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Abstract

In the context of global warming, increasing carlppoductivity is an important
way to balance environmental goals with economamiin and development. In this
study, we measure the provincial industrial carlproductivity (ICP) in China.
Employing spatial production-theoretical decompositanalysis and data from the
industrial sector in each province of China, weestigate the regional disparities in
ICP and the driving factors at the provincial aedtsral levels. The results indicate
that the ICP discrepancies across different regimaobvious: the eastern region had
the highest ICP, followed by the northeastern, reénand western regions. The

capital-energy substitution effect and £€mission performance were two principal
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contributors to increasing the regional disparif@smost provinces. By contrast, the
labor-energy substitution effect and energy congiongstructure remained relatively
backward and resulted in lower ICP than the averagel in most provinces.
Furthermore, 12 key industrial subsectors, inclgditectricity generation sector, five
energy-intensive manufacturing sectors and six mergy intensive manufacturing
sectors, in 13 provinces (including Hebei, LiaoniRigilongjiang, Anhui, and all the
other western provinces) were identified as thenndaivers of the lower than average
ICP in these 13 provinces. For thel2 industriatsdn the 13 provinces, industrial
structure, and COemission performance were the main causes of trakward
carbon productivity. Based on the findings of thlisdy, several relevant suggestions

for policymakers are provided.

Keywords. Industrial carbon productivity; Production-thedcat decomposition

analysis; Multi-region comparisons; Multi-sectongaarisons
1. Introduction

Balancing carbon emission mitigation with econograwth in the industrial sector
is the keystone for the ultimate achievement oh@lsi emissions targets. Since China
is the world’s largest COemitter, accounting for 27.8% of the world’s toshlare in
2018, its efforts in mitigating climate change italfor the global community in its
battle against climate change (U.S. Energy InforonaAdministration (EIA), 2019).
The Chinese government has promised to peak itsgdtssions near 2030, and to
decrease COemissions per unit of gross domestic product (GDF)60-65%

(compared with the 2005 level) (Chinese Governm2@1,5). The rapidly growing
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industrial sector, as the core pillar of China’'smamy, is at the core of the emission
reduction efforts. C® emissions from the industrial sector exceeded @8%he
country's total C@emissions in 2016, while the industrial value-addedraged only
about 33% of GDP (National Bureau of Statistic€bfna (NBSC), 2017; Shan et al.,
2020).

Improving China’s industrial carbon productivityC@) is a key measure of
minimizing the costs (industrial value-added logs) reducing industrial C®
emissions reduction and helping China to balandevd®n industrial growth and
emission mitigation. Based on the definition of Haand Yokobori (1999), ICP can
be defined as the ratio of industrial value-adde@®©, emissions from the industrial
sector (Li and Wang, 2019). Since the average rC€hina was just one-third of the
world average from 2000 to 2011 (Long et al., 201l potential for improvement is
regarded significant.

Further studies on ICP by province and sector @areate additional information
that is needed for China’s policy formulation. Sin€hina is a large and centralized
country, national policy targets are often allodate provinces (Wang et al., 2020).
Due to China’s vast territory, there are large diggs in natural resource
endowments, economic development, and technologi@phbilities across regions
and sectors (Yang et al., 2014). Identifying theustrial sectors with high abatement
costs and formulating appropriate policies to enage emission reduction can help
China achieve its emission commitments at a low. ddsnce, a bottom-up process

would be more effective (Shan et al., 2018), byidging several local regions (each
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province in China) and their respective low indiastsectors. Information obtained
can then be used to establish policies aimed aastg ICP. To effectively improve
ICP, further research needs to be carried out tcowad for the significant

heterogeneity, and thus marginal abatement cosgsscregions and sectors.

Moreover, identifying the key drivers in the indust sector of each province can
inform effective policy formulation (Nabavi-Peleaar et al., 2019).

Our key motivation is to help policymakers to mirmm the emission abatement
cost in China through identifying the under-perfednregions and their sectors.
These underperformed regions and sectors can reguaissions without comprising
their outputs in the current technology and thusuth be the priority of emissions
reduction. Specifically, we focus on the followirsgues: (i) How the determinants of
ICP disparities at both the provincial and sectéeskls are quantified; (i) Which
regions have ICP levels that are below the avetagel, and the major sectors
causing this; and (iii) What drivers are causinguistrial sectors’ carbon productivity
levels to be below average? Based on the outcorops dforementioned issues, we
discuss possible reasons to offer policy.

Our contributions to the literature are in threkel$o Firstly, we extended the data to
assess carbon productivity in 29 provinces and rRustrial sectors and as well
present detailed information on ICP in each pro#in&econdly, we compared
multiple regions’ ICP identifying provinces with Ibe-average ICP and for the first

time identifying the key industrial sectors thatvé@acontributed to this low carbon

The ‘region’ implicitly refers to a geographic ay@éich is a province in this study.
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productivity. Thirdly, from the perspectives of pition systems, provinces, and
industrial sectors, we carried out an in-depth ysialof the driving factors behind
low carbon productivity with respect to key indimtrsectors which have caused
some provinces to have lower than average ICP.

This paper is organized as follows: Section 2 mesia literature review, and
Section 3 features the methodology on spatial-proio-theoretical decomposition
analysis (PDA), the data sources, and variables.rébearch results are presented in
Section 4, while Section 5 further discusses tkalte. Section 6bfinally, summarizes
the main findings and policy implications.

2. Literaturereview

Carbon productivity is a key indicator for assegsiine beneficial outputs gained
concerning CQ@ emissions, and ascertaining a country's contribatiaowards
addressing global climate change (Y. Li et al.,8@0Carbon productivity needs to be
improved from approximately 740 to 7300 $/t £@ by 2050 to achieve the 2050
goal proposed by the Intergovernmental Panel om#&& Change (IPCC) for
reducing greenhouse gases (GHG) (Beinhocker e2@08). As the industrial sector
is the largest energy consumer and,@@itting sector in China, research on carbon
productivity has recently been focused primarilytba industrial sector (Liu et al.,
2019). Since the Chinese government began to tiansts economic development
patterns and substantially increase its green ima#t, China’s ICP has significantly
improved (Long et al., 2020). However, due to drgé proportion of heavy industry

and coal-based energy consumption, Chinese cantmalugtivity has been far lower
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than that in developed countries (Bai et al., 20M3ny scholars have focused on the
relationship between ICP and g@missions (Beinhocker et al., 2008; Cheng et al.,
2018; Gazheli et al., 2016). Other scholars hase ahalyzed the carbon productivity
of a special sector within the industrial sectarghs as the textile industry, power
industry, pulp and paper industry, and other sulustrial sectors in China (Lin and
Jia, 2019; Zhao and Lin, 2019; Zheng and Lin, 2020)

The existing literature also focuses on the infaieg factors of ICP. A summary of
literature on the influencing factors of ICP arradgn chronological order is shown
in Tablel. Many scholars have proven that techncébgnnovation has significantly
positive effects on carbon productivity (Hu and ,L2016; Meng and Niu, 2012). Lu
et al. (2015) analyzed the change in China’s inthlssystem carbon productivity
from 2000 to 2012, and point out that the structofeCO, emissions is a main
influencing factor in the industrial system. Sonsbdars have examined the impacts
of substitution effects between energy and nonggniputs on production activities
and emissions performance (Genaodlaibikiené and MindaugasButkus, 2017; Ma
and Stern, 2016; Shabanzadeh-Khoshrody et al.,)2@t6er factors of influencing
carbon productivity have been studied, includindustrial-scale structure, opening
degree, energy structure effect, industrial stméstenvironmental regulations, GDP
per capita, and R&D investment (see Table 1) (Hdi fang, 2020; Li and Wang,
2019).

To the best of our familiarity, although many oétprevious existing studies used

the decomposition model to analyze differencesassregional carbon productivity,
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no scholars have applied spatial PDA to comparrpnbvincial ICP in China. As for
methodologies used to measure carbon productitiigy, LMDI (Logarithmic Mean
Divisia Index) method, the Laspeyres index meth®dn( et al., 2018), and spatial
analysis approaches have been widely used. Lu. €2@l15) applied the LMDI to
analyze the factors influencing carbon productjigported that regional economic
development patterns had no impact on the different regional carbon productivity
in China. Index decomposition analysis (IDA) andistural decomposition analysis
approach (SDA) were widely used to analyze muljie® comparisons (see Table 1).
Compared with the IDA and SDA approaches, the SpRIDA has advantages in its
theoretical basis, decomposition forms, and itditgltio analyze detailed industrial
sectoral carbon productivity (Wang et al., 2015)ecéntly, PDA and spatial
decomposition models have been applied to uncdweirfluencing factors behind
differences in absolute energy-emissions and iitieasong regions using indicators
such as emission performances (Zhang et al., 2@2@ygy performances (Wang et
al., 2019), CQemissions, and energy intensity (Lin and Du, 2014)

Another gap in the literature is that the existitgrature does not comprehensively
measure China’s region-level disparities in ICP #reddriving factors. It is crucial to
consider regional differences in development pastemd ICP when discussing how
emission reduction targets can be achieved fairty @ the lowest cost (Zheng et al.,
2019). The relevant measurements focus mainly enatisolute amount of carbon
productivity and the influencing factors ratherritragional and sectoral disparities in

carbon productivity, such as Du and Li (2019, and &hd Wang (2020). China’s
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carbon productivity and regional carbon producyivihly have been examined in the
transport industry (Yu et al., 2017). There id slifagreement over the factors which
affect carbon productivity (Sun et al., 2018). Allee research to date has neglected
to identify the key industry sectors that have tedweak ICP in each region.
Furthermore, most previous studies did not take tbesource allocation in
production systems into account when seeking thermnants of the disparities in
ICP at the sectoral level.

To fill these gaps, this study focuses on multisagcomparisons of China’s ICP
from the perspective of production systems at #rggonal and sectoral levels and
guantifies the sectoral differences within a patac province. Based on an extension
of the comparison model, we used a multi-regioniapdecomposition model (M-R)
to compare each target region with the referengmmegiven by the overall average
of the entire group (Ang et al., 2015). A decomposiapproach that integrates the
PDA and M-R model was used not only to decompog®mnal ICP disparities into
several pre-defined factors but also to quantiferifiactor substitution effects by
specifying different distance functions (Wang et, @&018). The model also
maintained the advantages of the M-R spatial coimpastrategy, e.g. satisfying the
circularity property and ease of use, and coulebactfor the sectoral heterogeneity.
This model was in line with the research motivatmithis paper. Therefore, we

choose this model as the research method.

Table 1 Summary of various studies on carbon productivitghronological order

2Production resources mainly include capital, lalkoergy, and C©emission rights.



Key

Focus Domain Model Key Findings
references
Meng and Chi Log Mean Divisia Technological innovation and industrial structure
ina
Niu (2012) Index adjustment.
Sun et al. Chi Laspeyres index Regional development mode affects electric carbon
ina
(2018) method productivity improvement.
GDP per capita, technology level, trade openness,
Li and Wang Province in An extended STIRPAT and foreign direct investment, energy consumption
Influencing (2019). China model structure, industrial proportion, and urbanization
factors level.
Hu and . . .
. . There is a threshold for the impact of environmenta
Wang China Econometric model ) L _
regulation on carbon productivity in China.
(2020)
The generalized space
Long etal. Province in three-stage Scale effect, structural effect, technical effeamd
(2020) China least-squares estimatorenvironmental effect.
method (GS3SLS)
Ang et Province in DA Region’s emission performance was decomposed
al.(2015) China into structure effect and energy intensity effect.
Suand Ang Province in SDA 30 geographical regions in China are compared and
(2016) China ranked based on their emission performance.
Multi-region . . Moran’s | index and . o )
) Longetal.  Province in ) Carbon productivity: high in the east and lower in
comparisons ) spatial panel data L )
(2016) China the west; high in the south and lower in the north.
models.
The driving forces of regional disparities in €O
Wang and o , , ) ) )
Global PDA emission intensity from viewpoints of production

Zhou (2018)

technology and technical efficiency were revealed.
Electric carbon productivity can be decomposed into

Sun et al. Electricity = Multi-Dimensional . )
. . . a technological improvement effect and structure
) . (2016) in China Decomposition )
Sub-industrial adjustment effect.
sectors ) .. The average growth rates of technical improvement,
Textile DEA and the Biennial - o
Zhao and ) . _ labor, capital for energy substitution, and output
] industry in Malmquist—Luenberger ] )
Lin (2019) . structural change are the main factors that improve
China (BML) .
energy productivity.
174 3. Method and data sources
175 3.1 Method
176 Spatial PDA combined with PDA and a M-R model isiall/ carried out on a
177  spatial dimension for a specific year, revealing #ffect of production technology
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and efficiency on energy and emissions (Wang amuuZB018). Suppose the entire
economy includesl regions N is the number of regions, heke=29) and each region
hasM industrial sectors (S1, S2, ..., hé/e=22), then based on the M-R magéehe
average of measured regions is defined as a rekeregion. There ald+1 (j=1, ...,

N, N+1, and the reference regidR is included) regions an¥ industrial sectors
(i=1, ..., M) in regions to be evaluated. In the process ofmewkoc production
activities, the GDP of industrial sectors, ie ingias added valueY), is regarded as
desirable output. Energy-related £€missionsC) are regarded as undesirable output
and can be obtained after inputting productiondiati.e. aggregate capitaK)(
energy consumptionEf, and labor () at the sector level (Nabavi-Pelesaraei et al.,
2013).

According to Fare et al. (2005), the productiorhtesiogy can be defined as

T={(K,L, E Y, O): (K, L, E) can producgY, C)} (1)
where T satisfies the assumptions: 0] if
(K,L,E Y,CETand &0<1, then(K, L, E, 8y, 0C)ET and (i) if

(K, L, E Y, C)ET, andC=0, thenY=0. Suppose the production technology is constant
returns to scale (CRS), which has been widely abpd modelling environmental
production technology (Wang, 2013; Bostian et 2016). For each sectar the

environmental production technology is defineda®s.

3In the M-R model, the average level of all measuregions is defined as the

reference region, and then the comparison is matheglen each target region and the
reference region. For more details on this modéérito Ang et al. (2015).

10



197 T={(Ki, Li, B, Y;, G) : 2y 4Ky sKis JjALsL;
198 Yi4E;sE; Xi4Y2Y5 X4Ci=Ci; 420, j=1,...,N+1} 2)
199 Two Shephard undesirable and desirable outputraistéunctions can be derived
200 by solving the following linear programs, which ledyeen widely used in PDA (Zhou
201 and Ang ,2008; Wang et al., 2015; Wang and Zho820
202 The undesirable output distance function is defiagd
Dir(Ki.Li,E;,Y,,C) '=min g,
203 s.t{ X 4K sKin; Xj AL SLins X 4 Eij SEin; X5 4 Y 2Yin;
204 ¥ 4Cj=p, Cin;%20,j=1,...,N+1} (3)
205 and the desirable output distance function candbieetd as follows
Din(Ki,Li,E, Y;,G) "=maxd,
206 s.t{ X 4K sKin; X 4L shing 24 Ej SEins X4 Y4201 Yins
207 ¥;4C;j=Cin; 420,j=1,...,N+1} (4)
208 wheren represents the region under measurement, Aamepresents the intensity
209 variable. The above distance function shows thiaite from the technology frontier.
210 Cin/ﬁ:n in Eqg. (3) represents the minimum emissions |ewd#lije Yinlefn in Eq. (4)
211 represents the maximum desired output level, whedenotes optimal solutions
212  (Wang and Zhou, 2018).
213 Based on the definition of carbon productivity imy& and Yokobori (1999), the
214  ICP of thejth region can be modeled as:
215 P=2= MlE_uC_”_ i 121%3? )

216 HereP; denotes the carbon productivity of regiry;/E; represents the energy
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efficiency of theith sector in region, and E;/C;; denotes energy consumption per
unit of CQ, emissions of the industrial sector inj region. E;/Cj is the energy
emission ratio, which is the reciprocal of the yetarbon conversion rate. The
energy-carbon conversion rate is only affectedhgydnergy mix, under the premise
that the carbon emission factors of various tydesnergy remain unchanged (Xu et
al., 2014). According to the Intergovernmental PaneClimate Change (IPCC), GO
emission factors of various types of energy areegmly constant. Therefore, the
changes in energy emission ratios reflect changelse energy mix. ,% in Egs. (5)
represents the proportion of @@missions from a particular sub-secioto total
industrial CQ emissions in region, which is named as GCemissions structure
(Str-C) and reflects industrial structure (Lu et al., 2D1

Combining Egs. (3), (4) and (5), ICP can be decasagdas follows (6)

Yij Eij
|:> ] .S
2 g G S
ZM YlJ/D?]{(K| Li, B, Y, C|) Eij D“(KI Li, E, Vi, CI) SC
Ej ' Cy/DS(K, Li, B, ¥, G) DS(K;, Li, B, Yi, G

EIJ DI](KI Li, B, Y, CI)
"G, /D5(Ki, Ui, B, Y, G) Do(Ki L B Y, )

= lMl[Y (E) DI(K.,L.,E.,Y.,C)l

-1
—\'M Y Ej D“(K| Li, E, Y, C) '
i= 1[ Du(ku, ij o 1Y, Clj)] C,J/D.J(K, L, E,Y, C) DI](Kl L, E, Y, C) S(J:
Ei Dy (Ki, Li, E;, Y;, C)
=yM, DY (k. Iy, 1, 1,6)™ j L8, %,C)

Cy/D§(Ki, Li. B, %, G) D (Ki, Li. Ex. %, G)
=¥ Dj(k, Iy, 1, 1,6)PCF-CPl S (6)

where k;j=K;/E; denotes the capital-energy ratio (KE)=L;/E; is the

labor-energy ratio (LE), and;=C;/E; is the carbon factor(CF) (Ang, 1999).

4The carbon factor is different from the emissioatda. The emissions factor is the
amount of carbon oxidized per unit of fuel consupradl its main match is fuel. The

12



237 (Cij/Dﬁ: (Ki,Li,Ei,Yi,Ci))/Eij is defined as the potential carbon factor (PCF)ctwvh
238 reflects the potential level of the carbon factdrew the technical efficiency of an
239  entity in terms of emissions can be promoted tohibst practice (Wang and Zhou,
240 2018; Zhou and Ang, 2008D,J(K,,L,,E| Y,,C)/D (Ki,L;,E,Y;,G) is defined as the
241  carbon performance index (CPI) and is the raticactual carbon productivity to
242  potential carbon productivitywvhich is between 0 and 1. A larger CPI represents
243  better CQ emissions performance, which mainly reflects #ehnical efficiency of
244  emission (Zhou et al., 2012). If the CPI is equality, it means that the province
245  has the best C{emissions performance in the special sector.

246 Taking the average level of all regions, as a ezfee, the ratio in ICP between

247  region j and the reference regionan be decomposed by using LMDI-I as follows.

P M D, lj, 1, 1,6)PCR-CPl S

Pr - i,\il Dx(klr’ Iira 1! 11C|r)-1PCI:|rlCP||r§r:
248 = exp( W M) exp( W PCF.,>

Dy (k. i, 1, 1 6) ! PCF;
I r
249 -exp (Ziw W Cplll) (Zi\" W ind ) A Pocr Aoy Ajstr c (7)
ir_ LY /G.Yie /Cr)
250 w'= v (8)
as5b
L(a,b)=<Ilna-Inb,a%# b
a,a24p 9)

253  whereA represents the multiplicative effects,represents the weight function and
254 is the logarithmic mean function (Ang, 2015). Thabscript mix represents the

255 comprehensive effect involving th€E, LE, andCF difference, andtr-C represents

“carbon factor” is the ratio of COemissions to energy consumption and it can be
disaggregated into the emission factor and thedoate (Ang, 1999).
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256 the CO, emission structure effect. Hence the disparity imdustrial carbon
257  productivity between regiopandr is mainly caused by these four effects. The result
258  of multiplicative decomposition can express thatreé contributions of regional ICP
259  attributable to regional differences in one driviiagtor based on the same absolute
260 amount (here is the national average) (Ang, 2004 ét al., 2015).
261 To quantify the difference of three effects, k&, LE, andCF between region
262 and regiorr, it is necessary to carry out the second staggeodmposition. Putting
263 the three factors mAnI,X into D (ki ,liy,1,1 qr)/D (k;j.lij,1,1,G) one by one in
264  different combinations by using Laspeyres-linkedhnds (Wang et al., 2017), there
265 are six decomposition results. This method coirxidi¢h the Siegel formula, and has
266 been used by (Wang and Zhou, 2018). The decompoditirm of the second stage
267  can be expressed as Eq. (10).
Di\{(kira Iira 1, 11Qr)
DJ(klj! Iij! 1, 1!C|j)
2 2 g
-Di\r((kir: Iira 1, 11Cir)- . -DiY(kira Iija 1, vaij)- . -DiY(kirv |ija 1, vair)- . -DiY(kirv Iira 1, vaij)- 6.
Dly(kljv Iir! 1, 1,Cir)_ DI(klja Iijv 1, l’Clj)_ DIY(kijv Iijv 1, 1’Cir). DIY(kljv Iirv 1, l’CIJ).
1
-Di\r((kir: Iirv 1, 1’Cir)-2_ -DiY(kijv Iirv 1, 1-Cij)-2. -DiY(kija Iira 1, lvcir)- . -DiY(kira Iira 1, lvcij)- 6'
Dly(klrv Iijv 1, 1’Cir)_ DI(kijv Iijv 1, l’clj)_ _DIY(kija Iij! 1, 1,Cir)_ DIY(klri Iij! 1, 11CIJ).
1
-Di\r((kir: Iirv 1, 1’Cir)-2_ -DiY(kijv Iija 1, lvcir)-zl -DiY(kija Iira 1, lvcir)- . -DiY(kira Iijv 1, 1-Cir)- ®
Dly(kiri Iir! 1, 110!])_ DI(kijv Iijv 1, l’clj)_ _DIY(kija Iir: 1, l’clj). DIY(klri Iij! 1, 11CIJ).
268 =KE!"-LE'"-CF'" (10)
269 The ratio of] andr in ICP can be decomposed as Eq. (11)
PJ — j, ir
270 = Alg - Alg AL AL AL A (11)
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291

Compared with the reference region the carbon factor effect (CFE), the
labor-energy substitution effect (LESE) and theitedygnergy substitution effect
(KESE) of regionj are Ae, AL, Al" respectively. The CFE is mainly influenced
by the energy consumption structure. The KESE aB8H. represents the level of
substitution of capital for energy and labor foremgyy, respectively. If the
decomposition value is greater than 1, it meantsttigarelevant factors cause the gap
between regionj and r to increase in terms of ICP and vice versa. Hermee t
disparity in ICP between regignandr was found to be caused mainly by these six
effects (ref. Egs. 11).

3.2 Data sour ces and description

Our research employs sectoral level data for variogustries in 29 of China’s
provinces/regions. (Unfortunately, the ICP for Hakgng, Macao, Taiwan, Hainan
and Tibet could not be calculated due to excesgams in the published data.) All
input and output variables in this study were aggted into a unified classification
with 22 sectors (Appendix A2), and the price wasvested to the 1997 constant level
by using the double deflation method (United Naiat999).>

The spatial-PDA decomposition model involves sixialaes, i.e. industrial added
value, capital, labor, energy consumpti&), e€nergy-related CQOemissions €), and
ICP (P). The industrial value added (in one hundred omlICNY) collected from the

China Industry Statistical YearbooR017 (NBSC, 2017), eliminated the influence of

price fluctuations. The data for capital (in onentited million CNY) was gathered

s The data can be shared upon reasonable request.
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310
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313

from China Fixed Assets Investment Statistics Yearb®@k7 (NBSC, 2017a). The
labor was measured using the average number ajratetmployed people working
in each sector at the end and beginning of the 846 with the unit as 10,000
people, and derived fror€hina Population and Employment Statistics Yearbook
2017(NBSC, 2017b)The data pertaining to the different types of ggezonsumed

in the various regions and industrial sectors weo#ected fromChina Energy
Statistical YearbooKNBSC, 2017c)and Provincial Statistical Yearbook@NBSC,
2017d)and converted into a calorific value in Tega jo{1i8).

The industrial C@emissions from 22 industrial sectors in each ef28 provinces
were estimated using the method from Shan et &RQR Although this method
required high-quality and quantitative data setsyaae detailed emission inventory
could be obtained, which included the emissiong bindustrial subsectors and 17
energy types in each region. In this research, lagsified these 40 industrial sectors
into 22 industrial sectors according to the metbddseng et al. (2013). The GO
emissions were caused mainly by fossil fuel combnsind industrial production.

Industrial CQ emissions from fossil fuel combustion were deriveeged on the
relation:

Cui= 217,322 ADi-NCV,,-EF,- Oy (12)
whereCy;refers to the C®emissions from fossil fuel combusted in industrial sector
i; ADy; refers to the activity level of fossil fualin sectori; NCV, andEF, represent
the net caloric value and emission factor of ddfearfuel types, respectively. In this

study, EF, was based on the result of Liu et al. (2015), Whias measured by
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analyzing 602 coal samples from the 100 largedtmia@ing areas in China (Liu et al.,
2015).0,; represents a carbon oxidation ratio for diffeisettors and fuel types.

Industrial CQ emissions from industrial production on the othend was
computed as:

C,= XvAD,-EF, (13)
whereC, indicates C@ emissions from industrial processesAD, indicates activity
data; ancEF, refers to the emissions factor. Most of this infation was collected
from IPCC (2006), except for the cement process fiau et al. (2015).

Accounting to Eq. (5), ICP was calculated as foBow

P=Y/C (14)

The statistical result of the input and output ableés showed significant
differences across the 29 provinces, with the maxrinvalue being approximately 13
times larger than the minimum value in ICP (seeld@b.r as a reference region was
built by the average number of three input variglfe L, E) and two output variables
(Y, C) for the 29 provinces in the M-R model (see Talppendix B). Moreover, the
average value of all variables except ICP was fatggn the median value, indicating
a right-skewed data distribution.

Table 2. The statistical description of industrial inputslayutputs of 29 provinces,

2016
Energy Industrial CG, ICP
Capital Labor Consumption  value-added emissions (CNY/kg)
(1°CNY) (10'persons) (10 Joules)  (10° CNY) (10" tons)
Maximum  26442.71 2277.93 867.79 32650.89 73658.1 10.32
Minimum 709.81 45.10 51.27 901.68 3902.35 0.77
Mean 7820.72 570.83 308.40 9814.06 27688.33 3.54
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353

Median 6370.01 345.14 236.28 7219.11 20118.87 3.70
Standard
deviation 6507.21 527.17 189.50 8194.00 18@M0.4 2.28

4. Resaults

4.1 Empirical resultsand analysis at the provincial level
4.1.1 Spatial distribution characteristics

Figure 1 portrays the variation tendencies pregemidustrial carbon emissions,
China’s ICP, and the ICP of eastern, northeastrakem@nd western China from 2000
to 2016. In terms of carbon emissions, there waspmmard trend until 2013, and a
downward trend after 2013 until 2016. It is cldattChina's overall and regional ICP
were generally on an upward trend, only to decrbasdly between 2008 and 2009.
After 2009, it improved dramatically again, withethCP reaching a peak in eastern
China (4.7 CNY/Kg), the central region (3.4 CNY/Kghd western region (2.5
CNY/Kg) in 2016, respectively, whereas in the nedst region (3 CNY/Kg) in 2014.

Figure 2 shows the industrial G@&missions and carbon productivity of the 29
provinces and the reference region in China duthmeg period studied. Regarding
industrial CQ emissions, Shandong (736.58 million tons), Heb&8(89 million tons)
and Jiangsu (654.50 million tons) were the top éhpeovinces, while Shanghai
(116.65 million tons), Qinghai (45.63 million tongnd Beijing (39.02 million tons)
were the bottom three provinces. This is consistétit the results of Shan et al.
(2020). The regional distribution of G@missions and carbon productivity varied
greatly due to the differences in GDP.

China’s ICP of 3.54 yuan value added per unit of, QONY/kg) in 2016, was

lower than China's overall carbon productivity, Z63CNY/Kg (Li and Wang, 2019).
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354  The ICP of the reference region (3.54 CNY/Kg) rahkeventeenth among 30 regions.
355 Beijing (10.32 CNY/kg), Guangdong (8.54 CNY/kg) aBtanghai (648 CNY/kQ)
356 were the top cities in terms of ICP in 2016. Xinga(0.77 CNY/kg) had the worst
357 ICP, followed by Ningxia (0.78 CNY/kg) and Shanxi.Gé CNY/kg). The results

358 indicate that the ICP of Beijing was 13.33 timesat thf Xinjiang.
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360 Figure 1. China’s industrial C@emissions and ICP from 2000 to 208éurce
361 the China Emission Accounts and Datasets (CEADS)
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Figure 2. Industrial CQ emissions and ICP in 29 provinces and the referenc
region, 2016.

Notes: The top X-axis is the scale that matcheathestrial CQ emissions, while the

bottom X-axis is the scale that matches the ICP.
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Figure 3. The spatial distribution of ICP in China, 2016.
The geographical spatial distribution of ICP istf@dd in Figure 3. The ICP in the

southeast coastal provinces was the highest, fetlowy that in the mid-west
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provinces. It can be observed from Figure 3 that BP of most of the eastern
provinces was above the average level (3.54 CNYIK@016, except for Hebei and
Liaoning. In contrast, the ICP for most of the veestprovinces was less than that of
the reference region, except for Chongging, Sichaad Guangxi. In the middle of
China, the ICP for five out of the eight provinaeas higher than the average level.

This result is roughly consistent with the workuiésf Long et al. (2016).
4.1.2 Provincial-level disparities

Figure 4 reports the provincial aggregated ICP @sddecomposition results
compared to the reference region. Among the 29 ipceg, the KESE played a
positive role in 20 provinces in driving up the@R compared to the reference region.
This means that it is an important component ineusidnding the provincial
disparities in ICP. By contrast, the LESE contrdzlibegatively to the increase in the
regional disparities in ICP for all provinces exc8gijing, Liaoning, Anhui, Jiangxi,
and Hunan. Relative to the average level, KESEedrmost provinces’ ICP higher.
LESE was a more potent factor than KESE in termsngiroving technological
efficiency in production for 24 out of the 29 proges. This is consistent with the
results obtained by Wang and Zhou (2018). Lin amnd(2014) analyzed these two
driving factors when examining the decline in Chsnenergy intensity and reported
similar findings.

Next, the carbon performance index effect (CPIEnost of the eastern and central
provinces was higher than 1, particularly for Beji Guangdong and Shanghai,

which drove their ICP higher than in the referenegion. In contrast, the CPIE for

21



393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

Hebei, Liaoning, Heilongjiang, Shanxi, and mosttled western provinces played a
negative role in increasing their ICP comparechwadverage level. This is consistent
with most literature (Lin and Du, 2015; Yao et &Q16; Zhou et al., 2013) and
suggests that compared to the average level, timital efficiency of Hebeli, two
northeast provinces and most of the western presimt terms of C&@emissions, has
not promoted their overall ICP. Compared to theraye level, the CFE and potential
carbon factor effect (PCFE) contributed negativédy the increase in regional
disparities in ICP for all provinces in China. Thesults reveal that there is an
imbalance in the energy consumption structure ckggrmost of the provinces in
China (Wang et al., 2015). This therefore suggtsisthe CFE and PCFE could be
further improved.

CESE was another factor contributing to increadivegregional disparities between
each province and the reference region in term€Bf There was no evidence of any
significant improvement with regards to the diviéesi in ICP among most provinces,
except for Shanghai, Zhejiang, Fujian, Guangdoitig, Hubei, Sichuan, Chongging,
and Qinghai. Compared to the reference region, somsstructure only drove up
carbon productivities in nine provinces Hence, ¢hex great potential to improve
regional ICP through industrial structure adjustmerhis is consistent with the

results reported in (Meng and Niu, 2012).
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Figure 4. Decomposition results compared with those of &éference region
Notes: The red, blue, and black fonts in the titlethe vertical axis portray provinces
in eastern, central, and western China, respectivel

4.2 Empirical resultsand analysis at the sectoral level
4.2.1 Sectoral level disparities for the ICP in @i

Figure 5 portrays the industrial G@missions and ICP of 22 industrial sectors in
China. The top three sectors in £@missions were the electricity sector (S20),
smelting and pressing of metals (S13) together nathmetal mineral products (S12),
followed by petroleum processing and coking (St@gl mining and dressing (S1)
and the chemical sector (S11). All of these aregnmtensive industrial subsectors.
However, the carbon productivity for these sectoas low. The absolute difference
in sectoral carbon productivity was significant.eTICP of sectors categorized as

low-carbon industries was generally higher thart ithaluded in carbon-intensive
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industries. This is consistent with the resultgWwf Li et al., 2018), in the sense that
carbon productivity of the top sector, namely, nfaoturing of electronics,
instruments, culture and office equipment (S188(38 CNY/kg) was 109.52 times
the level of overall ICP (3.54 CNY/kg) in China, Mehthe electricity sector (S20)
(0.34 CNY/kg) had the lowest carbon productivitythugh the electricity sector is a
high energy-consuming industry striving for a loaraon development, the continued
heavy reliance on coal to generate electricityn@schanged. In 2016, the proportion
of fossil energy generating electricity reached 7@%eet al., 2017). Moreover, coal
prices have risen sharply since March 2016, inangathe cost of electricity and
posing a huge challenge to the growth of carbowlywtvity in the electricity sector

(National Energy Administration in China, 2016).
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Figure5. Average industrial C®emissions and ICP in 22 industrial sectors in @hin

2016
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440 Notes The top X-axis is the scale that matches the indli§€€O, emissions, while the
441  bottom X-axis is the scale that matches the ICR.t€hm “industry” denotes China's

442  overall industrial sector.
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443  Figure6. Sectoral decomposition results of comparing intgissectors in 29 regions

444 to the reference region

445 Notes The horizontal axis represents 22 industrial sestand the vertical axis

446  represents 29 provinces. The red font in the ttiethe vertical axis portrays the 13
447  provinces with a below-average ICP level (the IGReference region). The red font
448 in the title on the horizontal axis indicates ti& industrial subsectors were the main
449  cause of the below-average ICP in these 13 progintke yellow area indicates that
450 the decomposition value was greater than 1. Theratblor areas were less than 1,

451  where red represents the minimum value.

452 Next, carbon productivity was considered at thaaat level (horizontal axis in

453  Figure 6). From Figure 6, the value below 1 indisathat a specific industrial sector
454  contributed to the overall ICP of its correspondmegion and was lower than the
455 reference region (average level). For instancapfem and natural gas extraction

456  (S2) contributed to the lower ICP of 5 regions,luding Liaoning, Heilongjiang,

25



457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

Sichuan, Ningxia and Inner Mongolia, and contrilute the higher ICP for the other
24 regions compared to the reference region. Taatrpoints out that compared to
the reference region, improvements in the carbadymtivity of S2 in these five
provinces should be prioritized for effectively ieasing these provinces’ overall ICP.
In contrast to the reference region, the petroleamd natural gas extraction and
processing sectors (including S2, S10, and S21jribaoted the most to increasing
most regions’ ICP. Meanwhile, the paper, printiaglture articles manufacturing and
metal products sectors (S9 and S14) were the waakrs in most of the northeast,
central and western regions, and caused theseng@ieP to be lower than that of the
reference region. In addition, the chemicals se¢&¥rl) in seven regions, Hebei,
Heilongjiang, Shanxi, Gansu, Qinghai, Xinjiang, ahther Mongolia, obviously
resulted in levels of carbon productivity that wererse than the average level.

From the regional level (the vertical axis in Figus), we found that industrial
subsectors with below-average carbon productivigrendistributed mainly irl3
regions, that isHebei, Liaoning, Heillongjiang, Shaanxi, Anhui, Shanxi, Yunnan,
Guizhou, Qinghai, Inner Mongolia, Gansu, Ningxia, and Xinjiang. This result is
completely consistent with that of the regions igufe 2 where the overall ICP was
lower than the average level. These 13 provincesréie more attention to effectively
improve China's overall ICP. Hence, this study &axlion these 13 regions.

We further investigated the major industrial sestaffecting the ICP for the 13
regions in 2016, From Figure 6, the driving indiastsectors affecting ICP had

significant heterogeneity among regions. For examfadr Hebei province, the main
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industrial sectors that caused its ICP to be beleerage level were S4, S5, S8, S11,
S12, S13, S15, S16, S18, S20, and S22, while fonan, they were S5, S8, S9, S14,
S15, S18, S20, and S22, for Shanxi, they were 5456, S7, S9, S10, S11, S12, S13,
S14, S15, S16, S17, S19, and S22. However, fol3nhprovinces, the followind2
major industrial sectors contributed to their below-average carbon proditgti
including five ener gy-intensive manufacturing sectors ( including food and tobacco
(S5), paper and paintingSg), chemicals $11), non-metallic minerals12) and
refining (S13)), six nonenergy intensive manufacturing sectors (including wood
products £8), fabricated metal product§¥4), and ordinary and special equipment
(S15), transportation equipmenrsl6), machinery and electrical equipméB17), and
computer and electronic productl8)), and the sector for production and supply of

electric power, steam and hot wat82{@)s.

4.2.2 Contributions to ICP from the industrial sastin each region

The driving factors behind the regional dispariiegarbon productivity across 12
industrial sectors in the 13 regions mentioned aebwsed further analysis. From the
sectoral perspective, the contribution of eachidgvorce in 22 sectors in each region
was significantly different. Taking Hebei as an myde in Table 3, according to the
analysis in Section 4.1.2, PCFE, LESE, CFE, CPiid, @ESE contributed to a lower
overall ICP than the reference region at the pmainlevel,. This reveals that the

improvements in PCFE, CFE, LESE, CPIE, and CESE dradter potential than

6These 12 industrial sectors are the most impordaiving factors behind ICP in the 13

provinces (Hebei, Liaoning, Heilongjiang and mosttlee central and western provinces)
selected in this paper, but not for all provinge€hina.
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499 KESE to increase Hebei's ICP. However, that prdpssaot targeted for all 22
500 industry sectors in Hebei. From Table 3, in terrhsransportation equipment (S16)
501 (0.7791) in Hebei, CFE, CPIE, and CESE values Jes®than 1, suggesting that the
502 local government of Hebei should pay more attentionthe improvement of
503 transportation equipment manufacturing and ,GEnission performance. The
504 decomposition result of each industrial sector werg region was similarly
505 conducted.

506 Table 3 Sectoral decomposition results of comparing indalstectors in Hebei to the

507 reference region

Sector PCFE KESE LESE CFE CPIE CESE Total

S1 0.9939 0.9969 1.0006 0.9969 11356 1.0011 5.123
S2 0.9942 0.9998 1.0001 0.9991 11351 0.9994 8.126
S3 0.9994 0.9999 0.9994 0.9945 1.0530 0.9997 5.045
S4 1.0000 1.0004 0.9993 0.9962 0.9981 0.9991 @.993
S5 0.9997 1.0014 0.9999 0.9874 0.8770 0.9949 6.862
S6 0.9958 1.0003 0.9995 0.9918 1.1065 0.9959 1.088
S7 0.9987 1.0001 0.9999 0.9915 1.0146  1.0001 T.004
S8 1.0005 1.0001 0.9993 0.9962 0.9788 0.9987 @.973
S9 0.9983 1.0006 1.0000 0.9965 1.02908 0.9971 1.022
S10 0.9979 1.0011 1.0013 1.0067 1.0355 0.9976 03.04
S11 0.9982 1.0038 1.0005 0.9749 0.8581 0.9921 20.83
S12 0.9997 1.0014 0.9988 0.9949 0.9890 0.9963 00.98
S13 1.0028 1.0053 0.9933 1.0162 0.8393  1.0137 5@.86
S14 0.9981 1.0000 1.0001 0.9932 1.0590 0.9993 92.04
S15 1.0002 1.0002 1.0000 1.0042 0.9243  0.9983 60.92
S16 1.0051 1.0019 1.0022 0.9953 0.7795 0.9951 90.77
S17 0.9994 1.0001 1.0006 0.9933 1.0177 0.9941 51.00
S18 0.9994 1.0012 1.0012 0.9942 0.7876  0.9971 2Q.78
S19 1.0005 1.0002 1.0000 1.0035 1.0051 0.9989 82.00
S20 1.0027 1.0004 0.9978 0.9981 0.9517 0.9975 8a.94
S21 0.9997 1.0002 1.0003 0.9999 1.0249  0.9984 33.02
S22 0.9999 1.0000 1.0000 0.9996 0.9969 0.9999 606.99
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Figure7. ICP's decompositions for Hebei

Notes: The blank area indicates the decomposition resuliigher than land vice
versa. The red indicates the minimum decompositialue. For instance, for
chemical sector (S11), the driving factors of KESt LESE increase its carbon
productivity compared to the average level. The mary contributor to
below-average carbon productivity in S11 of HelseCPIE, followed by CFE, CESE
and PCFE.

Taking the 12 industrial sectors in Hebei as anmgte, in Figure 7, if the
decomposition index value of the driving forces \ess than 1, the influencing factor
caused the regional ICP to be lower than that@féfierence region. In contrast to the
reference region, manufacturing for transportaggnipment (S16) with a minimum
decomposition value of 0.7791 (see as Table 3)ribaried the most to reduce the
Hebei’'s ICP, with CPIE, CFE, and CESE being themakiving forces. This suggests
that the carbon technical performance, energy aopsan structure and industrial
structure played a very large role in decreasiegctrbon productivity of S16. CESE,
PCFE, CFE, and KESE increased carbon productieityss all 12 sectors. The LESE

for most of the 12 industrial sectors was more thaexcept for the refining of metals
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530

(S13), electricity sector (S20), and manufacturfog food (S5), wood (S8), and
non-metallic minerals (S12). A similar analysis westended to the other 12
provinces. The ICP can be promoted more effectiieyy improving targeted
sector-level impact factors with limited resourceélse sectoral driving factors (where
the decomposition result was less than 1) that b@venost potential to improve ICP

were combined to inform a particular sector of Hovwmprove its carbon productivity.
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Figure 8 shows the potential factors for improvihg 12 industrial sectors’ carbon
productivity in 12 regions (except Hebei). We fouhdt the CESE had the potential
to improve the corresponding industrial sectorsboa productivity for all 13 regions.
The CPIE was the dominant cause of the below-aeecagoon productivity for 12
industrial sectors in 9 provinces except for Ant&haanxi, and Ningxia. This means
that for these industries, the ICP can be impravede effectively by upgrading the
production and emission technologies. Furtherttier12 industrial sectors in these 8
western provinces, the LESE and CFE are other mpoitant factors that have great
potential to increase sector carbon productivityhisTis consistent with the
decomposition results at the provincial level.

Also, Figure 8 reports that the heterogeneitiesrayrdrivers in different sectors of
different regions were large. Taking Liaoning asexample, the PCFE and CPIE
were the two most promising driving forces to iras®e carbon productivity across all
12 industrial sectors, especially for the chemisattor (S11) and transportation
equipment (S16). This was mainly due to Liaoningergy emission structure still
being fossil fuel-based, notably coal (Geng et2013), and its emission technology
level which could be improved. For Heilongjiange t&PIE for the chemical sector
(S11), refining of metals (S13) and transportatemuipment (S16) was the most
noteworthy factor for increasing the ICP. This cbdes with the fact that the
northeast region had a single industrial structanel was overly dependent on
resource-based industries. Furthermore, for thie bégbon industry sectors (S11, S12,

S13, and S20) in several provinces rich in natweslources, especially Shanxi,
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Shaanxi, Xinjiang and Inner Mongolia, resource adage did not significantly

promote the improvement of ICP. This was mainly tlughe low resource utilization

resulting from the slow transfer of production teglogies from the east to central
and western China.

5. Discussion

A decomposition technique was used here to conuudti-region comparisons of
ICP in China. The results isolated the drivers belthe regional differences in ICP
and further identified the provinces and industieth poor ICP together with their
driving factors.

At the provincial level, the capital-energy suhgtdan effect was the main driver
which increased most regions’ ICP compared to #ference region. As for the
labor-energy substitution effect, only five prowescwere above average. These
findings differed from other studies (Salim et &Q17) which found a significant
potential to replace energy with labor in China.sTHifference could be due to
differences in the measurement of the labor impafCt€P: we assessed the number
of employed as labor impacts, while the aforemesiib studies focused on the
impacts of the employees’ education level. Our wtaed the previous studies
together provide key insights: Salim et al. (20d@)ermined that energy conservation
in China could be achieved by improving post-schimoman-capital components,
while we believe that energy cost reductions artpuduincreases can be achieved by
optimizing the allocation of two inputs (labor ardergy). Due to China’s energy

endowment structure characterized as “rich coalagee oil, and poor gas”, most
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provinces’ energy consumption is still dominated dnal (Li and Wang, 2019).
Therefore, improving the energy consumption stngctsl another important challenge
for China in its quest to improve ICP. Also, the fissionperformance of the
western provinces was worse than the average. i$hisainly a function of their
backward emission reduction technologies. Meanwliile CQ emissions structure
effect had a less significant effect on raisingvomoial ICPs higher than the ICP of
the reference region. This may be due to the faet the nature of China's
industrialization has remained unchanged, and enangrowth still relies too much
on industries that are high energy consumers aridhégh levels of pollution.

In terms of the absolute ICP (29 provinces as a)totin 2016, 13 provinces were
below the national average level including Anhughidi, Heilongjiang, Liaoning, and
all the nine western provinces. These 13 provimcesnainly located in northeastern,
central, and western China. Most have abundantalatsources, especially Shanxi,
Shaanxi, Inner Mongolia, and Xinjiang, causing thentontinue their specialization
in heavy industries. At the same time, most of th@ustries which have been
relocated from the east to the west regions are/yha@adustries. Although this
over-reliance on resource-based industries andyhadustries has been the mainstay
of the economy in these regions, the ICP is stitlkward, reflecting the low resource
utilization and unbalanced industrial structure.

For the industrial sectors within each provinceréhwere significant differences in
those that have a major impact on the provinci&l.IThese 12 industrial sectors were

the main drivers causing ICP in the 13 regions ¢obklow that in the reference
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region, including five energy-intensive manufaatgri sectors, six nonenergy
intensive manufacturing sectors and the sectopffoduction and supply of electric

power, steam, and hot water (see in chapter 4.2dt)the wood products sector, one
possible reason for its weak carbon productivitulddbe the lower investment in

environmental protection, especially in the wooddzhpanel industry (high pollution,

and high environmental risk). The production anpipby of electric power, steam, and
hot water mainly involves heating and electricidine of the 13 provinces require

winter heating. The heating industry involves highergy consumption, high

emissions, high investment, and low efficiency. rElfigre, increasing its carbon

productivity is a huge challenge (Chinabaogao, 20IBe sudden increase in energy
prices (mainly coal prices) (National Energy Adrmstration in China, 2016) makes

increasing the carbon productivity levels even nubficult.

The major industrial sectors of the provinces vt ICP need to be targeted for
efforts geared to improving China's overall ICP eneffectively. Therefore, the 12
industrial sectors in the 13 provinces mentionedvabwere selected as the key
research cases for this study.

From the perspective of the provincial industriatters, the driving factors behind
the ICP in the 12 industrial sectors in the 13 proes were revealed to clarify the
necessary development direction needed to increasall ICP. From Figure 8 it can
be seen that an industrial structure upgrade niells carried out to promote ICP for
the 12 industrial sectors in the 13 provinces (Male 2019). However, industrial

restructuring is unavoidably a long-term strategpal and is particularly difficult for
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regions with a single industrial structure and ssoee dependence on heavy industry
development, especially in China’s northeast andteva provinces. Moreover, we
found that the driving sectors in most of the regiovith a lower than average ICP
levels were not only high-carbon industrial sectbrg also six low-carbon industrial
sectors (6 nonenergy intensive manufacturing sectut of 13 sectors. This indicates
that industries with low-carbon emissions also haveignificant impact on the
regional overall ICP, suggesting that it will be iae@fficient to increase the ICP by
improving resource allocation among the industsattors (including technology,
financial assets, and human capital, and energuress), than to transform regions’
economic structures from high-carbon industriesow@-carbon industries, especially
in those provinces that rely on heavy industries.

The carbon performance index effect (CPIE) for 1Besectors in the 13 provinces
reflects the level of C@emissions performance, and also the level of telogy (Lin
and Du, 2015; Zhou et al., 2012). According toitigustry classification found in Li
et al. (2018), there were five low-carbon and higthnology industry sectors in the
12 industrial sectors, including manufacturing wittoed and tobacco, ordinary and
special equipment, transportation equipment, mackiand electrical equipment, and
computer and electronic products. (W. Li et al.1&0reported that low-carbon and
high-technology industries were the technology éeacand had a positive effect on
the improvement of carbon productivity. Howeveredio the backward technical
level of the 12 sectors in the 13 provinces, exdéepAnhui, Shaanxi, and Ningxia,

the role of technology in promoting carbon produitgi has not been exerted. This
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differs from the results of (Y. Li et al., 2018} @e considered regional heterogeneity
and focused on low-carbon emission technologieslevthe aforementioned studies
focused on industrial production technology. Iniidd, the 12 industrial sectors had
significantly different energy consumption struetsir technical levels, industrial
structure and energy and non-energy substitutidecst This complicates the
standardization of policies geared to increasirggdairbon productivity of each local
government.

6. Conclusionsand policy implications

Increasing carbon productivity is crucial for Chibecause it is the largest carbon
dioxide emitter in the world (Peters et al.,, 201R)must find ways to mitigate
emissions while maintaining high levels of econorgrowth. Measuring ICP by
province and industrial sector can help Chinesécymlakers prioritize the sectors
and regions so as to minimize the costs of carbitigation. We quantified the causes
of the disparities in ICP, at both the provincisdasectoral levels. We also put
forward targeted recommendations after conductingraparative analysis of ICP in
29 provinces and 22 industries in 2016 by applyiregspatial-PDA model.

The main conclusions and implications are as fatoa) At the provincial level,
the capital-energy substitution effect was the ntainse of the higher ICP compared
to the reference region, while the labor-energysstuiion effect had the greatest
potential to increase most provinces’ ICP; b) t6® lin 13 regions (Anhui, Hebei,
Heilongjiang, Liaoning, and all the nine westeroyinces) was below the average

level. A total of 12 key industrial sectors werentified as the main cause of the ICP
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in the 13 regions being lower than the averagd.ldlese were mainly the electricity
sector, five energy-intensive manufacturing sectdath food and tobacco, paper and
paint, chemicals, non-metallic minerals and refjpiand six nonenergy intensive
manufacturing sectors with fabricated metal prosluatdinary and special equipment,
transportation equipment, machinery and electremipment, and computer and
electronic products; c¢) For the 12 industrial sextin the 13 provinces, the
differences in driving factors were significant. efindustrial structure and carbon
performance index effect were the main factors dwatdtributed to the sub-average
ICP.

Based on the above analysis, the following poleommendations are proposed.
First, provincial governments should give priority improving the labor-energy
substitution effect and energy emission structw@eabse these two factors were the
main reason why ICP in many provinces was belowabwerage level. Due to the
significant regional disparities in resources, ewoits, and technology, local
governments should carry out differentiated enesgnategies. To significantly

improve their CQ emission efficiencies, the local governments irshad the western
provinces should focus on technology updates inyction and energy conservation
and emission reduction.. Also, strengthening tetdgyexchanges and other forms of
cooperation between the eastern provinces and muesggions could help actively
guide technological innovation and flows of assis@ato the western regions’ most
backward areas.

Second, priority should be given to increasing iBRhe identified 13 provinces
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and 12 industrial sectors that had lower than tlezagye national performance across
the country. The governments of the 13 provincesh(A Hebei, Heilongjiang,
Liaoning, and all the nine western provinces)shdoltease investment in science
and technology research and development on prastuttichnology, and introduce
low-carbon technologies to the main industriessTdauld help these provinces catch
up to the carbon productivity levels found in thestern region, and achieve more
balanced development among all of China’s regidhas improving the overall
carbon productivity of China. Policymakers shoulsbaredistribute more factors of
production (capital, labor, and G@mission rights) to the 12 identified industrial
sectors (main drivers causing ICP in the 13 praasnizeing lower than average level),
to narrow the differences in carbon productivitglahus improve the overall ICP. In
addition, since most of the manufacturing sectoesrecluded in the sectors that result
in low productivity, it is particularly importanbtupgrade manufacturing equipment
and processes in the manufacturing industry. Howekie transformation from high
carbon industries to low carbon industries may meatessarily improve ICP because
some low carbon industries also have low ICP.

Third, due to the vast differences among Chinavipices and their industrial
sectors, a holistic analysis of each province’sugtdal sectors is needed in order to
propose appropriate carbon productivity promotiotigies for each department. For
example, the transportation equipment sector ineHbhs the lowest decomposition
index (0.7832) relative to the average level dueitso backward technological

capabilities and an unbalanced industrial strucfsee Table 3). Therefore, based on
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the Beijing-Tianjin-Hebei coordinated developmetrategy, promotion policies for
this sector should pay more attention to absorlideging and Tianjin's advanced
industrial management experience and scientifieaieh results, such as technologies
for cleaner production and resource recycling, &l geared to improving
technological innovation. In the same way, oth@wvprcial governments should focus
on identifying the key industrial sectors that laadow ICP and the key drivers that
affect these industries, in order to efficientlytiopze the allocation of production
factors with limited resources.

The model in this paper combined with PDA and M-Rdel focused on
comparing provinces' ICP in a particular year, while changing pattern of regional
disparities over time cannot be analyzed. Therefareintegrated spatial-temporal
decomposition approach needs to be further propofkd changing pattern of
regional disparities overtime should also be cargid when exploring the influence
of carbon productivity. The ICP level and targetedasures for each province are
discussed in this paper. However, due to limitedoweces and environmental
constraints, even if the ICP of some specific pnogs improves, it does not mean that
the whole country’s carbon productivity will incesa Based on this study, a
comparative analysis of carbon productivity betwesty two provinces can be
performed to achieve a more detailed assessmel@Pofby province, thus making
resource allocation more effective. A resourcecalion problem worthy of further
study is to balance national resource allocatioouth the comparative advantage

between any two provinces to improve the carbomwlycbvity of the whole country,
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more detailed studies of carbon productivity, sashat the municipal level and
enterprise-level, are other directions worth explprin addition, provinces and their
sub-industries with above-average ICP are alsohyat investigating to improve the
overall ICP of China from the frontier regions.
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Appendix Al
Table Al. Region classification in China
Regional group Code)( Region Short name

1 Beijing BJ
2 Tianjin TJ
3 Hebei HE
4 Shanghai SH

Eastern China 5 Jiangsu JS
6 Zhejiang YA
7 Fujian FJ
8 Shandong SD
9 Guangdong GD
10 Liaoning LN

Northeast 11 Jilin JL
12 Heilongjiang HL
13 Shanxi SX
14 Anhui AH

Central China 15 Jiangxi JX
16 Henan HA
17 Hubei HB
18 Hunan HN
19 Guangxi GX
20 Guizhou Gz
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21 Sichuan SC

22 Chongging CQ
23 Yunnan YN
Western China 24 Shaanxi SN
25 Gansu GS
26 Qinghai QH
27 Ningxia NX
27 Xinjiang XJ
29 Inner Mongolia IM
Reference region 30 Reference region R

759 Note: According to the new situation of accelergtirconomic and social
760 development in China, the country is divided imtorfeconomic regions. The whole
761  Inner Mongolia is allocated to the west of ChinheT'Reference region” represents

762  the average level in socio-economic and,@dissions of the other 29 provinces.

763  Appendix A2

764 Table A2. Industrial sector classification
Code Sector Code Sector
S1 Coal Mining and Dressing S12 Nonmetal MineraldRrcts
Petroleum and Natural Gas . )
S2 _ S13  Smelting and pressing of metals
Extraction
S3 Metals Mining and Dressing S14 Metal Products

Nonmetal and other Minerals ) ) )
S4 S15  Ordinary and special equipment

Mining and Dressing

Food production and tobacco . .
S5 S16 Transportation Equipment

processing
S6 Textile S17 Electric Equipment and Machinery
Electronic and Telecommunications

Leather, Furs, Down and i
S7 S18 Equipment; Instruments, Meters, Cultural

Related Products ) )
and Office Machinery

S8 Wood products S19  Other industrial activities

Papermaking, printing, . .
P &P g Production and Supply of Electric Power,

S9 cultural, educational and S20
Steam and Hot Water

sports articles
Petroleum Processing and .

S10 . S21 Production and Supply of Gas
Coking

S11 Chemical industry S22 Production and Supplyaqgf Water

765 Appendix B
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766 Table B1. Data for the hypothetical reference region

Energy. Industrial CO, emissions Industrial -CE-':lI'bOH
Sector con136umpt|on value-added (104 tons) productivity
(10*°Joules) (10° CNY) (CNY/Kg)
S1 17.75 249.48 933.48 2.67
S2 3.33 92.72 184.62 5.02
S3 1.86 118.27 69.64 16.98
S4 1.25 72.78 42.00 17.33
S5 8.46 1096.90 164.51 66.68
S6 7.09 515.55 77.46 66.56
S7 0.59 142.50 9.85 144.69
S8 1.47 203.78 28.46 71.60
S9 6.49 323.80 117.06 27.66
S10 26.08 319.10 1007.70 3.17
S11 49.58 1270.54 604.07 21.03
S12 31.02 527.79 3386.94 1.56
S13 78.32 876.92 5299.71 1.65
S14 2.83 325.57 39.38 82.67
S15 3.94 749.74 175.20 42.79
S16 3.12 804.04 58.78 136.78
S17 2.32 590.47 36.87 160.16
S18 3.08 860.34 22.16 388.20
S19 0.58 71.32 28.64 24.90
S20 57.62 527.04 15340.55 0.34
S21 0.94 51.03 58.94 8.66
S22 0.66 24.38 2.28 106.97
Total 308.40 9814.07 27688.31 3.54
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