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Abstract Temperature is a key determinant that gov-
erns fish survival, reproduction, growth and metabo-
lism. In freshwater ecosystems, anthropogenic influ-
ences have resulted in acute and prolonged temperature
changes which lead to lethal and sub-lethal impacts on
the biota that occupy these environments. We assessed
the effects of temperature on somatic and otolith growth
and development of three species of native Australian
freshwater fish (silver perch Bidyanus bidyanus, trout
cod Maccullochella macquariensis and golden perch
Macquaria ambigua) to simulate how thermal pollution
from the release of unseasonably cold water from ther-
mally stratified dams in Australian freshwater

ecosystems may impact fish at critical life-history
stages. Fish (31 days post-hatch) were exposed to four
temperature treatments (13, 16, 20, 24 °C) for 30 days.
Low temperatures resulted in reduced somatic growth,
with no growth observed in silver perch and golden
perch held at 13 °C over 30 days. Somatic growth was
highest at the upper temperature of 24 °C. Morpholog-
ical assessment of fish size reiterated that low water
temperatures resulted in reduced body size, particularly
in terms of body width and head size. Low temperatures
were associated with reduced otolith growth in all spe-
cies, however a somatic-otolith size relationship was
maintained for all species in measures of otolith weight,
area, length and perimeter. The sub-lethal impacts ob-
served in our study are likely to manifest at the popula-
tion level through a reduced capacity of larvae and
juveniles to avoid size-dependent predation, a narrower
range of prey sources due to extended gape-limited
feeding and, ultimately, poorer survival and recruitment.
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Introduction

Temperature is an important regulator of the biological
processes of aquatic organisms (Brett 1971). As ecto-
therms, fish depend on temperature as a determinant of
metabolism, spawning and survival and are adapted to
specific temperature ranges (Brett 1971; Jobling 1995;
Beitinger et al. 2000). The optimal thermal range of fish
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is determined by genetic histories and the thermal his-
tories of the ecosystems they inhabit, as such thermal
tolerance can vary widely between species but can also
vary intra-specifically (Beitinger et al. 2000; Gunderson
and Stillman 2015; Comte and Olden 2017). Within
these ranges, metabolic functions such as feed utiliza-
tion, growth, reproduction and swimming ability are
enhanced (Jobling 1997; Beitinger et al. 2000). Optimal
temperature ranges may also vary between life-history
stages within species, where efficacy of metabolic func-
tioning is necessary to support periods of rapid growth
and development or reproduction (Morita et al. 2010).
Maintaining optimal environmental thermal conditions
is essential for fish at early life history stages when
developmental changes and rapid growth are occurring
and sensitivity to suboptimal thermal conditions is high
(Sogard 1997).

Growth and body size is a major determinant for
survival in fish, particularly during larval and juvenile
life-history stages (Childs and Clarkson 1996; Sogard
1997). Reduced body size increases predation risk (Rice
et al. 1987), size-dependent competition (Fausch and
White 1986) and susceptibility to temperature extremes
and changes (Johnson and Evans 1990; Johnson and
Evans 1996; Clarkson and Childs 2000). Temperature
can affect growth potential in fish as it drives metabolic
functioning, which is essential for optimal feeding effi-
ciency, ensuring that surplus energy is attained through
food intake and can be converted into somatic growth
(Kitchell et al. 1977; Buentello et al. 2000).
Temperature-driven reductions in growth rate and/or
body size in larval and juvenile fish increases their
vulnerability to numerous stressors and ultimately af-
fects fitness and survival.

Another potentially important effect of temperature
on fish is its influence on the development of otoliths
(fish ear stones). Otoliths are calcified structures that
develop incrementally, forming annual and daily incre-
ments that are frequently used for ageing and back-
calculating the growth histories of fish (Pannella 1971;
Gauldie and Nelson 1990; Morrongiello et al. 2012) and
for assessing life history events and past environmental
conditions of individuals and populations of fish
(Campana and Neilson 1985; Jones 1992; Campana
1999; Sponaugle 2010). Otolith growth is strongly
linked to somatic growth (Gagliano and McCormick
2004; Starrs et al. 2013), however under certain condi-
tions otolith growth can decouple from somatic growth
(Barber and Jenkins 2001; Folkvord et al. 2004;

Baumann et al. 2005; Tonkin et al. 2008a; Tonkin
et al. 2008b). This can complicate, or even invalidate,
the use of these structures in biochronological studies
and as proxies for back-calculating growth histories
(Morrison et al. 2019). Understanding how otolith
growth and its relationship with somatic growth is af-
fected by thermal stress is essential for the application of
otolith biochronological analyses in fisheries science.

Suboptimal thermal conditions in river ecosystems
can originate from numerous sources causing either a
warming or cooling of the thermal regime. Warm water
pollution can be caused by industrial effluents, urban
run-off and global warming (Verones et al. 2010; Van
Vliet et al. 2013), whereas cold water pollution can be
caused by large dams that release hypolimnetic water
during periods of thermal stratification (Weber et al.
2017). Suboptimal thermal conditions have been iden-
tified as a contributing factor in historical reductions in
native fish populations in freshwater, estuarine and ma-
rine ecosystems; therefore managing various sources of
thermal pollution is essential in improving native fish
stocks in many parts of the world (Clarkson and Childs
2000; Koehn 2001; Roessig et al. 2004; Lugg and
Copeland 2014).

In Australian freshwater ecosystems, thermal reduc-
tions from large dam releases can reduce river temper-
ature by as much as 16 °C (Lugg and Copeland 2014),
with thermal suppressions persisting for up to 300 km
downstream (Burton 2000; Lugg and Copeland 2014).
This ‘cold water pollution’ has been documented widely
in Australian rivers and has had a strong, adverse impact
on native fish populations (Burton 2000; Todd et al.
2005; Sherman et al. 2007; Lugg and Copeland 2014;
Gray et al. 2019; Michie et al. 2020).

The aim of this study was to determine the effect of
temperature on somatic growth and otolith development
in early life-history stages of three species of Australian
freshwater fish that occupy rivers impacted by cold-
water pollution; silver perch (Bidyanus bidyanus), trout
cod (Maccullochella macquariensis) and golden perch
(Macquaria ambigua). We subjected individuals of
each species to a range of water temperatures that were
representative of Murray-Darling Basin rivers affected
by cold water pollution. Cold water pollution is exten-
sive within the Murray-Darling Basin, the native habitat
of the three test species. Experimental temperatures
were selected based on a 20-year analysis of water
temperatures downstream of Burrendong Dam on the
Macquarie River (Michie et al. 2020), and also
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encompass temperatures observed in a number of rivers
across the Murray-Darling Basin (Burton 2000; Todd
et al. 2005; Sherman et al. 2007; Lugg and Copeland
2014; Gray et al. 2019).We anticipated that cooler water
temperatures may reduce growth potential in the species
of fish tested due to the influence of temperature on
biological and metabolic processes. Further, we predict-
ed that the threatened species being tested (silver perch
and trout cod) may be more sensitive to thermal pollu-
tion given historic range reductions and population de-
clines in heavily regulated systems. The results of our
study are discussed with regard to their relevance to the
management of fish populations in regions affected by
thermal pollution.

Methods

Experimental set-up

Silver perch, trout cod and golden perch were acquired
31 days post-hatch (dph) from the Department of Pri-
mary Industries (DPI) Narrandera Fisheries Centre
hatchery in New South Wales, Australia. Trials were
run sequentially due to the availability of the fish being
affected by the specific timing of breeding for each
species. Individuals for each species were selected from
mixed breeding pairs. Fish were transferred to experi-
mental aquaria containing bore water of 20 °C,
matching the hatcherywater conditions. The experimen-
tal set-up was within a light and temperature-controlled
room at the Narrandera Fisheries Centre; room temper-
ature was maintained at approximately 25 °C and light
was sustained on a 12:12 cycle. Four replicate aquaria
(3 L) were maintained for each temperature treatment,
they were submersed in large water baths (70 L) which
were temperature controlled by water chillers (HC-
300A Hailea, China) to maintain constant temperature.
Each replicate was fitted with a temperature logger
(HOBO Pendant TM, Onset, U.S.A., accuracy
±0.53 °C) and an aeration system. Each experiment
was conducted over 30 days, which included acclima-
tion to the experimental temperatures (13, 16, 20 and
24 °C) over a maximum period of 4 days. Throughout
the experiment, the temperature loggers within each
replicate tank monitored temperature at 15-min inter-
vals. Measurements of temperature, dissolved oxygen,
pH and conductivity were taken daily. Fish were fed
three times daily to satiation in accordance with

hatchery procedures on a diet of live Artemia (Artemia
franciscana), which were hatched onsite. Tanks were
cleaned daily, with an approximate 30%water exchange
and any uneaten food removed.

Sampling procedure

Approximately 40 fish per species were removed at the
beginning of the trial (day zero) to attain initial size data.
Remaining fish were exposed to the temperature treat-
ments for 30 days (approximately 15 per replicate
aquaria) and were sampled at the end of the trial. At
the cessation of experiments, all remaining fish were
euthanized using a benzocaine overdose of 100 mg L−1.
Following euthanasia, photographs of each fish were
taken under a dissecting microscope and camera
(MC120 HD, Leica, Germany) for morphological as-
sessment. The fish were photographed laterally in a
head-to-left orientation, on a stage micrometer with a
0.01 mm scale. After photographs were taken, measure-
ments of weight, total length, and maximum vertical
mouth gape were taken with a digital Vernier calliper.
Sagittal otolith pairs were removed from the fish under a
dissecting microscope, washed in clean water and stored
in black well microplates. Otolith dry weight (μg) was
measured from one otolith from each fish. The otoliths
were then photographed in high contrast under a dis-
secting microscope (MZ 16, Leica, Germany) and cam-
era (Infinity 1, Lumenera, Canada) on a stage
micrometre with a 0.01 mm scale; they were orientated
with the rostrum to the left of the image.

Data analysis of fish growth

Measurements of fish weight, length and mouth gape
were calculated as proportional change from the average
size fish at day zero for each species. Specific growth
rate (SGR) was calculated according to Jobling (1983)
using the average initial start weight (wi), the final
weight (wt) and the duration of the exposure (t). SGR
was represented as a percent increase in body mass per
day.

SGR ¼ ln wtð Þ−ln wið Þ
t

� 100

To determine differences in all measures of fish
growth between initial and final measurements, and
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between temperature treatments at the finish of the
experiment, we conducted parametric analysis of vari-
ance (ANOVA). Where parametric assumptions were
not met, a log transformation of the data was performed.
Significant differences among treatments were deter-
mined using a Tukey’s post hoc test. All statistical
analyses were conducted in R version 3.5.1 (R Core
Team 2019) with a significance level of α < 0.05.

Image-J software (Schindelin et al. 2012) was used to
take morphometric measurements of each individual
fish based on a truss network protocol which measured
21 lengths between 10 homologous anatomical land-
marks (Fig. 1). Anatomical landmarks refer to (1) the
anterior tip of the snout on the upper jaw, (2) the origin
of the scaled nape, (3) the origin of the pelvic fin, (4) the
origin of the spinous dorsal fin, (5) the origin of the anal
fin, (6) the origin of the soft dorsal fin, (7) the cessation
of the anal fin, (8) the cessation of the soft dorsal fin, (9)
the ventral origin of the caudal fin and (10) the dorsal
origin of the caudal fin. Principal component analysis of
the morphometric measurements was undertaken using
the vegan package in R (Oksanen et al. 2010). The four
measures that contributed towards the highest variation
in size between treatments (>80%) were identified and
used as descriptors of the first principal component.

Data analysis of otolith growth and development

Assessment of otolith growth and development was
conducted in R (R Core Team 2019) using the R pack-
ages ShapeR (Libungan and Pálsson 2015a) and vegan
(Oksanen et al. 2010), with methods as described by
Libungan and Pálsson (2015b). Otolith outlines were
extracted from digital otolith images by transforming
the images to grey-scale and designating a threshold
pixel value to distinguish the white otolith from the
black background. Wavelet shape coefficients were ex-
tracted from the otolith outline by measuring radii from
the otolith centroid to the otolith outline, the Wavelet

method of analysis was selected due to its usefulness in
detecting shape differences in specific regions of the
otolith. Measurements of otolith area, otolith length
and otolith perimeter were then extracted for each oto-
lith with pixel calibrations applied for images taken at
different magnifications.

To conduct analysis of otolith shape, the size of the
otolith was normalized by dividing the otolith co-
ordinates by the square root of the otolith area. Exami-
nation of variation in otolith shape between each treat-
ment was conducted by plotting mean otolith shape
from the previously extracted otolith outlines and using
the normalized co-ordinates to remove size-bias. Wave-
let coefficients were adjusted for fish length before the
mean and standard deviation of all combined coeffi-
cients and the proportion of variance between groups
(intraclass correlation) was plotted against the angle of
the measured otolith outline (in degrees, based on polar
coordinates) to determine the regions of the otolith
driving variation in shape between groups.

To determine if there was variation in otolith devel-
opment between temperature treatments for measures of
otolith weight, area, length and perimeter, group means
were compared using parametric analysis of variance
(ANOVA), with log transformation applied where data
did not meet test assumptions. Statistical analysis of
shape was conducted by applying Canonical Analysis
of Principal coordinates (CAP) on the length standard-
ized Wavelet coefficients and running an ANOVA-like
permutation test using 1000 permutations to evaluate
differences between the temperature treatments for each
species (Libungan and Pálsson 2015b).

Results

Fish growth

Temperature had a significant effect on growth in all
three species; silver perch (SP), trout cod (TC) and
golden perch (GP) (Figs. 2 and 3). Temperature affected
fish in terms of changes in total length (SP: F4, 272 =
416.2, p < 0.001, TC: F4, 143 = 473.8, p < 0.001, GP: F4,

254 = 135.5, p < 0.001) and weight (SP: F4, 272 = 305.6,
p < 0.001, TC: F4, 143 = 278.1, p < 0.001, GP: F4, 254 =
151.7, p < 0.001). Growth in all species was highest at
the maximum temperature treatment of 24 °C and low-
est at the minimum temperature of 13 °C. In all species
there was a significant reduction in the size of fish

Fig. 1 Location of 10 anatomical landmarks and connected truss
network measured on each fish for morphometric analysis. Pic-
tured: golden perch (Macquaria ambigua)

Environ Biol Fish



(length and weight) with each incremental reduction in
temperature. There was no significant difference be-
tween the somatic growth of silver perch and golden
perch when held at 13 °C for 30 days comparedwith day
zero.

Temperature affected mouth gape in silver perch
(F4, 272 = 243.9, p < 0.001) trout cod (F4, 143 = 104.5,
p < 0.001) and golden perch (F4, 254 = 51.58,

p < 0.001) (Fig. 4). In all species mouth gape was small-
er in fish exposed to reduced water temperatures. No
significant changes in mouth gape were found between
silver perch held at 13 °C and fish measured at day zero.
Similarly, there was no statistical difference between
golden perch held at 13 °C and 16 °C and fish measured
at day zero. A strong linear relationship was maintained
between fish length (LT) and mouth gape (MG) for all

Fig. 2 Growth in length and
weight of silver perch, trout cod
and golden perch after exposure
to a range of water temperatures.
Growth is measured as the
proportional (%) change in size
from sample fish measured on
day zero after 30 days exposure to
water temperatures of 13, 16, 20
and 24 °C. Error bars are
calculated as standard error of the
mean

Fig. 3 Photographic comparison of silver perch, trout cod and
golden perch after exposure to a range of water temperatures. Fish
were exposed to water temperatures of 13, 16, 20 and 24 °C for

30 days. The fish selected for photographs were similar in length to
the calculated mean for each treatment
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species (SP: MG = 0.106*LT +0.235; adj R2 = 0.88,
TC: MG= 0.120* LT +0.138; adj R2 = 0.82, GP: MG=
0.125* LT +1.025; adj R2 = 0.57).
Temperature affected specific growth rate (SGR) in

silver perch (F3, 233 = 317.3, p < 0.001), trout cod (F3,

94 = 232.9, p < 0.001) and golden perch (F3, 225 = 126.6,
p < 0.001), although the effect was lower in golden
perch (Fig. 5). SGR was minimized when water tem-
peratures were reduced. SGR varied between all

treatments in all species except for silver perch exposed
to 13 °C and 16 °C water temperatures. SGR reduced
incrementally as temperature was reduced.

Temperature also affected growth as measured using
a combination of morphometric traits (Fig. 6). Traits that
contributed to the largest variation in size between treat-
ments originated from measures 3, 6, 9 and 11 in all
species, and these contributed >80% of the variation in
size. These measures reflect size of the head and body

Fig. 4 The effect of water
temperature on the mouth gape
(MG) of three species of fish in
relation to total length (LT). Each
data point represents an individu-
al fish, measured on day zero of
the experiment (black markers) or
after 30 days of exposure to water
temperatures of 13 °C, 16 °C,
20 °C and 24 °C (colour markers).
Confidence intervals (95%) are
indicated in grey

Fig. 5 Specific growth rate
(SGR) of silver perch, trout cod
and golden perch after exposure
to a range of water temperatures.
SGR is calculated as the percent-
age increase in body weight mea-
sured daily as calculated after
30 days exposure to water tem-
peratures of 13, 16, 20 and 24 °C.
Error bars are calculated as stan-
dard error of the mean
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width; with measure 3 being from the anterior tip of the
snout on the upper jaw to the origin of the spinous dorsal
fin, measure six being from the origin of the pelvic fin to
the origin of the spinous dorsal fin, measure nine being
from the origin of the spinous dorsal fin to the origin of

the anal fin and measure 11 being the from the origin of
the anal fin to the origin of the soft dorsal fin (Fig. 1).
There was greater variation in size between treatments
observed in silver perch and trout cod than there was in
golden perch (Fig. 2).

Fig. 6 Visualization of principal
components analysis (PCA) indi-
cating variation in the morpho-
metric truss body network mea-
surements of silver perch, trout
cod and golden perch. The PCA
compares groups after 30 days of
exposure to water temperatures of
13, 16, 20 and 24 °C to fish as
measured on day zero of the
experiment
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Otolith growth

Water temperature had a significant effect on otolith
weight in silver perch, trout cod and golden perch
(Fig. 7 and Table 1). Reductions in water temperature
equated to reduced otolith weight in all species. This
pattern was also observed for the effect of water tem-
perature on measures of otolith area, otolith length and
otolith perimeter (Fig. 7). Strong linear relationships
were observed between fish length (LT) and all

measures of otolith weight, otolith area, otolith length,
and otolith perimeter.

Otolith development

Otolith shape varied between fish held at different tem-
peratures in silver perch (F1 = 8.527, p = 0.002), trout
cod (F1 = 12.168, p = 0.001) and golden perch (F1 =
5.761, p = 0.001) (Fig. 8). In silver perch, the highest
variation between treatments in the Wavelet coefficients

Fig. 7 The effect of water temperature on otolith weight (μg),
otolith area (mm2), otolith length (mm) and otolith perimeter (mm)
of silver perch, trout cod and golden perch in relation to total
length (LT). Each data point represents an individual fish,

measured on day zero of the experiment (black markers) or after
30 days of exposure to water temperatures of 13, 16, 20 and 24 °C
(colour markers). Confidence intervals (95%) indicated in grey
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(ICC) existed at angles 30–800, 180–2500 and 3000 of
the otolith outline indicating development towards a
longer more rectangular otolith with a more developed
rostrum at warmer temperature treatments. Trout cod
exhibited the greatest variation in otolith shape in re-
gions 140–2400 and 350–400 of the otolith outline,
again indicating rectangular development and a more
developed rostrum at the warmer temperature treat-
ments. Variation in shape in golden perch was less
distinct; variation was highest at angles 260–100.

Discussion

Slow somatic growth and reduced body size of fish
during larval and juvenile life-history stages is strongly
linked to mortality and delays in reaching sexual matu-
rity (Sogard 1997). As such, environmental conditions
that reduce growth potential of early life stages may
have significant deleterious effects on the productivity
of fish populations. In this study we demonstrated that
low water temperatures reduced somatic growth in the
early-life history stages of three species of Australian
freshwater fish. This is significant within the context of
widespread cold-water pollution downstream of ther-
mally stratified dams with bottom-level offtakes. For
example, in Australia large dams located in temperate
regions have been documented to reduce water

temperatures in downstream rivers by as much as
16 °Cwith water temperatures as low as 12–13 °C being
reported (Burton 2000; Lugg and Copeland 2014;
Michie et al. 2020). We demonstrate that these temper-
atures would have a profound effect on individual fish
growth rates and manifest significant negative impacts
upon populations. All species experienced limited
growth when held at 13 °C, with silver perch and golden
perch experiencing no growth at this temperature over
30 days. In their native range within the Murray-Darling
Basin, approximately 2000 km of collective river length
can be affected by reduced water temperatures originat-
ing from large reservoirs (NSW-CWPIG 2012). Our
study highlights the need for effective mitigation of
thermal pollution in this region.

In a number of species, delayed ontogenetic devel-
opment occurs at lower water temperatures, extending
the duration of larval stages and increasing mortality
risk (Clarkson and Childs 2000; Green and Fisher
2004; Kitchell et al. 1977). A number of Murray-
Darling Basin native fish species have demonstrated
reduced growth when exposed to suboptimal water tem-
peratures; these species include juvenile freshwater cat-
fish (Tandanus tandanus), Murray cod (Maccullochella
peelii) (Ryan et al. 2003), silver perch (Astles et al.
2003) and spangled perch (Leiopotherapon unicolor)
(Gehrke 1988). Juvenile silver perch exposed to natural
thermal regimes were roughly twice the weight of fish

Table 1 Summary statistics of one-way ANOVA for differences
between temperature treatments within measures of otolith weight
(OW), otolith area (OA), otolith length (OL) and otolith perimeter

(OP). Linear regression model is included for the comparison of
fish length (LT) against otolith measures irrespective of treatment
group

Measure F value P value Linear regression Adj. R2

Silver perch OW F4, 43 = 17.46 p < 0.001 OW= 0.009* LT - 0.111 0.770

OA F4, 47 = 72.72 p < 0.001 OA= 0.018* LT - 0.162 0.937

OL F4, 48 = 67.78 p < 0.001 OL = 0.028* LT + 0.027 0.956

OP F4, 47 = 70.49 p < 0.001 OP = 0.069* LT + 0.246 0.956

Trout cod OW F4, 52 = 68.46 p < 0.001 OW= 0.014* LT - 0.182 0.787

OA F4, 42 = 200.5 p < 0.001 OA= 0.0265* LT - 0.281 0.958

OL F4, 41 = 249.8 p < 0.001 OL = 0.042* LT - 0.152 0.962

OP F4, 41 = 164.3 p < 0.001 OP = 0.105* LT - 0.221 0.973

Golden perch OW F4, 44 = 24.71 p < 0.001 OW= 0.064* LT - 1.309 0.906

OA F4, 45 = 15.26 p < 0.001 OA= 0.0265* LT - 0.281 0.958

OL F4, 45 = 18.46 p < 0.001 OL = 0.048* LT + 0.097 0.929

OP F4, 45 = 15.08 p < 0.001 OP = 0.122* LT + 0.537 0.897
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exposed to thermal conditions of a river affected by cold
water pollution (11 °C difference) (Astles et al. 2003).
Our analysis of silver perch indicates the increased
sensitivity of this younger age group to suboptimal
thermal regimes; at similar temperature exposures over
a similar time frame, we demonstrated that silver perch
weight was approximately 10 times higher when ex-
posed to the simulated natural thermal regimes

compared to temperatures that can occur in a thermally
polluted river. Temperature plays a similar role in the
growth performance of fish throughout the world, par-
ticularly in early life-history stages. Suboptimal temper-
atures have caused reduced somatic growth in a number
of species including greater amberjack (Seriola
dupmerili) (Fernández-Montero et al. 2018), Atlantic
cod (Gadus morhua) (Pérez-Casanova et al. 2009),
humpback chub (Gila cypha), Colorado squawfish
(Ptychocheilus lucius) (Clarkson and Childs 2000), yel-
lowtail kingfish (Seriola lalandi) (Abbink et al. 2012),
Atlantic halibut (Hippoglossus hippoglossus) (Jonassen
et al. 1999) and turbot (Scophthalmus maximus)
(Imsland et al. 1996).

Suboptimal water temperatures in aquatic ecosys-
tems pose a significant threat to the viability of fish
species as reduced body size in fish can increase their
vulnerability to a number of stressors and may ultimate-
ly affect fitness and survival. Swimming ability in fish is
dependent on both body size and water temperature
(Wolter and Arlinghaus 2003). Body size is positively
correlated with swimming ability (Fisher et al.
2005; Ojanguren and Brana 2003), particularly in
terms of sustained, prolonged and maximum swim-
ming speeds (Domenici 2001). Predator-prey inter-
actions are directly linked to swimming speed
limits and endurance in fish; reductions in the
swimming performance of larval fish is likely to
affect survival and growth potential of fish,
through increasing predation risk and limiting their
ability to capture prey (Domenici and Blake 1997;
Videler and Wardle 1991; Wolter and Arlinghaus
2003). Independent of size, swimming ability in
fish is often reduced at suboptimal temperatures.
In golden perch, fast-start performance was con-
siderably reduced at temperatures below 15.5 °C
(Lyon et al. 2008) and sprint and sustained swim-
ming performance was reduced in Macquarie perch
(Macquaria australasica) at a similar thermal
threshold (Starrs et al. 2011). Suboptimal water
temperatures reduce swimming ability in a number
of freshwater species in other regions (Childs and
Clarkson 1996; Myrick and Cech 2000; Ward
et al. 2002). The combined effects of decreased
body size and impaired swimming ability under
sub-optimal thermal conditions exacerbates preda-
tion risk and limits the ability of fish to find prey
(Sogard 1997). Considering these compounding
effects, we highlight the need to consider sub-

Fig. 8 Average otolith shape based on Wavelet analysis of a)
silver perch, b) trout cod and c) golden perch. Otoliths were
assessed prior to exposure (0) and after 30 days exposure to water
temperatures of 13, 16, 20 and 24 °C. Day 0 is represented in
black. Numbers represent the angles in degrees (0) based on polar
coordinates, with the centroid being indicated by the centre of the
cross (dashed lines)
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lethal responses to suboptimal thermal regimes in
the management of fish populations.

Mitigation of cold water pollution has been either
considered or implemented in some affected regions.
The success of mitigation is usually determined by
estimates of mortality or by reproductive measures
(Ferrari 1987; Gray et al. 2019; Hanna et al. 1999;
Sherman 2000; USDI 1999). Population modelling of
Murray cod downstream of Dartmouth Dam suggested
that a 5–6 °C increase in water temperature from 13 °C
would be necessary to diminish the effects of thermal
pollution on the reproductive success of the Murray cod
in the Mitta Mitta (Todd et al. 2005). A similar study
determined that mitigation of reduced water temperature
pollution below Hume Dam would likely see 4–6 °C
increases downstream which was predicted to improve
spawning conditions and increase female population
abundance by 30–300% (Sherman et al. 2007). Al-
though such improvements in temperature would be
beneficial, our results indicate that further improve-
ments to these temperatures would be required to dimin-
ish the effects of this cold water pollution on fish growth
at early life-history stages and the associated conse-
quences to individual fitness. Our results emphasize
the value in recovering water temperatures of freshwater
ecosystems to natural thermal regimes and highlight the
need to consider sub-lethal responses in fish to thermal
pollution in future mitigation efforts.

A strong somatic-otolith size relationship was main-
tained in silver perch, trout cod and golden perch when
fish were exposed to suboptimal water temperatures. A
number of studies have reported that slower growing
individuals often have larger otoliths at a given size
(Secor et al. 1989; Francis et al. 1993; Wright et al.
1990). Such decoupling of somatic and otolith growth
has the potential to create biases in back-calculated
estimates of fish growth histories and biochronological
analyses, particularly when fish in similar geographical
regions can display discrepancies in the relationships
determining otolith growth (Fey 2006). For some spe-
cies it is proposed that increased metabolic activity,
brought on by increased water temperatures, increases
the rate of accretion of material in the otolith microstruc-
ture (Mosegaard et al. 1988; Wright et al. 1990; Fey
2006). Analysis that has observed decoupling between
otolith and somatic growth has generally focussed on
temperatures above optimal for somatic growth; in these
assessments somatic growth slowed above thermal op-
tima whilst otolith growth continued (Mosegaard et al.

1988; Wright et al. 1990; Hoff and Fuiman 1993). A
potential reason for the strong coupling between somatic
and otolith growth in our study might be explained by
the fact that we only assessed temperatures below and
within the optimal range for the study species and there-
fore no metabolic driven accretion of material occurred
in the otolith.

In early life history stages, ontogenetic development
of otolith shape tends to shift from a circular (larval) to a
more irregular or elliptical shape (adult); this has been
observed in a number of species including walleye
pollock (Theragra chalcogramma) (Brown et al.
2001), windowpane (Scophthalmus aquosus) (Neuman
et al. 2001) and plaice (Pleuronectes platessa) (Modin
et al. 1996). The otoliths of fish held at low water
temperature were more circular in shape than fish of
the same age held at higher temperatures. This provides
further evidence for the maintenance of a strong
somatic-otolith relationship in these species when ex-
posed to suboptimal water temperatures. Given the
prevalence of otolith microstructure assessment in
back-calculations of fish age and growth in current
fishery research (Nishimura and Yamada 1984; Radtke
1989; Cordes and Allen 1997; Karlou-Riga 2000;
Buckmeier et al. 2002; Fablet and Le Josse 2005; Ber-
mejo et al. 2007), understanding environmental condi-
tions and processes that affect growth and development
of otoliths is essential in ensuring ongoing reliability of
these techniques and the applicability of their use in
management of fish populations (Campana and
Neilson 1985; Sponaugle 2010). With a strong
somatic-otolith size relationship being maintained by
silver perch, trout cod and golden perch at suboptimal
water temperatures, we validate the use of otoliths in the
analysis of life-history of these species in populations
that have been exposed the widespread cold water pol-
lution that persists in their native distribution.

Conclusion

Due to the importance of body size on survival, fitness,
feeding ability and overall health in fish, the sub-lethal
effects of temperature on growth identified in this study
will likely have further significant effects on population
health (Sogard 1997). Combined with the direct impacts
of temperature on swimming ability, reduced thermal
regimes in freshwater ecosystems have the potential to
drastically alter fish communities in regulated river
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systems globally. Understanding the sub-lethal impacts
of somatic and otolith growth and development experi-
enced by freshwater fish exposed to thermal pollution is
critical in the management of threatened fish popula-
tions and highlights the need for effective mitigation of
sources of thermal pollution.
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