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ABSTRACT  23 

Asthma is a common, heterogeneous and serious disease, its’ prevalence has steadily risen in 24 

most parts of the world, and the condition is often inadequately controlled in many patients. 25 

Hence, there is a major need for new therapeutic approaches. Mild-to-moderate asthma is 26 

considered a T-helper cell type-2-mediated inflammatory disorder that develops due to 27 

abnormal immune responses to otherwise innocuous allergens. Prolonged exposure to allergens 28 

and persistent inflammation results in myofibroblast infiltration and airway remodelling with 29 

mucus hypersecretion, airway smooth muscle hypertrophy, and excess collagen deposition. 30 

The airways become hyper-responsive to provocation resulting in the characteristic wheezing 31 

and obstructed airflow experienced by patients. Extensive research has progressed the 32 

understanding of the underlying mechanisms and the development of new treatments for the 33 

management of asthma. Here, we review the basis of the disease, covering new areas such as 34 

the role of vascularisation and microRNAs, as well as associated potential therapeutic 35 

interventions utilising reports from animal and human studies. We also cover novel drug 36 

delivery strategies that are being developed to enhance therapeutic efficacy and patient 37 

compliance. Potential avenues to explore to improve the future of asthma management are 38 

highlighted. 39 

 40 

Keywords: Asthma, molecular mechanisms, vascularisation, microRNA, novel drug 41 

candidates, targeted drug delivery  42 
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Introduction 43 

Asthma is a major international health issue affecting >330 million people worldwide.  There 44 

have been significant increases in worldwide prevalence at an annual rate of 1.4% (4.2 million) 45 

in children and 2.1% (6.3 million) in adults (Genuneit et al. 2017). Latin America, Australasia, 46 

Europe, North America and South Africa have the highest prevalence (>20%), whereas Asian 47 

countries have relatively low rates (2-4%) (Asher and Ellwood 2014; Asher et al. 2006; Beasley 48 

1998; Janson et al. 2001; Zock et al. 2006). Although children make up the majority of asthma 49 

patients, they have relatively low mortality rates (0.02% in-hospital asthma mortality). Older 50 

patients are more susceptible to asthma exacerbations and mortality risk increases with 51 

increasing age, and the elderly (>75 years) have the highest mortality (1.9% in-hospital 52 

mortality) (Krishnan et al. 2006). 53 

 54 

Characteristic features of asthma  55 

Asthma pathogenesis is underpinned by the principal components of airway inflammation and 56 

airway remodelling that combine to induce key symptoms like shortness of breath, chest 57 

tightness, cough, wheezing and airway hyperresponsiveness (AHR) (Hansbro et al. 2017). 58 

These events are linked to excessive reactions to normally innocuous allergen(s) that induce 59 

airway inflammation, AHR and reversible airway obstruction (Cahill et al. 2017; Galli 2017). 60 

Asthma symptoms are worsened by environmental and physical factors, such as infection, air 61 

pollution, smoke, climate change and physical exercise (Kim et al. 2015; Starkey et al. 2013b). 62 

When exacerbated by risk factors, patients have accelerated loss of lung function, and some 63 

develop irreversible airway obstruction. These exacerbations activate multiple parallel 64 

pathways that initiate both inflammation and tissue remodelling that can also induce resistance 65 

to mainstay corticosteroid treatments (Galvão et al. 2020; Kim et al. 2015). These events 66 

narrow the airways and further deteriorate lung function (Figure 1) (Wisnivesky et al. 2017). 67 
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 68 

Asthma is now considered a complex syndrome rather. Over the last decade we have moved to 69 

categorising patients from generic symptoms towards patient-specific symptoms and/or 70 

severity based on clinical phenotypes and inflammatory endotypes (Kaur and Chupp 2019; 71 

Lötvall et al. 2011). Almost 20+ years ago, Wenzel et al. categorised asthma into T2-high or 72 

T2-low based on airway eosinophil counts (Wenzel et al. 1999). Currently, asthma endotypes 73 

include T2-high or non-T2, eosinophilic, neutrophilic, granulocytic and paucigranulocytic 74 

amongst other classifications. T2-high asthma is further categorised into atopic, late onset or 75 

aspirin-exacerbated respiratory disease (Kuruvilla et al. 2019). Non-T2 high asthma is 76 

subdivided depending upon the type of stimuli, with smoke exposure, non-atopic asthma, 77 

obesity-related asthma and asthma associated with old age (Kuruvilla et al. 2019). Improved 78 

understanding of underlying mechanisms of asthma phenotypes and endotypes will enable the 79 

optimisation of the therapeutic options available to clinicians and patients. 80 

 81 

Airway Inflammation 82 

Through the interaction of multifactorial processes, numerous cell types compromise the 83 

respiratory system in asthma. These include neutrophils, macrophages, dendritic cells (DCs), 84 

mast cells, and airway epithelial cells (AECs), although eosinophils are thought to be pivotal 85 

in allergic asthma (Djukanovic 2002; Shukla et al. 2019). During the development of asthma, 86 

a myriad of inflammatory mediators, mostly cytokines and chemokines, are secreted and 87 

induce the influx of inflammatory cells to the airways (Djukanovic 2002; Shukla et al. 2019) . 88 

 89 

T-helper (Th) cells have established roles in asthma pathogenesis. It is proposed that subsets 90 

of innate lymphoid cells (ILCs) and DCs are induced that promote the development of Th type-91 

2 (Th2) cells, which then elicit uncontrolled immune responses in the lungs (Romagnani 2000; 92 

Starkey et al. 2019). This is supported by a distinct change towards a Th2 cytokine profile in 93 
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mild to moderate forms of the disease (Barnes 2001; Larché et al. 2003). Activated Th2 cells 94 

are widely accepted to cause tissue remodelling and AHR in eosinophilic asthma (Hansbro et 95 

al. 2017).  96 

 97 

Several external stimuli, including cigarette smoke and other environmental exposures, and 98 

bacterial and viral infections skew the immune response to more pro-inflammatory Th1/Th17-99 

dominant responses through a range of different mechanisms that characterises more severe 100 

corticosteroid-resistant asthma (Essilfie et al. 2015; Essilfie et al. 2012; Kim et al. 2017b). 101 

Exposure to cigarette smoke has been linked to neutrophilic subtypes of asthma with 102 

pronounced airway remodelling and non-responsiveness to corticosteroids (Polosa and 103 

Thomson 2013). Several studies suggest that repeated exposures to other inhalants, such as 104 

diesel exhaust, occupational chemicals and fumes, and air pollutants (e.g., PM2.5) could also 105 

result in neutrophilic asthma (Douwes et al. 2002; Esteban-Gorgojo et al. 2018; Simpson et al. 106 

2006). Indeed, although asthma is classically categorized by eosinophilic inflammation and can 107 

be managed by corticosteroids, asthma driven by non-eosinophilic inflammation is often 108 

resistant to corticosteroid treatment, which is collectively known as non-eosinophilic 109 

corticosteroid-resistant asthma (Esteban-Gorgojo et al. 2018). This phenotype is often 110 

presented with similar symptoms that occur in other asthma patients, however, their severity is 111 

increased higher and including more severe lung function impairment (Adcock et al. 2008; 112 

Barnes and Adcock 2009). Although the origin of this particular type of asthma is yet to be 113 

fully elucidated, bacterial infections are thought to be another underlying cause (Essilfie et al. 114 

2011; Essilfie et al. 2012; Horvat et al. 2010a; Horvat et al. 2010b). Respiratory pathogens, 115 

such as Chlamydia muridarum, Chlamydia pneumoniae, and Haemophilus influenzae, can 116 

induce respiratory symptoms that are co-related with this phenotype, including neutrophilic 117 
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airway inflammation, airway hyperresponsiveness, and poor response towards steroid-based 118 

therapy (Essilfie et al. 2011; Essilfie et al. 2012; Horvat et al. 2010a; Horvat et al. 2010b).  119 

 120 

Airway obstruction 121 

AHR and airway obstruction in asthma causes premature closure of the large airways and, 122 

hence, increases airway resistance that reduces the expiratory flow rate and the capacity to 123 

expel air (Hansbro et al. 2017). The obstructive effects are challenging to overcome but the 124 

body can compensate for these alterations by dynamic hyperinflation. This helps to increase 125 

blood oxygen levels but reduces the blood concentration of carbon dioxide, causing respiratory 126 

alkalosis (Fireman 2003; Frieri 2005). Hyperinflation may also generate high intra-pleural and 127 

intra-alveolar pressures, reducing blood oxygenation rate and distorting the pulmonary 128 

circulation (Fireman 2003). Persistent lung hyperinflation progressively reduces blood oxygen 129 

concentration and leads to hypoxia (Fireman 2003; Frieri 2005). Failure to adequately treat 130 

asthma exacerbations can cause collapse of the respiratory system as a consequence of all of 131 

these events, increasing mortality risk. 132 

 133 

Inflammatory cascades  134 

Allergic asthma can be categorised into three distinct phases: induction-, early- and late-phase 135 

asthmatic reactions (Shastri et al. 2014). It is well accepted that airborne antigens, such as 136 

allergens, microbes, and viruses, act as stimulants and irritate AECs (Cahill et al. 2017; Galli 137 

2017). Asthmatic inflammation results from a cascade of events (Figure 2). Briefly, inflamed 138 

AECs secrete thymic stromal lymphopoietin (TSLP) and cytokines, such as interleukin (IL)-139 

33, that activate DCs (Mitchell and O’byrne 2017), which are vital in polarising naive Th cells 140 

through the presentation of immunogenic antigens (Kaiko et al. 2008a; Kaiko et al. 2008b). 141 

DCs also interact with interstitial lung macrophages and T-cells through complex 142 
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interconnected networks involving major histocompatibility complexes and T-cell receptors 143 

(TCRs) (Frieri 2005; Yang et al. 2012), leading to the release of IL-4, which triggers the 144 

activation of Th2 cells. Th2 cells further activate Th9 and B-cells via the release of IL-4 and 145 

IL-13 (Hansbro et al. 2017). IL-4 and IL-13 promote remodelling of the asthmatic airways 146 

involving mucus hypersecretion, smooth muscle proliferation, and myofibroblast 147 

differentiation (Barnes 2001; Shastri et al. 2015a). Notably, IL-13 downregulates the 148 

production of pro-Th1 cytokines, such as IL-12 (Starkey et al. 2013a). It also induces a CD40-149 

dependent switch from immunoglobulin G (IgG) to IgE and, hence, increases IgE synthesis in 150 

B-cells (Romagnani 2000). Both Th9- and B-cells activate mast cells via IL-9 and IgE 151 

production. Binding of IgE to its’ receptors on mast cells triggers their degranulation, leading 152 

to the release of pro-inflammatory mediators, including histamine and leukotrienes (Holgate 153 

2000). Th2 cells also secrete IL-5, which activates and recruits eosinophils to the airways, and 154 

promotes their survival (Brusselle et al. 2013; Shastri et al. 2015b). Activated eosinophils can 155 

further elicit inflammation by secreting pro-inflammatory cytokines and leukotrienes 156 

(Brusselle et al. 2013). These factors induce AHR and constrict the airways (Brusselle et al. 157 

2013). Activated DCs and naive Th cells can also activate Th17 cells via the release of 158 

inflammatory mediators, including IL-23 and IL-6 (Hansbro et al. 2017), and these cells in turn 159 

recruit and activate neutrophils. Neutrophils are also activated by damaged AECs through the 160 

secretion of the chemokine CXCL1 (Ennis 2003; Hallstrand et al. 2014). Neutrophils are the 161 

most abundant leukocytes in the airway mucosa and have a major role in tissue remodelling. 162 

 163 

Ongoing inflammation results in the late-phase asthmatic response characterised by permanent 164 

structural changes, including deposition of extracellular matrix (ECM) proteins around the 165 

airway smooth muscle (ASM), resulting in ASM hypertrophy and hyperplasia, sub-basement 166 

membrane fibrosis and mucus cell metaplasia (Liu et al. 2017). These changes are collectively 167 

termed airway remodelling. Various ECM proteins are present at abnormal levels in asthmatic 168 
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patients and contribute to airway remodelling including collagen, fibronectin, tenascin, fibulin, 169 

and periostin (Lau et al. 2010; Liu et al. 2016; Liu et al. 2017). Differences in the composition 170 

of ECM proteins may distinguish specific type(s) and severity of asthma, and predict responses 171 

of patients to monoclonal antibody (mAB) treatment. 172 

 173 

Impact of airway vascularisation  174 

The presence of abnormal vasculature in the pulmonary sub-epithelial vascular network of the 175 

airways may also play pivotal roles in asthma pathogenesis (Grigoras et al. 2012). Increases in 176 

the amount, density, and area of microvessels occur in the sub-epithelial zone of asthmatic 177 

airways (Chetta et al. 2003; Grigoras et al. 2012; Hashimoto et al. 2005; Hoshino et al. 2001a; 178 

Hoshino et al. 2001b; Huang et al. 2015). Moreover, studies have revealed the involvement of 179 

pro-angiogenesis factors, including vascular endothelial growth factor (VEGF) in sputum, 180 

bronchoalveolar lavage (BAL) fluid and bronchial tissue in asthma (Table 1) (Abdel-Rahman 181 

et al. 2006; Asai et al. 2003; Meyer and Akdis 2013). VEGF induces the proliferation and 182 

growth of endothelial cells, and is produced by various inflammatory cells, including 183 

eosinophils, macrophages, and mast cells (Bakakos et al. 2016). There are different isoforms 184 

of VEGF; VEGF-A, VEGF-B, VEGF-C, and VEGF-D (Ferrara 2007). Moreover, various 185 

receptor tyrosine kinases are known to bind VEGF and induce angiogenesis, including VEGF 186 

receptor (VEGFR)1 and VEGFR2. Both are expressed in most endothelial and haemopoietic 187 

stem cells, but they have different cellular functions (Meyer and Akdis 2013). VEGFR2 is the 188 

primary receptor that promotes angiogenesis; whereas VEGFR1 is proposed to act as a 189 

competitive inhibitor that binds to VEGF but does not promote angiogenesis, hence reducing 190 

VEGF-VEGFR2 binding (Meyer and Akdis 2013).  The degree of vascularisation in asthmatic 191 

airway tissue is also increased and is dependent on the severity of exacerbations (Hashimoto et 192 

al. 2005; Salvato 2001). Notably, there is also a concomitant relationship between percentage 193 



 9 

vascularisation, lung function, and severity of asthma exacerbations (Grigoras et al. 2012; 194 

Hoshino et al. 2001a; Hoshino et al. 2001b). Understanding the underlying mechanisms leading 195 

to increased vascularisation may help elucidate its role in airway inflammation and altered lung 196 

function in asthma. 197 

 198 

Two types of vascular systems exist in respiratory tissues, the pulmonary system (low pressure, 199 

undertakes gas exchange) and the bronchial circulation (high pressure system that supplies 200 

nutrients and oxygenated blood) (Zanini et al. 2010). The bronchial circulation consists of the 201 

inner vascular plexus in the lamina propria and the outer plexus in the adventitia (Zanini et al. 202 

2010). The vascularisation phenomenon in lungs is restricted to microvessels or capillaries 203 

(Asai et al. 2003; Hashimoto et al. 2005; Kanazawa et al. 2007; Kanazawa et al. 2004). 204 

Emerging evidence demonstrates the presence of abnormal vascular structure in the internal 205 

plexus within the sub-epithelial, sub-mucosa, and lamina propria (Asai et al. 2003; Hashimoto 206 

et al. 2005; Kanazawa et al. 2007; Kanazawa et al. 2004). The vasculature in the outer plexus 207 

is poorly studied due to the difficulty in isolating such tissues. Angiogenesis is an important 208 

mechanism leading to vascularisation. Physiological challenges to the airways may increase 209 

the expression of pro-angiogenic mediators, like VEGF, thereby promoting angiogenesis in 210 

affected tissues (Kim 2017). Endothelial cells in airway tissues also release endogenous 211 

proteases, such as matrix metalloproteinases (MMPs), which distort vessel membranes and 212 

induce vasodilation (Carmeliet 2000; Carmeliet 2005). This leads to the influx of plasma 213 

proteins and cells into the tissues, which promote the formation of endothelial tip cells 214 

(Carmeliet 2000; Carmeliet 2005). This process leads to the creation of new vessels, and the 215 

establishment of additional vascular networks (Chung and Ferrara 2011; Hellström et al. 2001; 216 

Silva et al. 2008; Yoo and Kwon 2013). Further studies need to identify other potential 217 
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mechanisms of vascularisation in asthmatic airways, such as vasculogenesis, which occurs in 218 

chronic obstructive pulmonary disease (COPD) and pneumonia. 219 

 220 

The formation of extra microvessels provides an additional route for inflammatory mediators 221 

to translocate to the airway epithelium and lumen, resulting in sustained inflammation and 222 

aggravation of airway obstruction (Harkness et al. 2015; Narayanan et al. 2016). The excess 223 

production of mediators and influx of inflammatory cells induces vasodilation and plasma 224 

engorgement (Page et al. 2017). Vascularisation may also alter tissue structure (Chakir et al. 225 

2003; Niimi et al. 2003). Consequences of these events include airway fibroblast hyperactivity, 226 

mucus hypersecretion, and ASM hypertrophy (Benayoun et al. 2003; Harkness et al. 2015; 227 

Zanini et al. 2010). In combination, these responses thicken the airway walls, further worsening 228 

lumen narrowing and declines in lung function. 229 

 230 

Targeted therapeutic strategies 231 

Despite major advances in understanding the pathophysiology of asthma, morbidity rates 232 

continue to rise, and current therapies, such as corticosteroids, have adverse effects. Most 233 

importantly, a significant population of asthmatic patients do not respond to corticosteroids 234 

(Green et al. 2002). However, recent progress in understanding the cellular and molecular 235 

mechanisms have shed new light on the development of novel therapeutic strategies for the 236 

management of severe asthma (Nixon et al. 2017). 237 

 238 

Among various therapeutic strategies, the use of new biological agents, mostly discovered 239 

using mouse models and which target key inflammatory mediators, demonstrates significant 240 

potential. To date, omalizumab and mepolizumab, which are neutralising monoclonal 241 

antibodies (mAbs) against IgE and IL-5, respectively, are approved by the US FDA and EMA 242 

(Pelaia et al. 2012; Wenzel 2012). Similarly, therapeutic strategies against other inflammatory 243 
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mediators involved in asthma pathogenesis are in clinical trials (Table 2). Indeed, there are 244 

numerous novel asthma therapies that are either available or under clinical trials. 245 

 246 

Anti-IgE 247 

IgE has been a target for the treatment of allergic diseases for many years (Ishizaka and Ishizaka 248 

1967; Pelaia et al. 2008). After allergen-challenge, antigen-activated IgE binds to Fc receptors 249 

on mast cells and promotes their activation (Pelaia et al. 2012). Consequently, mast cells 250 

undergo degranulation and release preformed pro-inflammatory mediators (Pelaia et al. 2012). 251 

Omalizumab (anti-IgE mAb) reduced asthma exacerbations showing that IgE suppression may 252 

be beneficial in asthma. Omalizumab is a recombinant antibody containing a complementarity-253 

determining region, which is obtained from an anti-IgE antibody in mice (Presta et al. 1993). 254 

High-affinity binding of omalizumab to IgE constrains the interaction of the antibody with mast 255 

cells, thus preventing mast cell degranulation (Shields et al. 1995). In clinical studies, 256 

omalizumab treatment reduced free serum IgE concentrations by 99%, and suppressed new IgE 257 

production (Tomkinson et al. 2001). Furthermore, it also decreased the efficacy of antigen-258 

presenting cell interactions with naïve Th cells (Novak et al. 2003). Recently, omalizumab was 259 

found to be effective in reducing asthma exacerbation rates across a wide range of eosinophil 260 

levels (Hanania et al. 2018). Similar beneficial effects were also observed after the 261 

administration of omalizumab in children with severe asthma (Szefler et al. 2018). 262 

Interestingly, a recent study demonstrated the efficacy of omalizumab in improving IFN-α and 263 

IFN-λ release in patients with influenza A virus- and rhinovirus-induced severe allergic asthma, 264 

highlighting the additional potential of omalizumab in exacerbations (Wark et al. 2018). 265 

Furthermore, data from a recent phase III clinical trial (NCT01328886) showed that long term 266 

therapy with omazulimab is safe and effective in children with severe uncontrolled allergic 267 

asthma (Odajima et al. 2017).  268 
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Inhibition of type 2 responses 269 

TSLP and IL-33 blockade 270 

TSLP and IL-33 are produced by AECs in response to exogenous pro-inflammatory stimuli 271 

and are involved in the activation of DCs and the associated cascade of inflammatory events 272 

(Hallstrand et al. 2014). Gauvreau et al., revealed that a human anti-TSLP mAb 273 

(AMG157/MEDI19929; also known as tezepelumab) reduced airway inflammation and 274 

relieved allergen-induced bronchoconstriction in patients with mild asthma in a phase I study 275 

(NCT01405963) (Gauvreau et al. 2014). In a Phase II trial (NCT02054130), tezepelumab 276 

reduced the exacerbation rate in patients with uncontrolled asthma (Corren et al. 2018). 277 

Another antibody, ANB020 (anti-IL-33 mAb) cleared Phase I trials and showed a good 278 

pharmacokinetic, pharmacodynamic, tolerability and safety profile in healthy volunteers 279 

receiving one or multiple doses (Londei et al. 2017). Results from Phase II trials are anticipated 280 

soon. Although anti-TSLP and anti-IL-33 antibodies have clinical potential, carefully 281 

controlled trials are needed to evaluate their true pharmacological applicability and efficacy in 282 

asthma. carefully controlled trials are needed to evaluate their true pharmacological 283 

applicability and efficacy in asthma 284 

 285 

Anti-IL-4 286 

IL-4 contributes significantly to asthma pathophysiology, primarily in the early development 287 

of allergy (Humbert et al. 1997; Kotsimbos et al. 1996). It promotes differentiation of naive Th 288 

cells into Th2 cells and their proliferation, and also contributes to airway tissue remodelling 289 

(Barnes 2006; Barnes 2008; Schipf et al. 2003). Most anti-IL-4 therapies, such as pascolizumab 290 

(anti-IL-4 mAb), are highly effective in suppressing asthma features in vitro and in animal 291 

models (Hansbro et al. 2013). However, these antibodies are typically found to be clinically 292 

ineffective in established asthma in humans (Corry et al. 1996; Zhou et al. 1997). Altrakincept 293 
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(soluble humanised IL-4 inhibitor) blocked airway eosinophil infiltration and mucus 294 

hypersecretion in allergen-challenged mice (Henderson et al. 2000). It is safe in moderate 295 

asthma patients and reduces inflammation (Borish et al. 2001; Borish et al. 1999). However, 296 

again the respiratory function of asthma patients was not improved (Borish et al. 2001; Borish 297 

et al. 1999).  Further studies are warranted to improve the anti-IL-4 medications for asthma, 298 

but it is likely more effective as a preventative rather than a treatment. 299 

 300 

Anti-IL-5 301 

IL-5 has important roles in allergen-induced asthma as a mediator of the activation, 302 

proliferation, and maturation of eosinophils (Stirling et al. 2001). Animal studies show that 303 

anti-IL-5 mAb, TRFK-5, reduced eosinophil influx into mouse airways after allergen challenge 304 

(Garlisi et al. 1999), and suppressed AHR in mouse models of asthma (Mauser et al. 1995). 305 

Early clinical trials in mild and chronic asthma with a similar anti-IL-5 mAb, mepolizumab 306 

showed that it is safe (Holgate 2008; Leckie et al. 2000; Tanaka et al. 2004), but therapeutic 307 

efficacy was inconsistent (Leckie et al. 2000; Mauser et al. 1995; Tanaka et al. 2004). Some 308 

patients responded well, those with elevated IL-5/eosinophils, and the levels of eosinophils 309 

were significantly reduced, but likely not sufficiently so, and overall it did not improve 310 

functional endpoints, such as lung function and asthma symptoms. Interestingly, in a phase II 311 

trial (NCT00292877) intravenous administration of mepolizumab to chronic corticosteroid-312 

resistant asthma patients demonstrated clinically reduced blood and sputum levels of 313 

eosinophils, and improved asthma symptoms (Haldar et al. 2009; Nair et al. 2009). A later 314 

phase III clinical trial (NCT01000506) in patients with severe, uncontrolled asthma with 315 

eosinophilic inflammation, mepolizumab met its primary and secondary endpoints by reducing 316 

the number of exacerbations, increasing the time to first exacerbation, and improving FEV1 317 
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and ACQ scores (Pavord et al. 2012). The drug is now approved by FDA and EMA as an add-318 

on maintenance treatment.  319 

 320 

Another anti-IL-5 mAb, benralizumab, had a good therapeutic profile in treating asthma. 321 

Recently, a Phase III trial (NCT02417961), showed that it significantly reduce eosinophil 322 

levels as well as exacerbation rates in asthmatic patients (Ferguson et al. 2018). Another Phase 323 

III study (NCT01928771) revealed that it also significantly improved lung function in patients 324 

with uncontrolled asthma receiving high-doses of inhaled corticosteroids and long-acting β2-325 

agonists (Bleecker et al. 2016). Together these studies show that long-term administration of 326 

anti-IL-5 therapies may be beneficial in asthma. 327 

 328 

Anti-IL-13 and Anti-IL-4Rα 329 

IL-13 is an important inducer of airway tissue remodelling, mucus hypersecretion, and B-cell 330 

proliferation (Doucet et al. 1998; Grünig et al. 1998). In initial clinical trials, tralokinumab 331 

(anti-IL-13 mAb) was safe for intravenous administration, with little or no adverse effects 332 

(Hansbro et al. 2011; Singh et al. 2010). A phase II placebo-controlled study of this mAb 333 

(NCT00873860)  reported  acceptable safety profiles with no serious adverse effects (Piper et 334 

al. 2013). Recently, two phase III clinical trials with tralokinumab, STRATOS 1 335 

(NCT02161757), and STRATOS 2 (NCT02194699) also reported good safety profiles when 336 

administered to patients with severe uncontrolled asthma (Panettieri et al. 2018). 337 

Unfortunately, both STRATOS 1 and STRATOS 2 studies showed inconsistent effects in 338 

reducing exacerbation rates in asthma, raising questions of their efficacy as treatments 339 

(Panettieri et al. 2018). Further trials are warranted to clearly define the effect of tralokinumab 340 

in asthma. Lebrikizumab is another anti-IL-13 mAb which decreased exacerbation rates and 341 

improved FEV1 in asthma, and it also reduced late-phase responses and serum IgE 342 
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concentrations by 48% and 25%, respectively (Hanania et al. 2016; Scheerens et al. 2014). 343 

However, in a subsequent phase III  trial (NCT01868061) various issues with lebrikizumab 344 

treatment were reported (Hanania et al. 2016). Serious adverse events, including aplastic 345 

anaemia and eosinophilia, were reported, and consistent reduction in exacerbation rates was 346 

not observed in asthmatic patients (Hanania et al. 2016). Similar findings were made in another 347 

phase III trial (NCT02104674) where lebrikizumab treatment did not significantly improve 348 

lung function, raising further efficacy questions on specific targeting of IL-13 (Korenblat et al. 349 

2018).  350 

 351 

An anti-IL4Rα mAb, dupilumab, that blocks both IL-4 and IL-13 activity, was found to be 352 

effective in preventing ICS-withdrawal-induced asthma exacerbations and improving FEV1 353 

(Wenzel 2013). Noteworthy observations from anti-IL-13 or anti-IL4Rα trials were that blood 354 

eosinophil counts were moderately increased in patients. This may indicate that blockade of 355 

IL-13 signalling results in the inhibition of eosinophil-recruiting chemokines and, hence, 356 

reduces the migration of these cells from the blood to the lungs (Corren et al. 2017; Hanania et 357 

al. 2016; Nixon et al. 2017; Wenzel 2013). Dupilumab has been recently approved by the FDA 358 

as a treatment for patients with moderate to severe atopic dermatitis, and recently was found to 359 

have similar therapeutic benefit in asthma. In a phase III trial (NCT02414854) in patients with 360 

uncontrolled asthma, dupilumab  significantly reduced exacerbations compared to placebo, and 361 

also improved lung function (Castro et al. 2018). Moreover, both phase IIb (NCT01854047) 362 

and phase III studies (NCT02528214) reported that dupilumab improved lung function and 363 

reduced severe exacerbations in patients with uncontrolled persistent asthma as well as 364 

corticosteroid-dependent severe asthma irrespective of baseline eosinophil counts  (Rabe et al. 365 

2018; Wenzel et al. 2016). 366 

 367 
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Novel agents should be developed and tested against other key proteins and cells, including 368 

mast cells and neutrophils, that are known to play critical roles in asthmatic inflammation, 369 

airway tissue remodelling and severe asthma. Also, drugs that target ECM proteins such as 370 

fibulin-1c, which has been shown to be increased in asthma, should also be assessed (Lau et al. 371 

2010). Its inhibition in mouse models prevented both inflammation and airway remodelling 372 

(Liu et al. 2016). 373 

 374 

Anti-IL-17 375 

Asthma was classically considered as an allergic inflammatory disorder, however, discovery 376 

of non-eosinophilic asthma has revealed the association of neutrophils in severe asthma 377 

pathogenesis. IL-17 is a pro-inflammatory cytokine that is produced by TH17 cells. Its’ 378 

inflammatory roles have been well studied in multiple inflammatory conditions, including 379 

rheumatoid arthritis, COPD, cystic fibrosis, and multiple sclerosis (Miossec et al. 2009). In 380 

asthma, IL-17 is involved in airway remodelling, neutrophilic inflammation, and corticosteroid 381 

resistance in non-eosinophilic asthma (Chang et al. 2012; Chesné et al. 2014; Fogli et al. 2013; 382 

Mizutani et al. 2014; Nadeem et al. 2018; Nakae et al. 2002; Vazquez-Tello et al. 2013; 383 

Vazquez‐Tello et al. 2010; Wakashin et al. 2008). Hence, inhibiting IL-17, may be a possible 384 

treatment for non-eosinophilic asthma. The use of different mouse models has shown efficacy 385 

of anti-IL-17 treatments in the potential management of asthma. Treatment in models of 386 

allergic asthma show improvement in pulmonary inflammation with significant reduction in 387 

neutrophils, eosinophils, T-regulatory cells, and antigen-presenting cells with administration 388 

of anti-IL-17 monoclonal antibody (Camargo et al. 2018; Lovato et al. 2016). Similar effects 389 

were observed in a refractory asthma model also treated with anti-IL-17 (Liang et al. 2018). 390 

However, targeting IL-17 has not yet yielded satisfactory outcomes in clinical trials. 391 

Brodalumab, an IL-17 antagonist, proved to be effective in treating adult patients with 392 
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moderate to severe plaque psoriasis, but failed to demonstrate any treatment effects in patients 393 

with moderate to severe asthma (Beck and Koo 2019; Busse et al. 2013; Khokhlovich et al. 394 

2017). Treatment with secukinumab, a humanized anti-IL-17 monoclonal antibody that showed 395 

excellent clinical outcomes in treating plaque psoriasis, psoriatic arthritis, and rheumatoid 396 

arthritis, was terminated in a phase-II clinical trial in patients with uncontrolled asthma as it 397 

was not effective in the target population (Blanco et al. 2017; ClinicalTrial 2015; Langley et 398 

al. 2014; McInnes et al. 2015).  399 

 400 

Macrolides 401 

Several studies have assessed the use of macrolides for the management of asthma, specifically 402 

bacterial infection-associated non-eosinophilic asthma (Black et al. 2001; Esposito et al. 2004). 403 

Macrolides are antibiotics used to treat bacterial infection by attenuating bacterial protein 404 

biosynthesis and biofilm formation (Xepapadaki et al. 2008). Macrolides also possess anti-405 

inflammatory properties and have been shown to potentiate responsiveness of asthma patients 406 

to corticosteroid therapy (Spahn et al. 2001). Treatment with macrolide (clarithromycin) in a 407 

bacteria-induced severe steroid-resistant severe asthma mouse model demonstrated 408 

antibacterial and anti-inflammatory effects alongside re-sensitization to corticosteroids 409 

(Essilfie et al. 2015).  Likewise, a clinical study also reported the efficacy of clarithromycin in 410 

relieving wheezing in asthma patients co-infected with Chlamydia pneumoniae (Kraft et al. 411 

2002). Moreover, a randomised, double-blind, placebo-controlled clinical trial on asthma 412 

patients receiving macrolide therapy (azithromycin) revealed its immunomodulatory efficacy 413 

by reducing asthma symptoms in non-eosinophilic asthma patients (Gibson et al. 2017). 414 

Notably, administration of azithromycin (500 mg, thrice per week, for 48 weeks) significantly 415 

reduced asthma exacerbations (including severe exacerbations) and sputum eosinophil levels 416 

(Gibson et al. 2017). Although recent evidence suggests largely beneficial effects of 417 
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macrolides, their immunomodulatory functions for asthma management and disease 418 

progression is require further investigation and may induce antibiotic resistance in pathogens. 419 

 420 

Phosphodiesterase (PDE) inhibitors 421 

PDE is an essential enzyme that inhibits cellular signalling molecules like cyclic adenosine 422 

monophoshate (cAMP) and cyclic guanosine monophosphate (cGMP) by degrading their 423 

phosphodiester bonds (Gao et al. 2017; Karish and Gagnon 2006). Thus, by inhibiting PDE, it 424 

is possible to prolong cellular activity initiated by cAMP or cGMP. In asthma, the biosynthesis 425 

of one of the hallmark inflammatory mediators, TNF, is inhibited by cAMP, which is regulated 426 

by PDE (Shah et al. 1995). Hence, inhibiting PDE with inhibitors (PDEIs), could prolong the 427 

activity of cAMP leading to a reduction in the biosynthesis of TNF. Using in-vivo inflammation 428 

models, it was demonstrated that PDEI was able to reduce TNF concentration by up to 85% 429 

compared to sham treatment (Bundschuh et al. 2001; Murad et al. 2017). There are different 430 

types of PDEI available on the pharmaceutical market such as, roflumilast, cilomilast, rolipram, 431 

BAY19-8004, MEM1414, and GSK256066 (Karish and Gagnon 2006). Among them, only 432 

roflumilast is approved for clinical use in treating patients with COPD and was shown to reduce 433 

severe exacerbations and improve lung function (Calverley et al. 2009; Luo et al. 2016). 434 

However, it is not recommended for patients with asthma due to undesirable clinical outcomes. 435 

In multiple clinical trials, PDEI (roflumilast) administration improved lung function in mild to 436 

moderate asthma patients, but failed to have any bronchodilator effects and did not reduce the 437 

allergen-induced inflammation in the early asthma phase (Bateman et al. 2006; Bousquet et al. 438 

2006; Louw et al. 2007). Furthermore, adverse events, such as headache and nausea, were 439 

reported with treatment (Bateman et al. 2006; Bousquet et al. 2006; Louw et al. 2007).  440 

 441 

Anti-histamines 442 
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Histamine is a chemical mediator secreted by mast cells in response to an allergic reaction or 443 

event (Thangam et al. 2018). Under normal conditions, histamine is produced and stored within 444 

mast cells or basophils (Thangam et al. 2018). Upon release, it binds to histamine receptors 445 

expressed in the airways and pulmonary tissues, and subsequently initiates multiple allergic 446 

reactions, leading to mucus hypersecretion, broncho- and vascular constriction (Thangam et al. 447 

2018). However, for these events to occur, the amount of histamine accumulated within the 448 

tissues must overwhelm its counterpart, histamine N-methyl transferase (HMT) (Salomonsson 449 

et al. 2019; Yamauchi and Ogasawara 2019). HMT metabolises airway histamine and has a 450 

significant role in regulating histamine effects on the airways (Yamauchi et al. 1994). Both 451 

histamine and HMT are regulated in a balanced state, and the downstream cascade is only 452 

initiated when the accumulated histamine overwhelms the HMT capability to degrade excess 453 

histamine (Yamauchi et al. 1994). Pharmacological inhibition of HMT with an inhibitor 454 

(SKF91488) exacerbate the contractile response of bronchi towards histamine, hence showing 455 

HMT as a negative regulator of histamine effects on the respiratory system (Curry 1946; 456 

Yamauchi et al. 1994).   457 

 458 

There are 4 known types of histamine receptors (H1, H2, H3, H4) in the respiratory system 459 

(Ahmed et al. 1982; Ichinose and Barnes 1989; Kay et al. 2018; Tucker et al. 1975). Relevant 460 

for asthma H1 receptors mediate the bronchoconstriction of smooth muscle while H2 receptors 461 

are responsible for mucus hypersecretion and vascular dilation (Müller et al. 2006). A potential 462 

therapy to inhibit H1 receptor activity have been developed in the form of antagonists such as 463 

chlorpheniramine and clemastine (Kawauchi et al. 2019; Okubo et al. 2020). Despite being 464 

proven to possess strong biological activity and high specificity for H1 receptors, H1 receptor 465 

antagonists are not generally recommended for asthma treatment. Instead, inhaled 466 

corticosteroids, leukotriene receptor antagonist, and β2-receptor adrenergic agonist are 467 
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recommended (Kawauchi et al. 2019; Okubo et al. 2020). Asthmatic patients receiving 468 

leukotriene receptor antagonist had better recovery in allergen-induced airway obstruction 469 

compared to those who received H1 receptor antagonist. 470 

 471 

Anti-vascularisation therapies 472 

VEGF has a critical role in driving airway vascularisation. As a vascular growth factor, it can 473 

increase MMP activity and the translocation and proliferation of endothelial cells, and hence 474 

plays major roles in promoting angiogenesis in airway tissues (Harkness et al. 2015). VEGF 475 

overexpression in mice leads to prominent airway vascularisation (Baluk et al. 2004). 476 

Administration of VEGF inhibitors, such as sunitinib, effectively suppresses eosinophilic 477 

airway inflammation and airway remodelling in murine asthma models (Huang et al. 2009; Lee 478 

et al. 2002). Moreover, reductions in VEGF levels and peri-bronchial angiogenesis after 479 

treatment with immunostimulatory sequences of DNA (ISSD) was observed in an ovalbumin-480 

induced asthma model (Lee et al. 2006). It has been proposed that ISSD binds to Toll-like 481 

Receptor 9 and inhibits allergen-induced Th2 immune responses, as well as reversing features 482 

of airway remodelling including the development of peri-bronchial fibrosis and increases in 483 

ASM thickness (Lee et al. 2006). Additionally, administration of bevacizumab (recombinant 484 

humanized anti-VEGF mAb) prior to ovalbumin sensitisation inhibited angiogenesis and 485 

reduced airway tissue membrane thickness (Yuksel et al. 2013). 486 

 487 

Administration of endostatin, a 20kDA C-terminal fragment derived from collagen-type XVIII, 488 

in ovalbumin-challenged mice reduced the progression of sub-epithelial angiogenesis, and 489 

relieved pulmonary and lung inflammation (Suzaki et al. 2005). The beneficial effects were 490 

reportedly due to the blockade of VEGF/VEGF receptor signalling. Similar effects were also 491 

observed after the administration of tumstatin (a protein fragment cleaved from collagen type 492 

IV) or synthetic peptides of it (Burgess et al. 2010; Grafton et al. 2014). Tumstatin also 493 
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suppressed inflammatory cell migration, mucus hypersecretion and angiogenesis in ovalbumin-494 

challenged mice (Hutchings et al. 2003). 495 

 496 

Recently, docetaxel, a prodrug (delivered via αvβ3-targeted nanoparticles) that binds to and 497 

stabilises intracellular microtubules, suppressed eosinophil levels and neovascular expansion 498 

in the airways of house dust mite-challenged mice (Lanza et al. 2017). It was proposed that 499 

docetaxel interacts with tubulin and reduces IL-13 and VEGF production. Likewise, in the 500 

same model, the fumagillin-prodrug interacted with methionine aminopeptidase-2 present in 501 

proliferating endothelial cells, and inhibited neovascular expansion in the lungs (Lanza et al. 502 

2017). 503 

 504 

There is still limited knowledge of the optimal means to prevent or reverse the progression of 505 

asthmatic vascularisation. Hence, the development of anti-vascularisation therapies should be 506 

considered as novel therapeutic approaches for asthma. 507 

 508 

Targeting microRNAs (miRNAs) 509 

miRNAs are short non-coding RNAs which control gene expression post-transcriptionally by 510 

directly blocking translation of their target mRNAs or by repressing protein production via 511 

mRNA destabilisation (Dua et al. 2017b; Plank et al. 2015). They regulate many biological 512 

processes (cell differentiation and growth, metabolism, cell signalling, apoptosis) related to 513 

inflammation. They are involved in altering pro-inflammatory responses and also virus-514 

induced effects in human AECs, which are one of the leading causes of asthma exacerbations 515 

(Herbert et al. 2015). Inhibiting the function of specific miRNAs in asthma may be novel 516 

therapeutic approaches (Foster et al. 2013; Greene and Gaughan 2013).  517 

 518 

A recent study showed roles for miR-23b in controlling TGF-β1-induced ASM cell 519 

proliferation by regulating Smad3 and, thereby reducing airway remodelling (Chen et al. 2017). 520 



 22 

Zhou et al., identified miR-155 as a novel target in allergic asthma (Zhou et al. 2016), which 521 

also suppressed chemokine expression (CCL5, CCL11, CCL26, CXCL8, and CXCL10) in 522 

human epithelial cells by inhibiting IL-13 signalling (Matsukura et al. 2016). Others showed 523 

that this miRNA is increased in an ovalbumin-induced mouse model of allergic asthma but its 524 

inhibition with an antagomir did not alter the phenotype, which may be due variable efficacy 525 

in uptake of the inhibitor by different cells (Matsukura et al. 2016; Plank et al. 2015). miR-526 

181b-5p has been identified as a potential biomarker for airway eosinophilia, and controls pro-527 

inflammatory cytokine release by targeting the secreted phosphoprotein 1 (SPP1) gene (Huo et 528 

al. 2016). It also increases inflammation by promoting nuclear factor-κB signalling via the 529 

regulation of p65 and IL-6 (Wang et al. 2015). Similarly, Fan et al., showed in asthma patients 530 

that miR-145 is involved in maintaining the balance between Th1 and Th2 responses by 531 

targeting the runt-related transcription factor 3 (RUNX3), which may be a biomarker for 532 

asthma (Fan et al. 2016). miR-196a2 polymorphisms have also been shown to be involved in 533 

controlling asthma (Hussein et al. 2016). 534 

 535 

An interesting study involving toluene diisocyanate (TDI), a major cause of occupational 536 

asthma, demonstrated the involvement of miR-210 via inhibitory effects on Treg function, 537 

particularly during the sensitisation phase of TDI-induced allergic asthma (Long et al. 2016).  538 

 539 

Tang et al., identified roles for miR-21a-3p, miR-449c-5p, and miR-496a-3p in mouse models 540 

of asthma, and identified an miR-21/Acvr2a axis in regulating asthma-induced inflammation 541 

(Tang et al. 2016). Also, we have shown crucial roles for miR-21 in the pathogenesis of an 542 

experimental mouse model of steroid-insensitive asthma. It’s effects occur though the 543 

suppression of anti-inflammatory phosphatase and tensin (PTEN) homolog, that increases the 544 

phosphoinositide 3-kinase (PI3K) signal, in turn reducing histone deacetylase-2 levels that are 545 

required for responses to steroid treatment (Kim et al. 2017a). Elbehidy et al., confirmed miR-546 
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21 as a potential novel biomarker for asthma diagnosis in children (Elbehidy et al. 2016). miR-547 

10a has also been identified as a possible therapeutic target in regulating the proliferation of 548 

ASM cells via the PI3K pathway (Hu et al. 2014). Xiang and colleagues demonstrated the role 549 

of miR-487b in activating and regulating macrophages in innate immune responses including 550 

pro-inflammatory effects through the induction of IL-33 transcripts (Xiang et al. 2016). 551 

Another study showed that antagonising miR-328 in the infected lung enhances the 552 

antimicrobial potential of macrophages and neutrophils along with the clearance of Non-553 

typeable Haemophilus influenzae (Tay et al. 2015). 554 

 555 

A primary pathogenic factor in asthma is the overexpression of IL-13, and most miRNAs 556 

implicated in the disease, such as miR-133a, -145, -126, -155 and -146, contribute to its 557 

regulation (Chiba et al. 2009; Collison et al. 2011; Greene and Gaughan 2013; Liu et al. 2015; 558 

Matsukura et al. 2016). Ho et al., showed in an ovalbumin-induced mouse model of asthma 559 

that diallyl sulfide has protective effects due to miR-144, -34a and -34b/c induced Nrf2 560 

activation, which has anti-oxidant effects (Ho et al. 2016). miR-19a has been identified as a 561 

potential new therapeutic target for the management of severe asthma, where its 562 

downregulation controls epithelial repair (Haj-Salem et al. 2015). Likewise, knock down of 563 

miR-106a suppressed airway inflammation, goblet cell metaplasia, sub-epithelial fibrosis and 564 

AHR in a mouse asthma model (Sharma et al. 2012). 565 

 566 

As well as miRNAs, long non-coding RNAs (LncRNAs), such as LncRNAs BCYRN1, 846, 567 

or 4176 have also been implicated in airway inflammation and could be therapeutic targets in 568 

asthma (Wang et al. 2017; Zhang et al. 2016). 569 

 570 

Novel drug delivery systems 571 
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The application of novel drug delivery systems is gaining popularity for the treatment of 572 

various chronic lung diseases, including asthma (Mehta et al. 2020a; Mehta et al. 2020b; 573 

Prasher et al. 2020). These include nanoparticle-based drug delivery, dry powder inhalers, 574 

micelle pharmacosomes, liposomes, dendrimers, and antibody-mediated drug delivery systems 575 

(Lanza et al. 2017).  576 

Nanoparticles: A recent study evaluated the in vivo efficacy of biocompatible nanoparticles 577 

targeting IL-4Rα. These particles have enhanced permeability, and reduced lung inflammation 578 

and improved the immunosuppressive effects of anti-IL4Rα in ovalbumin-sensitised mice 579 

(Halwani et al. 2016; Maret et al. 2007). Other studies employed anti-IL-4Rα-blocking 580 

antibodies bound to superparamagnetic iron oxide nanoparticles, using polyethylene glycol 581 

polymers. These nanocarriers have improved targeting effects on various inflammatory cells 582 

(Al Faraj et al. 2016). Another study developed strontium-doped hydroxyapatite porous 583 

spheres (SHAS), an adjuvant and carrier in allergen-specific immunotherapy, where they have 584 

showed that the subcutaneous injection of allergen (OVA) stimulates both CD4+ and CD8+. 585 

The treatment of SHAS-OVA has proven better in efficacy as compared to soluble OVA alone 586 

with no necrotic or apoptotic effects (Garbani et al. 2016) . 587 

One of the latest advances are protein corona (the outer layer of proteins adsorbed onto the 588 

nanoparticles), which are combined with inhaled nanoparticles to facilitate their movement 589 

through the respiratory tract, particularly the lining fluid. The corona contains various innate 590 

immune proteins like surfactant protein A, napsin A and complement (C1q, C3) (Shahabi et al. 591 

2015). Inhaled nanoparticles often acquire a layer of protein corona as they pass through the 592 

respiratory tract. The identification of individual components of protein corona would improve 593 

their use with inhaled nanoparticles in therapeutics. Investigations are underway to identify 594 

types of proteins and the mechanisms involved. A recent attempt undertook proteomic and 595 
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lipidomic analysis to define the composition of the surfactant corona on inhaled nanoparticles 596 

(Raesch et al. 2015). 597 

Liposomes: Alternative drug delivery modes include liposomes, which are spherical vesicles 598 

of lipid bilayers. Maret et al., used all-trans retinoic acid encapsulated liposomes in a mouse 599 

model of ovalbumin-induced allergic airways disease, which reduced the synthesis of IgE and 600 

airway inflammation (Maret et al. 2007). Similarly, the efficacy of budesonide in stealth 601 

liposomal formulations is greater than the drug alone at reducing lung inflammation (Konduri 602 

et al. 2003). Liposomal formulations encapsulated with procaterol hydrochloride have 603 

sustained release and potent pharmacological effects on pulmonary administration (Tahara et 604 

al. 2016). Also, various liposomes can combat the problem of bacterial biofilms in asthma 605 

(Bandara et al. 2016; Liu and Post 2009). Other studies used liposomal formulations with 606 

various other therapeutic moieties, including amphotericin B, ciprofloxacin, topotecan, and 607 

calcifediol against different infections including Aspergillosis and Pseudomonas infection 608 

(Adhikari et al. 2015; Castoldi et al. 2016; Saraf et al. 2016). Blom et al., developed a triple 609 

co-culture model of epithelial cells, macrophages, and DCs to mimic the human respiratory 610 

tract to better understand the immuno-modulatory effects of novel drug delivery systems, such 611 

as liposomes and virosomes. These advanced drug delivery modes have proven as a great 612 

antigen carriers demonstrating lesser inflammation and controlling the mucosal immune 613 

responses (Blom et al. 2016). 614 

Other drug delivery systems: Mucoadhesion of drugs is an important aspect of drug delivery 615 

in airway diseases, particularly asthma. Co-adhesive microspheres of levosalbutamol sulphate 616 

were prepared using spray drying techniques. Microspheres demonstrated sustained release of 617 

Levosalbutamol Sulphate because of their particle size, swell-ability, and increased 618 

mucoadhesion features (Patel et al. 2012). Similarly, chitosan-based microspheres containing 619 

montelukast sodium have been used, and have effective physicochemical properties required 620 
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for optimal pulmonary drug delivery (Dua et al. 2017a; Panchal et al. 2012). Pachuau et al., 621 

used solvent evaporation to prepare matrix microspheres with salbutamol sulphate and 622 

theophylline for simultaneous delivery to induce prolong and sustained release (Pachuau et al. 623 

2008). Gelatin microspheres are another important category and have improved mucoadhesive 624 

and sustained release properties with drugs like salbutamol sulphate (Jayan et al. 2009) . Both 625 

of these studies outcomes provide insight into reducing the frequency of drug administration 626 

resulting in better patient compliance. 627 

 628 

Recent reports highlight the relevance of advanced drug delivery systems, such as liposomes 629 

and nano/macro particles, for the pulmonary delivery of heparin (Yildiz-Pekoz and Ozsoy 630 

2017). Yhee et al., postulated that nanoparticle-based drug delivery is an advanced platform to 631 

achieve maximum therapeutic efficacy in asthma, COPD, cystic fibrosis, idiopathic pulmonary 632 

fibrosis, and lung cancers (Yhee et al. 2016). Another promising means of delivery in targeting 633 

and overcoming the mucus barrier is nanocomplexes for gene therapy, which are in clinical 634 

trials (Di Gioia et al. 2015). Other novel drug delivery modalities have been investigated in 635 

asthma, including chrono-modulated drug delivery, dendrimers, and micelles (Nasr et al. 2014; 636 

Peng et al. 2015; Qureshi et al. 2008). All are advancing respiratory drug delivery, allowing 637 

translation of therapeutic moieties into clinically effective and patient-friendly drug delivery 638 

systems by reducing the associated side effects, reduced frequency of drug administration, 639 

targeted effects and better patient adherence to the dosage regime. 640 

 641 

Conclusions 642 

Mild-to-moderate allergic asthma is underpinned by allergen-induced IgE and type 2 643 

eosinophilic inflammation that causes airway tissue remodelling and AHR. However, 644 

neutrophilic and non-eosinophilic severe steroid-resistant asthma is now recognised that is 645 

driven infection or other exposures that induce Th1/Th17 dominant responses. Understanding 646 
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the pathogenesis of these different forms of asthma enables the development of precision 647 

therapies that target the different endotypes. Consequently, biological have been developed for 648 

allergic asthma that target IgE and type 2 responses during the sensitisation (TSLP, IL-33, IL-649 

4) or developed (IL-5, IL-13, IL-4Ra) phases of disease. New therapies that target more severe 650 

neutrophilic steroid non-responsive phenotype that target type I (TNF/PDEI) and neutrophilic 651 

inflammation (IL-17) or infection-induced processes (macrolides) show promise but are less 652 

well established. Recent advances have revealed the novel roles and significant involvement 653 

of vascularisation and miRNAs in asthma pathogenesis. Angiogenesis and vascularisation in 654 

the pulmonary system increase and provide vessels for the delivery of more inflammatory cells 655 

and greater levels on inflammation. Thus, targeting pro-vascularisation factors (VEGF) or 656 

using suppressors (endostatin, tumstatin) may have beneficial effects. Other novel potential 657 

therapies target miRNAs that control the expression of genes relevant to asthma. Targeting 658 

specific miRNA with inhibitors may also be beneficial in asthma by; reducing specific pro-659 

inflammatory cytokine and chemokine expression, including IL-13 signalling and more 660 

broadly by suppressing nuclear factor-κB signalling, altering the balance between Th1 and Th2 661 

responses, improve regulatory T cell function, reduce mucus hypersecretion, ASM 662 

proliferation and fibrosis and macrophage responses, and increase steroid responses and 663 

epithelial repair in severe asthma.By targeting such factors, new and effective therapeutic 664 

strategies can be developed for asthma. Incorporating new therapeutic agents into novel drug 665 

delivery systems including nanoparticles, liposomes and other delivery systems could enhance 666 

specific targeting of specific cell types to improve disease management and patient compliance. 667 
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TABLE 1 Evidence for increased vascularisation in asthma 674 

Feature Measures Reference 

Increased amount 

of blood vessels, 

vessel density and 

vascular area 

Microscopic evaluation of bronchial biopsy specimens revealed 

significantly higher amounts of microvessels in the lamina 

propria of asthma patients. Increased numbers of mast cells 

also detected. Control patients had scattered and less 

microvessel density. Intensity of microvascularization was 

reduced with high doses of inhaled fluticasone (500μg 2X/day). 

(Chetta et 

al. 2003; 

Grigoras et 

al. 2012) 

 Bronchial biopsies from asthma patients had a high degree of 

airway vascularity. 

(Hashimoto 

et al. 2005; 

Hoshino et 

al. 2001a; 

Hoshino et 

al. 2001b) 

 

Elevated levels of 

pro-angiogenic 

factors 

Elevated levels of VEGF and angiotensin in sputum 

supernatants of children with asthma exacerbations.  

(Abdel-

Rahman et 

al. 2006) 

High levels of VEGF in sputum of asthma patients, reduced by 

inhaled beclomethasone treatment (800μg/day). 

(Asai et al. 

2003; 

Meyer and 

Akdis 

2013) 
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High levels of VEGF in BALF and airway tissue of asthma 

patients. 

(Meyer and 

Akdis 

2013; 

Tuder and 

Yun 2008) 

 

 675 

  676 
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TABLE 2 Potential biological agents in clinical trials/development for asthma treatment 677 

Drug Mechanism of action Observed Clinical Effect Trial Phase Reference 

Omalizumab Anti-IgE mAb Reduces asthma 

exacerbations  

Approved 

by FDA and 

EMA  

(D’Amato 

et al. 

2007; 

Hanania et 

al. 2018; 

Szefler et 

al. 2018) 

 

Tezepelumab 

(AMG157/MEDI-

9929) 

Anti-TSLP mAb  Reduces asthma 

exacerbations  

Phase II (Corren et 

al. 2018; 

Corren et 

al. 2017; 

Gauvreau 

et al. 

2014) 

 

ANB020 Anti-IL-33 mAb Reduces asthma 

exacerbations 

Phase I (Londei et 

al. 2017) 

 

Dupilumab Anti-IL-4Rα mAb Reduces asthma 

exacerbations 

Increases lung function 

Phase III (Castro et 

al. 2018; 

Rabe et al. 

2018; 
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Wenzel et 

al. 2016; 

Wenzel 

2013) 

 

Pascolizumab Anti-IL-4 mAb No significant clinical 

efficacy 

Phase II (Hart et al. 

2002) 

Altrakincept Anti-IL-4 mAb No significant clinical 

efficacy 

Phase II (Hendeles 

et al. 

2004) 

Mepolizumab Anti-IL-5 mAb Improves Forced 

Expiratory Volume 

Reduces asthma 

exacerbation rate 

Approved 

by FDA and 

EMA  

(Haldar et 

al. 2009; 

Pavord et 

al. 2012) 

 

Benralizumab Anti-IL-5 mAb Reduces peripheral 

eosinophil levels 

Phase III (Bleecker 

et al. 

2016; 

Castro et 

al. 2014; 

Ferguson 

et al. 

2018) 
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Tralokinumab Anti-IL-13 mAb Inconsistent clinical 

effects in reducing asthma 

exacerbation rate  

Phase III (Panettieri 

et al. 

2018; 

Piper et al. 

2013) 

 

Anrukinzumab Anti-IL-13 mAb Reduces allergen-induced 

asthmatic responses 

Phase II (Hua et al. 

2015) 

Lebrikizumab Anti-IL-13 mAb Inconsistent clinical 

effects in reducing asthma 

exacerbation rate 

Significant adverse 

effects, including aplastic 

anaemia and eosinophilia 

Phase III (Hanania 

et al. 

2016; 

Scheerens 

et al. 

2014) 

 

 678 

  679 
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Figure Legends 680 

FIGURE 1 Comparison between the normal and asthmatic lung. Healthy individuals have 681 

normal airway walls and relaxed airway smooth muscle. The airways of asthmatic patients 682 

constrict upon exposure to innocuous antigens, over express mucus, are inflamed with swollen 683 

walls and tightened smooth muscle.  684 

 685 

FIGURE 2 Cascade of events leading to airway inflammation and asthma pathogenesis. 686 

Immunogenic antigens in the air, such as viruses, microbes, and allergens trigger inflammatory 687 

cascades. Activated inflammatory cells, including mast cells, eosinophils and neutrophils 688 

subsequently release a plethora of inflammatory mediators. These mediators drive airway 689 

tissue remodelling and asthma pathogenesis.  690 

 691 

 692 

  693 
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