 emissions and ICP from 2000 to 2016. Source: 360 

the China Emission Accounts and Datasets (CEADs) 361 
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362 
 Figure 2. Industrial CO2 emissions and ICP in 29 provinces and the reference 363 

region, 2016. 364 

Notes: The top X-axis is the scale that matches the industrial CO2 emissions, while the 365 

bottom X-axis is the scale that matches the ICP. 366 

 367 

Figure 3. The spatial distribution of ICP in China, 2016. 368 

The geographical spatial distribution of ICP is plotted in Figure 3. The ICP in the 369 

southeast coastal provinces was the highest, followed by that in the mid-west 370 
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provinces. It can be observed from Figure 3 that the ICP of most of the eastern 371 

provinces was above the average level (3.54 CNY/Kg) in 2016, except for Hebei and 372 

Liaoning. In contrast, the ICP for most of the western provinces was less than that of 373 

the reference region, except for Chongqing, Sichuan, and Guangxi. In the middle of 374 

China, the ICP for five out of the eight provinces was higher than the average level. 375 

This result is roughly consistent with the work result of Long et al. (2016). 376 

4.1.2 Provincial-level disparities 377 

Figure 4 reports the provincial aggregated ICP and its decomposition results 378 

compared to the reference region. Among the 29 provinces, the KESE played a 379 

positive role in 20 provinces in driving up their ICP compared to the reference region. 380 

This means that it is an important component in understanding the provincial 381 

disparities in ICP. By contrast, the LESE contributed negatively to the increase in the 382 

regional disparities in ICP for all provinces except Beijing, Liaoning, Anhui, Jiangxi, 383 

and Hunan. Relative to the average level, KESE drives most provinces’ ICP higher. 384 

LESE was a more potent factor than KESE in terms of improving technological 385 

efficiency in production for 24 out of the 29 provinces. This is consistent with the 386 

results obtained by Wang and Zhou (2018). Lin and Du (2014) analyzed these two 387 

driving factors when examining the decline in China’s energy intensity and reported 388 

similar findings. 389 

Next, the carbon performance index effect (CPIE) in most of the eastern and central 390 

provinces was higher than 1, particularly for Beijing, Guangdong and Shanghai, 391 

which drove their ICP higher than in the reference region. In contrast, the CPIE for 392 
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Hebei, Liaoning, Heilongjiang, Shanxi, and most of the western provinces played a 393 

negative role in increasing their ICP compared to the average level. This is consistent 394 

with most literature (Lin and Du, 2015; Yao et al., 2016; Zhou et al., 2013) and 395 

suggests that compared to the average level, the technical efficiency of Hebei, two 396 

northeast provinces and most of the western provinces in terms of CO2 emissions, has 397 

not promoted their overall ICP. Compared to the average level, the CFE and potential 398 

carbon factor effect (PCFE) contributed negatively to the increase in regional 399 

disparities in ICP for all provinces in China. These results reveal that there is an 400 

imbalance in the energy consumption structure regarding most of the provinces in 401 

China (Wang et al., 2015). This therefore suggests that the CFE and PCFE could be 402 

further improved. 403 

CESE was another factor contributing to increasing the regional disparities between 404 

each province and the reference region in terms of ICP. There was no evidence of any 405 

significant improvement with regards to the diversities in ICP among most provinces, 406 

except for Shanghai, Zhejiang, Fujian, Guangdong, Jilin, Hubei, Sichuan, Chongqing, 407 

and Qinghai. Compared to the reference region, emission structure only drove up 408 

carbon productivities in nine provinces Hence, there is great potential to improve 409 

regional ICP through industrial structure adjustment. This is consistent with the 410 

results reported in (Meng and Niu, 2012). 411 
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 412 

Figure 4. Decomposition results compared with those of the reference region 413 

Notes: The red, blue, and black fonts in the title on the vertical axis portray provinces 414 

in eastern, central, and western China, respectively 415 

4.2 Empirical results and analysis at the sectoral level 416 

4.2.1 Sectoral level disparities for the ICP in China 417 

Figure 5 portrays the industrial CO2 emissions and ICP of 22 industrial sectors in 418 

China. The top three sectors in CO2 emissions were the electricity sector (S20), 419 

smelting and pressing of metals (S13) together with nonmetal mineral products (S12), 420 

followed by petroleum processing and coking (S10), coal mining and dressing (S1) 421 

and the chemical sector (S11). All of these are energy-intensive industrial subsectors. 422 

However, the carbon productivity for these sectors was low. The absolute difference 423 

in sectoral carbon productivity was significant. The ICP of sectors categorized as 424 

low-carbon industries was generally higher than that included in carbon-intensive 425 
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industries. This is consistent with the results of (W. Li et al., 2018), in the sense that 426 

carbon productivity of the top sector, namely, manufacturing of electronics, 427 

instruments, culture and office equipment (S18) (388.20 CNY/kg) was 109.52 times 428 

the level of overall ICP (3.54 CNY/kg) in China, while the electricity sector (S20) 429 

(0.34 CNY/kg) had the lowest carbon productivity. Although the electricity sector is a 430 

high energy-consuming industry striving for a low-carbon development, the continued 431 

heavy reliance on coal to generate electricity has not changed. In 2016, the proportion 432 

of fossil energy generating electricity reached 73% (Li et al., 2017). Moreover, coal 433 

prices have risen sharply since March 2016, increasing the cost of electricity and 434 

posing a huge challenge to the growth of carbon productivity in the electricity sector 435 

(National Energy Administration in China, 2016). 436 

 437 

Figure 5. Average industrial CO2 emissions and ICP in 22 industrial sectors in China, 438 

2016 439 
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Notes: The top X-axis is the scale that matches the industrial CO2 emissions, while the 440 

bottom X-axis is the scale that matches the ICP. The term “industry” denotes China's 441 

overall industrial sector. 442 

Figure 6. Sectoral decomposition results of comparing industrial sectors in 29 regions 443 

to the reference region 444 

Notes: The horizontal axis represents 22 industrial sectors and the vertical axis 445 

represents 29 provinces. The red font in the title on the vertical axis portrays the 13 446 

provinces with a below-average ICP level (the ICP of reference region). The red font 447 

in the title on the horizontal axis indicates that 12 industrial subsectors were the main 448 

cause of the below-average ICP in these 13 provinces. The yellow area indicates that 449 

the decomposition value was greater than 1. The other color areas were less than 1, 450 

where red represents the minimum value. 451 

Next, carbon productivity was considered at the sectoral level (horizontal axis in 452 

Figure 6). From Figure 6, the value below 1 indicates that a specific industrial sector 453 

contributed to the overall ICP of its corresponding region and was lower than the 454 

reference region (average level). For instance, petroleum and natural gas extraction 455 

(S2) contributed to the lower ICP of 5 regions, including Liaoning, Heilongjiang, 456 
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Sichuan, Ningxia and Inner Mongolia, and contributed to the higher ICP for the other 457 

24 regions compared to the reference region. The result points out that compared to 458 

the reference region, improvements in the carbon productivity of S2 in these five 459 

provinces should be prioritized for effectively increasing these provinces’ overall ICP. 460 

In contrast to the reference region, the petroleum and natural gas extraction and 461 

processing sectors (including S2, S10, and S21) contributed the most to increasing 462 

most regions’ ICP. Meanwhile, the paper, printing, culture articles manufacturing and 463 

metal products sectors (S9 and S14) were the weak sectors in most of the northeast, 464 

central and western regions, and caused these regions’ ICP to be lower than that of the 465 

reference region. In addition, the chemicals sector (S11) in seven regions, Hebei, 466 

Heilongjiang, Shanxi, Gansu, Qinghai, Xinjiang, and Inner Mongolia, obviously 467 

resulted in levels of carbon productivity that were worse than the average level. 468 

From the regional level (the vertical axis in Figure 6), we found that industrial 469 

subsectors with below-average carbon productivity were distributed mainly in 13 470 

regions, that is Hebei, Liaoning, Heilongjiang, Shaanxi, Anhui, Shanxi, Yunnan, 471 

Guizhou, Qinghai, Inner Mongolia, Gansu, Ningxia, and Xinjiang. This result is 472 

completely consistent with that of the regions in Figure 2 where the overall ICP was 473 

lower than the average level. These 13 provinces deserve more attention to effectively 474 

improve China's overall ICP. Hence, this study focused on these 13 regions. 475 

We further investigated the major industrial sectors affecting the ICP for the 13 476 

regions in 2016, From Figure 6, the driving industrial sectors affecting ICP had 477 

significant heterogeneity among regions. For example, for Hebei province, the main 478 
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industrial sectors that caused its ICP to be below average level were S4, S5, S8, S11, 479 

S12, S13, S15, S16, S18, S20, and S22, while for Yunnan, they were S5, S8, S9, S14, 480 

S15, S18, S20, and S22, for Shanxi, they were S4, S5, S6, S7, S9, S10, S11, S12, S13, 481 

S14, S15, S16, S17, S19, and S22. However, for the 13 provinces, the following 12 482 

major industrial sectors contributed to their below-average carbon productivity, 483 

including five energy-intensive manufacturing sectors ( including food and tobacco 484 

(S5), paper and painting (S9), chemicals (S11), non-metallic minerals (S12) and 485 

refining (S13)), six nonenergy intensive manufacturing sectors (including wood 486 

products (S8), fabricated metal products (S14), and ordinary and special equipment 487 

(S15), transportation equipment (S16), machinery and electrical equipment (S17), and 488 

computer and electronic products (S18)), and the sector for production and supply of 489 

electric power, steam and hot water (S20)6. 490 

4.2.2 Contributions to ICP from the industrial sectors in each region 491 

The driving factors behind the regional disparities in carbon productivity across 12 492 

industrial sectors in the 13 regions mentioned above need further analysis. From the 493 

sectoral perspective, the contribution of each driving force in 22 sectors in each region 494 

was significantly different. Taking Hebei as an example in Table 3, according to the 495 

analysis in Section 4.1.2, PCFE, LESE, CFE, CPIE, and CESE contributed to a lower 496 

overall ICP than the reference region at the provincial level,. This reveals that the 497 

improvements in PCFE, CFE, LESE, CPIE, and CESE had greater potential than 498 

                                                   
6These 12 industrial sectors are the most important driving factors behind ICP in the 13 
provinces (Hebei, Liaoning, Heilongjiang and most of the central and western provinces) 
selected in this paper, but not for all provinces in China. 
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KESE to increase Hebei's ICP. However, that proposal is not targeted for all 22 499 

industry sectors in Hebei. From Table 3, in terms of transportation equipment (S16) 500 

(0.7791) in Hebei, CFE, CPIE, and CESE values were less than 1, suggesting that the 501 

local government of Hebei should pay more attention to the improvement of 502 

transportation equipment manufacturing and CO2 emission performance. The 503 

decomposition result of each industrial sector in every region was similarly 504 

conducted. 505 

Table 3 Sectoral decomposition results of comparing industrial sectors in Hebei to the 506 

reference region 507 

Sector PCFE KESE LESE CFE CPIE CESE Total 

S1 0.9939 0.9969 1.0006 0.9969  1.1356 1.0011 1.1235  

S2 0.9942 0.9998 1.0001 0.9991  1.1351 0.9994 1.1268  

S3 0.9994 0.9999 0.9994 0.9945  1.0530 0.9997 1.0455  

S4 1.0000 1.0004 0.9993 0.9962  0.9981 0.9991 0.9932  

S5 0.9997 1.0014 0.9999 0.9874  0.8770 0.9949 0.8625  

S6 0.9958 1.0003 0.9995 0.9918  1.1065 0.9959 1.0881  

S7 0.9987 1.0001 0.9999 0.9915  1.0146 1.0001 1.0047  

S8 1.0005 1.0001 0.9993 0.9962  0.9788 0.9987 0.9737  

S9 0.9983 1.0006 1.0000 0.9965  1.0298 0.9971 1.0221  

S10 0.9979 1.0011 1.0013 1.0067  1.0355 0.9976 1.0403  

S11 0.9982 1.0038 1.0005 0.9749  0.8581 0.9921 0.8321  

S12 0.9997 1.0014 0.9988 0.9949  0.9890 0.9963 0.9801  

S13 1.0028 1.0053 0.9933 1.0162  0.8393 1.0137 0.8657  

S14 0.9981 1.0000 1.0001 0.9932  1.0590 0.9993 1.0492  

S15 1.0002 1.0002 1.0000 1.0042  0.9243 0.9983 0.9269  

S16 1.0051 1.0019 1.0022 0.9953  0.7795 0.9951 0.7791  

S17 0.9994 1.0001 1.0006 0.9933  1.0177 0.9941 1.0051  

S18 0.9994 1.0012 1.0012 0.9942  0.7876 0.9971 0.7822  

S19 1.0005 1.0002 1.0000 1.0035  1.0051 0.9989 1.0082  

S20 1.0027 1.0004 0.9978 0.9981  0.9517 0.9975 0.9484  

S21 0.9997 1.0002 1.0003 0.9999  1.0249 0.9984 1.0233  

S22 0.9999 1.0000 1.0000 0.9996  0.9969 0.9999 0.9963  
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Figure 7. ICP’s decompositions for Hebei 508 

Notes: The blank area indicates the decomposition result is higher than 1 and vice 509 

versa. The red indicates the minimum decomposition value. For instance, for 510 

chemical sector (S11), the driving factors of KESE and LESE increase its carbon 511 

productivity compared to the average level. The primary contributor to 512 

below-average carbon productivity in S11 of Hebei is CPIE, followed by CFE, CESE 513 

and PCFE. 514 

Taking the 12 industrial sectors in Hebei as an example, in Figure 7, if the 515 

decomposition index value of the driving forces was less than 1, the influencing factor 516 

caused the regional ICP to be lower than that of the reference region. In contrast to the 517 

reference region, manufacturing for transportation equipment (S16) with a minimum 518 

decomposition value of 0.7791 (see as Table 3) contributed the most to reduce the 519 

Hebei’s ICP, with CPIE, CFE, and CESE being the main driving forces. This suggests 520 

that the carbon technical performance, energy consumption structure and industrial 521 

structure played a very large role in decreasing the carbon productivity of S16. CESE, 522 

PCFE, CFE, and KESE increased carbon productivity across all 12 sectors. The LESE 523 

for most of the 12 industrial sectors was more than 1, except for the refining of metals 524 
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(S13), electricity sector (S20), and manufacturing for food (S5), wood (S8), and 525 

non-metallic minerals (S12). A similar analysis was extended to the other 12 526 

provinces. The ICP can be promoted more effectively by improving targeted 527 

sector-level impact factors with limited resources. The sectoral driving factors (where 528 

the decomposition result was less than 1) that have the most potential to improve ICP 529 

were combined to inform a particular sector of how to improve its carbon productivity. 530 
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 537 

 538 

 539 

 540 

 541 

 542 
 543 

Figure 8. Decomposition results of 13 industrial sectors in 12 regions. 544 

Notes: The blank area indicates that the decomposition result was higher than 1, meaning that the driving factor increased the target sector’s ICP compared to 545 

the reference region, and vice versa. The red indicates the minimum decomposition value. For instance, for S16 in (a) LN, the driving factors of KESE, LESE 546 

and CFE increased its carbon productivity compared to the average level. The primary contributor to below-average carbon productivity in S16 of LN was 547 

CPIE, followed by PCFE and CESE. 548 
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Figure 8 shows the potential factors for improving the 12 industrial sectors’ carbon 549 

productivity in 12 regions (except Hebei). We found that the CESE had the potential 550 

to improve the corresponding industrial sectors’ carbon productivity for all 13 regions. 551 

The CPIE was the dominant cause of the below-average carbon productivity for 12 552 

industrial sectors in 9 provinces except for Anhui, Shaanxi, and Ningxia. This means 553 

that for these industries, the ICP can be improved more effectively by upgrading the 554 

production and emission technologies. Further, for the 12 industrial sectors in these 8 555 

western provinces, the LESE and CFE are other two important factors that have great 556 

potential to increase sector carbon productivity. This is consistent with the 557 

decomposition results at the provincial level. 558 

Also, Figure 8 reports that the heterogeneities among drivers in different sectors of 559 

different regions were large. Taking Liaoning as an example, the PCFE and CPIE 560 

were the two most promising driving forces to increase carbon productivity across all 561 

12 industrial sectors, especially for the chemical sector (S11) and transportation 562 

equipment (S16). This was mainly due to Liaoning’s energy emission structure still 563 

being fossil fuel-based, notably coal (Geng et al., 2013), and its emission technology 564 

level which could be improved. For Heilongjiang, the CPIE for the chemical sector 565 

(S11), refining of metals (S13) and transportation equipment (S16) was the most 566 

noteworthy factor for increasing the ICP. This coincides with the fact that the 567 

northeast region had a single industrial structure and was overly dependent on 568 

resource-based industries. Furthermore, for the high carbon industry sectors (S11, S12, 569 

S13, and S20) in several provinces rich in natural resources, especially Shanxi, 570 
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Shaanxi, Xinjiang and Inner Mongolia, resource advantage did not significantly 571 

promote the improvement of ICP. This was mainly due to the low resource utilization 572 

resulting from the slow transfer of production technologies from the east to central 573 

and western China. 574 

5. Discussion 575 

A decomposition technique was used here to conduct multi-region comparisons of 576 

ICP in China. The results isolated the drivers behind the regional differences in ICP 577 

and further identified the provinces and industries with poor ICP together with their 578 

driving factors. 579 

At the provincial level, the capital-energy substitution effect was the main driver 580 

which increased most regions’ ICP compared to the reference region. As for the 581 

labor-energy substitution effect, only five provinces were above average. These 582 

findings differed from other studies (Salim et al., 2017) which found a significant 583 

potential to replace energy with labor in China. This difference could be due to 584 

differences in the measurement of the labor impacts of ICP: we assessed the number 585 

of employed as labor impacts, while the aforementioned studies focused on the 586 

impacts of the employees’ education level. Our study and the previous studies 587 

together provide key insights: Salim et al. (2017) determined that energy conservation 588 

in China could be achieved by improving post-school human-capital components, 589 

while we believe that energy cost reductions and output increases can be achieved by 590 

optimizing the allocation of two inputs (labor and energy). Due to China’s energy 591 

endowment structure characterized as “rich coal, meager oil, and poor gas”, most 592 
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provinces’ energy consumption is still dominated by coal (Li and Wang, 2019). 593 

Therefore, improving the energy consumption structure is another important challenge 594 

for China in its quest to improve ICP. Also, the CO2 emission performance of the 595 

western provinces was worse than the average.  This is mainly a function of their 596 

backward emission reduction technologies. Meanwhile, the CO2 emissions structure 597 

effect had a less significant effect on raising provincial ICPs higher than the ICP of 598 

the reference region. This may be due to the fact that the nature of China's 599 

industrialization has remained unchanged, and economic growth still relies too much 600 

on industries that are high energy consumers and emit high levels of pollution. 601 

In terms of the absolute ICP (29 provinces as a total)  in 2016, 13 provinces were 602 

below the national average level including Anhui, Hebei, Heilongjiang, Liaoning, and 603 

all the nine western provinces. These 13 provinces are mainly located in northeastern, 604 

central, and western China. Most have abundant natural resources, especially Shanxi, 605 

Shaanxi, Inner Mongolia, and Xinjiang, causing them to continue their specialization 606 

in heavy industries. At the same time, most of the industries which have been 607 

relocated from the east to the west regions are heavy industries. Although this 608 

over-reliance on resource-based industries and heavy industries has been the mainstay 609 

of the economy in these regions, the ICP is still backward, reflecting the low resource 610 

utilization and unbalanced industrial structure.  611 

For the industrial sectors within each province, there were significant differences in 612 

those that have a major impact on the provincial ICP. These 12 industrial sectors were 613 

the main drivers causing ICP in the 13 regions to be below that in the reference 614 
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region, including five energy-intensive manufacturing sectors, six nonenergy 615 

intensive manufacturing sectors and the sector for production and supply of electric 616 

power, steam, and hot water (see in chapter 4.2.1). For the wood products sector, one 617 

possible reason for its weak carbon productivity could be the lower investment in 618 

environmental protection, especially in the wood-based panel industry (high pollution, 619 

and high environmental risk). The production and supply of electric power, steam, and 620 

hot water mainly involves heating and electricity. Nine of the 13 provinces require 621 

winter heating. The heating industry involves high energy consumption, high 622 

emissions, high investment, and low efficiency. Therefore, increasing its carbon 623 

productivity is a huge challenge (Chinabaogao, 2018). The sudden increase in energy 624 

prices (mainly coal prices) (National Energy Administration in China, 2016) makes 625 

increasing the carbon productivity levels even more difficult. 626 

The major industrial sectors of the provinces with low ICP need to be targeted for 627 

efforts geared to improving China's overall ICP more effectively. Therefore, the 12 628 

industrial sectors in the 13 provinces mentioned above were selected as the key 629 

research cases for this study. 630 

From the perspective of the provincial industrial sectors, the driving factors behind 631 

the ICP in the 12 industrial sectors in the 13 provinces were revealed to clarify the 632 

necessary development direction needed to increase overall ICP. From Figure 8 it can 633 

be seen that an industrial structure upgrade needs to be carried out to promote ICP for 634 

the 12 industrial sectors in the 13 provinces (Ma et al., 2019). However, industrial 635 

restructuring is unavoidably a long-term strategic goal and is particularly difficult for 636 

Jo
urn

al 
Pre-

pro
of



36 

regions with a single industrial structure and excessive dependence on heavy industry 637 

development, especially in China’s northeast and western provinces. Moreover, we 638 

found that the driving sectors in most of the regions with a lower than average ICP 639 

levels were not only high-carbon industrial sectors, but also six low-carbon industrial 640 

sectors (6 nonenergy intensive manufacturing sectors) out of 13 sectors. This indicates 641 

that industries with low-carbon emissions also have a significant impact on the 642 

regional overall ICP, suggesting that it will be more efficient to increase the ICP by 643 

improving resource allocation among the industrial sectors (including technology, 644 

financial assets, and human capital, and energy resources), than to transform regions’ 645 

economic structures from high-carbon industries to low-carbon industries, especially 646 

in those provinces that rely on heavy industries.  647 

The carbon performance index effect (CPIE) for the 12 sectors in the 13 provinces 648 

reflects the level of CO2 emissions performance, and also the level of technology (Lin 649 

and Du, 2015; Zhou et al., 2012). According to the industry classification found in Li 650 

et al. (2018), there were five low-carbon and high-technology industry sectors in the 651 

12 industrial sectors, including manufacturing with food and tobacco, ordinary and 652 

special equipment, transportation equipment, machinery and electrical equipment, and 653 

computer and electronic products. (W. Li et al., 2018) reported that low-carbon and 654 

high-technology industries were the technology leaders and had a positive effect on 655 

the improvement of carbon productivity. However, due to the backward technical 656 

level of the 12 sectors in the 13 provinces, except for Anhui, Shaanxi, and Ningxia, 657 

the role of technology in promoting carbon productivity has not been exerted. This 658 
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differs from the results of (Y. Li et al., 2018), as we considered regional heterogeneity 659 

and focused on low-carbon emission technologies, while the aforementioned studies 660 

focused on industrial production technology. In addition, the 12 industrial sectors had 661 

significantly different energy consumption structures, technical levels, industrial 662 

structure and energy and non-energy substitution effects. This complicates the 663 

standardization of policies geared to increasing the carbon productivity of each local 664 

government. 665 

6. Conclusions and policy implications 666 

Increasing carbon productivity is crucial for China because it is the largest carbon 667 

dioxide emitter in the world (Peters et al., 2012). It must find ways to mitigate 668 

emissions while maintaining high levels of economic growth. Measuring ICP by 669 

province and industrial sector can help Chinese policymakers prioritize the sectors 670 

and regions so as to minimize the costs of carbon mitigation. We quantified the causes 671 

of the disparities in ICP, at both the provincial and sectoral levels. We also put 672 

forward targeted recommendations after conducting a comparative analysis of ICP in 673 

29 provinces and 22 industries in 2016 by applying the spatial-PDA model.  674 

The main conclusions and implications are as follows: a) At the provincial level, 675 

the capital-energy substitution effect was the main cause of the higher ICP compared 676 

to the reference region, while the labor-energy substitution effect had the greatest 677 

potential to increase most provinces’ ICP; b) the ICP in 13 regions (Anhui, Hebei, 678 

Heilongjiang, Liaoning, and all the nine western provinces) was below the average 679 

level. A total of 12 key industrial sectors were identified as the main cause of the ICP 680 
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in the 13 regions being lower than the average level. These were mainly the electricity 681 

sector, five energy-intensive manufacturing sectors with food and tobacco, paper and 682 

paint, chemicals, non-metallic minerals and refining, and six nonenergy intensive 683 

manufacturing sectors with fabricated metal products, ordinary and special equipment, 684 

transportation equipment, machinery and electrical equipment, and computer and 685 

electronic products; c) For the 12 industrial sectors in the 13 provinces, the 686 

differences in driving factors were significant. The industrial structure and carbon 687 

performance index effect were the main factors that contributed to the sub-average 688 

ICP. 689 

Based on the above analysis, the following policy recommendations are proposed.  690 

First, provincial governments should give priority to improving the labor-energy 691 

substitution effect and energy emission structure because these two factors were the 692 

main reason why ICP in many provinces was below the average level. Due to the 693 

significant regional disparities in resources, economics, and technology, local 694 

governments should carry out differentiated energy strategies. To significantly 695 

improve their CO2 emission efficiencies, the local governments in most of the western 696 

provinces should focus on technology updates in production and energy conservation 697 

and emission reduction.. Also, strengthening technology exchanges and other forms of 698 

cooperation between the eastern provinces and western regions could help actively 699 

guide technological innovation and flows of assistance to the western regions’ most 700 

backward areas.  701 

Second, priority should be given to increasing ICP in the identified 13 provinces 702 
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and 12 industrial sectors that had lower than the average national performance across 703 

the country. The governments of the 13 provinces (Anhui, Hebei, Heilongjiang, 704 

Liaoning, and all the nine western provinces)should increase investment in science 705 

and technology research and development on production technology, and introduce 706 

low-carbon technologies to the main industries. This could help these provinces catch 707 

up to the carbon productivity levels found in the eastern region, and achieve more 708 

balanced development among all of China’s regions, thus improving the overall 709 

carbon productivity of China. Policymakers should also redistribute more factors of 710 

production (capital, labor, and CO2 emission rights) to the 12 identified industrial 711 

sectors (main drivers causing ICP in the 13 provinces being lower than average level), 712 

to narrow the differences in carbon productivity and thus improve the overall ICP. In 713 

addition, since most of the manufacturing sectors are included in the sectors that result 714 

in low productivity, it is particularly important to upgrade manufacturing equipment 715 

and processes in the manufacturing industry. However, the transformation from high 716 

carbon industries to low carbon industries may not necessarily improve ICP because 717 

some low carbon industries also have low ICP.  718 

Third, due to the vast differences among China’s provinces and their industrial 719 

sectors, a holistic analysis of each province’s industrial sectors is needed in order to 720 

propose appropriate carbon productivity promotion policies for each department. For 721 

example, the transportation equipment sector in Hebei has the lowest decomposition 722 

index (0.7832) relative to the average level due to its backward technological 723 

capabilities and an unbalanced industrial structure (see Table 3). Therefore, based on 724 
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the Beijing-Tianjin-Hebei coordinated development strategy, promotion policies for 725 

this sector should pay more attention to absorbing Beijing and Tianjin's advanced 726 

industrial management experience and scientific research results, such as technologies 727 

for cleaner production and resource recycling, and be geared to improving 728 

technological innovation. In the same way, other provincial governments should focus 729 

on identifying the key industrial sectors that lead to low ICP and the key drivers that 730 

affect these industries, in order to efficiently optimize the allocation of production 731 

factors with limited resources. 732 

The model in this paper combined with PDA and M-R model focused on 733 

comparing provinces' ICP in a particular year, while the changing pattern of regional 734 

disparities over time cannot be analyzed. Therefore, an integrated spatial-temporal 735 

decomposition approach needs to be further proposed. The changing pattern of 736 

regional disparities overtime should also be considered when exploring the influence 737 

of carbon productivity. The ICP level and targeted measures for each province are 738 

discussed in this paper. However, due to limited resources and environmental 739 

constraints, even if the ICP of some specific provinces improves, it does not mean that 740 

the whole country’s carbon productivity will increase. Based on this study, a 741 

comparative analysis of carbon productivity between any two provinces can be 742 

performed to achieve a more detailed assessment of ICP by province, thus making 743 

resource allocation more effective. A resource allocation problem worthy of further 744 

study is to balance national resource allocation through the comparative advantage 745 

between any two provinces to improve the carbon productivity of the whole country, 746 
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more detailed studies of carbon productivity, such as at the municipal level and 747 

enterprise-level, are other directions worth exploring. In addition, provinces and their 748 

sub-industries with above-average ICP are also worthy of investigating to improve the 749 

overall ICP of China from the frontier regions. 750 
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Appendix A1 757 

Table A1. Region classification in China 758 

Regional group Code (i) Region Short name 

 

 

 

 

Eastern China 

1 Beijing BJ 

2 Tianjin TJ 

3 Hebei HE 

4 Shanghai SH 

5 Jiangsu JS 

6 Zhejiang ZJ 

7 Fujian FJ 

8 Shandong SD 

9 Guangdong GD 

 

Northeast 

10 Liaoning LN 

11 Jilin JL 

12 Heilongjiang HL 

 

 

Central China 

13 Shanxi SX 

14 Anhui AH 

15 Jiangxi JX 

16 Henan HA 

17 Hubei HB 

18 Hunan HN 

 

 

19 Guangxi GX 

20 Guizhou GZ 
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Western China 

21 Sichuan SC 

22 Chongqing CQ 

23 Yunnan YN 

24 Shaanxi SN 

25 Gansu GS 

26 Qinghai QH 

27 Ningxia NX 

27 Xinjiang XJ 

29 Inner Mongolia IM 

Reference region  30 Reference region R 

Note: According to the new situation of accelerating economic and social 759 

development in China, the country is divided into four economic regions. The whole 760 

Inner Mongolia is allocated to the west of China. The “Reference region” represents 761 

the average level in socio-economic and CO2 emissions of the other 29 provinces. 762 

Appendix A2 763 

Table A2. Industrial sector classification 764 

Code Sector Code Sector 

S1 Coal Mining and Dressing S12 Nonmetal Mineral Products 

S2 
Petroleum and Natural Gas 

Extraction 
S13 Smelting and pressing of metals  

S3 Metals Mining and Dressing  S14 Metal Products 

S4 
Nonmetal and other Minerals 

Mining and Dressing  
S15 Ordinary and special equipment 

S5 
Food production and tobacco 

processing  
S16 Transportation Equipment 

S6 Textile  S17 Electric Equipment and Machinery 

S7 
Leather, Furs, Down and 

Related Products 
S18 

Electronic and Telecommunications 

Equipment; Instruments, Meters, Cultural 

and Office Machinery 

S8 Wood products S19 Other industrial activities  

S9 

Papermaking, printing, 

cultural, educational and 

sports articles  

S20 
Production and Supply of Electric Power, 

Steam and Hot Water 

S10 
Petroleum Processing and 

Coking  
S21 Production and Supply of Gas 

S11 Chemical industry  S22 Production and Supply of Tap Water 

Appendix B 765 
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Table B1. Data for the hypothetical reference region 766 

Sector 

Energy 

consumption 
(10 16 Joules) 

Industrial 

value-added  
(108 CNY) 

CO2 emissions 
(104 tons) 

Industrial Carbon 

productivity 
(CNY/Kg) 

S1 17.75 249.48 933.48 2.67 

S2 3.33 92.72 184.62 5.02 

S3 1.86 118.27 69.64 16.98 

S4 1.25 72.78 42.00 17.33 

S5 8.46 1096.90 164.51 66.68 

S6 7.09 515.55 77.46 66.56 

S7 0.59 142.50 9.85 144.69 

S8 1.47 203.78 28.46 71.60 

S9 6.49 323.80 117.06 27.66 

S10 26.08 319.10 1007.70 3.17 

S11 49.58 1270.54 604.07 21.03 

S12 31.02 527.79 3386.94 1.56 

S13 78.32 876.92 5299.71 1.65 

S14 2.83 325.57 39.38 82.67 

S15 3.94 749.74 175.20 42.79 

S16 3.12 804.04 58.78 136.78 

S17 2.32 590.47 36.87 160.16 

S18 3.08 860.34 22.16 388.20 

S19 0.58 71.32 28.64 24.90 

S20 57.62 527.04 15340.55 0.34 

S21 0.94 51.03 58.94 8.66 

S22 0.66 24.38 2.28 106.97 

Total 308.40 9814.07 27688.31 3.54 
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