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Abstract. An agent may privately learn which aspects of his job are more important

by shirking on some of them, and use that information to shirk more e¤ectively in the

future. In a model of long-term employment relationship, we characterize the optimal

relational contract in the presence of such learning-by-shirking, and highlight how the

performance measurement system can be managed to sharpen incentives. Two related

policies are studied: intermittent replacement of existing measures, and adoption of new

ones. In spite of the learning-by-shirking e¤ect, the optimal contract is stationary, and

may involve stochastic replacement/adoption policies that dilute the agent�s information

rents from learning how to game the system.

1. Introduction

A common problem in agency relationships is that the agent may attempt to cut corners

at the principal�s expense. While the literature on incentive theory typically assumes that

the agent exactly knows the consequences of shirking, in many contexts, that may not be
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the case. The agent may lack information on the relative importance of his assigned tasks,

and, relatedly, he may not know which corners to cut so as to minimize the risk of getting

caught.

But if the agent neglects some aspects of his job and the principal fails to notice, the

agent will privately learn which job aspects are relatively less important for ensuring a good

performance. This possibility of �learning by shirking�exacerbates the incentive problem

because shirking, when successful, informs the agent on how to game the performance

evaluation system. The agent acquires valuable private information that he may use later

on to cut corners in a fashion that makes shirking harder to detect.

Such �perverse learning� poses a challenge for the design and management of perfor-

mance measurement systems. Numerous scholars have documented how, in a wide range of

organizations (including private enterprises, public institutions, and government agencies),

performance metrics eventually lost their ability to di¤erentiate good performances from

bad ones as the agents �learned too well how to deliver what is measured rather than what

is sought�(Meyer, 2002; p. xii). For example, in the 1980s, the U.S. Department of Labor

implemented a set of metrics to evaluate the performance of its job training centers, but

the centers eventually �gured out how to strategically time their enrollees�graduation dates

so that they appear to perform better on paper relative to their actual performance. The

centers�gaming ploy was not merely an accounting scheme but it also involved diversion

of resources from their training activities (Courty and Marschke, 1997, 2004, 2007). Hood

(2006) reports a similar behavior among public hospitals in the U.K. in the late 1990s.

The hospitals were asked to meet certain performance targets as measured by a set of key

performance indicators. But, over time, they �gured out how to meet these targets through

�creative compliance�where the attainment of the targets did not correspond to a positive

change in the underlying output. In fact, the hospitals often gamed the system by devising

new protocols that severely compromised their quality of service. Welch and Byrne (2001)

document a related experience during Jack Welch�s leadership at General Electric. When

the 360-degree peer evaluation system was rolled out, for the �rst few years it helped extri-

cate competent managers from incompetent ones. But over time, employees learned how to

game the system by manipulating their feedbacks so that everyone may get a good rating.

In the same vein, Rivkin et al. (2010) �nd that in the late 2000s when the U.S. Federal
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Bureau of Investigation rolled out a new evaluation process (termed as �Strategic Perfor-

mance Sessions�) to assess the organization�s progress, the �eld o¢ ce personnel learned to

answer questions in a way (regardless of the underlying facts) that the Headquarter would

�nd acceptable. Such gaming through report manipulation may still require the agents to

�rst explore which job aspects can more easily be neglected and subsequently covered up

at the reporting stage.1

One way the organizations respond to this problem is by replacing their current measures

by new ones. While no measure may be perfect, di¤erent measures have di¤erent vulner-

abilities, and they need not succumb to a common form of gaming. New metrics can be

obtained by simply using a di¤erent timeframe for the measurements. For example, in the

case of the U.S. job training centers mentioned above, as the centers started to game their

performance metric by manipulating their graduation dates, the U.S. Department of Labor

kept changing its rules on when an enrollee�s employment status would be recorded (Courty

and Marschke, 2007). Similarly, the investors may evaluate a �rm�s �nancial performance

on the basis of their annual report instead of the quarterly reports if its managers are likely

to manipulate the earnings in the interim periods (Brown and Pinello, 2007). Variations

in measures may also stem from variations in granularity.2 And, in some scenarios, a vari-

ation of measure can be conceived as a replacement of the agent�s supervisor, where each

supervisor may be good at detecting shirking in some job aspects but not so good at others.3

1The problem of gaming per se has received considerable attention not only in economics (see, e.g., Baker,

1992; Oyer, 1998; and for more recent works, Ederer et al., 2018; Jehiel and Newman, 2015; and references

therein), but also in several related �elds such as accounting (Demski, 1998; Brown and Pinello, 2007; Beyer

et al., 2014), �nance (Lakonishok et al., 1991; Carhart et al., 2002), and public policy (e.g., see Beavan and

Hood, 2004, 2006; Goddard et al., 2000, for evidence from the healthcare sector in the U.K.; Dranove et al.,

2003, for examples from hospitals in the U.S.; and Jacob and Levitt, 2003, for evidence from U.S. education

system). These literatures, however, typically assume that the agents always know how to manipulate the

existing measures. In contrast, we focus on settings where the agents may not know how to game the metrics

a priori, but attempt to learn this information over time.
2Meyer (2002) documents how various functional measures replaced gross mortality as metrics of hospital

performance, and how quality control measures in automobile manufacturing moved from counting the

incidence of defects to defects weighted by severity.
3Recent economic literature have emphasized how the managerial supervision (or lack thereof) plays

a critical role in a¤ecting the workers� productivity (see, e.g., Lazear, Shaw and Stanton, 2015; Ho¤man
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However, as it may be costly to replace the metrics (e.g., administrative costs associated

with rolling out a new evaluation system), an organization must address when and how

often it should replace the performance measures. We analyze this question and highlight

how the performance measurement system may be optimally managed in order to mitigate

the learning-by-shirking problem. In particular, we argue that it may be optimal to act

preemptively and replace the measures before they run down so as to dissuade the agents

from learning how to game the system in the �rst place.

We explore this issue by modelling the long-term relationship between a �rm and a

worker as a relational contract where the �rm o¤ers incentives through a discretionary bonus

payment.4 In every period, the worker performs a job that consists of two tasks (or aspects),

and the �rst-best outcome requires the worker to exert e¤ort in both of them. However, the

�rm cannot measure the worker�s performance in each task. The �rm observes the worker�s

overall job output, and it can also rely on a performance measure that is informative about

the worker�s e¤ort.

We assume there is a host of such additional measures that the �rm can choose from. Even

though all tasks are equally important for ensuring a high output, any given performance

measure is relatively more sensitive to the worker�s e¤ort in one of the two tasks. The

identity of this �critical task�associated with a given performance measure is unknown to

all parties. But if the worker shirks on a task and goes undetected, he privately learns

which task is critical and may use this information to shirk more e¤ectively in the future.

The �rm, however, can replace the existing performance measure by a new one at the end

of any period (at a cost); and with such a replacement, the identity of the critical task also

changes stochastically as the task identities across measures are statistically independent.

We characterize the optimal relational contract and, relatedly, the �rm�s optimal policy

for replacing the performance measure. The analysis of the optimal contract is intricate

due to the fact that when shirking goes undetected, in the continuation game, the players�

beliefs about the task identity diverge and cease to be common knowledge. The worker

and Tadelis, 2018). Also, for theoretical models of managerial (in)attention, see Dessein and Santos, 2016;

Dessein, Galleotti, and Santos, 2016; Halac and Prat, 2016; and Gibbons and Henderson, 2012, for a review.
4Relational incentives are commonplace in many industries, particularly in complex jobs with multiple

aspects, where veri�able performance measures well-aligned with the �rm�s goal could be di¢ cult to obtain

(see Baker, Gibbons, and Murphy, 1994; Levin, 2003; and Malcomson, 2013, for a survey).
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will know which task is critical without the �rm knowing that he has such information.

Consequently, the worker enjoys an information rent o¤-equilibrium when he shirks but is

not caught. The replacement of the performance measure, therefore, may help the �rm

precisely because it reduces such rents. When the performance measure is replaced by a

new one, any information the agent might have obtained about the old measure becomes

obsolete and worthless. But, in spite of the aforementioned complexity, the optimal rela-

tional contract has a simple characterization and it is closely tied to the future surplus in

the relationship� i.e., the �rm�s �reputational capital�� captured by the players�common

discount rate � 2 (0; 1).

More speci�cally, for � su¢ ciently large, the �rm can credibly o¤er strong enough incen-

tives to induce the worker to work on both tasks, even if the same performance evaluation

system is used in all periods. Hence, the �rst-best surplus is attained, and the performance

measure is never replaced. In contrast, for su¢ ciently low �, it is optimal to dissolve the re-

lationship as no incentive could be sustained irrespective of how the performance measures

are managed.

Our main result concerns with the intermediate value of �. The optimal contract sharpens

relational incentives through a stochastic replacement policy (provided the cost of replace-

ment is not too large). At the end of every period, the �rm replaces the existing performance

measure by a new one with a constant probability, and the worker exerts e¤ort in both tasks

in every period. The possibility of replacement dissuades the worker from shirking by dilut-

ing the information rents he hopes to earn by privately learning how to cut corners under the

current performance evaluation system. As the worker�s gains from his superior information

may only last for a short period of time, he becomes less inclined to shirk. The optimal

replacement probability is driven by the trade-o¤ between the cost of such replacement and

the bene�ts of sharper incentives that it creates.

Strategically cutting corners and noting how measures respond may not be the only way

in which a worker learns how to game the system. Over time, he may simply develop a

better understanding of how his actions relate to his current performance measures, and

subsequently exploit the measures�vulnerabilities. We study this possibility by considering

a setup where, in any given period, a worker may identify the critical task for the current
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measure with an exogenously �xed probability, regardless of whether he works or shirks.5

Even in the presence of such �exogenous learning,� the �rm can sharpen incentives by

replacing the performance measures, but the optimal replacement policy may qualitatively

di¤er from its counterpart in our main model. In particular, if exogenous learning is the

predominant source of information for the worker, then the optimal policy is deterministic:

the metric is kept in place for some periods and, afterwards, it is replaced with certainty.

Consequently, if the worker happens to learn which task is critical, he may game the measure

until it gets replaced.

Our �ndings resonate with several well-documented cases of how performance measures

evolve in organizations. For example, starting from 1970s General Electric Co. intermit-

tently overhauled its performance evaluation system, not because the existing systems were

being gamed, but because the company wanted to emphasize di¤erent aspects of its organi-

zational goals� e.g., pro�tability, worker empowerment, quality control� at di¤erent points

of time to ensure that it could maintain its leadership position in the industry (Meyer,

2002). Such a policy parallels our characterization of the optimal contract where intermit-

tent replacement is used not because the agent is suspected to exploit the current system

but to ensure that he does not attempt to cut corners to the principal�s detriment.

In the case of U.S. job training centers mentioned earlier, the U.S. Department of Labor

replaced the measures only after there was enough evidence that the centers had �gured

out a way to game them. The centers, in large parts, gamed the measures by manipulating

their trainees� graduation dates (albeit they were also distorting their e¤orts in training

activities). It is conceivable that such tactics could be learned primarily by exploring how

the measures are computed and that exogenous learning played a salient role in this setting.

The U.S. Department of Labor�s response, therefore, aligns well with our �nding that under

exogenous learning, it can be optimal to keep the same measure in place until it becomes

su¢ ciently likely that the worker has learned to game it.

Even though intermittent replacement of the existing performance measures can be an

e¤ective response to the learning-by-shirking problem, such a response may not always be

feasible. In some situations, the worker�s job output may be the only meaningful measure of

his overall performance that the �rm can avail, and some aspects of the job may indeed be

5For the sake of tractability, in this analysis we limit attention to a class of stationary contracts.
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more essential than others for ensuring a high output. So, learning about the performance

measure e¤ectively means learning about the production process. And since the underlying

production technology does not change over time, the information on the critical task is

time-persistent.

We show that in such a setting the revelation of task information has implications similar

to those of a replacement of the measure (as in our main model): the �rm can dissuade the

worker from shirking by publicly revealing which task is critical for production, and, going

forward, requiring him to perform the critical task only. In reality, the �rms may do so by

adopting new performance measures that communicate speci�c goals and guide the workers

accordingly (see, Gibbons and Kaplan, 2015, and references therein).

As before, our key �nding pertains to the case of moderate � where the optimal contract

requires the �rm to actively �lter the information on the task identities. When � is relatively

large (but still within the moderate range), it is optimal not to reveal any information, and

the worker works on both task in all periods. In contrast, for � relatively small, the �rm

reveals the critical task at the beginning of the game, and the worker performs the critical

task only. But, for an intermediate range of �, at the end of each period, the �rm reveals the

critical task with a constant probability (if it has not been made public yet). The worker

exerts e¤ort on both tasks until the critical task is revealed, but, afterwards, he works on

the critical task only. Thus, the optimal revelation policy trades o¤ the current incentive

gains with the loss of future surplus.

A key implication of such a stochastic revelation policy is that the performance of ex-ante

identical �rms may di¤er over time, as the information may be revealed (and performance

decline) sooner in some �rms than in others. Also, to an outside observer, the �rm may

appear to be failing in the long run as (almost surely) its performance would decline with

time. There is a large literature on the causes of organizational failures (see Garicano and

Rayo, 2016, for a review) that identi�es the lack of proper incentives as a key factor. In

contrast, our �ndings suggest that a gradual decline in organizational performance could

be an unavoidable by-product of the incentive policy needed to sustain a higher surplus at

the earlier stages of the relationship.

Related Literature: Following the seminal works by Eccles (1991) and Kalpan and Norton

(1992), a vast literature on the design of performance evaluation systems has developed
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over the last few decades. This literature primarily explores how the managers may combine

information on several �nancial and non-�nancial measures, as no single performance metric

may adequately re�ect the organization�s performance (see Demski, 2008, for a review).

Several authors have also studied how such collection of measures may be used in formulating

incentive contracts (Ittner, Larcker, and Rajan, 1997; Ittner, Larcker, and Meyer, 2003),

but there is little discussion on how the performance evaluation systems should be managed

over time as the agents might eventually learn how to game the system (one exception

is Meyer, 2002, as we have already mentioned in the introduction). The current article

attempts to �ll this gap.

Our paper is related to a few strands of the literature in organizational economics. Several

authors have studied how di¤erent auxiliary instruments can be used to sharpen relational

incentives. These studies have focused on formal contracts (Baker, Gibbons, and Mur-

phy, 1994), integration decisions (Baker, Gibbons, and Murphy, 2002), ownership design

(Rayo, 2007), job design (Schöttner, 2008; Mukherjee and Vasconcelos, 2011; Ishihara,

2017), design of peer evaluation (Deb, Li, and Mukherjee, 2016), and delegation decisions

(Li, Matouscheck, and Powell, 2017). But, as mentioned before, the issue of design and

management of performance evaluation systems has not received much attention.

There is a growing literature on strategic information disclosure in employment relation-

ships, and it has primarily focused on two kinds of information: the employer�s private

information on the agents� performance (e.g., Fuchs, 2007; Aoyagi, 2010; Ederer, 2010;

Mukherjee, 2010; Goltsman and Mukherjee, 2011; Zabojnik, 2014; Orlov, 2018; Fong and

Li, 2017) and information on the compensation rule used by employers� i.e., what aspects

of performance are measured and how these measures a¤ect the incentive pay (see Lazear,

2006, and Ederer, Holden, and Meyer, 2018). In this literature, our analysis is closest to

Lazear (2006), who analyzes when it is optimal to reveal to the agent which aspects of his

performance are being measured. While Lazear (2006) considers monitoring and informa-

tion disclosure in a static setting, we explore the role of transparency in incentive provision

in a dynamic context and focus on the optimal disclosure of information over time.

Our paper also relates to the literature on incentives for experimentation (see Bolton

and Harris, 1999; Keller, Rady, and Cripps, 2005; Manso, 2011; Hörner and Samuelson,

2013; Bonatti and Hörner, 2017; Halac, Kartik, and Liu, 2016; Moroni, 2016; Guo, 2016).
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While most of these articles do not consider relational incentives, a recent exception is

Chassang (2010). He shows that moral hazard in experimentation, combined with the lack

of commitment by the principal, can result in a range of di¤erent actions being adopted in

the long run. In contrast to these settings, the incentive problem we focus on is how to

design the relationship so as to dissuade the agent from experimentation (i.e., selectively

perform only a subset of tasks to learn how to game the performance system).

From a conceptual and methodological perspective, this paper belongs to the literature

on dynamic relationships where the agent can learn about the environment by deviating,

and, thus, obtains information rents. While this feature is common in real-life situations,

the literature is small because of the technical di¢ culties. Once the agent deviates, his

belief of the future di¤ers from the rest of the players.6 Unless the information structure

has certain special features (see, e.g., Bergemann and Hege, 2005, and Bonatti and Horner,

2011), the analysis of this type of problem requires, as in our paper, an estimation of the

agent�s informational rent, and only a few recent papers have been able to make progress on

it (Bhaskar, 2014; Prat and Jovanovic, 2014; Sannikov, 2014; De Marzo and Sannikov, 2017;

Cisternas, 2018; Bhaskar and Mailath, 2019). In contrast to these papers, the information

rent in our setting can be directly controlled by replacing the performance measures, and

we explore the optimal replacement policy.

2. Model

A principal (or ��rm�) P hires an agent (or �worker�) A, where the two parties enter

in an in�nitely repeated employment relationship. Time is discrete and denoted as t 2

f1; 2; :::;1g : In each period, the �rm and the agent play the following stage game.

Stage game: We describe the stage game in terms of its four key components: technology,

performance measures, contracts, and payo¤s.

Technology: In any period t, the agent may perform a job that consists of two tasks:

A and B. The agent privately exerts an e¤ort et 2 f0; 1A; 1B; 2g at a cost of C (et) in order

to complete the job. If the agent works on both tasks, et = 2, and his cost of e¤ort is

6The lack of common knowledge can also arise in dynamic models in which the principal has private

information (Fuchs, 2007; and Fong and Li, 2017) and in which the agent has persistent private information

(Battaglini, 2005; Malcomson, 2013; 2016; and Yang, 2013).
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C (2) = c2; but if he works on either one of the two tasks, et = 1A or 1B (depending on

whether he works on task A or B), and his cost of e¤ort is C (1A) = C (1B) = c1 (< c2).

Also, if he shirks on both tasks, et = 0, and his cost of e¤ort is C (0) = 0.

The job output Yt 2 f�z; yg is assumed to be observable but not veri�able. The job is

successfully completed if the agent works on both tasks (i.e., et = 2), and yields an output

y > 0. If the agent shirks on both tasks (i.e., et = 0) he fails at the job, leading to a negative

output �z (e.g., such a failure may lead to an erosion of the �rm�s market value). But if

the agent performs exactly one of the two tasks (i.e., et = 1A or 1B), the output is y with

probability � (> 0) and �z with probability 1� �.

Performance measures: In addition to the output, the principal also relies on a

performance measure that yields further information on the agent�s e¤ort level. There are

in�nitely many performance measures
�
M1;M2; :::

	
that the principal can choose from.

But all measures are inherently noisy, and no measure is equally sensitive to the agent�s

e¤ort in all aspects of his job.

In particular, for any i 2 f1; 2; :::g, M i 2 f0; 1g where M i = 1 if the agent works on both

tasks, and M i = 0 if he shirks on both. But if he works on exactly one of the two tasks,

the realization of M i depends on which task M i is more sensitive to� the �critical� task

associated with the measure. If the agent only performs the critical task associated with

M i, M i = 1 with probability � (> 0) and 0 otherwise. But if the agent only performs the

non-critical task, then M i = 0 with certainty.7

The identity of the critical task is an idiosyncractic feature of a measure, and remains

unchanged over time. When a measure is �rst put in place, neither player knows which

task is critical for that measure, and both players correctly believe that any of the two

tasks could be critical with equal likelihood. In other words, the identity of the critical task

is i.i.d. across di¤erent performance measures. Similar to the output, we assume that all

performance measures are observable but not veri�able.

7One can also interpret a measureM i as a performance evaluation system that combines multiple metrics.

A plethora of such systems can be formulated using di¤erent combinations of various performance measures.

However, all such systems tend to provide only an imprecise evaluation of the agent�s overall job performance.

The available metrics may be inherently noisy. Also, a system that closely tracks all aspects of the agent�s

performance may be hard to operationalize due to the di¢ culties in aggregating a large number of metrics

into an overall performance assessment that can be tied to compensation.
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LetMt be the measure that is used in period t, chosen from the set
�
M1;M2; :::

	
. At the

end of any period, the principal can publicly replace the current performance measure by a

new one after incurring a cost  (and, consequently, it randomly changes the identity of the

critical task in the subsequent periods). We denote the principal�s replacement decision as


t 2 f0; 1g, where 
t = 1 if the principal replaces the current measure at the end of period

t, and 
t = 0 otherwise.

Note that if the agent shirks by exerting e¤ort in only one task, he may privately learn

the identity of the critical task associated with the current performance measure. If he

picks the critical task by chance, both the output and the measure turn out to be good

(i.e., Yt = y and Mt = 1) with probability p := ��, and the principal would fail to detect

the agent�s shirking. As we will see later, this possibility of private learning-by-shirking has

signi�cant implications for the optimal relational contract. Also note that, in our setting,

the replacement of performance measures does not a¤ect the agent�s productivity. Hence,

such a replacement is completely wasteful but for its incentive implications, on which we

will elaborate below. Finally, we assume that at the beginning of the game, the principal

already has a performance measure (M1) in place.8

Contract: In each period t, the principal decides whether to o¤er a contract to the

agent. We denote the principal�s o¤er decision as dPt 2 f0; 1g, where dPt = 0 if no o¤er is

made, and dPt = 1 otherwise. If the principal decides to make an o¤er, she o¤ers a contract

that speci�es a commitment of wage payment wt and a discretionary bonus bt = bt (Yt;Mt).

The incentives are relational as the output and the performance measures are assumed to

be non-veri�able.

The agent either accepts or rejects the contract. We denote the agent�s decision as

dAt 2 f0; 1g, where dAt = 0 if the o¤er is rejected and dAt = 1 if it is accepted. Upon

accepting the o¤er, the agent decides on his e¤ort level� whether to work on both tasks,

shirk on both tasks, or choose one of the two tasks and work only on that.

8This assumption streamlines the analysis and allows us to abstract away from the question of whether

to adopt a performance measure at the �rst place, as we focus on the question of how to manage the existing

performance measurement system in the face of the learning-by-shirking problem. Nevertheless, we explore

the former issue of the adoption of new measures in a related environment in Section 5.1.
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Finally, as is typical in the repeated game literature, we assume the existence of a public

randomization device to convexify the equilibrium payo¤ set. In particular, we assume that

at the end of each period t, the principal and the agent publicly observe the realization xt

of a randomization device. This realization allows the players to publicly randomize their

actions in period t+1: In addition, a realization x0 is also assumed to be publicly observed

at the beginning of period 1, allowing the players to randomize in period 1 as well.

-
t:0 t:1 t:2 t:3 t:4

End of
pd. t

P o¤ers contract

A accepts or rejects

A chooses et

P and A observe
Yt and Mt

P pays wage
and bonus

xt realized, P decides
on replacement of

performance measure

Figure 1. Timeline of the stage game.

Payoffs: Both the principal and the agent are risk neutral. If either dAt or d
P
t is 0,

both players take their outside options in that period and the game moves on to period

t + 1. Without loss of generality, we assume that both players�outside options are 0. If

dAt = dPt = 1, the expected payo¤s for the agent and the principal are given as

ût = wt + E [bt (Yt;Mt) j et]� C (et) and �̂t = E [Yt � wt � bt (Yt;Mt) j et]�  
t,

respectively.

Repeated game: The stage game described above is repeated every period and players

are assumed to have a common discount factor � 2 (0; 1) : At the beginning of any period

t, the average payo¤s of the agent and the principal in the continuation game are given by

ut = (1� �)
1X
�=t

���t [d� û� ] and �t = (1� �)
1X
�=t

���t [d� �̂� ] ,

respectively, where d� := dA� d
P
� .

Equilibrium concept: We use perfect Bayesian Equilibrium (PBE) in pure strategies

as a solution concept. This is in contrast with the extant literature that de�nes a relational
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contract as a public Perfect Equilibrium (PPE) of the game (Levin, 2003). We focus on PBE

because, in our setting, a restriction to public strategies may lead to some loss of generality

(as the agent can learn about the task identities privately, and use this information to shirk

in the future). We de�ne an �optimal�relational contract as a PBE of this game where the

payo¤s are not Pareto-dominated by any other PBE. The formal de�nitions of the players�

strategies and the equilibrium concept are given in the online Appendix.

In what follows, we maintain a few restrictions on the parameters to streamline the

analysis.

Assumption 1. (i) y � c2 > 0, (ii) 1
2pc2 > c1; and (iii) (1� �) �

((�y � (1� �) z)� c1) + � (y � c2) < 0.

Assumption 1 (i) states that when the agent exerts e¤ort on both tasks, the resulting

surplus is strictly larger than the contracting parties� outside option. Assumption 1 (ii)

stipulates that the cost of exerting e¤ort on both tasks is su¢ ciently large relative to the

cost of working on only one of them. It ensures that the incentives needed to deter the

agent from shirking on exactly one of the two tasks (i.e., choosing et = 1A or 1B instead of

et = 2) are also su¢ cient to deter him from shirking on both (i.e., choosing et = 0). Finally,

Assumption 1 (iii) ensures that it is never optimal to ask the agent to cut corners� it is

always better to dissolve the relationship than to have the agent perform only one of the

two tasks in any given period. This condition is trivially satis�ed when z is su¢ ciently

large. Assumptions 1 (i) and (iii) imply that production e¢ ciency calls for the agent to

exert e¤ort on both tasks. Assumptions 1 (ii) and (iii) simplify the analytical tractability

of the optimal contracting problem.

3. The optimal contracting problem

We begin our analysis by formulating the principal�s optimal contracting problem. First,

we present a set of constraints that a contract must satisfy if it were to implement e¤ort

on both tasks in a given period. Next, we argue that without loss of generality, we can

restrict attention to a simpler class of contracts, and frame the optimal contracting problem

accordingly.

Let E be the set of all PBE payo¤s in the repeated game starting from any period t such

that the critical task associated with the current measure Mt is not known to the agent.
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Consider a payo¤ pair (u; �) 2 E that is supported by e¤ort e = 2 along with wage w and

bonus b in the current period.

Notice that the equilibrium strategies may call for one of the following three action

pro�les in the next period: (i) the agent exerts e¤ort on both tasks while his performance

is evaluated using the same measure that has been used in the previous period; (ii) the

agent exerts e¤ort on both tasks but faces a new performance metric (i.e., the principal

has replaced the metric at the end of the previous period); and (iii) both players take their

outside options in that period. We denote these three actions as a = N (�no replacement�),

R (�replacement�), and O (�outside option�), respectively.9

The players could also randomize over these three action pro�les (using the public ran-

domization device). Suppose that under the equilibrium strategy (that supports (u; �)), the

action pro�le a 2 fN;R;Og is taken in the following period with probability �a, and the

corresponding continuation payo¤s are (ua; �a). If any player is caught deviating, without

loss of generality, we may assume that the players take their outside options forever.

Now the payo¤ pair (u; �), by virtue of being equilibrium payo¤s with current actions

(e = 2; w; b) and continuation payo¤s (ua; �a), a 2 fN;R;Og, must satisfy the following

constraints.

(i) Promise-keeping: The players�payo¤s must be equal to the weighted sum of their current

and continuation payo¤s:

(PKA) u = (1� �) (w + b� c2) + �
X

a2fN;R;Og
�aua;

(PKP ) � = (1� �)
�
y �

�
w + b+ �R 

��
+ �

X
a2fN;R;Og

�a�a:

Note that if the principal replaces the performance metric at the end of the current period,

the associated cost  is realized instantaneously.

9By Assumption 1 (iii), it is never optimal for the relationship to have the agent perform only one of the

two tasks.
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(ii) Incentive compatibility: The agent should not gain from deviating and shirking alto-

gether or by performing exactly one of the two tasks. Since the agent would surely get

caught if he shirks on both tasks, we must have:

(IC0) u � (1� �)w:

But if the agent shirks on exactly one of the two tasks, his deviation may go undetected.

The incentive constraint that deters such a deviation is more involved. The constraint

must account for the fact that upon deviating, the agent may privately learn the identity

of the critical task associated with the current performance measure, and he may use this

information to shirk again in the future. As a result, the principal and the agent (following

a deviation) would have di¤erent beliefs on the task identities. To address this issue, we

proceed as follows.

For any (u0; �0) 2 E , let U (u0; �0) be the maximal payo¤ the agent could earn in the

continuation game if he were privately informed about the critical task in the current period

and chose his actions accordingly. More speci�cally, suppose that the payo¤s (u0; �0) are

obtained when the agent and the principal play the equilibrium strategy pro�le (�0A, �
0
P ).

Let BRA (�0P ) be the agent�s best-response to the principal�s strategy �
0
P if he were perfectly

informed about the identity of the critical task associated with the current metric. We

denote U (u0; �0) as the agent�s payo¤ in the continuation game under the strategy pro�le

(BRA (�
0
P ) ; �

0
P ).

10

When the agent shirks by working on only one of the two tasks, with probability 1
2p

he picks the one that is critical for the current performance metric and produces the on-

equilibrium path outcome of (Y;M) = (y; 1). As the principal fails to detect such a devia-

tion, the game continues. In the continuation game, as long as the same metric is in place,

the agent is privately informed about the task identities and adapts his best-response to the

10In principle, the payo¤ pair (u0; �0) could be supported by multiple equilibria, giving rise to distinct

values of U (u0; �0). In such case, we select the equilibrium with the lowest value of U (u0; �0) since it is

the one for which the agent�s incentive constraint is easiest to satisfy. As we are formulating the conditions

under which a given payo¤ pair can be supported in an equilibrium, using this selection rule is without loss

of generality.
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principal�s strategy so as to shirk more e¤ectively in the future. Thus, the agent�s incentive

compatibility constraint can be stated as:

(IC1) u � (1� �)
�
w � c1 +

1

2
pb

�
+
1

2
p�

0@�RuR + X
a2fN;Og

�aU (ua; �a)

1A :

The key distinction between this constraint and its counterpart in the standard moral

hazard model is that the continuation payo¤ following shirking is U (ua; �a) instead of ua.

The di¤erence between the two, U (ua; �a)� ua, re�ects the agent�s information rents from

privately learning which task is critical. For any (u; �) 2 E ; U (u; �) � u � 0, since the

agent can always disregard his superior information. Such rents from learning-by-shirking

aggravate the moral hazard problem.11 However, the agent does not get any information

rents if the current metric is replaced at the end of the period (i.e., U
�
uR; �R

�
= uR), since

the agent�s information on current period�s critical task becomes obsolete in the continuation

game.

(iii) Dynamic enforceability : Neither player should renege on the bonus payment and the

principal should not renege on his promise to replace the metric:

(DEA) (1� �) b+
X

a2fN;R;Og
�aua � 0;

(DEP ) � (1� �)
�
b+ �R 

�
+ �

X
a2fN;R;Og

�a�a � 0;

and

(DEP -R) � (1� �) + ��R � 0:

11Note that when the agent privately learns which task is critical, it may not be the case that he always

shirks by just performing the critical task whenever he is asked to put in e¤ort on both tasks. The agent

may want to wait for the right time to shirk. In particular, in a period when the agent�s equilibrium payo¤ is

high, he may not want to shirk because there will be too much to lose. But the agent may be more inclined

to shirk when his equilibrium payo¤ is low.
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(iv) Self-enforcing contracts: The continuation payo¤s themselves must be equilibrium pay-

o¤s in the continuation game:

(SEa) (ua; �a) 2 E ; for a 2 fN;R;Og :

(v) Participation: Both the agent�s and the principal�s payo¤ must be at least as large as

their respective outside options:

(IR) u � 0; and � � 0:

(Also note that if we consider a period that immediately follows the replacement of the

performance metric then (DEP -R) implies that, on the equilibrium path, � � 1��
�  .)

While the optimal contract needs to abide by the aforementioned constraints, the for-

mulation of the problem can be considerably simpli�ed. Without loss of generality, we can

restrict attention to a class of contracts where bonus is never used (i.e., b = 0). Moreover,

in any contract that yields a strictly positive joint surplus, the outside option is never taken

on the equilibrium path (i.e., �O = 0), and in any period t > 1, the wage

w =

8<: y if the current metric is same as last period�s

y �  
� if the metric has been replaced in the last period

.

That is, in the continuation game following every history, the principal�s payo¤ is zero while

the agent receives all of the surplus (net of the cost of replacing the performance measure

in the previous period, if any). These claims are formally stated and proved in the online

Appendix (see Lemmas 1�5).12 In this class of contracts, the promise-keeping constraint of

the principal (PKP ) as well as all dynamic enforceability constraints ((DEA), (DEP ), and

(DEP -R)) are trivially satis�ed. Thus, the optimal contracting problem is tantamount to

solving the following program:

12As these results are technical in nature and similar observations have been made in a related class

of models (e.g., see Fuchs, 2007), we omit the rigorous treatment of these results in the main text. It is

worth noting that we focus on this class of contracts only for analytical convenience, though other forms of

implementation may be feasible.
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max
�R;uN ;uR

u s:t: (PKA) ; (IC0) ; (IC1) ; (SEN ) ; and (SER) ;

where �N = 1� �R, and �N = �R � 1��
�  = 0.

4. The optimal contract

The optimal contracting problem suggests that the agent�s e¤ort incentives can be po-

tentially sharpened through intermittent replacement of the existing performance metrics.

How and when should the principal replace a metric? Replacing the metric every period

would certainly dissuade the agent from learning to game the system, but it could be too

costly to do so. On the other hand, by leaving the same metric in place for too long,

the principal may induce the agent to shirk as it raises the agent�s information rent from

learning how to game the current metric. The optimal contract is shaped by this trade-o¤.

The analysis of this problem presents a technical challenge: The agent�s maximal payo¤ in

the continuation game when he shirks and learns the identity of the critical task, U (u; �),

cannot be directly computed as the pro�tability of the agent�s future shirking decisions

depends on how and when the principal intends to replace a metric. Consequently, we

also cannot limit attention to a class of stationary contracts a priori (as in Levin, 2003).

Nevertheless, the following proposition shows that the optimal contract remains stationary

and has a set of simple and intuitive characteristics (the proof is given in the Appendix).

Proposition 1. (Optimal replacement policy) Under the optimal contract there exist

two cuto¤s, �R and ��, �R � ��, such that no e¤ort can be induced if � < �R, and for � � �R

the following holds:

(i) If � � ��, the principal never replaces the performance metric, and in every period the

agent exerts e¤ort on both tasks.

(ii) If � 2 [�R; ��), the principal replaces the existing performance metric at the end of each

period with a constant probability �� (that may vary with �), and the agent exerts e¤ort

on both tasks in all periods. Moreover, �R < �� if the cost of replacement  is below a

threshold.
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For a large � (i.e., if � � ��), the �rst-best outcome is feasible: the principal can credibly

promise a su¢ ciently large continuation payo¤ so that in every period, the agent exerts

e¤ort on both tasks even if the performance metric is never replaced. In contrast, for �

su¢ ciently small (i.e., � below �R), the optimal policy dissolves the relationship. Regardless

of the replacement policy used, the strongest relational incentives (in terms of continuation

payo¤s) that the principal can credibly o¤er fail to induce e¤ort on both tasks.

But for a moderate �� if � 2 [�R; �
�)� the principal induces e¤ort on both tasks by

adopting a stochastic replacement policy where at the end of each period, the principal

replaces the existing performance metric with a �xed probability. As the agent anticipates

that his information on the critical task may become irrelevant in the near future, he never

shirks as he becomes less inclined to learn how to game the system. But since it is costly to

replace an existing performance measure, any replacement policy entails a loss of surplus.

Therefore, the �rst-best surplus cannot be attained; moreover, such a policy is optimal if

and only if the cost of replacing a metric is not too large.

In the optimal contract, the replacement probability (��) is invariant over time, and it is

instructive to elaborate on the intuition for this �nding. First, consider a relaxed problem

where we assume a speci�c form of deviation: if the agent shirks and learns the critical task,

he continues to shirk on the non-critical task in all future periods as long as the same metric

is in place. Notice that the exact time of deviation is still a choice variable for the agent.

It turns out that if the replacement policy were to deter shirking in period 1 only, it would

take a form that features �early replacement�: there is some T such that the principal would

replace the current measure with a positive probability if t < T , but would never do so again

afterwards. Such a policy backloads the agent�s rewards. Since in the continuation game

following any history, the agent receives all surplus net of the cost of replacement of the

metric, the agent is guaranteed to have a high payo¤ in all future periods after period T .

To see why backloading rewards is useful, note that compared to an agent who always

works on both tasks, an agent who shirks successfully and then only works on the critical

task is e¤ectively less patient� the former discounts the future at rate �; but the e¤ective

discount rate for the latter is p� as he faces a risk that, in any period, the relationship

can terminate with probability 1� p. Since an agent who shirks successfully discounts the

future more (relative to an agent who does not shirk), an early replacement of the existing
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measure most e¤ectively discourages the agent from shirking in period 1 by backloading the

rewards as much as possible.

However, such an early replacement policy is necessarily time-inconsistent. While the

agent is deterred from shirking in period 1, he may want to deviate in the later periods

when the gains from shirking are larger. (As the principal is less likely to replace the measure

in the later periods, the agent earns a larger information rent if he shirks and learns the

critical task.) In other words, for every period, the optimal policy would ideally implement

an increasing sequence of the agent�s continuation payo¤ by increasing the current period�s

replacement probability and decreasing the probability of future replacements. But as this

is the case in all periods, the resulting optimal policy becomes stationary and features a

time-invariant replacement probability.

So far, we have argued that a stationary replacement policy is optimal in a relaxed

problem where we assume a particular form of deviation: if the agent shirks and learns

about the critical task, he will continue to shirk on the non-critical task as long as the same

metric is in place. But, in general, there are other forms of deviation that may be more

pro�table for the agent; e.g., even if the agent knows which task is critical, he may still

put in e¤ort in some periods before shirking again. For the aforementioned policy to be

optimal in the general contracting problem, it must also deter all such deviations where the

agent shirks in di¤erent time patterns. But this is indeed the case because the policy is

stationary: For stationary replacement policies, both the bene�t and the cost of shirking

are time-invariant. Thus, if an informed agent �nds it pro�table to shirk for one period, it

is also pro�table for him to shirk in every period in the future until the measure is replaced.

And similarly, if he does not gain by continuing to shirk until the measure is replaced, he

also cannot gain from any other types of deviation.

We conclude this section with a remark on a technical aspect of our analysis. In our

setup, the characterization of the optimal contract is complicated by the fact that for an

arbitrary replacement policy, we cannot readily apply the standard recursive approach à la

Abreu et. al (1990). Such an approach is generally applicable in settings where in order

to check that the proposed policy is robust to all deviations it is su¢ cient to check for the

one-stage deviations. But in our setting the agent�s most pro�table deviation plan (under

a given policy) may call for shirking in multiple periods according to some speci�c time
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pattern. To deal with this issue, we �rst solve a relaxed problem that restricts attention

to a particular form of deviation: once the agent shirks, he continues to shirk until the

measure is replaced. The optimal replacement rule for the relaxed problem is stationary,

which allows us to show that it is robust to all other forms of deviation, and, consequently,

we establish the optimality of the stationary contract for the general problem. A similar

approach has been used in settings where multi-stage deviations are relevant (Williams,

2011; Sannikov, 2014; DeMarzo and Sannikov, 2017; Cisternas, 2018; and Bhaskar and

Mailath, 2019). In these papers, however, the appropriate relaxed problem is formulated by

only considering some �local�deviations (i.e., the agent deviates only once). In contrast,

we consider a multi-stage deviation in our relaxed problem, i.e., once the agent shirks, he

continues to shirk as long as the same measure remains in place.

5. Discussion

In this section, we analyze three di¤erent environments that closely parallel our main

model and highlight a broader applicability of our key insights.

5.1. Learning about production and information revelation. Our analysis above

illustrates how strategic replacement of performance metrics can thwart the agents from

learning to game the system. But in some environments, the agent�s job output may be the

only reliable measure of his performance, and he may cut corners so as to privately learn

which tasks are more crucial for production. In such settings, intermittent replacement

of performance metrics need not be feasible; the principal must change the underlying

production process altogether which could be prohibitively costly.13

However, the principal can still provide e¤ort incentives, at least in the early phase of the

relationship, by strategically revealing over time which tasks are more critical for production.

In fact, it is a common practice for �rms to adopt metrics that are narrowly focused on the

critical tasks so as to reveal which tasks are more important and guide the worker towards

them (Gibbons and Kaplan, 2015). The incentive implications of such a revelation policy

are similar to those explored in our main model, and the optimal revelation policy bears

close resemblance to the optimal replacement policy studied above.

13See Frankel and Kartik (2019) for a discussion on how, in a signalling environment, the principal may

mitigate the agents�gaming e¤orts by replacing the underlying signal generating technology.



22 LI, MUKHERJEE, VASCONCELOS

Our model can be easily modi�ed to re�ect such an environment. As before, let Y = y

if e = 2 and �z if e = 0. But now suppose that if the agent shirks on one of the two tasks,

then the output depends on the task that is performed. One of the two tasks is �critical�

for production: Y = y with probability � > 0 if the agent only performs the critical task;

and Y = �z with certainty if he shirks on it. E¢ ciency requires the agent to work on both

tasks, but working on the critical task only is better than dissolving the relationship and

taking the outside options. The identity of the critical task is not known to either player.

However, at the end of each period, the principal can publicly access this information and

disclose it to the agent at zero cost. Once the information on the critical task is revealed,

it remains available in all future periods (in contrast to our earlier model).

In the spirit of Gibbons and Kaplan (2015), we can assume that the principal discloses

this information by putting in place a performance metric M that re�ects e¤ort on the

critical task without any noise. Both Y and M are observable but non-veri�able. We keep

all other aspects of the our main model unchanged.

The revelation of task information discourages the agent from shirking, as it dissipates

the gains from privately learning which task is critical and gaming the system by shirking

on the non-critical one. But once the information is revealed, it also becomes more di¢ cult

to incentivize the agent to execute all tasks associated with his job. The optimal contract

pins down if and when to reveal the task information so as to balance this trade-o¤.14

Proposition 2. (Optimal contract with information revelation) Under the optimal

contract there exist four cuto¤s � < ~� � �̂ < � such that no e¤ort can be induced if � < �,

and for � � � the following holds:

(i) If � � �, the agent exerts e¤ort on both tasks in all periods irrespective of the principal�s

decision on whether to reveal information on the critical task.

(ii) If � 2 [�̂; �), the agent exerts e¤ort on both tasks in all periods, but the principal conceals

the identity of the critical task.

14A formal analysis of the model, along with the proof of Proposition 2, is available in the online Appendix.
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(iii) If � 2 [~�; �̂), the principal reveals the information on the critical task at the end of each

period with a constant probability �� (that may vary with �). The agent works on both tasks

until the task information is revealed, and works only on the critical task afterwards.

(iv) Finally, if � 2 [�; ~�), the principal reveals the identity of the critical task at the beginning

of the game and the agent only works on that task.

A salient implication of the above proposition is that for an intermediate range of �, i.e.,

for � 2 [�; �), active management of information is critical. Within this range, when � is

relatively large (� 2 [�̂; �)), full opacity is optimal, whereas a relatively small � (� 2 [�; ~�))

calls for full transparency. But for moderate values of � (� 2 [~�; �̂)), the principal may

do better by not revealing the task information at the beginning of the game. A larger

surplus can be attained under a stochastic adoption policy where at the end of each period,

the principal reveals the critical task with a �xed probability (by adopting a performance

metric for that task). As the critical task is likely to become public information in the near

future, the private information that the agent hopes to obtain through learning-by-shirking

becomes less valuable. Such a contract elicits e¤ort on both tasks until the critical task

is revealed and, hence, is more e¢ cient than the one that reveals this information at the

beginning of the game.

In this context, two issues are worth noting. First, it is easier to induce e¤ort on both

tasks when the critical task is unknown to all than when it is public information (i.e., �̂ < �).

When the task information is public, shirking yields a higher payo¤ to the agent as he knows

which task to shirk on. When � 2 [�̂; �), the relational incentives that the principal can

credibly promise are strong enough to dissuade the agent from shirking when he does not

know the critical task, but too weak to elicit e¤ort on both tasks when the critical task is

known to the agent. Consequently, for such values of �, opacity is (strictly) optimal.

Second, an important implication of the optimality of stochastic information revelation

is that the performance of the organization decreases over time. The agent performs both

tasks at the beginning of the relationship. And once the critical task is revealed, he works

on the critical task only, causing the performance to fall almost surely in the long run.

Our model, therefore, adds to the broad literature on why organizations fail (Garicano and

Rayo, 2016) and, in particular, to the recent relational contracting literature that explains
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why a �rm�s performance may deteriorate over time (Barron and Powell, 2019; Fong and Li,

2017; and Li and Matouschek, 2013). In these papers, organizational performance declines

because privately observed negative shocks in the past constrain the organization�s ability

to make promises to its employees and, therefore, to motivate its workforce. In other words,

the organization is burned by its past promises. In contrast, there are no privately observed

shocks in our setting. The decline in the performance is a by-product of the information

revelation that is necessary to incentivize the agent to exert e¤ort at the beginning of the

relationship. This observation is also reminiscent of Bhaskar and Mailath (2019) where

the optimal incentive provision may also call for low performance in certain phases of the

employment relationship. However, the source of such ine¢ ciency is quite di¤erent from

the ones we highlight here. Unlike our setting, Bhaskar and Mailath consider a setup where

the agent can shirk to manipulate the principal�s belief about the production environment,

and earn future information rents. When the employment duration is su¢ ciently long, the

presence of such rents in�ates the cost of implementing e¤ort, and it may not be optimal

to elicit high e¤ort in all periods.

5.2. Exogenous learning and shirking on the equilibrium path. In our baseline

model, if the agent were to learn how to game the system, he must engage in strategic

shirking. As the optimal contract is designed to elicit e¤ort on all tasks, the agent never

shirks on the equilibrium path and never learns which task is critical for his performance

evaluation. But as noted in the introduction, the performance measures can lose their

e¤ectiveness (and get replaced) over time as the agents eventually learn and exploit their

vulnerabilities.

In order to allow for this possibility, we adapt our model and assume that even if the

agent never shirks, he might still learn the identity of the critical task from an �exogenous�

source. The presence of such exogenous learning can have important implications for the

optimal replacement policy. In particular, when the exogenous channel is the key source of

learning, it may indeed be optimal to replace the measures only after they run down over

time.

Suppose that Yt 2 f0; yg and the agent is uninformed about the critical task at the

beginning of the relationship. But, at the end of each period t, he learns the identity of the

critical task (associated with the measure Mt) with probability k > 0. That is, the agent
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may learn about the task from an exogenous source, re�ecting the possibility that even if the

agent never shirks, over time, he may gain a better understanding of how his e¤orts relate

to the current performance measures. However, in this setting the consequence of shirking

is assumed to be less severe for the principal as the output in the case of a failure is now 0

instead of�z.15 In order to streamline the analysis, we also assume that C (1A) = C (1B) = 0

and � = 1. That is, the agent incurs a cost of e¤ort only if he works on both tasks, and

a metric indicates success with certainty as long as the agent performs the corresponding

critical task.

As the agent learns about the identity of the critical task over time� and an informed

agent may shirk even on the equilibrium path� the future surplus of the relationship evolves

over time. Consequently, a general characterization of the optimal contract is di¢ cult to

obtain, and for the sake of tractability, we restrict attention to a class of stationary contracts:

In each period the agent is paid a base wage w and a bonus of b if (Yt;Mt) = (y; 1),

where, without loss of generality, we assume w + b < y. The relationship terminates if

(Yt;Mt) 6= (y; 1). All other aspects of the model remain unaltered.

In this setting, a replacement of the performance measure has two key e¤ects. First,

as in our baseline model, it dissuades the agent from learning-by-shirking. Second, if the

agent has been shirking after acquiring the task information exogenously, a replacement of

the metric renders his information useless and deters him from shirking in the future. The

optimal replacement policy is shaped by the trade-o¤ between the bene�ts of replacement

stemming from these two e¤ects and the cost of replacing the measure.

In what follows, we elaborate on a few salient characteristics of the optimal replacement

policy in this environment (a more detailed analysis is available in the online Appendix).

To this e¤ect, we limit attention to the case where p is su¢ ciently large, and focus on the

class of equilibria with the the following feature: an uninformed agent always exerts e¤ort

on both tasks, but if he exogenously learns the task identities, he shirks in all future periods

as long as the same metric is in place.16

To see the implications of the exogenous learning, we �rst consider a relaxed problem by

ignoring the incentive-compatibility constraint for e¤ort provision by an uninformed agent.

15Notice that this modi�cation of the model relaxes Assumption 1 (iii).
16Recall that p is the probability that (Yt;Mt) = (y; 1) when the agent performs the critical task only;

here p = � as we have set � = 1.
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However, the agent could still learn the task identities exogenously, and use that informa-

tion to shirk in the future. Thus, the optimal contract may again require an intermittent

replacement of the performance measures so as to incentivize an informed agent.

Let �t be the probability that the measure is replaced at the end of period t. The optimal

replacement policy is given as:

�t =

8<: 0 if �t+1 > v + �
1���t+1 (1� p) v

1 otherwise
;

where �t is the probability that the agent is informed about the critical task at the beginning

of period t, conditional on the fact that the relationship continues to period t, and the

measure remains the same as in period t� 1; �t denotes the period t payo¤ of the principal

if the measure is the same as in period t� 1; and v is the average payo¤ of the principal in

the continuation game, net of the cost of replacement, once a new performance measure is

put in.

The optimal policy has two salient features. First, the principal keeps the same measure

in place (�t = 0) as long as her expected payo¤ in the following period (�t+1) is su¢ ciently

large. For p su¢ ciently large, �t is strictly increasing (and converges to 1) and �t is strictly

decreasing over time. Therefore, the measure eventually gets replaced with certainty after

a certain length of time. The policy resonates with the practice observed in reality where

the measures lose their e¤ectiveness over time as the agent might learn how to game the

metrics, and the principal replaces the measure only after it runs down over time.

Second, it is optimal to replace the measure when �t+1 is still larger than v. The wedge

between the two (i.e., ��t+1 (1� p) v= (1� �)) arises due to the fact that by replacing the

measure, the principal can restart the relationship and guarantee herself an average payo¤

of v. On the other hand, by continuing for one more period (without replacing the measure),

she allows for the possibility that an informed agent may shirk and obtain (Yt+1;Mt+1) 6=

(y; 1) that triggers termination.

Clearly, if the solution to the relaxed problem satis�es the incentive-compatibility con-

straint of the uninformed agent, it is also a solution to the original problem. However, this

need not be the case in general, and the optimal contract must account for the learning-

by-shirking e¤ect. A salient feature of the agent�s incentive constraint is that the timing of
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the replacement of the current measure a¤ects the constraint by in�uencing both the equi-

librium and the deviation payo¤s of the agent, and, the timing of replacement, in turn, is

also determined by the agent�s incentive constraints. The resulting feedback e¤ect presents

a technical complexity, and the optimal contracting problem loses analytical tractability.

Even though the general form of the optimal stationary contract is di¢ cult to characterize,

we show that the optimal contracting problem can be formulated as a linear programming

problem and, therefore, amenable to standard numerical solution methods.

5.3. Noisy performance measure and gradual learning. We have assumed in our

baseline model that the agent is sure to succeed if he exerts e¤ort on both tasks: when

et = 2, the output is high (Yt = y) and the performance metric re�ects success (Mt = 1) with

certainty. While this assumption is maintained for analytical tractability, it is conceivable

that the agent�s performance is always subject to random shocks, and he may fail regardless

of his e¤ort level. Our setup can be adapted to capture this possibility, and even in this

setting, the incentive e¤ects of a replacement of the metrics that we highlight in our model

continue to hold. Below, we present a brief discussion of this case (a detailed analysis is

relegated to the online Appendix).

Suppose that when et = 2, Yt = y with certainty but Mt = 1 with probability �p where

p < �p < 1; all other aspects of the model are left unaltered. As both a �success� (i.e.,

(Yt;Mt) = (y; 1)) and a �failure� (i.e., (Yt;Mt) = (y; 0)) can occur when the agent exerts

e¤ort on both tasks, shirking is detected for sure only if y = �z.17 For tractability, we limit

attention to stationary contracts where the agent is paid a wage w in every period and a

discretionary bonus b is paid when (Yt;Mt) = (y; 1). Moreover, the principal replaces the

existing measure following a success and a failure with probabilities �s and �f respectively.

The relationship is terminated if and only if only if y = �z.

Notice that as in our baseline model, when the agent deviates and performs exactly

one of the two tasks, he learns the task identities with certainty if he succeeds (i.e. if

(Yt;Mt) = (y; 1)). However, in contrast to our model, the relationship continues even if the

agent fails (i.e., (Yt;Mt) = (y; 0)), and, therefore, by shirking and failing, the agent may

still gradually learn about the task identities. Consequently, the analysis of the optimal

17However, success occurs with probability �p when the agent works on both tasks but with probability

p := �� when he works on the critical task only.
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policy must keep track of the agent�s belief and his subsequent action choices following a

deviation. The agent�s incentive compatibility constraint (IC1) is now reformulated as:

(IC�1 )
u � ud := (1� �)

�
w � c1 + 1

2pb
�
+

�
�
1
2p ((1� �s)us + �su) +

�
�� 1

2p
�
((1� �f )uf + �fu)

�
;

where us and uf are the agent�s continuation payo¤ when his deviation ends up in success

and failure, respectively, and the performance metric is not replaced. We can compute us

and uf by using the fact that the optimal deviation strategy of the agent is to choose at

any point in time the task that is the most likely to be the critical task.

In such an environment, the optimal replacement policy has three salient features. First,

as before, the �rst-best surplus can be attained for � su¢ ciently large. That is, there

exists a cuto¤ ��N , such that if � � ��N , the principal never replaces the performance metric

(regardless of whether the agent succeeds or fails), and in every period, the agent exerts

e¤ort on both tasks. Second, for � < ��N , the optimal contract may call for a replacement of

the metric. If the cost of replacement ( ) is small, the principal replaces the metric with a

positive probability at the end of every period and induces the agent to exert e¤ort on both

tasks. Both of these observations are reminiscent of Proposition 1, and rely on a similar

argument.

Finally, one may presume that it is always better to replace the measure after a failure

than after a success (as a failure is more likely to occur if the agent deviates). In the optimal

contract, however, the opposite may hold. In general, by raising either �s or �f (or both),

we can lower the agent�s deviation payo¤ ud and relax (IC�1 ), but the marginal impacts

of �s and �f on ud cannot be ranked a priori. In particular, such impacts would depend

on several countervailing e¤ects: the likelihood of success and failure following deviation,

the associated continuation payo¤s us and uf , and how the continuation payo¤s vary with

the replacement probabilities. For example, while failure is more likely after deviation,

the associated continuation payo¤ uf is generally smaller than its counterpart following

a success, us, and, consequently, a replacement after a success may be more e¤ective in

reducing the agent�s deviation payo¤ ud.
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6. Conclusion

This article explores the optimal provision of relational incentives when the worker may

attempt to learn how to game his performance measures. Workers often hold jobs that

involve multiple aspects (or a set of tasks) and the performance measures in place may

be more sensitive to some job aspects than others. An interesting moral hazard problem

emerges when the worker lacks information about the relative importance of the various

job aspects: he may shirk on some aspects of the job not only to save on his e¤ort cost but

also to learn more about how these job aspects a¤ect his performance evaluations. Using

a model of relational contracting, we study how the �rm can sharpen incentives in such a

setting by managing its performance evaluation system. We highlight two policies� frequent

replacement of existing performance measures, and adoption of new measures that guides

the workers towards the more critical tasks. We show that both policies could be used

as a strategic tool to strengthen relational incentives, and illustrate how the frequency of

replacement (and, in the same vein, the adoption of new measures) is tied to the amount

of surplus generated in the relationship.

Our analysis also sheds light on how a principal, who may lack information about the

model�s parameters, can implement the optimal replacement policy in practice.18 When

the principal interacts with several independent agents in similar production settings, the

data on the agents�performance over time under di¤erent replacement rates can help in

pinning down the optimal policy. This problem is somewhat straightforward in our main

model as under the optimal rate, the agent never shirks and, hence, always delivers a good

performance. Hence, the principal could start out by setting the rate of replacement at

some arbitrary level, and can arrive at the optimal rate by trial-and-error. She may raise

the rate whenever the agent performs poorly, reduce the rate if the agent delivers good

performance consistently over time, and settle for the lowest replacement rate that yields

good performance consistently.

But even in more complex environments, such as the ones studied in the two extensions

of our main model, the empirical relationship between the agents� performance and the

18It is conceivable that, in complex production environments, the principal�s prior belief on some key

parameters of the model is considerably di¤used, and the optimal contract may be implemented only via

experimentation; see, e.g., Ortner and Chassang (2018) and Chassang and Padró i Miquel (2018) for formal

treatments of this issue.
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replacement rates can help in inferring the optimal policy. For example, consider the case

of exogenous learning as discussed in Section 5.2 and suppose that the optimal policy calls

for replacing the measure every T periods (as would be the case where the agent primarily

learns through the exogenous source). How can the principal determine how often to replace

the measures? Our analysis suggests a tight link between the duration of usage of a measure

and the probability of observing a poor outcome while the measure is in place. In particular,

if the duration is short, an agent is likely to be dissuaded from shirking to learn, and shirk

(and may perform poorly) only if he learns about the tasks through the exogenous source.

Thus, the likelihood of observing a poor performance would increase over time as long as

the same measure is still in place, as it becomes more likely that the agent learns how to

game the metric.19 Therefore, the principal can experiment by setting a low T , observe

how the failure rate varies as T changes moderately, and use the data to estimate some

of the key parameters of the model� e.g., the probability of exogenous learning (k)� that

determine the optimal duration.

A similar argument can also be made in the case of noisy measures as studied in Section

5.3. When the replacement rate is su¢ ciently low, the agent would shirk and occasionally

fail. But suppose that the rate is increased. If the agent continues to shirk, it would result

in a higher rate of failure. Due to the higher replacement rate, the agent loses information

on task identities more often, and as he continues to shirk, he chooses the �wrong� task

more often. However, if the agent stops shirking, this pattern would disappear completely.

As the agent never shirks, there is a drop in the likelihood of poor performance, and the

likelihood would not change if the rate of replacement is further increased. Thus, as is the

case in our main model, the principal can still ascertain the optimal rate through trial-and-

error. If raising the rate leads to a higher frequency of failure, the rate should be raised

further; if the frequency stays unchanged, the rate should be lowered; and the rate around

which there is a discrete drop in the likelihood of failure is the optimal one.

It is worth noting that even though our model focuses on how the �rm may manage the

performance measures in response to the learning-by-shirking problem, the incentive e¤ects

it highlights relate to any policy that a �rm may adopt to �shake up�the production envi-

ronment in the future in order to dissuade the agent from learning at the present. Indeed,

19Such a pattern would disappear when T is su¢ ciently large as the agent would shirk (and may learn

about the tasks) as soon as the measure is put in place.



LEARNING TO GAME 31

�rms often adopt job rotation and/or reorganization policies where workers expect to be

moved to di¤erent divisions or assignments within the �rm after every so few months in a

given job. For example, in the classic study of the leveraged buyout of RJR Nabisco by

Burrough and Helyar (1990; p. 26), the authors note that �[The CEO, F. Ross Johnson]

reorganized Standard Brands twice a year, like clockwork, changing people�s jobs, creating

and dissolving divisions, reversing strategic �elds. To outsiders it seemed like movement

for movement�s sake. Johnson framed it as a personal crusade against specialization. �You

don�t have a job,�he told [...], �you have an assignment.��Similar policies are also common

in government organizations in many countries where the civil servants are rotated among

multiple locations as an anti-corruption measure (Bardhan, 1997). Insofar as such reorga-

nizations are costly to the �rm, our model sheds light on how such a policy should be used

in the optimal incentive contract.

Appendix

This appendix presents the proof of Proposition 1. As the proof is relatively elaborate,

for expositional clarity, we present it in three parts. First, we present an auxiliary problem

where the agent�s continuation payo¤ following a replacement of the metric (i.e., uR) is

treated as a parameter with certain speci�cations. Next, we present two lemmas that

characterize the solution to this problem. Finally, we prove Proposition 1 by using these

lemmas and by considering the speci�c value for uR that would emerge in the optimal

contract.

I. An auxiliary program. Recall from Section 3 that without loss of generality, we can

restrict attention to the class of contracts where bonus is never used (i.e., b = 0), outside

option is never taken (�O = 0 when the contract yields strictly positive joint surplus), and

in every period t > 1; the agent�s wage w = y if the current metric is the same as last

period�s and w = y �  =� otherwise. Hence, the optimal contracting problem is equivalent

to �nding the contract in this class that solves:

PO : max
�R;uN ;uR

u s:t: (PKA) ; (IC0) ; (IC1) ; (SEN ) ; and (SER) ;

where �N = 1� �R and �N = �R � 1��
�  = 0:
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Now, consider a variation of the above problem where we treat the agent�s continu-

ation payo¤ uR as exogenous and set uR = s1, where s1 is a parameter that satis�es

two conditions: (i) s1 < s2 := y � c2, the surplus generated when there is no replace-

ment of the performance measure and the agent exerts e¤ort in both tasks; and (ii)�
uR; �R

�
=
�
s1;

1��
�  

�
can be sustained as an equilibrium payo¤ in the continuation game.

We can write this auxiliary problem in the following way.

With a slight abuse of notation, let ut be the agent�s (average) payo¤ at the beginning of

period t when (i) the critical task associated with the current performance measure is not

known to the agent, and (ii) the performance measure has not been replaced at the end of

the previous period. Furthermore, let �t be the probability that the principal replaces the

performance measure at the end of period t (i.e., sets a = R).

Now, for a given s1, (PKA) implies that ut satis�es the following recursive relationship:

(1) ut = (1� �) s2 + �
�
�ts1 + (1� �t)ut+1

�
:

Therefore, if there exists a contract that implements e¤ort in both tasks at least in the �rst

period, solving for the optimal contract (for a given s1) is tantamount to �nding the sequence

f�tg1t=1 that solves the following program (to simplify notation we denote c := c2� c1; and

write U (u) instead of U (u; �) as the principal�s continuation payo¤ (net of the replacement

costs) remains 0):

P :

8>>>>>>>>>>>><>>>>>>>>>>>>:

max�t2[0;1] u1 s:t: 8t;

ut = (1� �) s2 + �
�
�ts1 + (1� �t)ut+1

�
(PK�

A)

ut � (1� �) y (IC�0 )

ut � (1� �) (s2 + c) + 1
2p�

�
�ts1 + (1� �t)U

�
ut+1

��
(IC�1 )�

ut; 0
�
2 E (SE�N ) and

�
s1;

1��
�  

�
2 E (SE�R)

:

II. Lemmas. Below we present two lemmas that characterize the solution to the auxiliary

problem P. These lemmas play a central role in the proof of Proposition 1.
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Lemma 1. The program P admits the solution �t = 0 for all t (i.e., the principal never

replaces the performance measure) if and only if � � �� where �� is the smallest � that

satis�es the following condition:

(FB)
�

1� �

�
1� p

2� p�

�
s2 � c:

Proof. As s2 := y�c2 is the (per period) surplus under the �rst-best allocation (no replace-

ment of measure and e¤ort in both tasks), we must have u1 � s2. When �t = 0 8t, from

(PK�
A) we have u

t = s2 8t. Hence, �t = 0 8t is a solution to P, if and only if it is feasible

in P. We show below that �t = 0 8t is feasible in P if and only if (FB) is satis�ed, i.e.,

� � ��:

Step 1. (Necessity of (FB)) Notice that if the agent knows the identity on the critical

task in any period t, he always has the option to use his information immediately and shirk

on the non-critical task. Hence, we must have

U
�
ut
�
� (1� �) (y � c1) + p�U

�
ut+1

�
:

But as ut = ut+1 = s2 when �t = 0 8t, the above condition boils down to:

U (s2) � (1� �) (y � c1) + p�U (s2) :

Rearranging and plugging y � c2 = s2, we obtain:

(2) U (s2)� s2 �
1

1� p� ((1� �) c� � (1� p) s2) ;

which gives us a lower bound on the agent�s expected information rents from a successful

deviation.

Now, from (IC�1 ) it follows that

s2 � (1� �) (s2 + c) +
1

2
p�U (s2) ;

i.e., �
1� 1

2
p

�
�s2 � (1� �) c+

1

2
p� (U (s2)� s2) :

Using the lower bound for U (s2)�s2 as in (2) and simplifying, we obtain (FB); thus �t = 0

8t is feasible only if (FB) is satis�ed.
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Step 2. (Su¢ ciency of (FB)) If �t = 0 8t, (IC�0 ) boils down to

s2 � (1� �)y , � (1� �) c2 + �s2 � 0,
�

1� � s2 � c2;

which is satis�ed when (FB) is satis�ed. To see this, observe that

�

1� � s2 �
c

1� p= (2� p�) �
c

1� p=2 � c2,

where the �rst inequality corresponds precisely to (FB), the second follows from the fact

that p� 2 (0; 1), and the third from the fact that c1 � 1
2pc2 (Assumption 1 (ii)).

To check that (IC�1 ) is also satis�ed we need to analyze the agent�s value from private

information when �t = 0 8t. Suppose the agent privately learns which task is critical. Given

that �t = 0 8t; the agent�s problem is also stationary. Thus, either the agent never shirks

or he always shirks (by doing the critical task only). Suppose �rst that the agent never

shirks. Then, U
�
ut+1

�
= ut+1 = ut = s2, and constraint (IC�1 ) collapses to:

�

1� �

�
1� 1

2
p

�
s2 � c,

which is satis�ed whenever (FB) is satis�ed. Suppose now the agent always shirks. Then

U (s2) = (1� �) (s2 + c) + p�U (s2) ; or,

U (s2) =
1� �
1� p� (s2 + c) :

So, (IC�1 ) is given by:

s2 � (1� �) (s2 + c) +
1

2
p�
1� �
1� p� (s2 + c)

or,

(2� p� � p) �s2 � (2� p�) (1� �) c,

which is the same as the (FB) above.

Lemma 2. If there exists a solution to the problem P, then there also exists a stationary

solution to P where for all t, �t = �� (which may vary with �). That is, at the end of each

period, the principal replaces the existing performance measure with a constant probability

��.
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Proof. For � � ��; the result holds as �t = 0 for all t solves P (by Lemma 1). If � < ��, the

proof is given by the following steps.

Step 1. (Forming a relaxed problem by considering a speci�c deviation) Let uts be the

agent�s payo¤when he privately knows which task is critical and always shirks by doing the

critical task only (given that the principal continues to o¤er w = y and b = 0) in all periods

until the agent�s deviation is detected or the performance measure is replaced. Note that

uts � U (ut) and satis�es the following recursive relation:

(3) uts = (1� �) (s2 + c) + �p
�
�ts1 + (1� �t)ut+1s

�
:

So, if one restricts attention to only this type of deviation, (IC�1 ) could be simpli�ed as:

(4) ut � (1� �) (s2 + c) +
1

2
p�
�
�ts1 + (1� �t)ut+1s

�
;

or, equivalently,

(IC 01) 2ut � (1� �) (s2 + c) + uts:

Now, consider the following �relaxed�version of P where we replace (IC�1 ) with its weaker

version (IC 01) and ignore the (IC
�
0 ) and (SE

�
N ) constraints:

PR : max
�t2[0;1]

u1 s:t: (1) ; (3) ; and
�
IC 01

�
hold for all t:

Step 2. (Rewriting PR in terms of �t) By using (1) and (3), one can eliminate ut and ust
in PR and consider an equivalent problem in terms of �ts. Note that (1) can be rearranged

as ut � s1 = (1� �) (s2 � s1) + � (1� �t)
�
ut+1 � s1

�
: So, one obtains:

ut � s1 = (1� �) (s2 � s1) (1 + �St) ;

where

St = (1� �t) + � (1� �t) (1� �t+1) + �2 (1� �t) (1� �t+1) (1� �t+2) + :::: .

Hence,

(5) u1 = s1 + (1� �) (s2 � s1) (1 + �S1) :
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Next, note that, uts � ps1 = (1� �) (s2 + c� ps1) + �p (1� �t)
�
ut+1s � s1

�
; and hence,

uts � s1 = uts � ps1 � (1� p) s1
= (1� �) (s2 + c� ps1) + �p (1� �t)

�
ut+1s � s1

�
� (1� p) s1

= (1� p) ((1� �) y � �s1) + �p (1� �t)
�
ust+1 � s1

�
:

So,

(6) uts � s1 = (1� p) ((1� �) y � �s1) (1 + �pDt) ;

where

Dt = (1� �t) + (�p) (1� �t) (1� �t+1) + (�p)2 (1� �t) (1� �t+1) (1� �t+2) + ::: .

Note that (IC 01) is equivalent to:

2ut � 2s1 � (1� �) (s2 + c)� s1 + uts � s1
= (1� �) (s2 + c� s1)� �s1 + uts � s1; 8t;

or,

k0 (1 + �St) � k1 + k2 (1 + �pDt) 8t:

where k0 = 2 (1� �) (s2 � s1) ; k1 = (1� �) (s2 + c � s1) � �s1, and k2 = (1� �) (s2 + c �

s1) � �(1 � p)s1. Since we consider the case where � < ��, and hence, (FB) is violated, it

routinely follows that k2 > 0. Hence, (IC 01) can be rewritten as:

(7) Dt � A+BSt 8t;

where A = (k0 � k1 � k2) =k2�p and B = k0=pk2. So, from (5) and (7), it follows that PR
is equivalent to the following program:

P 0R : max
�t2[0;1]

S1 s:t: (7) :

Step 3. (Rewriting P 0R in terms of �, S and D) Note the following: (i) Any sequence

of f�tg1t=1 pins down a unique sequence f(St; Dt)g1t=1. (ii) St and Dt are non-negative and

St � Dt with equality holding if and only if (1� �t) (1� �t+1) = 0. (iii) St and Dt follow

the recursive relations:

St = (1� �t) (1 + �St+1) ; and Dt = (1� �t) (1 + �pDt+1) .
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(iv) The set of f�tg1t=1 sequences that satisfy (7) gives rise to a set of (S;D) tuples that are

feasible. Call this set F . It is not necessary for the proof to characterize F but by standard

argument we know that it must be compact. Now, we can rewrite P 0R as follows:

P 00R :

8>>>>>>>>><>>>>>>>>>:

max�2[0;1]; S; D; S0; D0 S

s:t: S = (1� �) (1 + �S0) ; D = (1� �) (1 + �pD0) (PKR)

D � A+BS (ICR)

(S0; D0) 2 F (SER)

(Note that the constraint (SER) implies (S0; D0) satis�es (ICR), D0 � S0, and D � S:)

We will consider the case where A > 0. For A � 0, we will later argue that the �rm�s

program does not have a solution.

Step 4. (Introducing f (S) function and de�ning S�) Note the following about P 00R: (i)

By (PKR),
D

S
=
1 + �pD0

1 + �S0
:

(ii) For any (S;D) 2 F , we have

D

S
� 1 + �pD

1 + �S
i¤D � S

1 + � (1� p)S =: f (S) :

Observe that f (S) is increasing (and concave) and f (S) =S is decreasing in S. Also, under

the �rst-best solution where all �t = 0, (S;D) =
�
SFB; DFB

�
=
�

1
1�� ;

1
1��p

�
and it satis�es

DFB = f
�
SFB

�
. (iii) Since the �rst-best is not feasible by assumption, we must have

DFB > A+BSFB. Hence, the D = f (S) curve must intersect D = A+BS at some point

(S�; D�) where S� < SFB; and D� < DFB (since we have A > 0).

Step 5. (S� is the value of the program P 00R.) We claim that S� is the value of the program

P 00R: The proof is given by contradiction. Suppose that the value of P 00R is �S1 > S�. Let D (S)

be the minimal D associated with all solutions that yield the value S. As F is compact,

D is well-de�ned. Consider the tuple
�
�S1;D

�
�S1
��
. By the recursive relations,

�
�S1; �D1

�
:=�

�S;D
�
�S
��
generates a sequence f

�
�S2; �D2

�
;
�
�S3; �D3

�
; :::g such that each element of the

sequence satis�es (i) �Dn � A+B �Sn (if not, then (7) would be violated in some period) and

(ii) the recursion relations (PK�
R) for some associated sequence of �t; f��tg

1
t=1 (say). We

will argue in the next four sub-steps (Step 5a to 5d) that such a sequence cannot exist.
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Step 5a. We argue that �S1 > �S2 and �D1 > �D2. First, observe that for all S 2 (S�; SFB);

f (S) > A + BS. As �S1 > S�, f
�
�S1
�
> A + B �S1 � �D1 = D

�
�S1
�
. Next, we claim that

f
�
�S2
�
� �D2.

The proof is given by contradiction: suppose f
�
�S2
�
< �D2. But then we have �S2 < S�.

The argument is as follows: Clearly, if �S2 = S�, the highest feasible �D2 that could support

�S2 is f (S�) and hence there is no feasible �D2 such that f
�
�S2
�
< �D2. Now suppose �S2 > S�:

Since f (S) > A + BS for all S > S� and A + B �S2 � �D2, it must be that f
�
�S2
�
> �D2.

Hence, f
�
�S2
�
< �D2 ) �S2 < S�.

Therefore, if f
�
�S2
�
< �D2, we obtain that:

(8)
�D1
�S1
=
1 + �p �D2
1 + � �S2

>
1 + �pf

�
�S2
�

1 + � �S2
=
f
�
�S2
�

�S2
>
f (S�)

S�
;

where both equalities follow from (PKR), the �rst inequality holds as f
�
�S2
�
< �D2 and the

second inequality holds as �S2 < S� (argued above) and f (S) =S is decreasing in S. But as

�S1 > S� and f
�
�S1
�
> �D1 we must also have,

f (S�)

S�
>
f
�
�S1
�

�S1
>
�D1
�S1
;

which contradicts (8). Hence, we must have f
�
�S2
�
� �D2.

As f
�
�S2
�
� �D2, we obtain:

�D1
�S1
=
1 + �p �D2
1 + � �S2

�
�D2
�S2
:

As �S2 � �S1 (since �S1 is assumed to be the highest S1 feasible), the above inequality implies

that we must have �D2 � �D1.

Step 5b. We must have ��2 = 0. We show this by contradiction. From (PK�
R) we

know that
�
�S2; �D2

�
=
�
(1� ��2)

�
1 + � �S3

�
; (1� ��2)

�
1 + �p �D3

��
. If ��2 > 0, decrease ��2

to �02 := ��2 � " (1� ��2) for some " > 0. Note that (1� �02) = (1 + ") (1� ��2). Let

(S02; D
0
2) := (1 + ")

�
�S2; �D2

�
.

We argue that for su¢ ciently small ", (S02; D
0
2) is feasible. Since

�
�S3; �D3

�
2 F and

(PKR) is trivially satis�ed by de�nition of (S02; D
0
2), it is enough to show that (S02; D

0
2)

satis�es (ICR). To see this, recall that �D1= �S1 � �D2= �S2 (from Step 5a) and �S2 � �S1. So,�
�S2; �D2

�
must lie on or below the line joining the origin to

�
�S1; �D1

�
.

Now, there are two cases: (i) If (ICR) is slack at
�
�S1; �D1

�
, all points on this line always

lie strictly below the line D = A + BS. So, (ICR) is also slack at
�
�S2; �D2

�
. (ii) If (ICR)
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binds at
�
�S1; �D1

�
; this is the only point on the line at which (ICR) binds, and it is slack at

all other points. But, as f
�
�S1
�
> �D1, we have:

1 + �p �D1
1 + � �S1

>
�D1
�S1
=
1 + �p �D2
1 + � �S2

:

So,
�
�S2; �D2

�
6=
�
�S1; �D1

�
. Therefore, (ICR) must be slack at

�
�S2; �D2

�
. Thus, for small

enough ", (S02; D
0
2) = (1 + ")

�
�S2; �D2

�
always satis�es (ICR).

Next, observe that,

�D1
�S1
=
1 + �p �D2
1 + � �S2

>
1 + �p (1 + ") �D2
1 + � (1 + ") �S2

=
1 + �pD0

2

1 + �S02
:

Now, we increase ��1 to some �01 where (1� �01) (1 + �S02) = �S1. LetD0
1 = (1� �01) (1 + �pD0

2).

So, by the above inequality, we �nd that:

D0
1
�S1
=
1 + �pD0

2

1 + �S02
<
�D1
�S1
.

Hence, D0
1 <

�D1. But this observation contradicts the fact that �D1 is the lowest feasible

D1 that supports S1 (as we have shown that the sequence f�01; �02; ��3; :::g is feasible, and it

yields S1 = �S1 and D1 = D0
1 <

�D1). Therefore, we must have ��2 = 0.

Step 5c. We must have �S3 < �S2 and �D3 < �D2. As ��2 = 0, (PKR) implies �S2 = 1 + � �S3

and �D2 = 1+ �p �D3. As �St < SFB = 1= (1� �) and �Dt < DFB = 1= (1� �p) for any t, it is

routine to check that �S3 < �S2 and �D3 < �D2.

Step 5d. Repeating steps 5b and 5c we can argue that ��t = 0 for all t � 2 and the sequence

f �S2; �S3; :::g is monotonically decreasing. So, we must have �St = 1+ � �St+1, t = 2; 3; :::. But

such a sequence cannot exist. First, note that this sequence cannot converge. If it converges

at some Ŝ, we must have Ŝ = 1 + �Ŝ, or Ŝ = SFB = 1= (1� �), which is not a feasible

as all terms of the sequence is bounded away from �S1 < SFB. Therefore, some term of

this sequence will be either negative or zero. But we know that �St is non-negative. Also,

suppose �Sk = 0. So, we must have �Sk�1 = �Dk�1 = 1� ��k�1. But this is a contradiction as

we know that �Sk�1 = �Dk�1 only if (1� ��k�1) (1� ��k) = 0 but we have ��k�1 = ��k = 0.

Step 6. (P 00R does not have any solution if A � 0) Note that in this case any feasible

(S;D) must be such that D < f (S). But then, by argument identical to one presented in

Step 5a to 5d we can claim that there cannot exist a solution to P 00R.
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Step 7. (S� can be implemented by a stationary contract) As D� = f (S�),

D�

S�
=
1 + �pD�

1 + �S�
.

De�ne

�� := 1� S�

1 + �S�
= 1� D�

1 + �pD� :

Notice that the stationary sequence �t = �� for all t is a solution to P 0R as it yields S1 = S�

and the resulting sequence f(St; Dt)g = f(S�; D�)g satis�es (7).

Step 8. (If the original problem P has a solution, then �� is a solution to P) We now

show that if P has a solution, the optimal contract f��g satis�es (IC�1 ) ; (IC�0 ) and all

(SE�)s, and hence it is also a solution to P. We show this in the following three sub-steps:

Step 8a. As the contract is stationary, the agent who privately learns the critical task does

not have any deviation that is more pro�table than always shirking by doing the critical

task only. That is, we must have uts = U (ut). Hence, the optimal contract f��g satis�es

(IC�1 ).

Step 8b. As P 0R is a �relaxed�version of P and f��g is solution to P 0R, then, for all t,

the payo¤ u� under the contract f��g must be at least as large as the payo¤ ut under a

contract that solves P. Now, as any solution to P must satisfy (IC�0 ), i.e., it must satisfy

ut � (1� �)y for all t, we must have u� � (1� �)y. Hence, f��g also satis�es (IC�0 ).

Step 8c. Finally, to check that (SE�)s are satis�ed, note that: (i) By de�nition
�
s1;

1��
�  

�
2

E . (ii) In the proposed contract, ut = u� for all t and (u�; 0) 2 E by construction given

in the proof above. Hence, f�tg = f��g is a solution to the original problem if it has a

solution.

III. Proof. Using Lemmas 1 and 2, we can now present a proof of Proposition 1.

Proof of Proposition 1. Step 1. Part (i) directly follows from Lemma 1. If �t = 0 for

all t, the constraints in P are identical to those in original program. So �t = 0 for all t is

feasible in original problem PO whenever it is feasible in P. Hence, �t = 0 for all t is the

solution to PO if and only if � � ��.
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Step 2. In order to prove part (ii) we �rst prove that for a given � < �� the auxiliary

problem P has a solution if and only if

(9)
�

1� �

�
1� 1

2
p

�
s1 � c:

Step 2a. (Necessity of (9)) If P has a solution, by Lemma 2 we know it is stationary:

�t = �� for all t. Moreover, �� > 0 as we are considering the case where � < ��. Now,

at the solution, the following two conditions must hold: (IC�1 ) in period one holds with

equality, and

(10) ut+1 � s1 <
1

2
p
�
U
�
ut+1

�
� s1

�
for t = 1. Otherwise, it would be possible to decrease �1 from �� (keeping �t = �� for t > 1)

and increase u1 while preserving (IC�1 ) and all other constraints in P, contradicting the fact

that �� is solution. Now, observe that (10) implies that if under the optimal contract (IC�1 )

in period 1 is satis�ed for �1 = �� (which must be the case), then it is also satis�ed for

�1 = 1, i.e.,

(1� �) s2 + �s1 � (1� �) (s2 + c) +
1

2
p�s1,

which is equivalent to (9).

Step 2b. (Su¢ ciency of (9)) Observe that if (9) is satis�ed then clearly a contract in

which �t = 1 for all t satis�es (IC�1 ). Moreover, such contract also satis�es (IC
�
0 ). To see

this, observe that (IC�0 ) is given by

u � (1� �)y , (1� �) s2 + �s1 � (1� �)y ,
�

1� � s1 � c2;

which is implied by (9). Thus, at least the contract in which �t = 1 for all t is feasible,

meaning that P has a solution.

Step 3. Using Step 2, we can now prove part (ii) by obtaining a necessary and a su¢ cient

condition for the optimal contracting problem PO to have a solution when � < ��.

Step 3a. Let v = max fu+ � j (u; �) 2 Eg ; i.e., the maximal joint payo¤ sustained in

equilibrium. As the optimal contract is stationary for any s1 (Lemma 2), and since in the

optimal contract the agent receives all surplus in the continuation game (net of cost of

replacement of the metric in the current period, if applicable), we must have s1 = v� 1��
�  .

(See Lemma 6 in the online Appendix for a formal proof).
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Also, by de�nition, v must be the value of the optimal contracting problem under such a

s1 (notice that up on replacing the current measure, the principal would choose the optimal

contract in the continuation game, and the continuation game is identical to the game at

the beginning of period one).

Observe that when � < ��; v 2 [s2 �  ; s2); v = s2 �  when the performance measure

must be replaced in every period and v = s2 when the measure is never replaced.

Step 3b. (Necessary condition for PO to have a solution when � < ��) Since s1 = v� 1��
�  

and v � s2, the highest possible value of s1 is s2 � 1��
�  . Hence, for PO to have a solution

when � < ��, it must be the case that P admits a solution when s1 is set at s2 � 1��
�  .

Therefore, (9) implies that if � < ��, PO has a solution (where �� > 0) only if

��

1� ��
�
s2 �

1� ��

��
 

�
� c

1� 1
2p
;

or, equivalently,

(11)
��

1� �� s2 �
c

1� 1
2p
+  .

Step 3c. (Su¢ cient condition for PO to have a solution when � < ��) Since v � s2� , the

lowest possible value of s1 is s2 �  
� . We claim that PO has a solution (when � < ��) if P

admits a solution when s1 is set at s2 �  
� . That is, if (by (9)):

(12)
�

1� � s2 �
c

1� 1
2p
+

 

1� � .

The proof of this claim is as follows. Denote u1(bv) as the value associated with the solution
to the auxiliary problem P when s1 = bv � 1��

�  for any bv 2 [s2 �  ; s2). The principal�s

problem PO admits a solution if and only if u1(bv) has a �xed point in [s2 �  ; s2). Such a

�xed point must exist as (i) u1(bv) is continuous, (ii) u1(bv) � bv when bv = s2 � and (12) is

satis�ed, and (iii) u1(bv) < bv when bv = s2 (as we �x � < ��, u1 < s2).

Notice that both (11) and (12) are satis�ed if  is below a threshold (given �), and if so,

the optimal contracting problem PO would admit a solution where the associated value is

v = max
�bv 2 [s2 �  ; s2) : u1(bv) = bv	. Let �R be the smallest � (given  ) for which such a

solution exists. This observation completes the proof of part (ii).
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Step 4. Finally, as P has no solution when � < �R, e¤ort in both tasks cannot be elicited

(even in period one). Hence, it is optimal for the principal and agent to take their outside

options in every period.
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Online Appendix: �Learning to game the system�

Jin Li, Arijit Mukherjee, and Luis Vasconcelos

This appendix is divided into �ve sections: Section A presents a formal de�nition of

the players�strategies and the equilibrium concept (PBE) as used in our baseline model.

Section B presents the proofs of several lemmas that are omitted in the main text as they

are primarily technical in nature. Section C, D and E present supplementary materials for

the analysis of information revelation, shirking on path, and noisy measures, respectively,

i.e., the three extensions of the model presented in Section 5 of the paper.

A. Strategies and equilibrium concept. Let ht =
�
dA� ; d

P
� ; Y� ;M� ; w� ; b� ; x� ; 
�

	t�1
�=1

denote the public history of the game at the beginning of period t and Ht be the set

of all such histories (note that, H1 = fx0g). The strategy of the principal consists of a

sequence of functions �P =
�
DP
t ;Wt; Bt;�t

	1
t=1
, where her participation decision is given

by DP
t : Ht ! f0; 1g, the contract o¤er is given asWt : Ht ! R and Bt : Ht[fYt;Mtg ! R,

and �nally, the replacement decision for the performance measurement system is given as

�t : Ht[
�
dAt ; d

P
t ; Yt;Mt; wt; bt; xt

	
! f0; 1g. The agent�s strategy, however, may depend on

his private history ~ht =
�
dA� ; d

P
� ; e� ; Y� ;M� ; w� ; b� ; x� ; 
�

	t�1
�=1
, which not only records the

public history but also includes information on the agent�s past e¤ort provisions. Let ~Ht be

the set of all such private histories. The agent�s strategy is a sequence of functions �A =�
DA
t ; Et

	1
t=1
, where his participation decision is given as DA

t : ~Ht [
�
dPt ; wt; bt

	
! f0; 1g,

and his e¤ort decision is given as Et : ~Ht [
�
dAt ; d

P
t ; wt; bt

	
! f0; 1A; 1B; 2g. Finally, denote

�t = Pr (task A is crucial for Mt) as the belief of the agent in period t about the identity

of the critical task associated with the current performance measure Mt.

A pro�le of strategies �� = h��P ; ��Ai along with a belief �� = f��t g
1
t=1 constitute a PBE

of this game if �� is sequentially rational and �� is consistent with �� and derived using

Bayes rule whenever possible.

Regarding the derivation of the beliefs, notice the following: As we focus on the equilibria

where the agent exerts e¤ort on both tasks in all periods, on the equilibrium path, �t =
1
2

8 t (i.e., the same as the prior as the agent does not gain any information on the task
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identities). And o¤ path, following a successful private deviation, �t = 0 or 1 as long as the

same performance measure remains in place, but following a replacement it reverts to 1
2 .

B. Lemmas omitted in the text. We �rst prove the claim made in the text that when

searching for the optimal contract we can restrict attention, without loss of generality, to

contracts where the principal uses the performance measure Mt, along with the output Yt.

Lemma 1: In the model given in Section 2, it is (weakly) optimal to tie the agent�s bonus

to the performance measure Mt.

Proof. Suppose that in the optimal contract b is independent of M and only varies with Y .

As M is not used in the contract, the learning-by-shirking e¤ect disappears, and the agent

cannot obtain any information rent following deviation. Hence, the optimal contracting

problem is identical to its counterpart when the critical task has been revealed at the

beginning of the game.

Now, from Proposition 2 (and Lemma 7 below, which is used to prove Proposition 2) we

know that the optimal contract in this setup is characterized as follows: There exists cuto¤s

� and � such that �rst-best surplus (where e = 2 in all periods) is attained if and only if

� � �; for � 2 [�; �), only e = 1k (k being the critical task) can be induced in every period,

and for � � �, the players take the outside options and earn 0.

But Proposition 1 implies that by using a contract where the bonus depends on both Y

and M , �rst-best surplus is attained i¤ � � ��, and if � 2 [�R; ��), the optimal replacement

of the measure can induce a larger surplus than what is obtained when the agent works on

the critical task only.

Now, as given in Lemma 1 and Lemma 7 (see Section C below), (FB) binds at �� and

(14) binds at �. Comparing the left-hand sides of (FB) and (14), it is routine to check that

� > ��. Hence, it is optimal to tie bonus to both Y and M , and strictly so if � 2
�
�R; �

�
.

Next, we state and prove a set of lemmas that justify our restrictions on the class of

contracts while characterizing the optimal contract in Section 3.
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Lemma 3. Consider a relational contract and take any period t and any history ht. Suppose

that the critical task for Mt is not known to the agent, and in the game starting from period

t, the payo¤ pro�le (u; �) is sustained by et = 2 and bt 6= 0. Then there exists another

relational contract where (u; �) can be sustained by et = 2 and bt = 0.

Proof. Consider a relational contract where, for some period t and history ht, the critical

task for the period is not known to the agent and the payo¤ pro�le (u; �) is sustained by

e¤ort in both tasks (e = 2) and bonus b 6= 0 in period t. We construct another contract

where, in the same period and for the same history, (u; �) is sustained by e = 2 and

supported by b = 0.

Step 1. (If (u; �) is supported by a contract with b < 0, then it is supported by a contract

with b = 0.) Suppose (u; �) is supported by a contract in which wt = w and bt < 0. Consider

now a new contract (strategy) with wage and bonus (w0; b0) in period t, where w0 = w + b

and b0 = 0. All other aspects of the contract remain the same, including past and future

play. Observe that the new contract keeps (PKP ) and (PKA) una¤ected as w0+ b0 = w+ b.

Hence, the players� payo¤ remains (u; �) : We claim that this contract satis�es all other

constraints as well, and hence, gives a payo¤ (u; �) in the game starting from period t by

inducing e = 2 in that period.

Step 1a. Notice the following about the constraints in period t: The new contract makes

(IC0), (IC1) and (DEA) slack and (DEP ) remains satis�ed as �a � 0 for all a 2 fN;Og

and �R� (1� �)=� � 0. Finally, this change also preserves the (IC1) for all periods prior to

t, ensuring that past play continues to be consistent with equilibrium (and hence the agent

did not have any incentives to deviate in the past and learn the identity of the task). To see

this, observe that since the (PKA) is preserved, the (IC1) of each one of the periods until

the last replacement of the performance measure is automatically satis�ed. Regarding the

(IC1) of the periods from the last replacement of the performance measure, observe that

under the original contract:

(1) U(u; �) = max

8>>>>>><>>>>>>:
(1� �)(w + b� c2) + �

0@�RuR + X
a2fN;Og

�aU(ua; �a)

1A ;

(1� �)(w + pb� c1) + p�

0@�RuR + X
a2fN;Og

�aU(ua; �a)

1A

9>>>>>>=>>>>>>;
,



4 LI, MUKHERJEE, VASCONCELOS

and that the corresponding payo¤ under the new contract, denoted here by U 0, is obtained

by substituting w and b in these expressions by b0 and w0, respectively. Clearly, with the

proposed change in the contract, the �rst element (inside the curly brackets) remains the

same and the second becomes smaller. This implies U 0 � U(u; �). Moreover, since (1) holds

for any period in which a = N , and

U(u; �) = �RuR + �NU(uN ; �N ) + �OU(uO; �O)

in any period in which a = O, then for any � and a 2 fN;Og, U(u� ; �� ) is non-decreasing in

U(ua� ; �
a
� ). Thus, U

0
� � U� for all period � � t since the last replacement of the performance

measure. Thus, in any period prior to t, the agent�s payo¤ on-the-equilibrium path remains

the same and the payo¤ from deviating does not increase.

Step 2. (If (u; �) is supported by a contract with b > 0, then it is supported by a contract

with b = 0.) Suppose now that (u; �) is supported by a contract in which b > 0. We show,

again by construction, that it can also be supported by a contract in which b = 0.

Step 2a. De�ne

bR = b�
�R � 1��

�  

�N�N + �R
�
�R � 1��

�  
�
+ �O�O

,

and

ba = b� �a

�N�N + �R
�
�R � 1��

�  
�
+ �O�O

;

for all a 2 fN;Og. By construction, �NbN + �RbR + �ObO = b. Furthermore,

(2) 0 � bR � �

1� � (�
R � 1� �

�
 ) and 0 � ba � �

1� ��
a

for all a 2 fN;Og, where the second inequality in each of these two sets of inequalities

follows from (DEP ).

Step 2b. Now, in the new contract, set the bonus equal to zero and adjust the continuation

play as follows. First, suppose
�
uN ; �N

�
and

�
uR; �R

�
are supported, respectively, by wages

wN and wR. Now set the new wages

wa0 = wa +
ba

�

for a = N;R. The principal�s continuation payo¤s become

�a0 = �a � 1� �
�

ba
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for a = N;R. Observe that, by (2), wa0 � wa, �N 0 � 0 and �R0 � 1��
�  � 0, which ensures

that when the continuation play calls for a = N or a = R both the agent and the principal

will again accept the contract. Second, consider
�
uO; �O

�
. If �O = 0, then nothing needs to

be done in the new contract and we continue with the same continuation play dictated by�
uO; �O

�
. If, otherwise, �O > 0, then we know that players will engage in the relationship

at some point in the future. Let wO be the wage that the principal pays to the agent the

�rst time the relationship resumes, and assume that the parties take the outside option for t

periods before engaging again in the relationship. Note that when the relationship resumes,

the principal�s payo¤ is �O=�t. Now let

wO0 = wO +
1

�t+1
bO;

and this gives

�O0 = �t
�
�O

�t
� (1� �) 1

�t+1
bO
�
= �O � 1� �

�
bO:

Once again, by (2), wO0 � wO and �O0 � 0, which implies that both the principal and the

agent accept the contract if continuation play calls for
�
uO; �O

�
. Hence, continuation play

is again an equilibrium for a 2 fN;R;Og.

Step 2c. Next, note that this change leaves (PKP ) and (PKA) unchanged. Regarding

(IC1), under the new contract it is given by

(3) u � (1� �) (w � c1) +
1

2
p�
�
�NU

�
uN

0
; �N

0
�
+ �RuR

0
+ �OU

�
uO

0
; �O

0
��
.

Since under the new contract, in any future periods, only the wage wa is a¤ected, we

obtain that U (ua0; �a0) = U (ua; �a) + (1 � �)ba=� for all a 2 fN;Og and uR0 = uR + (1 �

�)bR=�. Using this and the fact that b =
P
�aba, it is easy to see that (3) is equivalent to

the (IC1) in the original contract.

Step 2d. Finally, (IC1) for all periods prior to t is also satis�ed under the new contract.

Under the original contract, U(u; �) is again as stated in (1). The corresponding payo¤

under the new contract is obtained by substituting, in that expression, b with 0, uR with

uR
0
, and U (ua; �a) with U

�
ua

0
; �a

0
�
for all a 2 fN;Og. It is easy to see that U 0 = U(u; �).

Since, as shown above, for any period � , U(u� ; �� ) is non-decreasing in U(ua� ; �
a
� ) for all

a 2 fN;Og, it follows that for any period � � t, U 0� � U� . Hence, in any period prior to t,

the agent�s payo¤ on-the-equilibrium path remains the same and the payo¤ from deviating

does not increase. This observation completes the proof.
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Lemma 4. Consider a relational contract and take any period t and any history ht. Suppose

that the critical task for Mt is not known to the agent, and in the game starting from period

t, the payo¤ pro�le (u; �) is sustained by et = 2 and �a > 0 for some a 2 fN;R;Og.

Then there exists another relational contract where (u; �) can be sustained by et = 2 and

�N = �R � 1��
�  = �O = 0.

Proof. Consider a relational contract where, for some period t and history ht, the critical

task for the period is not known to the agent and the payo¤ pro�le (u; �) is sustained by

e¤ort in both tasks (e = 2), wage w and bonus b = 0 in period t. There is no loss of

generality by Lemma 3 in assuming that b = 0. Let wa be the next period wage that

supports the continuation payo¤s (ua; �a) for all a 2 fN;Rg in this equilibrium. Similarly,

let wO denote the wage paid the �rst time the relationship resumes (in case it resumes)

that supports the continuation payo¤s (uO; �O).

Next consider a strategy that is identical to the above equilibrium, except for the following

changes in the current and next period wages. For all a 2 fN;Rg, let the new wage in the

continuation game be

wN 0 = wN +
�N

1� � and w
R0 = wR +

1

1� �

�
�R � 1� �

�
 

�
.

If �O > 0, then the players will engage in the relationship at some point in the future.

Suppose that the parties take the outside option t periods before engaging again in the

relationship. Note that when the relationship resumes, the principal�s payo¤ is �O=�t. In

this case, let

wO0 = wO +
�O

�t (1� �)
.

Finally, let the new current wage be

w0 = w � �

1� �

�
�N�N + �O�O + �R

�
�R � 1� �

�
 

��
.

Under these changes, �a0 = 0 for all a 2 fN;Og, �R0 � (1 � �) =� = 0, and all the

relevant constraints remain satis�ed. It is easy to see that (PKP ) and (PKA) are preserved.

Constraints (DEP ) and (DEA) are automatically satis�ed since b = 0. Also, the proposed

changes increase the agent�s continuation payo¤ and relax (IC1). More speci�cally, the

(IC1) under the original contract is given by

u � (1� �) (w � c1) +
1

2
p�
�
�NU

�
uN ; �N

�
+ �RuR + �OU

�
uO; �O

��
.
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Under the new contract, the left-hand side of the constraint remains the same since (PKA)

is preserved. The right-hand side is obtained by replacing w with w0, U (ua; �a) with

U
�
ua

0
; �a

0
�
= U (ua; �a) + �a for all a 2 fN;Og, and uR with uR0 = uR + (�R � 1��

�  ).

Hence, it is equal to that under the original contract minus

�(1� 1
2
p)

�
�N�N + �O�O + �R

�
�R � 1� �

�
 

��
.

Finally, under the proposed changes, the (IC1) constraint for all periods prior to t remains

satis�ed, ensuring that past play continues to be consistent with equilibrium. To see this,

observe that under the original contract

U(u; �) = max

8>>>>>><>>>>>>:
(w � c2)(1� �) + �

0@�RuR + X
a=N;O

�aU(ua; �a)

1A ;

(w � c1)(1� �) + �p

0@�RuR + X
a=N;O

�aU(ua; �a)

1A

9>>>>>>=>>>>>>;
:

The corresponding payo¤ under the new contract, U 0, is obtained by replacing in this

expression, w with w0, U(ua; �a) with U
�
ua

0
; �a

0
�
for all a 2 fN;Og, and uR with uR0 .

The �rst element inside the curly brackets remains the same under the new contract. The

second element is the same minus

�(1� p)
�
�N�N + �O�O + �R(�R � 1� �

�
 )

�
,

which implies that U 0 � U(u; �). Since, as shown in the proof of Lemma 3, for any period � ,

U(u� ; �� ) is non-decreasing in U(ua� ; �
a
� ) for a = N;O, it follows that for any period � � t,

U 0� � U� . Hence, in any past period, the agent�s payo¤ on-the-equilibrium path remains

the same and the payo¤ from deviation does not increase.

Lemma 5. If an optimal relational contract exists where the joint surplus is strictly positive,

then there exists an optimal relational contract in which �O = 0 in all periods.

Proof. Suppose there is an optimal contract that generates positive joint surplus. Such

contract cannot begin with a = O, since a contract beginning with period two of that

contract would have a higher associated payo¤. Let t be the �rst period in which �O > 0

and let u be the agent�s payo¤ at the beginning of that period. By Lemmas 3 and 4, we can

restrict attention without loss of generality to contracts where, in any period, b = 0 and the

principal�s continuation payo¤ (net of costs of replacing the performance measure) is zero.
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(Note that in such contracts, in any period, w = y if a = N is played and w = y �  =� if

a = R is played.) Hence, if u is sustained by playing a = N in period t, (PKA) implies that

u = (1� �) (y � c2) + �
�
�NuN + �OuO + �RuR

�
,

and if it is sustained by playing a = R, (PKA) implies that

u = (1� �) (y �  =� � c2) + �
�
�NuN + �OuO + �RuR

�
,

where ua for a 2 fN;R;Og are the appropriate continuation payo¤s. The analysis that

follows is valid for either case.

When the continuation play calls for exit, note that

uO = �uc,

where uc is the agent�s expected continuation payo¤. Now consider the following alternative

strategy. The new strategy is the same as that in the optimal contract we are consider-

ing here, except that in period t, if continuation play calls for exit (which happens with

probability �O), then the game continues in the following way: with probability 1 � �,

players terminate the relationship forever; and with probability �, the game continues with

uc (which could be sustained by randomization).

Under this alternative strategy, the agent�s payo¤ (following the contingency that exit is

called for in the original equilibrium) is given by

uO0 = �uc = uO.

This implies that (PKA) is preserved and the agent�s continuation payo¤ at the beginning

of the period under the alternative strategy, u0, satis�es u0 = u. In addition,

U
�
uO0
�
= �U (uc) = U

�
uO
�
.

(We omit the principal�s continuation payo¤s �a for a = N;O as argument of U since they

are zero in the contracts considered in this proof.) Since u0 = u and U
�
uO0
�
= U

�
uO
�
,

clearly (IC1) is preserved under the alternative strategy.

Finally, if u is sustained by playing a = R in period t, then for all periods prior to t, the

(IC1) constraint must be satis�ed since u0 = u. If instead u is sustained by playing a = N

in period t, then following an approach identical to that used in the proof of Lemmas 3 and

4, we obtain again that for all the periods prior to t the (IC1) constraint is also satis�ed.
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Therefore, the alternative strategy is also an equilibrium that gives the agent the same

payo¤ as that originally considered. This implies that if the equilibrium asks players to

take their outside options in the next period, we can replace this with a probability of

permanent exit. Finally, in an optimal contract, permanent exit cannot be played with

a positive probability since it is dominated by replacement of the performance measure.

Thus, in an optimal contact, �O = 0 in all periods.

Lemma 6. In an optimal relational contract, in any period, if �R > 0, then uR = v �
1��
�  , where v = max fu+ � j (u; �) 2 Eg, i.e., the maximum joint payo¤ sustained in

equilibrium.

Proof. Suppose there is an optimal contract that generates positive surplus. Such contract

must begin with a = N . Let t be the �rst period in which �R > 0, and let the agent�s

continuation payo¤ at the beginning of that period be u. By Lemmas 3-5, we can restrict

attention without loss of generality to contracts with no bonuses, in which the principal�s

continuation payo¤ (net of costs of replacing the performance measure) are zero, and where

players do not take their outside option. Hence, since u is sustained by playing a = N in

period t, (PKA) implies that

u = (1� �) (y � c2) + �
�
�RuR +

�
1� �R

�
uN
�
,

where uR and uN are the continuation payo¤s.

Suppose uR < v� (1� �) =� =: s1. Then, we can consider an alternative strategy pro�le

in which uR is replaced with

uR0 = s1.

Under this new new strategy, the agent�s continuation payo¤ at the beginning of period t is

(4) u0 = (1� �) (y � c2) + �
�
�Rs1 +

�
1� �R

�
uN
�
= u+ ��R

�
s1 � uR

�
> u.

In addition, (IC1) in period t is satis�ed. To see this note that under the original contract

(IC1) in period t can be written as:

(5)
�
�RuR +

�
1� �R

�
uN
�
+
1

2
p
��
1� �R

� �
uN � U

�
uN
���

� 1� ��
1� 1

2p
�
�
(c2 � c1) :

Following the change, (IC1) in period t can be written as:

(6)
�
�Rs1 +

�
1� �R

�
uN
�
+
1

2
p
��
1� �R

� �
uN � U

�
uN
���

� 1� ��
1� 1

2p
�
�
(c2 � c1) :
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Since (5) is satis�ed and s1 > uR, then (6) must also be satis�ed. We next show that the

proposed change also relaxes (5) for all � < t, so that the agent does not deviate in any past

period under the new strategy. In what follows, let u� denote the agent�s payo¤ in period

� , u0� the same payo¤ under the new strategy, and � = ��R
�
s1 � uR

�
, i.e. � is the change

in the agent�s payo¤ in period t (see 4). Thus, u0t = ut +�. Moreover, since period t is the

�rst in which �R > 0, we can write

ut�k = (1� �) (y � c2) + �ut�k+1

and

u0t�k = (1� �) (y � c2) + �u0t�k+1;

for all k = 1; :::; t� 1. This means that u0t�k = ut�k + �
k�, or, equivalently,

(7) u0t�k � ut�k = �k�.

Next observe that

U(ut) = max

8<: (1� �)(y � c2) + �
�
�RuR +

�
1� �R

�
U(uN )

�
;

(1� �)(y � c1) + �p
�
�RuR +

�
1� �R

�
U(uN )

�
9=;

and that U(u0t) is the same except that u
R is replaced with s1. It follows that U(u0t)�U(ut) �

�. Moreover,

U(ut�k) = max f(1� �)(y � c2) + �U(ut�k+1), (1� �)(y � c1) + �pU(ut�k+1)g

and U(u0t�k) can be obtained by replacing U(ut�k+1) with U(u
0
t�k+1) in this expression.

Hence,

(8) U(u0t�k)� U(ut�k) � �k�.

Next, observe that (IC1) in any period t�k�1 under the original strategy can be written

as

(9) (1� �)(y � c2) + �ut�k � (1� �)(y � c1) + �pU(ut�k+1)

and under the new strategy it can be written as

(10) (1� �)(y � c2) + �u0t�k � (1� �)(y � c1) + �pU(u0t�k+1):
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Since the former is satis�ed and by (7) and (8), u0t�k � ut�k � U(u0t�k) � U(ut�k), the

latter must also be satis�ed. Finally, observe that the proposed change of strategy increases

the agent�s payo¤ at the beginning of the game. This shows that in any optimal contract

uR = v � (1 � �) =� in the �rst period in which �R > 0. Applying a similar procedure

recursively we obtain that uR = v � (1 � �) =� the second time �R > 0, and in any other

period in which �R > 0.

C. Supplementary materials for Section 5.1. Below we present a formal analysis of

the model given in Section 5.1 and provide a proof of Proposition 2. We begin by stating

the parametric restrictions that we maintain in our analysis.

Assumption 1A: (i) y � c2 > �y + (1� �) (�z) � c1 > 0; (ii) 1
2�c2 > c1, and (iii)

(1� �)
�
1
2 (�z + �y + (1� �) (�z))� c1

�
+ � (y � c2) < 0:

The above restrictions have the exact same interpretation as their counterparts in As-

sumption 1, except in the case of part (i). Here, we assume that while e¢ ciency requires the

agent to work on both tasks, working on the critical task only is better than dissolving the

relationship and taking the outside options. The conditions in Assumption 1A jointly hold

if both y and � are relatively large and z is moderate. Also note that the parameter � plays

the same role here as that of p in our main model: both parameters, in their respective

settings, re�ect the probability that if the agent only performs the critical task, his shirking

would go undetected.

Next, we present a lemma that characterizes the full information benchmark.

Lemma 7. (Full information benchmark) If the information on the critical task is

made public at the beginning of the game, the optimal relational contract is characterized

as follows: There exist two cuto¤s, � and �, where � < �, such that (i) if � � �, the agent

exerts e¤ort on both tasks in every period, (ii) if � � � < �, the agent exerts e¤ort only on

the critical task in every period, and (iii) if � < �, no e¤ort can be induced, and the parties

take their outside options in every period.

Proof. Step 1. When the critical task is publicly known, we can restrict attention to

stationary contracts (Levin, 2003). That is, we can assume that the principal o¤ers the
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same contract and the agent chooses the same e¤ort level every period. There are three

possible actions pro�les that could be supported in an optimal stationary contract: (i) the

agent exerts e¤ort on both tasks; (ii) the agent exerts e¤ort on the critical task only; and

(iii) both players exit the relationship and take their outside option in each period. Recall

that by Assumption 1A (iii), it is never optimal for the relationship to have the agent exert

e¤ort only on the non-critical task.

Step 2. We begin by deriving the conditions under which e¤ort e = 2 in every period can

be sustained in (a stationary) equilibrium. Let (w; b) be the wage and bonus in a stationary

contract. The bonus is paid whenever Y = y (and, therefore, M = 1). As transfers between

players are frictionless, without loss of generality, we assume that in the optimal contract,

the principal extracts all surplus. Thus, the agent�s individual rationality constraint binds,

and it is given as:

(11) w + b� c2 = 0:

The agent�s incentive compatibility constraint is:

(1� �) (�c2 + b) � max f(1� �) (�c1 + �b) ; 0g ;

or,

(12) b � max
�
c2 � c1
1� � ; c2

�
=
c2 � c1
1� � ;

as (c2 � c1) = (1� �) > c2 by Assumption 1A (ii). Now, given (11), on the equilibrium path,

the principal earns the entire surplus. So, for the principal to not renege on the bonus, we

must have the following dynamic enforceability constraint:

(13) � (y � c2) � (1� �) b:

Hence, the optimal contract sustaining e = 2 must be a solution to the following program:

max
w;b

�̂t = y � c2 s:t: (12) ; (13) and (11) :

Note that by combining (12) and (13), we get that the necessary and su¢ cient condition to

sustain e = 2 is:

(14)
�

1� � (1� �) (y � c2) � c2 � c1:
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This condition is also su¢ cient because it allows the implementation of e = 2 through the

following feasible contract:

b =
c2 � c1
1� � , and w = c2 � b:

Thus, � is the value of � for which (14) is satis�ed with equality.

Step 3. Consider now equilibria in which the agent works on the critical task only. The

analysis is identical to the analysis of the case of e = 2, but with two exceptions. First, now

the bonus is paid wheneverM = 1. And since the only relevant deviation for the agent is to

not work at all, the agent�s incentive compatibility constraint boils down to b � c1. Second,

the per-period surplus is now �y � c1, and hence, the principal�s dynamic enforceability

constraint becomes � (�y � c1) � (1� �) b. Combining the two, we can derive the necessary

and su¢ cient condition for sustaining e¤ort in the critical task only:

(15)
�

1� � (�y � c1) � c1:

This condition is su¢ cient as it allows for the following feasible contract that implements

e¤ort in the critical task only on the equilibrium path: b = c1 and w = 0. Thus, � is the

value of � for which (15) is satis�ed with equality.

Now, consider the optimal contracting problem in our setting when the task information

is not available to the agent at the beginning of the game, but the principal can disclose it at

the end of any period. As we argue below, this problem closely parallels the one formulated

in Section 3, with suitable reinterpretation of some of the notations.

Suppose that the identity of the critical task is not known to the agent. Suppose also

that � < �. (By Lemma 7, we know that if � < �, if the principal reveals the identity of

the critical task then it is not feasible to induce e = 2:) In this case, in any period, there

are three possible action pro�les on the equilibrium path: (i) the agent exerts e¤ort on both

tasks while no information is revealed; (ii) the principal reveals the critical task, and the

agent exerts e¤ort on that task only; and �nally, (iii) both parties take their outside options.

As before, with a slight abuse of notation, denote these three cases as a = N , R, and O,

respectively. Let �a be the probability of choosing the action a in the subsequent period

and let (ua; �a) be the continuation payo¤s where a 2 fN;R;Og.
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Any contract that sustains e¤ort on both tasks in a given period (when the critical

task remains unknown to all) must satisfy a set of participation, incentive and feasibility

constraints. These constraints are identical to their counterpart in Section 3 except for

the following two di¤erences: (i) in the principal�s promise-keeping constraint (PKP ) and

dynamic enforceability constraint (DEP ), the term �R drops o¤ (notice that the use of

a performance measure is assumed to be costless); and (ii) the sequential enforceability

constraint following replacement of existing performance measure (SER) is replaced by

�
uR; �R

�
2 EK ;

where EK denotes the set of equilibrium payo¤s (for a given �) when the critical task is

publicly known.

Following Lemmas 3�6 in Section B of this online Appendix, it is routine to check that the

following conditions continue to hold even in the current setting: without loss of generality,

we can restrict attention to a class of contracts where (i) no bonus is used (i.e., b = 0), (ii)

the principal�s continuation payo¤ is always 0 (i.e., �N = �R = �O = 0), (iii) termination is

never used (i.e., �O = 0), and �nally, (iv) in the optimal contract, if �R > 0 in any period,

then uR = �y + (1� �) (�z) � c1 (i.e., the maximal surplus in the relationship when the

critical task is revealed and the agent works on that task only). That is, we may restrict

attention to contracts where, in any period, b = 0 and

w =

8<: y if a = N is played

�y + (1� �) (�z) if a = R is played
.

Hence, the optimal contracting problem, PK , (say) is identical to the principal�s program

PO in our baseline model (i.e., the one studied in Section 3), except for the following di¤er-

ences: (i) The agent�s continuation payo¤ following the revelation on the task information

is exogenously given, i.e., uR = �y + (1� �) (�z) � c1; (ii) the parameter p is replaced by

�; and (iii) (SER) is replaced by constraint
�
uR; 0

�
2 EK .

Denote �t as the probability that the principal reveals the critical task at the end of

period t, given that it has not been revealed in the past. The optimal contracting problem
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PK can therefore be written exactly as the auxiliary program P presented in the Appendix:

PK :

8>>>>>>>>>>>><>>>>>>>>>>>>:

max�t2[0;1] u1 s:t: 8t;

ut = (1� �) s2 + �
�
�ts1 + (1� �t)ut+1

�
(PKA-K)

ut � (1� �) y (IC0-K)

ut � (1� �) (s2 + c) + 1
2��

�
�ts1 + (1� �t)U

�
ut+1

��
(IC1-K)�

ut; 0
�
2 E (SEN -K) and (s1; 0) 2 EK (SER-K)

where

s1 = uR = �y + (1� �) (�z)� c1:

At this point, we are ready to present the proof of Proposition 2.

Proposition 2. The optimal contract is characterized as follows. There exist four cuto¤s

� < ~� � �̂ < � such that the following holds:

(i) For all � � �, the agent exerts e¤ort on both tasks in all periods irrespective of the

principal�s decision on whether to reveal information on the critical task.

(ii) For all � 2 [�̂; �), the agent exerts e¤ort on both tasks in all periods, but the principal

conceals the identity of the critical task and refrains from adopting the performance measure

M .

(iii) For all � 2 [~�; �̂), the principal reveals the information on the critical task at the end

of each period with a constant probability �� (which may vary with �). The agent works on

both tasks until the measure is put in place and works only on the critical task afterwards.

Moreover, ~� < �̂ if and only if

(16)
�
1� 1

2
�

�
(�y + (1� �) (�z)� c1) >

�
1� �

2� ��̂

�
(y � c2) :

(iv) For all � 2 [�; ~�), the principal reveals the information on the critical task at the

beginning of the game and the agent only works on that task.
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(v) Finally, for all � < �, no e¤ort can be induced and both parties take their outside

options.

Proof. Step 1. Since PK is identical P, both Lemma 1 and 2 continue to hold (where �t
is treated as the probability of information revelation, as opposed to a replacement of the

performance measure). That is, �t = 0 8t is a solution to PK if and only if � � �̂ where �̂

is the value of � for which

(dFB) �

1� �

�
1� �

2� ��

�
(y � c2) � c2 � c1

binds. Moreover, if � < �̂ and PK has a solution, it also admits a stationary solution.

Step 2. Note that �̂ < � as the left-hand side of (14) is strictly less than that of (dFB)
for all � 2 (0; 1) (recall that (14) binds at � = �). Hence, part (i) and (ii) follows directly

from Lemma 7 and Lemma 2 as stated in Step 1.

Step 3. From (15), we have � = c1=��, and it is routine to check that (dFB) is slack at
�. So, from Lemma 7 we know that for � 2 [�; �̂) there always exists an equilibrium where

the principal reveals the information at the beginning of the game, and induces the agent

to exert e¤ort in the critical task.

A larger payo¤ can be attained in equilibrium (given that � 2 [�; �̂)) if and only if PK
has a solution. Now, from Step 1 in the proof of Proposition 1, it follows that problem PK
(as it is identical to problem P) has a solution if and only if:

(17)
�

1� �

�
1� �

2

�
s1 � c2 � c1.

Let ~� be the value of � for which (17) is binding. Hence, ~� < �̂ if and only if:

�̂

1� �̂

�
1� �

2

�
s1 >

�̂

1� �̂

�
1� �

2� ��̂

�
s1 = c2 � c1;

that simpli�es to the condition (16).

Thus, for � 2 [~�; �̂) the task information is not revealed at the beginning of the game, but

the principal reveals the information at the end of each period with a constant probability.

The agent works on both tasks as long as the task information remains undisclosed, but

works on the critical task only once it is revealed. But for [�; ~�) the task information must

be revealed at the beginning of the game, and the agent only works on that task. Also, the
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interval [~�; �̂) exists i¤ (16) holds. This observation completes the proof of part (iii) and

(iv). Finally, part (v) follows directly from Lemma 7.

We conclude this section with the following remark on condition (16). This condition

requires that the surplus that is generated when the agent exerts e¤ort on the critical

task only (s1 := �y + (1� �) (�z)� c1) is not too small compared to the �rst-best surplus

(s2 := y � c2). Indeed, the loss of surplus due to information revelation, s2 � s1, plays the

same role as the cost of replacement,  , in our initial model.

To see the intuition for why condition (16) is necessary, observe that the revelation of the

critical task has two e¤ects. On the one hand, the bene�t of revelation is that it reduces

the agent�s gains from shirking and learning the identity of the critical task. On the other

hand, the cost of revelation is that the total surplus in the relationship is reduced� once the

critical task is revealed, the agent will perform that task only. The larger is s1, the smaller

is the cost of revelation, whereas the agent�s bene�t of shirking is primarily linked to the

surplus under �rst-best e¤ort� if the shirking goes undetected, the agent per-period payo¤

is equal to the �rst-best surplus (s2) plus the cost of e¤ort saved (c2 � c1): As a result, the

larger is s1, the more likely it is that a partial revelation (through delayed adoption of the

performance metric) will emerge as the optimal relational contract.

D. Supplementary materials for Section 5.2. In this section, we present a formal

analysis of the optimal replacement policy in the presence of exogenous learning (as modeled

in Section 5.2 of our paper). Recall that we denote �t as the probability that the performance

measure Mt is replaced at the end of the period, given that the relationship continues to

period t+1: Also, �t is the probability that the agent is informed at the beginning of period

t, given that the relationship continues to period t and Mt is the same as Mt�1.

We focus on the class of equilibria where an uninformed agent never shirks but an in-

formed agent always does. The probability that the relationship continues from period t to

t+ 1 is �tp+ (1� �t) : Hence,

�t+1 =
�t (1� �t) p+ (1� �t) (1� �t) k

(�tp+ (1� �t)) (1� �t)
=
�tp+ (1� �t) k
�tp+ (1� �t)

:

Notice that �t does not a¤ect the conditional probability of being informed. Also,

�t+1 � �t , �t �
k

1� p:
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We assume p > 1� k so that the above condition is always satis�ed. It is routine to check

that under this condition, �t is strictly increasing and converges to 1.

As we have stated in the main text, in such an equilibrium (if it exists), the principal�s

expected payo¤ in period t (when Mt is same as Mt�1) is:

�t := (1� �t) (y � b� w) + �t (p (y � b)� w) :

The payo¤ �t decreases over time as �t is strictly increasing.

The analysis of the optimal replacement policy poses a novel technical issue: it needs to

account for the evolution of �t. We present the analysis in two parts. First, we consider

a relaxed version of the problem where the agent is assumed to be non-strategic: he never

shirks until he learns the task exogenously (but once informed, he shirks in all future

periods). Next, we introduce the incentive constraint on the agent and o¤er a partial

characterization of the optimal policy.

A relaxed problem: The case of non-strategic agent. We �rst present a few

notations. Let mt be the probability that (Y� ;M� ) = (y; 1) for all � < t, assuming that the

principal has never changed the performance measure. Note that m1 = 1 (vacuously true),

and m2 = 1 as the agent is necessarily uninformed at the beginning of the game, and exerts

e¤ort in both tasks in the �rst period. And for t � 3;

mt =
�
1� �t�1 + �t�1p

�
mt�1:

Also, we denote

st =
t�1Y
�=1

(1� �� ) ;

where s1 is set at 1: Hence, the probability that the relationship arrives at period t with

the initial performance measure still in place (i.e., M1 has never been replaced till period

t) is stmt:

Let

rt := Pr (M1 has been replaced at some � � t)

and

xt := Pr (M1 not replaced but relationship terminated at some � � t) :
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Note the following: (i) We have

stmt + rt + xt = 1:

(ii) We have r1 = 0; and for all t � 1,

(18) rt+1 = rt+mt+1(st� st+1) =
tX

�=0

(s� � s�+1)m�+1 = 1� stmt+
tX

�=2

s� (m�+1 �m� ) ;

where we set s0 = 1: (iii) Similarly, x1 = 0; and for all t � 1,

(19) xt+1 = xt + st (mt �mt+1) =

tX
�=0

s� (m�+1 �m� ) =

tX
�=2

s� (m� �m�+1) :

Now, the expected payo¤ of the principal in period t is

mtst�t + rtv;

where v is the normalized payo¤ of the �rm once the new performance measure is put in

place, and the �rm�s outside option is set at 0. Hence, the principal�s program is:

PS�R : max
fstg1t=2

1X
t=1

�t�1 (mtst�t + rtv) s.t. (18) , (19) , and st � st+1 � 0 for all t:

De�ne the Lagrangian as

1X
t=1

�t�1

" 
mtst�t +

 
1� stmt +

t�1X
k=2

sk (mk+1 �mk)

!
v

!
+mt
t (st � st+1) +mt�tst

#
:

The �rst-order condition with respect to st gives

(20) (�t � v)�
�

(1� �)mt
(mt �mt+1) v + 
t � 
t�1 + �t = 0:

As
mt �mt+1

mt
= �t (1� p) ;

we can rewrite (20) as

(�t � v)�
�

1� � �t (1� p) v + 
t � 
t�1 + �t = 0:

Note that (�t � v)� �
1���t (1� p) v is decreasing in t since �t is decreasing in t (and �t;

the probability of being informed, is increasing in t). It follows that when

(�t � v)�
�

1� � �t (1� p) v > 0;
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we must have 
t�1 > 0; implying that

st = st�1 , �t = 0;

and

(�t � v)�
�

1� � �t (1� p) v = 
t�1:

Similarly, when

(�t � v)�
�

1� � �t (1� p) v < 0;

we have �t > 0, implying that

st = 0, �t = 1:

and

�t = � (�t � v) +
�

1� � �t (1� p) v; 
t = 0:

Since this is a concave programming problem, and this is a Kuhn-Tucker solution, we

establish the optimality. The following proposition summarizes our �nding:

Proposition 3. The optimal replacement policy in PS�R is characterized as follows:

�t =

8<: 0 if �t+1 > v + �
1���t+1 (1� p) v

1 otherwise
:

Complete program: Optimal policy with strategic agent. We now introduce the

agent�s incentive compatibility constraint to the principal�s program PS�R. Suppose that a

new performance measure will be put in place prior to period T + 1 for some T <1 with

probability 1, so that sT+1 = 0: In what follows, we show that the principal�s program can

be represented as a linear-programming problem in st = (s1; s2; :::; sT ). Given that PS�R is

linear in st, we only need to show that the agent�s incentive-compatibility constraint is also

linear in st:

De�ne ut and lt as the period t payo¤s of an uninformed and an informed agent, respec-

tively. Also, let u be the payo¤ of the agent when a new measure is put in (recall that the

agent gets 0 when the relationship terminates). As we focus on the class of equilibria where

an informed agent always shirks, we have:

(21) lt = w + p (b+ � ((1� �t) lt+1 + �tu)) ;
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and

(22) ut = w + b� c2 + � ((1� �t) (klt+1 + (1� k)ut+1) + �tu) :

Note that the probability that (Yt;Mt) = (y; 1) is obtained when an uninformed agent

shirks at exactly one of the two tasks chosen at random is 12� =
1
2p =: q. Now, the agent�s

incentive compatibility constraint in period t can be written as:

w + b� c2 + � ((1� �t) (klt+1 + (1� k)ut+1) + �tu) � w + q (b+ � ((1� �t) lt+1 + �tu)) ;

i.e.,

(23) (1� q) b� c2 + � ((1� �t) (klt+1 + (1� k)ut+1) + �tu) � �q ((1� �t) lt+1 + �tu) :

In what follows, we �rst show that the agent�s incentive-compatibility constraint can be

written in terms of st, stut and stlt: Then, we show that each of the last two terms, stut

and stlt are also linear in st.

Multiplying both sides of (23) by st; we get

((1� q) b� c2) st
� �q (st+1lt+1 + (st � st+1)u)� � (kst+1lt+1 + (1� k) st+1ut+1 + (st � st+1)u) ;

or, alternatively,

((1� q) b� c2) st + � (1� q) (st � st+1)u

� �qst+1lt+1 � � (kst+1lt+1 + (1� k) st+1ut+1)

= �qst+1lt+1 � � ((1� k) (st+1ut+1 � st+1lt+1) + st+1lt+1) :

Rearranging the terms, we can rewrite the agent�s incentive-compatibility constraint as:

(IC-t)
((1� q) b� c2) st + � (1� q) (st � st+1)u+

� (1� q) st+1lt+1 + � (1� k) (st+1ut+1 � st+1lt+1) � 0:

Notice that (IC-t) is linear in st, stut and stlt.

Next, we show that stlt is linear in (st; st+1; :::; sT ) : From (21) it follows that:

(24) stlt = Ast + p� (st+1lt+1 + (st � st+1)u)

where A := w + pb. Plugging the expression for st+� lt+� iteratively for � = 0; :::; T � t; we

get

(25) stlt =
T�tX
�=0

(p�)� (Ast+� + p� (st+� � st+�+1)u) ;
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(notice that we have utilized the fact that sT+1 = 0).

Similarly, we can argue that stut � stlt is linear in (st; st+1; :::; sT ) : Let B := w + b� c2.

From (22) it follows that:

pstut = Bpst + p� ((kst+1lt+1 + (1� k) st+1ut+1) + (st � st+1)u)

= Bpst + p� (st+1lt+1 + (st � st+1)u� (1� k) (st+1lt+1 � st+1ut+1))

= Bpst + (stlt �Ast)� p� (1� k) (st+1lt+1 � st+1ut+1) :

Hence, we obtain:

(26) p (stut � stlt) = (Bp�A) st + (1� p) stlt � p� (1� k) (st+1lt+1 � st+1ut+1) :

Let

dt :=
1

p
((Bp�A) st + (1� p) stlt) ; and zt = stut � stlt:

So, from (26) we get

pzt = dt + � (1� k) pzt+1;

and plugging in the expression for pzt+� iteratively for � = 0; :::; T � t; we get (notice that

zT+1 = 0 as sT+1 = 0):

(27)
pzt = dt + � (1� k) pzt+1

=
PT�t

�=0 ((1� k) �)
� ((Bp�A) st+� + (1� p) st+� lt+� ) :

Now, from (25) we have:

(28)

PT�t
�=0 ((1� k) �)

� st+� lt+� =PT�t
�=0 ((1� k) �)

�
�PT�(t+�)

�=0 (p�)�Ast+�+� + (p�)
�+1 (st+�+� � st+�+�+1)u

�
:

The above expression can be further simpli�ed as follows. Note that for a �xed � + � = j;

we have: Pj
�=0 ((1� k) �)

� (p�)j�� =
Pj

�=0 (1� k)
� pj���j

=
Pj

�=0

�
p
1�k

�j��
((1� k) �)j

= rj ((1� k) �)j ;

where rj :=
Pj

�=0

�
p
1�k

�j��
:

Hence, (28) boils down to:

T�tX
�=0

((1� k) �)� st+� lt+� =
T�tX
j=0

rj ((1� k) �)j (Ast+j + p� (st+j � st+j+1)u) ;
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and (27) can be written as:

(29)

pzt =
PT�t

�=0 ((1� k) �)
� (Bp�A) st+�
+(1� p)

PT�t
�=0 ((1� k) �)

� st+� lt+�

=
PT�t

�=0 ((1� k) �)
� [(Bp�A) st+� + (1� p)Ar�st+�

+p� (st+� � st+�+1)u] :

Now using zt = stut � stlt; zt = dt + � (1� k) zt+1; and multiplying both sides by p; we

can rewrite (IC-t) as:

((1� q) b� c2) pst + p� (1� q) (st � st+1)u+ (1� q) p�st+1lt+1 + pzt � pdt � 0:

Recall that pdt = (Bp�A) st+(1� p) stlt, and using (24) we can write the above inequality

as:

((1� q) b� c2 �B) pst + qAst + pzt + (p� q) stlt � 0;

that simpli�es to (plugging back values of A and B):

(IC�-t) pzt + (p� q) stlt � (p� q)wst � 0:

The agent�s incentive-compatibility constraint requires that (IC�-t) holds for all t. From

(25) and (29), it directly follows that (IC�-t) is linear in (st; st+1; :::; sT ).

Proposition 4. The optimal replacement policy solves the following linear programming

problem:

PS :

8>>>>><>>>>>:
max
fstg1t=2

1X
t=1

�t�1 (mtst�t + rtv)

s.t. (18) , (19) , (IC�-t) , st � st+1 � 0 8t; and sT+1 = 0 for some T:

A complete characterization of the optimal replacement policy is, however, analytically

intractable. The complexity primarily stems from the interdependence of T and (IC�-t):

The period by which the measure is replaced with certainty (T ) a¤ects the form of the

incentive constraints (IC�-t), and these constraints, in turn, also determine the timing of

replacement.

Nevertheless, we can derive a necessary and su¢ cient condition for the solution to the

relaxed problem PS�R to be a solution to the original problem PS .
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Proposition 5. Suppose the optimal relational contract in the relaxed problem PS�R is

given as (w�; b�; T �) ; where T � is the time length for replacement (as characterized in Propo-

sition 3). This policy is a solution to the original problem PS if and only if

8t � T �;
T ��tX
�=0

(p�)� f� + (p�)
T ��t+1

 
p� q +

�
1� k
p

�T ��t!
u� (p� q)w� � 0;

where

f� :=

�
1� k
p

��
p (c2 � (1� p) b�) +

�
p (1� p)
p+ k � 1

�
1�

�
1� k
p

���
+ p� q

�
(w� + pb�)

and

u =
�
p
�
1� p� ((1� k) �)T

��1 � (p�)T
�
���1 T ��1X

�=0

(p�)� (f� + q (w
� + pb�)) :

Proof. It su¢ ces to check that the solution to PS�R satis�es the agent�s incentive constraints

(IC�-t) i¤ the above condition is satis�ed. Note that under the replacement policy given in

in Proposition 3, we have st = 1 for all t � T � and sT �+1 = 0: It follows that

pzt =
T ��tX
�=0

((1� k) �)� ((Bp�A) + (1� p)Ar� ) + p� ((1� k) �)T
��t u:

In addition,

stlt =

T ��tX
�=0

(p�)� (Ast+� + p� (st+� � st+�+1)u) =
T ��tX
�=0

(p�)� A+ p� (p�)T
��t u:

Thus, (IC�-t) boils down to:

PT ��t
�=0 ((1� k) �)

� ((Bp�A) + (1� p)Ar� ) + p� ((1� k) �)T
��t u+

p� ((1� k) �)T
��t u+ (p� q)

�PT ��t
�=0 (p�)

� A+ p� (p�)T
��t u

�
� (p� q)w > 0:

Rewrite the left-hand side of the above condition as:

PT ��t
�=0 (p�)

�
��

1�k
p

��
((Bp�A) + (1� p)Ar� ) + (p� q)A

�
+

(p�)T
��t+1

�
p� q +

�
1�k
p

�T ��t�
u� (p� q)w:
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Now ��
1�k
p

��
((Bp�A) + (1� p)Ar� ) + (p� q)A

�
=
�
1�k
p

��
Bp+

�
�
�
1�k
p

��
+ (1� p)

P�
j=0

�
1�k
p

���j
+ p� q

�
A

=
�
1�k
p

��
(B �A) p+

�
(1� p)

P�
j=1

�
1�k
p

���j
+ p� q

�
A

=
�
1�k
p

��
(B �A) p+

 
p (1� p)

1�
�
1�k
p

��
p+k�1 + p� q

!
A

= f� :

Hence, (IC�-t) is equivalent to:

T ��tX
�=0

(p�)� f� + (p�)
T ��t+1

 
p� q +

�
1� k
p

�T ��t!
u� (p� q)w � 0:

Finally,

pu = ps1u1

= pz1 + ps1l1

=
PT ��1

�=0 ((1� k) �)� ((Bp�A) + (1� p)Ar� )

+p� ((1� k) �)T
��1 u+ p

PT ��1
�=0 (p�)� A+ p2� (p�)T

��1 u;

so that

p
�
1� p� ((1� k) �)T

��1 � (p�)T
�
�
u =

PT ��1
�=0 ((1� k) �)� ((Bp�A) + (1� p)Ar� )

+p
PT ��1

�=0 (p�)� A

=
PT ��1

�=0 (p�)� (f� + q (w
� + pb�)) :

This gives the expression of u:

E. Supplementary materials for Section 5.3. In this section, we present a formal

analysis of the case where the performance measure Mt is a noisy signal of e¤ort even when

the agent exerts e¤ort on both tasks (as modeled in Section 5.3 of the paper). We show that

even in this setting the incentive e¤ects of a replacement of the metric that we highlight in

our model continue to hold.

Recall that for the sake of tractability, we limit attention to a class of stationary contracts

where the agent is paid a wage of w and a discretionary bonus of b following a �success�,

i.e., when (Yt;Mt) = (y; 1).

In what follows, we �rst explore when there might exist an equilibrium where the agent

exerts e¤ort in both tasks in all periods. In such an equilibrium, if it exists, the players�
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payo¤ (u; �) and the associated contract (w; b) must satisfy a set of standard conditions. To

simplify the exposition, it is convenient to write these conditions in terms of the probability

that the principal does not replace the existing measure. To this e¤ect, we de�ne �s := 1��s
and �f := 1 � �f . Thus, �s is the probability that the current measure is kept in place

following a success, and �f is the probability that the current measure is kept in place

following a failure.

As usual, the participation constraints require that the payo¤s of the principal and agent

be at least as large as their outside option:

(IR�) u; � � 0:

The promise keeping constraints are given by:

(PK�
A) u = (1� �) (w � c2 + �pb) + �u

and

(PK�
P ) � = (1� �) (y � w � �pb� �� ) + ��;

where �� := �p(1 � �s) + (1 � �p)(1 � �f ) is the (expected) probability of replacement of the

measure when the agent exerts e¤ort in both tasks. The dynamic enforceability constraints

of the principal and the agent are given by:

(DE�P ) � (1� �) (b+ (1� �s) ) + �� � 0,

(DE�P -R) � (1� �) + �� � 0

and

(DE�A) (1� �) b+ �u � 0:

Finally, the incentive compatibility constraints of the agent are given by:

(IC�0 ) u � (1� �)w

and

(IC�1 )
u � ud := (1� �)

�
w � c1 + 1

2pb
�
+

�
�
1
2p (�sus + (1� �s)u) +

�
�� 1

2p
� �
�fuf + (1� �f )u

��
;
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where us and uf are the agent�s continuation payo¤ when his deviation ends up in success

and failure, respectively, and the performance metric is not replaced. If the performance

metric is replaced, any information obtained by the agent through the deviation is immedi-

ately lost, and his continuation payo¤ is u. Next, we elaborate on the agent�s continuation

payo¤s us and uf .

The computation of us is relatively straightforward. Following a success, the agent learns

the identity of the critical task. If the measure is not replaced, he can use this information

to shirk again in the future. Given that we are considering stationary contracts, the optimal

strategy for the agent when he knows the identity of the critical task is either not to shirk

by exerting e¤ort in both tasks, or to shirk by exerting e¤ort only in the critical task until

the current metric is replaced. Whether the optimal strategy is the former or the latter

depends on the contract being considered. If the optimal strategy is not to shirk, then

us = u. However, if the optimal strategy is to exert e¤ort only in the critical task, then

us = (1� �) (w � c1 + pb) + �
�
p(�sus + (1� �s)u) + � (1� �) (�fus +

�
1� �f

�
u)
�
:

In the analysis that follows, we consider the case where it is optimal for the agent to exert

e¤ort only in the critical task, and we later check that this is indeed the relevant case for

our analysis.

The computation of uf is more involved. Following a failure, the agent updates his beliefs

about the critical task, but he does not fully learn its identity. Given the updated beliefs,

if the optimal strategy is not to shirk, then uf = u. Suppose, however, that the optimal

strategy for the agent is to shirk again by exerting e¤ort in only one of the tasks. Since the

agent does not know the identity of the critical task, he must again choose which task he

should work on. Thus, the computation of uf depends on the type of deviation the agent

undertakes and on the evolution of his beliefs whenever he encounters a failure.

It can be shown that the optimal deviation strategy is to choose at any point in time

the task that is the most likely to be the critical task.20 Now, suppose that when the agent

�rst deviates, he exerts e¤ort only in task A (recall that when the agent �rst deviates, he

believes that tasks A and B and equally likely to be the critical task). Suppose the deviation

results in failure. The agent will then update his beliefs about task A being the critical task.

20This can be obtained by solving a two-armed bandit problem with perfectly correlated arms.
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Speci�cally, the updated belief that task A is the critical task is given by

Pr (A is critical j (Yt;Mt) = (y; 0) ; e = 1A) =
1
2� (1� �)

1
2� (1� �) +

1
2�
=
1� �
2� � <

1

2
.

Hence, following a failure, if the performance metric is not replaced, the agent will try

the other task (task B in this case), which has the probability of being the critical task of

1= (2� �) > 1=2. When the agent exerts e¤ort only in the other task, the probability of a

success is p= (2� �) and the probability of another failure is 2(� � p1)=(2 � �). It follows

that uf must satisfy

uf = (1� �)
�
w � c1 +

p

2� � b
�
+ �

�
p

2� � (�sus + (1� �s)u) +
2(�� p)
2� � u

�
:

To understand the last term inside the square brackets, note that following another failure,

the agent�s updated belief becomes uniform again (i.e., both tasks are equally likely to be

the critical task), and we can set his continuation payo¤ as u.

Next, we use these conditions to obtain a necessary condition for the existence of an

equilibrium with e = 2 in every period.

A necessary condition for the existence of an equilibrium in which e = 2 in

every period. As we are considering only stationary contracts, we can restrict attention,

without loss of generality, to contracts where one of the parties appropriates all the surplus.

In what follows, we therefore restrict attention to contracts where u = 0.

In an equilibrium with e = 2 in all periods and u = 0,

� = (y � c2)� �� .

Plugging this equation in (DE�P ), we obtain

(30) b � bH(�; �f ; �s) :=
�

1� � (y � c2 � �� )� (1� �s) .

This condition gives us an upper bound for b. We next use (IC�1 ) to obtain a lower bound

for b.

Recall that the (IC�1 ) is given by

u � ud,

which in equilibria with u = 0 becomes,

(31) ud = (1� �)
�
w � c1 +

1

2
pb

�
+ �

�
1

2
p�sus +

�
�� 1

2
p

�
�fuf

�
� 0:
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Furthermore, since u = 0, we can write

(32) us =
(1� �) (w � c1 + pb)

1� �(p�s + � (1� �) �f )

and

(33) uf = (1� �)
�
w � c1 +

p

2� � b
�
+

p

2� � ��sus:

(As expected, us and uf increase with �s and �f , meaning that they decrease with the

replacement probabilities �s and �f .) Finally, from from (PK�
A) and u = 0, we obtain that

(34) w = c2 � �pb.

Using these last three equations to replace us, uf and w in the expression of ud in (31),

replacing p with ��, and simplifying, we obtain that (31) (and, therefore, (IC�1 )) is equivalent

to:

b � bL(�; �f ; �s) :=

(c2 � c1) (������ �2�2�f (1� �)
�
2�f � ���

�
+ 2)

2�p� ��+ ���
�
�p��� ���f

�
� �2�2�f (1� �)

�
2�p�f � ���f � ��p��

� ;
where �� := �f � �s. From this condition and (30), it follows that a contract with e = 2 in

every period can exist only if:

(35) bL(�; �f ; �s) � bH(�; �f ; �s):

Optimal contract without replacement of the performance metric. We now

characterize the optimal (stationary) contract without replacement of the performance met-

ric (i.e., with �f = �s = 1).

Lemma 8. If the principal never replaces the metric, an equilibrium with e = 2 exists if

and only if

bL(�; �f = 1; �s = 1) � bH(�; �f = 1; �s = 1)

or, equivalently,

(36)
2
�
1� �2�2 (1� �)

�
(c2 � c1)�

1� �2�2 (1� �)
�
(2�p� ��)� �2�2�

� �

1� � (y � c2):
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Proof. The necessity of (36) follows directly from the proceeding analysis. Recall that by

Assumption 1 (iii) it is never optimal for the principal to ask the agent to perform only

one task. Thus, if the above condition is satis�ed, in the optimal contract the agent exerts

e¤ort in both tasks in every period and the measure is never replaced. In this case, the

�rst-best outcome is achieved. However, if the condition is not satis�ed, it is optimal for

the principal and agent to take their outside options.

Let ��N denote the lowest value of � that satis�es (36).

To show the su¢ ciency of (36), we present an equilibrium when this condition is satis�ed.

We begin by showing that when � = ��N , the following contract sustains e = 2 in every

period:

b =
��N

1� ��N
(y � c2)

and

w = c2 � �pb.

Under this contract, u = 0, and since b > 0, (DE�A) is satis�ed. Now observe that

b = bH(�
�
N ; �f = 1; �s = 1), which implies that (DE�P ) is also satis�ed (as it holds with

equality). Since (36) holds with equality when � = ��N , then bL(�
�
N ; �f = 1; �s = 1) =

bH(�
�
N ; �f = 1; �s = 1), which means that b = bL(�

�
N ; �f = 1; �s = 1). Thus, (IC�1 ) is

also satis�ed. In fact it holds with equality, and we have ud = 0. Hence, to prove that

this contract constitutes an equilibrium, we only need to show that the following holds: (i)

under the proposed contract, (IC0) is satis�ed; and (ii) the expressions used for us and uf

are consistent with the said contract.

Recall that we have assumed that following a deviation which results in a success, the

agent shirks forever until the metric is replaced. We also assumed that following a deviation

that results in a failure, the agent shirks again. Such behavior by the agent is optimal if

and only if us � u and uf � u. Hence, we need to show that in this equilibrium us � 0 and

uf � 0.

We begin by showing that (IC0) is satis�ed. Since u = 0, it su¢ ces to show that w � 0.

That is, we need to show that

c2 � �p
��N

1� ��N
(y � c2) � 0;
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or, equivalently,
��N

1� ��N
(y � c2) �

c2
�p
.

But this condition is satis�ed for any � that satis�es (36). To see this, note that (36) can

be written as

�

1� � (y � c2) �
c2 � c1

�p� 1
2���

1
2

�2�2�
1��2�2(1��)

>
c2 � c1
�p� 1

2��
>
c2
�p
;

where the last inequality follows from �p < 1 and c1 < 1
2pc2 (Assumption 1(ii)). The second

inequality holds because the denominator is always positive. To see this, note that since

�p � p = ��, we can write

�p� 1
2

�
��+

�2�2�

1� �2�2 (1� �)

�
� ��� 1

2

�
��+

�2�2�

1� �2�2 (1� �)

�
=

1

2
��
1� �2�2 (1� �)� ���
1� �2�2 (1� �)

> 0,

where the last inequality follows from the fact that �2�2 (1� �) + ��� < 1 (observe that

�2�2 (1� �) + ��� is a weighted average of �� and �2�2, both of which are smaller than 1.)

Next, we show that us � 0 and uf � 0. We show each one of these inequalities separately

in the following two steps.

Step 1. We �rst show that us � 0. We do this by contradiction. Suppose instead that

us < 0. When �f = �s = 1, we have

(37) us =
1� �
1� �� (w � c1 + pb) .

Thus,

(38) w � c1 + pb < 0:

Since b > 0 and p=(2� �) < p (recall that by assumption � < 1), then

w � c1 +
p

2� � b < 0.

Given this inequality and us < 0, we obtain that

uf = (1� �)
�
w � c1 +

p

2� � b
�
+

p

2� � �us < 0.



32 LI, MUKHERJEE, VASCONCELOS

Now, observe that (38) also implies that

w � c1 +
1

2
pb < 0:

Given this, us < 0 and uf < 0, we obtain that

ud = (1� �)
�
w � c1 +

1

2
pb

�
+
1

2
p�us +

�
�� p

2

�
�uf < 0.

But this is a contradiction, since ud = 0 in the equilibria that we are considering.

Step 2: We now show that uf � 0. Directly from the expressions for uf and ud (see for

example the previous step), we obtain that

uf � ud =
�

p

2� � �
1

2
p

�
((1� �) b+ �us)�

�
�� p

2

�
�uf :

Since ud = 0, us � 0 and b � 0, this equation implies that�
1 +

�
�� p

2

��
uf =

�
p

2� � �
1

2
p

�
((1� �) b+ �us) � 0;

which implies that uf � 0 since
�
1 +

�
�� p

2

��
> 0. This completes the proof that there

exists a contract with e = 2 in every period when � = ��N .

It remains to show that such a contract exists even when (36) is slack, or, equivalently,

when � > ��N . Consider the following contract. Let

b = bL(�; �f = 1; �s = 1) =
2
�
1� �2�2 (1� �)

�
(c2 � c1)�

1� �2�2 (1� �)
�
(2�p� ��)� �2�2�

,

and

w = c2 � �pb.

In this contract u = ud = 0. Thus, (IC�1 ) is automatically satis�ed. When (36) is slack,

b = bL(�; �f = 1; �s = 1) < bH(�; �f = 1; �s = 1), which means that (DE�P ) is satis�ed.

Furthermore, observe that bL(�; �f = 1; �s = 1) increases with �. So, for � > ��N , b >

bL(�
�
N ; �f = 1; �s = 1), which implies that

w < c2 � �pbL(��N ; �f = 1; �s = 1) = c2 � �p
��N

1� ��N
(y � c2) � 0:

(The last inequality follows from the derivation above.) Hence, (IC�0 ) is satis�ed. Moreover,

b > 0, and since u = 0, (DE�A) is satis�ed. Finally, observe that in this case we again have
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us � 0 and uf � 0 as the proof given above is valid for any contract in which u = ud = 0

and b > 0.

Replacement of the performance metric and contracts with e = 2 in every

period. In light of the above lemma, one may ask the following question: if � < ��N , can

the principal still induce e = 2 in every period by using a replacement policy? We show that

such a contract exists provided that the cost of replacement  is su¢ ciently small. In other

words, a key insight of our baseline model� the replacement of the performance metric can

be used to sharpen incentives� continues to hold even when the performance measure is

noisy and may fail to re�ect the agent�s e¤ort when he exerts e¤ort on both task.

The analysis proceeds as follows. Di¤erentiating bL(�; �f ; �s) with respect to �f and

evaluating the derivative at �f = �s = 1, we obtain that:

@

@�f
bL(�; �f = 1; �s = 1)(39)

= ��2�2(c2 � c1)
1� ��+ �2�2 (1� �) (3� � + �� (1� �))
[
�
1� �2�2 (1� �)

�
(2�p� ��)� �2�2�]2

> 0:

Similarly, di¤erentiating bL(�; �f ; �s) with respect to �s and evaluating the derivative at

�f = �s = 1, we obtain that:

@

@�s
bL(�; �f = 1; �s = 1)(40)

= ��2�2(c2 � c1)
(1 + ��)

�
1� �2�2 (1� �)2

�
[
�
1� �2�2 (1� �)

�
(2�p� ��)� �2�2�]2

> 0:

Since these inequalities hold for any �, they also hold for � = ��N . Moreover, observe that

the above derivatives, when evaluated at ��N , do not depend on the cost of replacement  :

they do not depend directly on  , and ��N is independent of  (as it is the threshold value

of � obtained when the metric is never replaced.)

Now, di¤erentiating bH(�; �f ; �s) with respect to �f and with respect to �s, we obtain

that:

(41)
@

@�f
bH(�; �f ; �s) =

�

1� � (1� �p) 

and

(42)
@

@�s
bH(�; �f ; �s) =

�

1� � �p +  .
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While these derivatives are positive, they go to zero as  goes to zero. Hence, for  small

enough,

@

@�f
bL(�

�
N ; �f = 1; �s = 1) >

@

@�f
bH(�

�
N ; �f = 1; �s = 1)

and

@

@�s
bL(�

�
N ; �f = 1; �s = 1) >

@

@�s
bH(�

�
N ; �f = 1; �s = 1).

This implies that if we start at the point � = ��N ; �f = 1; and �s = 1, decreasing �f or

�s (i.e., replacing the metric) will create some slackness in (35). (Recall that bL(�
�
N ; �f =

1; �s = 1) = bH(�
�
N ; �f = 1; �s = 1)). Since for some �f < 1 (or �s < 1), bL(��N ; �f ; �s) <

bH(�
�
N ; �f ; �s), by continuity of bL(:) and bH(:) in �, we know that there exists a � < ��N

for which bL(�; �f ; �s) � bH(�; �f ; �s), i.e. (35) is satis�ed.

Recall that (35) is a necessary condition for the existence of a contract with e = 2 in

every period. We conclude this part of the analysis by showing that such a contract indeed

exists for some � < ��N . We consider here the case where �f < 1 and �s = 1. The analysis

for the other cases (i.e., the case where �f = 1 and �s < 1, and the case where �f < 1 and

�s < 1) are analogous. Let �̂f < 1 and �̂ < ��N be such that (35) is satis�ed (from the above

analysis, we know that such �̂f and �̂ exist). Consider the following contract:

b = bL(�̂; �̂f ; �s = 1) := b̂

and

w = c2 � �pb̂ := ŵ:

In this contract, u = ud = 0. Hence, (IC�1 ) is satis�ed. Constraint (DE
�
P ) is satis�ed

since �̂f and �̂ are such that (35) is satis�ed (which means that b = bL(�̂; �̂f ; �s = 1) �

bH(�̂; �̂f ; �s = 1)). Also, (DE
�
P -R) is satis�ed for  small enough. Next, we show that (IC

�
0 )

and (DE�A) are also satis�ed as long as �̂f is su¢ ciently close to 1 and �̂ is su¢ ciently close

to ��N . In this case, b̂ is su¢ ciently close to bL(�
�
N ; �f = 1; �s = 1), the value of b in the

contract used above to show that an equilibrium exists when � = ��N ; �f = 1; and �s = 1.

But this means that ŵ is su¢ ciently close to w in that contract, which satis�es satis�es

w < 0. Hence, for �̂f su¢ ciently close to 1 and �̂ su¢ ciently close to �
�
N , ŵ � 0 and (IC�0 )

is satis�ed. Moreover, b̂ > 0. Since u = 0 and b̂ > 0, (DE�A) is satis�ed. Finally, since

u = ud = 0 and b̂ > 0, we obtain that us � 0 and uf � 0.
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Optimal Replacement Policy. We now elaborate on the optimal replacement policy.

We continue to restrict our attention, without loss of generality, to equilibria in which the

agent�s continuation payo¤ u = 0. Recall that in this class of equilibria, the principal

appropriates the entire surplus generated by the relationship and, therefore, her payo¤ is

given as:

� = (y � c2)� �� .

The problem of �nding the optimal replacement policy can be formulated as follows:

max
�f ;�s2[0;1]

� s:t (35), (IC�0 ) (i.e., c2 � �pbH(�; �f ; �s) � 0), and (DE�P -R) :

For � � ��N the solution to this problem is �f = �s = 1. As shown above, when � � ��N ,

there exists an equilibrium with e = 2 in all periods even if the principal never replaces the

performance measure, and the �rst-best outcome is achieved.

Consider now the case where � < ��N . Clearly, for � su¢ ciently low, no contract satisfying

the constraints of the problem exists. In this case, it is optimal for the parties to take their

outside option in every period. However, as seen above, for some values of � < ��N , a contract

with e = 2 in every period is sustainable if the principal replaces the performance measure.

Observe that any solution to the above problem is indeed associated with an equilibrium

with e = 2 in every period. To see this, note that in any solution to the problem, the

constraint (35) is binding. (Suppose it is not, then it would be possible to increase �f (or

�s) by a small amount so that (35) continued to be satis�ed. But doing so would relax

the other two constraints and increase the principal�s payo¤.) Now, since (35) is binding,

bL(�; �f ; �s) = bH(�; �f ; �s), and we can set b = bL(�; �f ; �s) = bH(�; �f ; �s). This implies

that (IC�1 ) and (DE
�
P ) are automatically satis�ed. Moreover, u = ud = 0, which implies

that us; uf � 0. Finally, since a solution to the problem must also satisfy (IC�0 ) and (DE
�
P -

R), then all the conditions for a contract with e = 2 in every period to be sustained are

satis�ed.

A complete characterization of the above problem is analytically intractable. As such, in

what follows, we focus on one particular aspect of the optimal replacement policy. One may

presume that it is always better to replace the performance measure after a failure than

after a success (as a failure is more likely to occur if the agent deviates). However, this not
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necessarily the case, and the optimal policy may involve replacing the performance measure

only following a success. That is, the optimal replacement policy may involve �s < 1 and

�f = 1.

To see why such a replacement policy may be optimal, as a �rst step, we compare how

�f and �s a¤ect constraint (35). Using (39)-(40), we obtained that

@

@�f
bL(�; �f = 1; �s = 1)�

@

@�s
bL(�; �f = 1; �s = 1) � 0;

i.e.,

(43) 2�� (�� (1� �) (2� � + �� (1� �))� 1) � 0:

Now, when �� is relatively low and � is relatively high, this inequality will not be satis�ed;

in fact, the opposite may be true.

The reason is that replacing the measure following a success (i.e., reducing �s) may be

more e¤ective in dissuading the agent from shirking (i.e., relaxing (IC�1 )) than replacing the

measure following a failure (i.e., reducing �f ). From direct inspection of (IC�1 ) (as given in

(31)), we can see that the probability of a success following a deviation, 12p, is lower than

the probability of a failure,
�
�� p

2

�
. This indeed suggests that replacing the measure after a

failure is more e¤ective than replacing it after a success. But there are other countervailing

e¤ects. For example, in general, us > uf , and it is not clear that 12p�us <
�
�� p

2

�
�uf .

Similarly, from (41) and (42), it is easy to see that when �p � 1=2, @bH(�; �f ; �s)=@�s >

@bH(�; �f ; �s)=@�f . But for �p > 1=2, this is not necessarily the case. Moreover, even when

@bH(�; �f ; �s)=@�s > @bH(�; �f ; �s)=@�f , the di¤erence between the two depends on the

value of  ; it becomes small for low values of  .

As the above discussion highlights, it is not obvious how �s and �f may be ordered

in an optimal contract: a priori we cannot say if it is always more pro�table to replace

the measure after a failure than to replace after a success. Indeed, as the following two

numerical examples show, the ordering of �s and �f in the optimal contract would depend

on the underlying parameters of the model. In our �rst example, the optimal policy consists

of �s < 1 and �f = 1; in the second, the optimal policy involves �s = 1 and �f < 1.

Example 1. Consider the following parametrization of the model: y = 10, c1 = 0:5, c2 = 6,

� = 0:5, � = 0:4, �p = 0:45, and  = 0:2. For this parameter values, using (36), we obtain
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that ��N = 0:81. Using (39)-(42), we obtain:

@

@�f
bL(�

�
N ; �f = 1; �s = 1) = 0:43 < 0:46 =

@

@�f
bH(�

�
N ; �f = 1; �s = 1);

@

@�s
bL(�

�
N ; �f = 1; �s = 1) = 0:65 > 0:57 =

@

@�s
bH(�

�
N ; �f = 1; �s):

So, for � < ��N but su¢ ciently close to ��N , the most cost e¤ective way for the principal

to have (35) satis�ed is to keep �f = 1 and to lower �s, i.e. to choose a replacement policy

where �f = 1 and �s < 1. (Observe that because the left-hand side of (35) is not linear

in �f , it is possible that for su¢ ciently low values of �f , the constraint can be satis�ed

even if �s = 1. However, because replacement is costly, such a contract would involve too

much replacement and therefore cannot be optimal.) Finally, observe that the other two

constraints in the optimization problem, (IC�0), and (DE
�
P -R), are satis�ed. Constraint

(IC�0 ), which is satis�ed with strict inequality at �
�
N , is satis�ed as long as � is su¢ ciently

close to ��N . The same is true for (DE
�
P -R). Recall that this constraint is given by

� (1� �) + �� � 0:

Evaluating it at ��N and � = y � c2 = 4 (pro�t with no replacement), we obtain

� (1� �) + �� = 2:4914 > 0:

So, with replacement, the constraint will be satis�ed for any � su¢ ciently close to ��N .

(Observe that for such �, �s is very close to 1, meaning the pro�t with replacement is very

close to that without replacement.)

Example 2. We now give an example where the optimal policy involves �f < 1 and �s = 1.

Consider the following parametrization of the model: y = 10, c1 = 0:5, c2 = 6, � = 0:9,

� = 0:2, �p = 0:5, and  = 0:4. For these parameter values, ��N = 0:78, and we have

@

@�f
bL(�

�
N ; �f = 1; �s = 1) = 1:01 > 0:71 =

@

@�f
bH(�

�
N ; �f = 1; �s = 1);

@

@�s
bL(�

�
N ; �f = 1; �s = 1) = 0:73 < 1:11 =

@

@�s
bH(�

�
N ; �f = 1; �s = 1):

In this case, for � < ��N but su¢ ciently close to ��N , the most cost e¤ective way for the

principal to have (35) satis�ed is to lower �f and to keep �s = 1, i.e. to choose a replacement

policy where �f < 1 and �s = 1. As in the previous case, (IC
�
0 ) and (DE

�
P -R) will be satis�ed

as long as � is su¢ ciently close to ��N .


