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Privacy Preservation in Location-Based
Services: A Novel Metric and Attack Model

Sina Shaham, Ming Ding, Bo Liu, Shuping Dang, Zihuai Lin, and Jun Li

Abstract—Recent years have seen rising needs for location-based services in our everyday life. Aside from the many advantages
provided by these services, they have caused serious concerns regarding the location privacy of users. Adversaries can monitor the
queried locations by users to infer sensitive information, such as home addresses and shopping habits. To address this issue,
dummy-based algorithms have been developed to increase the anonymity of users, and thus, protecting their privacy. Unfortunately,
the existing algorithms only assume a limited amount of side information known by adversaries, which may face more severe
challenges in practice. In this paper, we develop an attack model termed as Viterbi attack, which represents a realistic privacy threat on
user trajectories. Moreover, we propose a metric called transition entropy that enables the evaluation of dummy-based algorithms,
followed by developing a robust algorithm that can defend users against the Viterbi attack while maintaining significantly high
performance in terms of the traditional metrics. We compare and evaluate our proposed algorithm and metric on a publicly available
dataset published by Microsoft, i.e., Geolife dataset.

Index Terms—k-anonymity, spatio-temporal trajectories, location-based services, privacy preservation.
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1 INTRODUCTION

WITH the ubiquitous use of smartphones and social networks,

location-based services (LBSs) have become an essential

part of contemporary society. The users of smart devices can

download LBS applications from Google Play or Apple Store,

and ‘query’ for LBSs they desire. Query refers to a request

for a service by providing a location. For example, users can

query their locations from an LBS provider to find restaurants

nearby [1], refine route planning [2], and receive location-based

advertisements [3]. The annual market for LBSs is expected to

reach 77.84 billion US dollars by 2021, with an annual growth

rate of 38.9% [4].

Unfortunately, the privacy issues associated with the LBSs

have raised many concerns. Notably, after the recent Facebook

data privacy scandal occupying the headlines of major media [5].

Different from the security of data, which is mainly concerned

with secure encryption and integrity, privacy indicates how in

control users are to prevent the leakage of their data; Can LBS

providers analyze users’ locations to find out their home address?

Can LBS providers take advantage of users’ data to figure out

their shopping habits? Can LBS providers share user data with

third-parties? And these are just some of the issues that may

compromise the location privacy of users.

Krumm et al. [6] warn about the current location privacy

threats. The authors show that just by having the last location
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of a day, it is possible to estimate the home location within 60

meters of the actual site. The authors in [7] demonstrate that even

when locations are queried from LBS providers as members of

a community, sensitive locations associated with users can still

be identified based on the distribution of queries. Beresford and

Stajano [8] also warn that a system collecting users’ locations may

invade their location privacy. Therefore, it is crucial to devise new

ways to preserve the location privacy of users formally defined as

“the ability to prevent other parties from learning one’s current or

past locations” [9].

Researchers have proposed several approaches to preserve the

location privacy of users, among which dummy-based algorithms

have drawn a great deal of attention [9]–[13]. For a given user

location, the dummy generation algorithms aim at generating

k − 1 dummy locations aside from the actual location of the

user and submitting them all together to the LBS server. Thus,

making it difficult for untrusted servers, or so-called adversaries, to

identify the actual user location. All algorithms are executed in the

application layer of mobile phones before sending queries to LBS

providers. The groundwork in this field was laid by the authors of

[14]. They generated dummies randomly throughout the map and

evolved them as users move. Followed by this work, the authors

in [15] and [16] proposed to choose the candidate dummies from

a virtual circle or grid constructed around the current location of

the user.

More recently, an enhanced algorithm was proposed in [17],

termed as the dummy-location selection (DLS) algorithm. This

algorithm considers the likelihood of locations being real or fake

predicated on the history of queries on the map. The basic idea of

the DLS algorithm can be explained intuitively in Fig. 1. Assume

that a user is at location A and a dummy generation algorithm is

required to generate one dummy to preserve the location privacy

of user shown by A′. The DLS algorithm argues that A′ cannot

just be any point on the map but a location that has a similar

likelihood of being queried as to the location A. Such a likelihood

can be calculated from the history of queries on the map. For
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Fig. 1: An example of location privacy of the user being compromised by
considering the introduced side information.

instance, if the location A has been queried 1000 times, and A′ has

been queried only 5 times, the LBS provider can infer with a high

likelihood that the location A is the real location of the user. Based

on this logic, the DLS algorithm attempts to select dummies with

the same likelihood as the actual locations. Information such as

the query likelihood, and extra details that adversaries may know

are usually referred to as ‘side information’. Unfortunately, the

DLS algorithm overlooks a significant piece of side information,

which can severely compromise the location privacy, as explained

in the following.

Suppose that the user A moves to location B and the DLS

algorithm generates another dummy B′ associated with the loca-

tion B. Based on the history of trajectories traveled on the map,

the adversary may know the likelihood of paths which have been

traveled by users. For instance, the location B has been queried

sequentially after the location A for 220 times. This is shown by

a directed arrow connecting A to B in the map. Let us now look

at the four directed edges connecting the two sets of locations and

consider the number of times that each path has been traveled. It

can be seen from Fig. 1 that in total, location B has been called

320 times after locations A and A′, whereas location B′ has been

queried only 110 times. Therefore, the adversary can infer with a

high likelihood that the real location is possibly location B, and

thus, compromise the location privacy of user.

In this work, we study the impact of such side information

on the location privacy of users. Compared with the existing

literature, the main contributions of this paper are presented as

follows:

• We propose an attack model based on the Viterbi algorithm

and term it as Viterbi attack. This attack shows how

susceptible currently existing algorithms can be, as they

mostly see locations as independent snapshots.

• We propose a novel metric called ‘transition entropy’,

which considers the privacy of users in trajectories and

not just the static snapshots of the queried locations. We

explain the calculation of the metric for two consecu-

tive locations and then expand it to paths with higher

lengths. Moreover, we develop an exhaustive algorithm

that can improve the transition entropy for a given dummy-

generation algorithm.

• We develop an algorithm terned as robust dummy gener-

ation (RDG) that is resilient to the Viterbi attack while

maintaining the high performance in terms of the tradi-

tional cell entropy metric in addition to having a robust

performance in terms of transition entropy.

• We compare and evaluate the performance of the proposed

metrics and algorithms on a publicly available dataset

published by Microsoft, i.e., Geolife dataset.

The rest of the paper is organized as follows. We start by

explaining the existing literature in Section 2. Section 3 describes

the system model used throughout the paper including the system

architecture, the adversary model, and the side information that

may be exploited by adversaries. In Section 4, we introduce

our proposed metrics followed by explaining the proposed attack

model in Section 5. Next, the proposed algorithms are illustrated

in Section 6. Finally, we compare and evaluate the proposed

metrics and algorithms in Section 7, and we conclude our work in

Section 8.

2 RELATED WORKS

Anonymity is defined as “the state of being not identifiable within a

set of subjects, the anonymity set” [18]. Also, the location of a user

is said to be k-anonymous if it is not distinguishable from at least

k − 1 other user locations [19]. To obtain k-anonymity for users,

several approaches have been proposed, from which we have

identified four broad categories: location cloaking, mixed-zones,

pseudonyms, and dummy aided algorithms. The location cloaking

technique is based on requesting LBSs for an area consisting of

k locations via a trusted party, mixed-zones are predicated on

anonymous regions for users, the pseudonyms approach takes

advantage of fake IDs for users, and finally, the dummy generation

algorithms query fake locations to confuse adversaries.

Gruteser and Grunwald [20] initiated the research on location

cloaking. The key idea is to employ a trusted server in order to

aid users become k-anonymous. Upon receiving a query from

a user, the location anonymizer server computes a cloaking box

including the location of the user and k − 1 other user locations

and queries the requested service from the LBS provider for

all the k locations. Therefore, making it difficult for the LBS

provider to identify the user [21], [22]. Several algorithms have

been proposed to implement location cloaking scheme such as

ICliqueCloak [23] and MaxAccuCloak [24]. The main drawback

of the location cloaking is the need for a location anonymizer,

which is an additional cost overhead to the system. Also, the

location anonymizer can become a data privacy threat itself.

The authors in [25] proposed the idea of mixed zones. Mixed

zone is defined as the spatial zone where the identity of users is

not identifiable. All users entering into a mixed zone will change

their pseudonym to a new unused pseudonym making it difficult

for adversaries to identify the users. The anonymization process

is performed by a middle-ware mechanism before transferring

the data to third-party applications. The authors further extended

their work in [26] by considering irregular shapes for mixed

zones. Moreover, the use of mixed zones has particularly attracted

attention in vehicular communications. Applying mixed zones on

road networks is considered in [27], [28], where a mixed zone

construction method called MobiMix is proposed. Lu et al. [29]

exploited the pseudonym changes in mixed zones at social spots,

and Gao et al. [30] applied mix zones approach on trajectories

for mobile crowd sensing applications. Furthermore, the use of

cryptography for the generation of mixed zones in vehicular

communications is considered in [31]. As it is the case for location

cloaking approach, the main drawback of mixed zones is also

the need for a middle-ware mechanism or a trusted party before

transferring the data to an untrusted LBS provider.
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Another technique to increase the location privacy of users is

based on the assignment of pseudonyms to hide the identity of

users. The identity of a user can be the name of the person, a

unique identifier, such as IP address, or any properties that can be

related to the user. The authors in [32] proposed a scenario called

the intermediary scenario, in which a trusted intermediary collects

the location information of users, such as GPS data and assigns a

pseudonym before sending them to an untrusted third-party LBS

provider. The paper claims that the use of pseudonyms prevents

the third-party LBS provider from identifying and tracking users.

The work in [33] suggests that instead of delegating the generation

of pseudonyms to the location intermediary, users are suggested

to generate the pseudonyms themselves. The use of pseudonyms

for preserving the location privacy has also been considered in

vehicular communication systems, such as the work presented in

[34]. There are several drawbacks associated with this approach.

First of all, many of the location-based applications require users

to subscribe in order to use services. Secondly, similar to the last

two categories, this approach also requires a trusted intermediary,

and more importantly, by analyzing the patterns in location data,

an adversary can discover the identity of the users [35].

The dummy-based algorithms are considered to be a more

promising approach as there is no need for a trusted anonymizer.

This technique was initially proposed in [14]. The key idea is to

achieve k-anonymity by sending k − 1 dummy locations aside

from the real location of the user while requesting for a service.

All locations use the same identifier corresponding to the user,

and therefore, it would be difficult for adversaries to identify the

real locations of users. Several algorithms have been proposed to

help users generate dummies. The authors in [15] proposed to use

a virtual circle or a virtual grid that is based on the real location

of users to generate dummies. The idea was further developed in

[16]. More recently, an algorithm called dummy-location selection

(DLS) was proposed in [17]. The algorithm takes the number of

queries made on the map into consideration and demonstrates

via simulations that the previous algorithms are susceptible to

probability attacks. Although the algorithm provides an excellent

framework for the generation of dummies, it does not take into

account the susceptibility of users in trajectories and the privacy

threats associated with that. Do et al. [36] utilized conditional

probabilities to generate realistic false locations, and Hara et al.

[37] proposed a method based on physical constraints of the real

environment.

3 SYSTEM MODEL AND PROBLEM FORMULATION

3.1 System Architecture
Following the recent standards and the current system designs used

in the telecommunications industry [38]–[40], we adopt a non-

cooperative system architecture as shown in Fig. 2. In this design,

there are two main parties involved: LBS users and an LBS server.

There is also the telecommunication infrastructure in between

which works as a medium for communications between the two

parties. The role of each party is explained in the following.

1) LBS users: The system model consists of multiple users

equipped with mobile phones with embedded GPS modules. Users

can benefit from numerous services provided by downloading and

installing LBS applications on their mobile phones. The LBS

applications do not necessarily require users to log in to the

system, and users can request for services by providing their

(I) identifiers such as IP address, username, etc., (II) location

Fig. 2: System architecture of LBSs.

information, (III) type of services, (IV) some dummy locations

to hide their exact locations. Moreover, in this paper, we focus on

‘explicit’ trajectory data in which queries are made at uniform time

intervals. GPS data is the most representative example of explicit

trajectory data, which is widely used in researches of trajectory

analysis [41]–[43].

2) LBS server: The LBS provider is responsible for providing

queried services by users. It is capable of storing the queried

information and may have access to other databases and side

information. This configuration enables the LBS server to infer

the historical query probabilities of users, which can severely

compromise the privacy of users. After each query from a user, the

server stores the requested information and updates the database

accordingly. The LBS server may be untrusted and aim at abusing

the personal information of users. Thus, we refer to it as an

‘adversary’ throughout the paper.

3) Intermediary infrastructure: The queried services from the

LBS server are transmitted through telecommunications infras-

tructure. The telecommunications infrastructure is controlled by

mobile operators and regulated by government agencies [39], [44].

Therefore, such infrastructure is considered to be trusted in the

system model. Admittedly, this assumption might not hold for

untrusted operators and governments that violate the privacy of

users in the name of national security. Such a consideration is out

of the scope of our work here.

3.2 Preliminaries

Assume that the location map is divided into an n × n grid, and

a user communicates with an LBS server for service. At the time

tq , the user intends to make his/her q-th query from the service

provider, preserving kq-anonymity. Here, kq quantifies the privacy

protection requirement of the user. This metric implies that the

adversary is not able to identify the real location of the user with a

probability higher than 1/kq . Hence, such a user needs to transmit

kq − 1 dummy locations to hide his/her true location from the

observer. Note that the term ‘location’ refers to the cell in which

the user is located. We denote the set of locations transmitted to

the LBS provider at q-th query by

LSq = {lq1, lq2, ..., lqkq}. (1)
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Also, the real location is shown by rq , where rq ∈ LSq . The

probability of location lqx being the real location can be expressed

as

Pr(lqx = rq), ∀x = 1, ..., kq. (2)

In the next query, the user requires kq+1-anonymity and queries

the location set LSq+1 = {lq+1
1 , lq+1

2 , ..., lq+1
kq+1} from the LBS

provider. The probability of lq+1
y ∈ LSq+1 being queried consec-

utively after lqx ∈ LSq is denoted by

Pr(lqx ⇒ lq+1
y ). (3)

3.3 Cell Entropy Metric
The cell entropy metric was implicitly proposed as part of the

DLS algorithm in [17]. The metric is predicated on two factors:

query probabilities of cells and the concept of entropy explained

as follows.

For a given location set LSq = {lq1, lq2, ..., lqkq} which includes

the real location of a user and kq − 1 dummies chosen to

preserve kq-anonymity, the set of query probabilities are shown

by Bq = {bq1, bq2, ..., bqkq}, where bqj is the query probability of

location (cell) lqj for j = 1, 2, ..., kq . The query probability of cell

lqj is calculated by

bqj =
number of queries in lqj

number of queries in the whole map
. (4)

The cell entropy borrows the concept of entropy from information

theory to quantify uncertainty in query probabilities. The cell

entropy metric for location set LSq can be calculated as [17]

hc = −
kq∑

j=1

bqj log2(b
q
j). (5)

3.4 Side Information
There are several side information that adversaries may possess

to compromise the location privacy of users. Adversaries may

know about the probability of a query being made in different

locations of the map. For instance, if a location has been queried

five times among the overall 1000 queries made on the map,

its query probability can be calculated as 5/1000. Exploiting

query probabilities, adversaries can understand the likelihood of

locations being genuine or fake. For instance, if a user queries

two locations at the same time, one with a comparably higher

probability, it is more likely that the real location is the one with

the higher probability.

Query probability has always been a critical consideration

in the generation of dummy locations. In this work, apart from

the possession of traditional side information by adversaries, we

consider another prominent side information that can severely

compromise the privacy of users. That is, the trajectories users

have traveled, which reveals how many time a location has been

queried after its neighbor locations. Authorities do not specify any

time limit for storing the location information of the users, as it is

the case in the US [45]. This lack of legislation enables adversaries

to monitor users and get access to trajectories they travel.

4 TRANSITION ENTROPY

The Cell Entropy metric is a well-known and formidable approach

for preserving the privacy of users in telecommunication networks.

However, it is proven that the algorithms predicated on Cell

Fig. 3: Bipartite graph generated by two consecutive queries of a user.

Entropy are susceptible to inference attacks if adversaries withhold

background information about users. In this section, expanding

the novel idea of Cell Entropy, we propose a metric termed

as Transition Entropy to quantify privacy preservation in LBSs.

We start by explaining the metric for two consecutive queries,

then expanding it to trajectories with higher lengths. This metric

quantifies the privacy of users in trajectories and can be used as a

benchmark to compare and evaluate the performance of dummy-

based algorithms in trajectories. Therefore, Transition Entropy no

longer has the drawbacks of Cell Entropy as it is based on the

traveled paths of the users.

4.1 Transition entropy metric for two consecutive
queries

Consider q-th and (q + 1)-th query of a user from the LBS

provider. In the q-th query, the user requests service for the

location set LSq = {lq1, lq2, ..., lqkq} including kq − 1 dummies

and the real location of the user to achieve kq-anonymity. This

follows by moving to a new location with the anonymity constraint

of kq+1 and making its (q + 1)-th query. Note that dummies can

be generated using any of the existing algorithms in the literature.

To start with, based on the sets LSq and LSq+1, we generate a

bipartite graph shown in Fig. 3, where each set forms vertices at

one side of the bipartite graph. Looking at the history of queries on

the map, we denote the number of times location lq+1
y ∈ LSq+1

has been queried after location lqx ∈ LSq by nxy , and assign it

to the directed edge connecting lqx to lq+1
y . Also, as explained in

the system model section, for every location lqx ∈ LSq , we denote

the query probability of location lqx by bqx. Query probabilities are

also calculated from the historical data stored at the LBS provider.

Our goal is to find out how probable it is for each member of

the location set LSq+1 to be the real location, given the location

set LSq . In other words, the aim is to calculate the posterior

probability of members in LSq+1 with respect to LSq . This

probability for each member of LSq+1 can be written as
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∀ lq+1
y ∈ LSq+1 :

Pr(lq+1
y = rq+1|LSq) = (6)

kq∑

s=1

Pr((lqs ⇒ lq+1
y ), (lqs = rq)) = (7)

kq∑

s=1

Pr(lqs ⇒ lq+1
y |lqs = rq)Pr(lqs = rq), (8)

where (7) is the joint probability of lqs being the real location

of LSq , and moving to the location lq+1
y after lqs . The former

probability in (8) can be calculated as

∀ lq+1
y ∈LSq+1, ∀ lqx ∈ LSq :

Pr(lqx ⇒ lq+1
y |lqx = rq) =

nxy
∑kq+1

y=1 nxy

, (9)

and the latter probability indicates the normalized query probabil-

ity and is given by

∀ lqx ∈ LSq : Pr(lqx = rq) =
bqx∑kq

j=1 b
q
j

. (10)

Note that (10) indicates that the posterior probabilities of cells in

LSq are set to the normalized query probability of the locations in

LSq . By calculating (8) for every member of LSq+1, the posterior

probabilities of locations in LSq+1 are determined based on LSq .

Having these probabilities, we exploit the concept of entropy to

infer the uncertainty in identifying dummies. The entropy can be

derived by

ht = −
kq+1∑

y=1

Pr(lq+1
y = rq+1|LSq) log2(Pr(lq+1

y = rq+1|LSq)).

(11)

We define ht as the transition entropy of the location set

LSq+1 with respect to LSq . The transition entropy metric reveals

the uncertainty in identifying the real location by adversaries.

Having a higher transition entropy indicates that for each member

of LSq+1, the probability of paths originating from LSq to the

destination of that member is similar to the other members of

LSq+1. Hence, it would be more difficult for the adversary to

compromise kq+1-anonymity of the user. The formal algorithm

for computing the transition entropy in two consecutive queries is

presented in Algorithm 1. The main advantages of the transition

entropy metric are:

• Considering the performance of the dummy based algo-

rithms in trajectories and not just for a stationary set of

locations.

• Being able to investigate the performance of the dummy

based algorithms for users with varying k-anonymity re-

quirements in their trajectories.

• Elimination of the need for many other previously con-

sidered factors, such as time reachability and direction

similarity.

4.2 Transition entropy metric for trajectories
Here, we generalize the transition entropy metric for trajectories

with different lengths. Consider a user requesting for its (c+1)-th

query at time tq+c. Hence, providing the LBS provider with the

Algorithm 1: Transition entropy for two consecutive

queries.

1 Input: LSq and LSq+1

2 Output: ht

3 Initialization: CellSum = 0, h = 0.

4 for 1 ≤ x ≤ kq do
5 EdgeSum = 0
6 for 1 ≤ y ≤ kq+1 do
7 EdgeSum = EdgeSum+ nxy

8 end
9 for 1 ≤ y ≤ kq+1 do

10 Pr(lqx ⇒ lq+1
y |lqx = rq) = nxy/EdgeSum

11 end
12 end
13 for 1 ≤ x ≤ kq do
14 CellSum = CellSum+ bqx
15 end
16 for 1 ≤ x ≤ kq do
17 Pr(lqx = rq) = bqx/CellSum
18 end
19 for 1 ≤ y ≤ kq+1 do
20 Pr(lq+1

y = rq+1|LSq) = 0
21 for 1 ≤ x ≤ kq do
22 Pr(lq+1

y = rq+1|LSq) = Pr(lq+1
y = rq+1|LSq)

23 +Pr(lq+1
y = rq+1|lqx = rq)Pr(lqx = rq)

24 end
25 ht = ht−
26 Pr(lq+1

y = rq+1|LSq) log2(Pr(lq+1
y = rq+1|LSq))

27 end
28 return ht

Algorithm 2: Transition entropy for trajectories of length

c+ 1.

1 Input: LSq, LSq+1, ..., LSq+c

2 Output: ht

3 Start:
4 Run Algo. 1 for LSq and LSq+1

5 for q + 1 ≤ query ≤ q + c− 1 do
6 Normalize posterior probabilities of LSquery

7 Query probabilities of LSquery ← posterior

probabilities of LSquery

8 Run Algo. 1 for LSquery and LSquery+1

9 end
10 ht ← Normalize posterior probabilities of LSq+c and

calculate their entropy

11 return ht

location set LSq+c = {lq+c
1 , lq+c

2 , ..., lq+c
kq+c} in order to preserve

kq+c-anonymity. The previous queried location sets of the user

are shown by LSq+i for i = 0, ..., c − 1, each with the privacy

requirement shown by kq+i. Initially, we aim to calculate the

posterior probability of each location in LSq+c. The posterior

probabilities indicate the likelihood of any location in LSq+c

being the real location based on the previous queries of the user.

The posterior probability for each location in LSq+c can be

written as
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kq+c−1∑

sc=1

kq+c−2∑

sc−1=1

...

kq∑

s1=1

(Pr(lqs1 = rq)Pr(lq+c−1
sc ⇒ lq+c

y |lq+c−1
sc = rq+c−1)

c−1∏

i=1

Pr(lq+i−1
si ⇒ lq+i+1

q+i |lq+i−1
si = rq+i−1)) (15)

∀ lq+c
y ∈ LSq+c : Pr(lq+c

y = rq+c|LSq, ..., LSq+c−1) = (12)

kq+c−1∑

sc=1

Pr((lq+c−1
sc ⇒ lq+c

y ),

(lq+c−1
sc = rq+c−1)|LSq, ..., LSq+c−2)) = (13)

kq+c−1∑

sc=1

Pr(lq+c−1
sc ⇒ lq+c

y |lq+c−1
sc = rq+c−1)×

Pr(lq+c−1
sc = rq+c−1|LSq, ..., LSq+c−2). (14)

Following the same process of moving from (12) to (14), the

probability of Pr(lq+c−1
sc−1 = rq+c−1|LSq, ..., LSq+c−2) can be

solved recursively to reach (15). Also, the transition probabilities

in (12) can be calculated as (9). Therefore, evaluating (15) for each

node in LSq+c, we can determine the likelihood of a location

being the real location of the queried set LSq+c. Finally, we

borrow the concept of entropy to characterize the uncertainty in

probabilities of LSq+c. So that:

ht = −
kq+c∑

y=1

Pr(lq+c
y = rq+c|LSq, ..., LSq+c−1)

log2(Pr(lq+c
y = rq+c|LSq, ..., LSq+c−1)).

(16)

We call ht, the transition entropy of the set LSq+c with respect

to location sets LSq, ..., LSq+c−1. Our experiments demonstrate

that the proposed transition entropy metric shows the high possi-

bility of revealing the real location of users from their previous

queries made on the map. The algorithm to calculate the transition

entropy metric is presented formally in Algorithm 4.

It is important to note that in the derivation of transition en-

tropy, the first queried location set is the only place in which query

probabilities of locations play a role. The transitions between the

queried locations determine the remaining factors. It is essential

to understand why the query probabilities of the other locations

on the path are not used in the calculation of transition entropy.

We explain the concept using an example. Fig. 4 demonstrates a

case where a user requests an LBS in two consecutive queries.

The numbers written on the nodes indicate the normalized query

probability of locations, and the numbers printed on the edges in-

dicate the normalized probability of that transition. Now, consider

the calculation of LSq+1 based on the previous queried location

set LSq . The purpose of the example is to illustrate why the

posterior probabilities calculated by previous queries for LSq+1 is

more reliable than the query probabilities of locations in LSq+1.

First, let us calculate the posterior probabilities of LSq+1 and

its entropy. According to (15), the posterior probabilities can be

written as

Fig. 4: An example of two consecutive queried location sets.

Posterior probability of A being the true location = (17)

3

5
× 1

3
+

1

5
× 1

4
+

1

5
× 1

4
=

6

20
Posterior probability of B being the true location = (18)

3

5
× 1

3
+

1

5
× 2

4
+

1

5
× 3

4
=

9

20
Posterior probability of C being the true location = (19)

3

5
× 1

3
+

1

5
× 1

4
=

5

20

According to the query probabilities of LSq+1, the location A is

more likely to be the real location as it has a significantly higher

query probability. However, looking at the posterior probabilities

calculated for the location set, we can see that based on LSq ,

location B is more probable to be the real location of the user.

This discrepancy can be explained by looking at what the actual

meaning of query probability is. The query probability indicates

the number of times a location has been called but does not

specify if it has been called after any particular location. Therefore,

although the location A has been called more times than the other

locations in LSq+1, most of these queries have been made after

locations E and D, which are not a member of the location set

LSq . Hence, it can be seen that the posterior probabilities are more

credible, as they are considering the number of times queries made

after the previous location set LSq .

5 VITERBI ATTACK

The Viterbi algorithm is a well-known dynamic programming

algorithm proposed in 1967 [46]. Initially, it was used for con-

volutional codes, but then it found numerous applications, such as

exploring the most likely sequence of hidden states in Hidden
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Markov Models (HMMs). For a given graph, the aim of the

algorithm is to find the shortest path or so-called Viterbi path.

The Viterbi algorithm provides several features that distinguish

this algorithm from the other existing algorithms for this purpose.

The most essential characteristic of the algorithm is the low

computational complexity. Here, we design an attack model based

on the Viterbi algorithm and name it Viterbi attack, since the

principal idea behind the attack is inspired by the Viterbi algo-

rithm. The proposed Viterbi attack can significantly compromise

the location privacy of users if it is not considered in the design

of the dummy generation algorithms. As it will be demonstrated

in simulations, even for short trajectories, the Viterbi attack can

reveal a significant number of user locations.

Given the location sets LSq , LSq+1,...,LSq+c, corresponding

to a trajectory of length c+1 of a user, an adversary seeks to find

the most probable location sequence or so-called state sequence.

Hence, the attacker aims to identify locations which are most

likely to be the actual locations of the user and not the dummies.

The desired state sequence of the adversary includes all the real

locations of the user shown by {rq, rq+1, ..., rq+c}.

We define μ(c + 1, u) to be the maximum probability of a

state sequence with the length of c + 1, given zq, zq+1, ..., zq+c

where zj ∈ LSj and zq+c = u ∈ LSq+c. This function can be

mathematically expressed as

μ(c+ 1, u) = max
zq:q+m|zq+m=u

Pr(zq+m = rq+m), (20)

where for each u ∈ LSq , and the initial value of the μ function is

set to be

μ(0, u) = Pr(u = rq). (21)

As the most credible information for the first queried location set is

the query probability, Pr(u = rq) is calculated via equation (10).

Starting from the second queried location set the most probable

path can be calculated recursively as

μ(m+ 1, u) = max
u′∈LSq+c−1

μ(c, u′)Pr(u′ → u). (22)

The formal presentation of Viterbi attack is given in Algorithm

3. The algorithm starts by setting the initial values of the μ array

to their normalized query probability in lines 4 − 7. An array

called pointer is used to keep track of the most likely state of

the previous queried location set as the most probable path is

calculated in lines 8−13. Finally, the most probable path is chosen

and the corresponding states are returned as outputs.

6 PROPOSED ALGORITHMS TO IMPROVE LOCA-
TION PRIVACY OF USERS

In this section, we start by developing an exhaustive search algo-

rithm to improve the transition entropy metric for a given dummy-

generation algorithm. We denote this hypothetical algorithm by X
and aim at increasing its transition entropy in trajectories. Next,

we propose an algorithm called RDG that significantly increase the

privacy of users against the Viterbi attack, while maintaining the

high performance in terms of transition entropy and cell entropy.

6.1 Exhaustive Search Algorithm

Suppose that a user has made its q-th query shown by

LSq = {lq1, lq2, ..., lqkq}, which includes the real location and

Algorithm 3: Viterbi attack.

1 Input: Location sets LSq , LSq+1,...,LSq+c and the

normalized query probability for the location set LSq

2 Output: EstState which is the most likely path

3 Start: .

4 for 1 ≤ u ≤ kq do
5 μ(q, u) = Pr(lqu = rq)
6 pointer(q, u) = 0
7 end
8 for 1 ≤ j ≤ c do
9 for 1 ≤ u ≤ kq+j do

10 μ(q + j, u) = max
u′∈LSq+j−1

μ(q + j − 1, u′)Pr(u′ →
u)

11 pointer(q + j, u) ←
state of max

u′∈LSq+j−1
μ(q + j − 1, u′)

12 end
13 end
14 EstState[c] = state of max(μ(q + c, :))
15 for c− 1 ≥ j ≥ 0 do
16 EstState[j] = pointer(q + j + 1, EstState[j + 1])
17 end
18 Output: EstState.

Algorithm 4: Exhaustive search algorithm

1 Input: LSq = {lq1, lq2, ..., lqkq}, {lq+1
1 }, kq+1

2 Output: LSq+1

3 Start:
4 D ← generate a pool of 4kq+1 dummies using the X

algorithm

5 {S1, S2, ...Sm} ← choose m distinct (kq+1 − 1)-subsets

of D
6 for 1 ≤ y ≤ m do
7 Sy ← Sy ∪ {lq+1

1 }
8 hy ← calculate transition entropy of Sy

9 H ← H ∪ {hy}
10 end
11 LSq+1 ← S corresponding to the maximum h
12 return LSq+1

its associated dummies. The dummies in LSq are generated using

a given algorithm X . In the next query, the user moves to a new

location (lq+1
1 ) and seeks to generate kq+1 − 1 dummy locations.

The following approach will help the user increase its transition

entropy while generating LSq+1.

The idea is to generate a pool of dummies based on the

algorithm X instead of only kq+1 − 1 dummy locations. Having

the dummy pool, the exhaustive search algorithm goes through

kq+1 − 1 subsets of the pool to find the one that maximizes

the transition entropy. The formal description of the proposed

exhaustive approach is presented in Algorithm 4. The inputs of

the algorithm are the location set LSq = {lq1, lq2, ..., lqkq}, the

real location of the user in (q + 1)-th query, and the privacy

requirement of the user in (q+1)-th query. The exhaustive search

algorithm starts by generating a pool of 4kq+1 dummies using the

X algorithm and assigns them to an empty set D. Then, m distinct

subsets of D with (kq+1−1) members are chosen and assigned to

S = {S1, S2, ...Sm}. Any of the members in S , once attached to
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lq+1
1 will form a complete kq+1 set, preserving kq+1-anonymity.

Note that the constraint m is chosen to limit the number of subsets

computed in case of large pool size. Next, the transition entropies

resulted from the members of S are calculated and stored in H .

Finally, the member of S that results in the maximum transition

entropy is returned as the output.

6.2 RDG Algorithm
We propose a robust algorithm called RDG to preserve the location

privacy of LBS users. The RDG algorithm has three advantages

compared with the existing algorithms: (I) Provides high resilience

against the Viterbi attack (II) Achieves near-optimal cell entropy

(III) Results in a much higher transition entropy compared with

the existing approaches. The algorithm is based on the idea of

posterior probabilities, and it is formally presented in Algorithm 5.

Following the same setup as the proposed exhaustive

search algorithm, a user has made its q-th query shown by

LSq = {lq1, lq2, ..., lqkq}, which includes the real location and its

associated dummies. The dummies in LSq are generated using the

DLS algorithm. In the next query, the user moves to a new location

(lq+1
1 ) and seeks to generate kq+1−1 dummy locations. If LSq is

the initial query of the user from the LBS provider, then the initial

posterior probabilities are set to the normalized query probabilities

of the locations in LSq; otherwise, the posterior probabilities are

calculated by (12). In the algorithm, posterior probabilities are

assigned to an array called weight.
The algorithm starts with the generation of a pool of dummies

using the DLS algorithm based on the real location of LSq+1.

Using the DLS algorithm to generate the pool of dummies will

ensure high performance in terms of cell entropy. From our

experiments, setting the pool size to four times of the kq+1

maintains the cell entropy sufficiently high, while resulting in a

robust performance in terms of the transition entropy and Viterbi

attack resilience. Next, the algorithm continues by employing a

greedy approach to add the most suitable dummies for the location

set LSq+1. For choosing the i-th member of the set LSq+1, each

of the remaining dummies in the pool is checked one by one. A

criterion chosen here is based on maximizing the entropy for the

array weight. For each member u ∈ LSq+1, the weight array is

calculated as

weight(q + 1, u) = max
u′∈LSq

weight(q, u′)Pr(u′ → u). (23)

The first index of the weight array is used to distinguish between

weights corresponding to different location sets. For each member

of the dummy pool, its weight is calculated, followed by the

entropy of the weight array. After calculation of the entropy for

all possible members, the member having the maximum entropy is

chosen as the next member of LSq+1. The process continues until

all kq+1 − 1 dummies of LSq+1 are chosen. Note that before

the calculation of entropy, the weights are normalized to make

the accumulation of probabilities add up to one. The algorithm

is designed to provide a high cell entropy and transition entropy

for users’ of the LBS applications while protecting them from the

Viterbi attack on trajectories.

7 PERFORMANCE EVALUATION

7.1 Experimental Setup
In our experiments, we use the data collected by Geolife project

[47]–[49]. The Geolife dataset includes the GPS trajectories of

Algorithm 5: RDG algorithm.

1 Input: LSq = {lq1, lq2, ..., lqkq}, {lq+1
1 }, kq+1

2 Output: LSq+1

3 Start:
4 for 1 ≤ u ≤ kq do
5 weight(q, u) ← Posterior probability of lqu
6 end
7 D ← generate a pool of 4kq+1 dummies using the DLS

algorithm

8 for 1 ≤ member ≤ kq+1 − 1 do
9 entropy = zeros(1× |D|)

10 for 1 ≤ d ≤ |D| do
11 LSq+1 = LSq+1 ∪ {D[d]}
12 for 1 ≤ u ≤ kq+1 do
13 weight(q + 1, u) =

max
u′∈LSq

weight(q, u′)Pr(u′ → u)

14 end
15 normalize weight(2, :)
16 entropy[d] ← entropy of weight(q + 1, :)
17 LSq+1 = LSq+1 − {D[d]}
18 end
19 NewMember ←

{member of D which maximize entropy}
LSq+1 = LSq+1 ∪ {NewMember}

20 D = D − {NewMember}
21 end
22 return LSq+1

182 users from April 2007 to August 2012 in Beijing, China.

The dataset contains 13, 561 trajectories with a total distance of

1, 292, 951 km. Two main advantages are distinguishing Geo-

life dataset for our work: Firstly, the recorded data aside from

monitoring the daily routines of users, such as going to work

or home, includes trajectories involving sports activities such as

hiking and cycling. Secondly, many of the recorded trajectories

are tagged with transportation modes, which indicate the use of

various means of traveling from bus and car to airplane and train.

We conducted our experiments on 1km× 1km central part

on the Beijing map with the resolution of 0.01km×0.01km for

each grid cell. The location privacy requirements of users are

investigated for values 2 to 30. For each value of k, the trial

is repeated 3000 times to ensure the reliability of results. The

experiments were performed on a PC with a 3.40 GHz Core-

i7 Intel processor, 64-bit Windows 7 operating system, and an

8.00 GB of RAM. Python programming is used to implement

algorithms.

TABLE 1: Statistics of Geolife dataset.

Dataset Geolife

Total number of samples 47581

Number of trajectories 13561

Number of users 182

Total distance 1, 292, 951 km

7.2 Performance Analysis
We evaluate the performance of the proposed algorithms and

metrics through extensive experiments. We intend to show that
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Fig. 5: Comparison of algorithms in terms of cell entropy for different k.

the proposed RDG algorithm can achieve:

• Near-optimal cell entropy;

• Robust transition entropy performance compared to prior

works;

• Privacy protection against the Viterbi attack.

Therefore, in the following subsections, we start by evaluating the

performance of algorithms in terms of cell entropy, followed by

transition entropy analysis and investigating the resilience to the

Viterbi attack.

7.2.1 Cell entropy performance evaluation

Cell entropy indicates how different is the query probability of the

actual user location from its associated dummies. A higher cell

entropy is desirable, as it results in higher uncertainty of finding

the real location. Fig. 5 presents the comparison among different

algorithms in terms of cell entropy. The optimal value is achieved

when all k locations queried from the LBS provider have the same

probability of 1/k, or equivalently, the location set has the cell

entropy of h = log2(k). The optimal value is the upper bound for

all algorithms since it is the maximum entropy that a location set

can achieve.

In Fig 5, three algorithms are compared, including the DLS

algorithm which is the conventional method for generation of

dummy locations, our proposed RDG algorithm, and the random

scheme by which dummies are chosen randomly. Moreover, opti-

mal cell entropy values are shown as a benchmark. As expected,

the random scheme proposed in [14] results in a lower cell entropy

compared to the other algorithms due to the random generation

of dummies. On the other hand, the RDG and DLS algorithms

both consider the query probability of cells in the generation of

dummies. Therefore, the cell entropy of these two algorithms is

higher than the random scheme and almost achieves near-optimal

performance. Having such a high cell entropy ensures that the

adversary is not able to compromise the location privacy of users

from a stationery set of locations submitted to the server. Unfortu-

nately, although the DLS algorithm has a robust performance for

a single collection of queried locations, no consideration has been

given to locations queried as part of trajectories.

7.2.2 Transition entropy performance evaluation
The currently established cell entropy metric only considers the

location privacy for a stationary set of queried locations submitted

to the LBS server but overlooks the fact that users may ask for

services successively. If users query location sets in consecutive

attempts, they reveal the trajectory they are traveling. Therefore,

adversaries can use the likelihood of traveling different paths

between consecutive location sets to calculate the posterior prob-

abilities and compromise the location privacy of users.
Fig. 6 compares the performance of different algorithms in

terms of the transition entropy metric for various k. Having a

lower transition entropy suggests a lower privacy level for users of

the LBS applications and a higher likelihood for adversaries to find

out the actual coordinates of the users. We start our evaluation by

trajectories of length 2 in Fig. 6a, and then focus on the transition

entropy for longer paths in Figs. 6b and 6c. In all the three graphs,

the comparison is conducted among the optimal transition entropy

values, the widely adopted algorithm DLS, the proposed RDG

algorithm, and the random scheme.
In Fig. 6a, two consecutive location sets are generated based

on the specified value of k. Each of the locations sets includes

the real location of the user and its associated dummies. To

make experiments as realistic as possible, the movement pattern

is chosen randomly from the recorded trajectories in the dataset.

The optimal value corresponds to a scenario, in which all mem-

bers of the second location set are equally likely to be called

consecutively after the members of the first location set. This

outcome is desirable, as it results in achieving k-anonymity for

users and protecting their location privacy. The optimal values

can be calculated in a similar way as the optimal number for

the cell entropy. Considering Fig. 6a, the random scheme in

which the dummy locations are chosen randomly achieves the

lowest transition entropy, indicating that the adversary can easily

recognize most of the dummies from the transition entropy even

for the two consecutive location sets queried by the user.
Furthermore, it can be seen from the figure that although

the DLS algorithm achieves near-optimal performance in terms

of cell entropy, it results in significantly low privacy protection

in trajectories. Even for two consecutive queries from the LBS

provider, the DLS algorithm indicates a significantly low transition

entropy. Such performance shows that adversaries can compro-

mise the location privacy of users by calculating the posterior

probabilities. Fortunately, the proposed RDG algorithm can sig-

nificantly improve the transition entropy, achieving almost twice

as high transition entropy as the DLS algorithm. In other words,

the likelihood of compromising the k-anonymity requirement is

decreased by the proposed algorithm, which leads to a higher

location privacy level for users of the LBSs.
Figs. 6b and 6c extend our analysis of transition entropy to

trajectories with higher lengths. Both graphs indicate that as more

locations are queried from the LBS provider, the transition entropy

decreases. These experimental outcomes match well with the

theory because having more information results in a more accurate

calculation of posterior probabilities by adversaries; Hence, we

expect to see less uncertainty and transition entropy. Further

investigating the figures, the DLS algorithm can be seen to have

a very low transition entropy compared to the proposed RDG

algorithm. Therefore, the RDG algorithm is viable in increasing

the transition entropy of users while maintaining the cell entropy

to a near-optimal level. However, as the adversary acquires more

location points, the threat to location privacy of users gets more
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(a) Trajectories of length 2. (b) Trajectories of length 3. (c) Trajectories of length 4.

Fig. 6: Comparison of algorithms in terms of transition entropy for different k.

serious. This fact can be seen in Fig. 6. As the length of trajectory

increases, the transition entropy decreases, which refers to having

a higher chance for adversaries to get access to the location data

of users.

7.3 Performance of Algorithms against Viterbi Attack

In this section, we compare and evaluate the performance of our

proposed RDG algorithm and the widely accepted DLS method

against the attack model proposed in Section 5. The Viterbi attack

considers users in trajectories instead of just taking into account

snapshots of the real locations and dummies. The Viterbi attack is

based on the calculation of posterior probabilities of user locations

revealed to the LBS provider. It will be shown in this section that

applying such an attack can significantly compromise the location

privacy of users. Therefore, having a robust algorithm such as

RDG is crucial to protect the location privacy.

Fig. 7 illustrates the performance of the RDG and DLS

algorithms once the Viterbi attack is applied to the dataset. The

figure consists of four subfigures to show the performance with

various length of trajectories. In each subfigure, the percentage

of real locations of users which have been protected are exhibited

for different privacy requirements k. For instance, in Fig. 7b, when

k = 5, the graph indicates that the DLS algorithm can only protect

0.8 percent of the queried locations, and therefore, adversaries can

almost distinguish all true locations of users from their associated

dummies. This indicates how dangerous and powerful the Viterbi

attack can be in compromising the privacy of users.

Considering the performance of the DLS algorithm, it can

be seen in the figure that for path lengths greater than 2, the

Viterbi attack can almost find out all real locations of the users

despite the existence of dummy locations. Therefore, although in a

single query user locations are protected using the existing dummy

generation algorithms, when users are considered in trajectories,

due to the extra side information that adversaries may hold,

they are able to identify user locations. Furthermore, another

mainstream observation is that increasing the number of dummies

can improve location privacy. Such an effect is expected as having

a larger k indicates the generation of more dummies to protect

user privacy. Unfortunately, the boost in privacy by increasing the

value of k is not sufficient even when the trajectory length is two.

From Fig 7, our proposed RDG algorithm can help users to

protect their privacy significantly better. The RDG algorithm takes

into account the posterior probabilities that adversaries may hold

and aims at making the likelihood of different paths equal. Doing

so, the algorithm confuses adversaries in identifying exact loca-

tions of users. In contrast to the DLS algorithm, the performance

of RDG algorithm improves as the path length increases. It means

that for longer trajectories, the adversary has a less chance of

compromising user privacy. Also, expectedly, increasing the value

of k improves the privacy of users for the RDG algorithm as well.

8 CONCLUSIONS AND FUTURE DIRECTIONS

In this paper, we investigated the location privacy of users in

trajectories and considered the threats that their previous queries

could pose on their location privacy. We developed an attack

model based on the Viterbi algorithm that demonstrates how sus-

ceptible the location privacy of users is. Therefore, we proposed a

metric called transition entropy, which enables us to compare and

assess the performance of different algorithms as the users move

in trajectories.

Furthermore, to improve the transition entropy metric, an

exhaustive search approach was proposed, which can increase the

transition entropy for a given dummy generation algorithm. We

also proposed a powerful algorithm called RDG that results in a

robust performance in terms of both transition entropy and cell

entropy, while protecting users against the Viterbi attack.

Based on the results and achievements in this paper, there are

several potential research directions worth further investigations:

• extend our approach to ‘implicit’ datasets, in which the

time intervals between queries are not equal.

• improve the comprehensiveness of posterior probabilities

in the calculation of transition entropy to consider the

temporal information of users.

• improve the RDG algorithm to achieve higher transition

entropy levels. Although the RDG algorithm can signif-

icantly enhance the privacy protection of user privacy

against the Viterbi attack, as the trajectory length increases

the transition entropy decreases. Therefore, improvements

to the algorithm are required to ensure that transition

entropy stays in an acceptable range.
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