
A binary search algorithm for the general coupled task scheduling

problem

Mostafa Khatami∗ Amir Salehipour†

October 13, 2020

Abstract

The coupled task scheduling problem aims to schedule a set of jobs, each with at least two tasks

and there is an exact delay period between two consecutive tasks, on a set of machines to optimize a

performance criterion. We study the problem of scheduling a set of coupled jobs to be processed on

a single machine with the objective of minimizing the makespan, which is known to be strongly NP-

hard. We obtain competitive lower bounds for the problem through different procedures, including

solving 0-1 knapsack problems. We obtain an upper bound by applying a heuristic algorithm. We

then propose a binary search heuristic algorithm for the coupled task scheduling problem. We perform

extensive computational experiments and show that the proposed method is able to obtain quality

solutions. The results also indicate that the proposed solution method outperforms the standard

exact solver Gurobi.

Key words: coupled task scheduling; single machine; minimizing makespan; binary search; heuristic;

bounds

1 Introduction

We study the problem of minimizing the makespan for scheduling a set J = {1, . . . , n} of “coupled task”

jobs on a single machine. A coupled task job consists of two separated tasks where there is an “exact”

delay period between them. The second (completion) task of job j ∈ J must be processed after the

completion of its first (initial) task plus an exact duration of the delay. A job j is shown by a triple

(aj , Lj , bj), where parameters aj , Lj and bj take positive integer values and denote the processing time of

the initial task, the duration of the delay and the processing time of the completion task (see Figure 1).

Using the three-field notation of Graham et al. (1979), minimizing the makespan for the single machine

coupled task scheduling problem is commonly denoted as 1|(aj , Lj , bj)|Cmax (Khatami et al., 2020).

aj bj
Lj

Figure 1: A coupled-task job.

∗School of Mathematical and Physical Sciences, University of Technology Sydney, Australia. Email:

mostafa.khatami@student.uts.edu.au
†Corresponding author. School of Mathematical and Physical Sciences, University of Technology Sydney, Australia.

Email: amir.salehipour@gmail.com

1

The coupled task scheduling problem has various real-world applications. Shapiro (1980) introduced

the coupled task scheduling problem to model a pulsed radar system, where a pulse of electromagnetic

energy is utilized to track an object. The transmission of the pulse and the reception of its reflection

after a period of time help to measure the size and/or the shape of the tracking object. Therefore, the

initial task includes transmission of the pulse and the completion task deals with the reception of its

reflection. The system aims at detecting as many objects as possible, which is equivalent to minimizing

the maximum completion time of all coupled task jobs. Simonin (2009); Simonin et al. (2011a) and

Simonin et al. (2011b) utilized the coupled task scheduling problem to process the environmental data

in submarine torpedoes. The sensors on a torpedo transmit pulses to the water and receive their echoes

after a period of time. The problem has similar characteristics to that of the pulsed radar system. Ageev

and Baburin (2007) modeled a chemistry manufacturing process as a coupled task scheduling problem.

Here, it is typical to have an exact technological delay between the consecutive tasks of jobs. Brauner et

al. (2009) and Lehoux-Lebacque et al. (2015) utilized the coupled task problem to model a single-machine

no-wait scheduling problem in a robotic cell system.

The coupled task scheduling problem has also been utilized to model certain problems in the healthcare

domain. In an outpatient chemotherapy clinic, Condotta and Shakhlevich (2014) showed that the problem

of scheduling patients’ appointments can be formulated as a coupled task scheduling problem. Consider

the problem of scheduling patients in a pathology laboratory, where the performance criterion is to

minimize the waiting time of the patients (Marinagi et al., 2000; Azadeh et al., 2014). Certain blood

tests, e.g., the fasting blood sugar test, require multiple tests and there is an exact time interval between

a pair of tests. Although the next test cannot be administered until an exact delay is elapsed, the tests

associated with other patients can be administered within such a delay period. In the simplest form, a

pair of tests form a coupled task job. As another application, consider scheduling the appointment of

patients in a nuclear medicine clinic. This problem is more complex than its counterpart, e.g., in a typical

medical imaging clinic, due to its very strict multi-stage sequential procedures (Pérez et al., 2011; Pérez

et al., 2013). Here, a single procedure requires multiple stages and each stage needs to be successfully

completed within a strict time window. The cost of required resources and the short half-life of the

radio-pharmaceuticals needed for the procedure justify minimizing a performance criterion related to the

patients flow time, which is equal to maximizing the number of treated patients.

Shapiro (1980) showed that problem 1|(aj , Lj , bj)|Cmax is NP-hard, due to its equivalence to a class of

NP-hard two-machine job shop scheduling problems. By reductions from the 3-Partition problem, Orman

and Potts (1997) and Sherali and Smith (2005) proved that minimizing the makespan for the single coupled

task scheduling problem, i.e., 1|(aj , Lj , bj)|Cmax is strongly NP-hard. The problem remains strongly NP-

hard even if the sequence for the initial (or completion) tasks is given (Condotta and Shakhlevich, 2012).

Several special cases were also shown to be strongly NP-hard (Orman and Potts, 1997). We refer the

interested reader to Khatami et al. (2020) for a comprehensive review of the coupled task scheduling

problem, its applications and the mathematical models.

Shapiro (1980) proposed two heuristics of “interleaving” and “nesting” for problem 1|(aj , Lj , bj)|Cmax.

The interleaving heuristic consists of sequencing the jobs so that the completion tasks arrive for processing

in the same order as the initial tasks (Figure 2a), while the completion tasks arrive in the reverse

order of the initial tasks in the nesting heuristic (Figure 2b). Li and Zhao (2007) and Condotta and

Shakhlevich (2012) proposed tabu search algorithms for the problem. To the best of our knowledge, the

only exact method for the coupled task scheduling problem is the branch-and-bound algorithm of Békési

et al. (2014) that is able to solve instances with up to 20 jobs to optimality in reasonable amounts of

2

time. The study generated four types of instances: The first type includes instances with up to 20 jobs

and types 2, 3 and 4 consist of instances between 7 and 12 jobs.

(a): aj aj′ bj bj′

(b): aj aj′ bj′ bj

Figure 2: Interleaving jobs j and j′ (a) and nesting jobs j and j′ (b).

The emerging interest in the coupled task scheduling problem in the recent years, together with the

new applications of the problem indicate an increasing demand for effective and efficient solution methods.

The previous tabu search algorithms were not compared with other methods. Also, they were tested on

instances that are not publicly available, making therefore difficult to conduct a comparison study and

evaluate their performance.

We propose an effective and efficient solution method for problem 1|(aj , Lj , bj)|Cmax and assess its

performance against a standard exact solver. The contributions of our study include (1) improving the

best available lower bound for the problem by proposing a 0-1 knapsack formulation, (2) applying a fast

local search to calculate an upper bound, (3) developing a binary search heuristic algorithm that utilizes

lower and upper bounds to deliver quality solutions, (4) testing the performance of the binary search

heuristic under different search initialization strategies, and (5) solving a set of 240 benchmark instances

that are publicly available and showing that the proposed binary search heuristic is able to produce better

solutions than the standard solver Gurobi.

The remainder of this paper is organized as follows. In Section 2, we formally state the problem and

model it as a mixed-integer program. In Section 3, we discuss the proposed solution method for the

problem. We also discuss the components of the method including the lower and upper bounds. We

detail the results of the computational experiments in Section 4. The paper ends with a few conclusions

and future research directions in Section 5.

2 Problem statement and formulation

We shall formally state the problem of this study, i.e., 1|(aj , Lj , bj)|Cmax as follows. A set J = {1, . . . , n}
of coupled task jobs are to be processed on a single machine and there is an exact delay period between

the two tasks of each job. A job j ∈ J is represented by (aj , Lj , bj), where aj and bj denote the processing

time of the initial and the completion tasks of job j and Lj is the delay period between the tasks of job j.

We let H = {1, . . . , 2n} denote the set of tasks, where H2j−1 and H2j represent the initial and completion

tasks of job j. All processing times and delay durations are integral. Preemption of tasks is not allowed,

i.e., once the operation of a task is started it must be completed with no interruption. The tasks of other

jobs, however, can be processed during the delay period. The objective is to minimize the length of the

schedule, i.e., the makespan denoted as Cmax.

There are a number of mathematical programs available in the literature for the coupled task schedul-

ing problem. Khatami et al. (2020) reviewed these models and conducted a comprehensive computational

experiment and showed that the model proposed by Békési et al. (2014) is among the top performing

ones. Hence, we utilize that formulation for the problem of this study. The formulation utilizes linear

ordering variables and the sequence is therefore built by ordering the tasks. For any pair of tasks h, h′,

3

a binary variable xhh′ is defined, which takes the value of 1 if task h′ starts after task h in the sequence,

and 0 otherwise. The problem P1 below presents this formulation.

Problem P1

z = minCmax (1)

subject to

Cmax ≥ s2j + bj , j ∈ J, (2)

x2j−1,2j = 1, j ∈ J, (3)

xhh′ + xh′h = 1, (h, h′) ∈ H2, h < h′, (4)

xhh′ + xh′h′′ + xh′′h ≤ 2, (h, h′, h′′) ∈ H3, h 6= h′, h 6= h′′, h′ 6= h′′, (5)

s2j = s2j−1 + aj + Lj , j ∈ J, (6)

s2j ≤ UB − bj , j ∈ J, (7)

sh′ ≥ sh + ph − UB(1− xhh′), (h, h′) ∈ H2, h 6= h′, (8)

sh ≥ 0, h ∈ H, (9)

xhh′ ∈ {0, 1}, (h, h′) ∈ H2, h 6= h′, (10)

where s2j is the start time of the completion task of job j and UB is an upper bound for Cmax. Constraints

(3) indicate that the completion task of each job should be scheduled after its initial task. Constraints

(4) represent the relative order of any pair of tasks. The so-called “3-dicycle inequalities” are presented

in constraints (5) for any triple distinct tasks. Constraints (6) define the relation between the start time

of the tasks of a job, where constraints (7) set an upper bound on the start time of the completion tasks.

Constraints (8) relate the start time variables to the linear ordering variables, where ph is the processing

time of task h. Specifically, the constraints ensure that if task h′ is scheduled after task h, its start time

must be at least as large as the completion time of task h.

The coupled task scheduling problem of this study, i.e., 1|(aj , Lj , bj)|Cmax is strongly NP-hard.

Khatami et al. (2020) showed that solving the available mathematical programs for the problem, in-

cluding problem P1, by standard exact solvers leads to efficient solutions (i.e., in a reasonable amount of

time) only for small instances. We therefore propose a binary search heuristic algorithm to solve larger

instances. Next, we detail the proposed algorithm.

4

3 A binary search heuristic

In this section we present a binary search heuristic algorithm for problem 1|(aj , Lj , bj)|Cmax. The general

idea of the proposed heuristic is as follows. First, a lower bound (LB) and an upper bound (UB) on the

value of the optimal makespan are calculated. A point in the interval [LB,UB] is selected as the binary

bound bb. Then, the heuristic investigates whether it is possible (feasible) to schedule all jobs such that

the makespan is bounded from above by the binary bound, i.e., Cmax ≤ bb. For this reason, the heuristic

utilizes an exact solver to solve a feasibility problem associated with problem P1. A feasible solution

indicates that bb is a valid makespan, implying that UB can be tightened to bb, i.e., UB = bb. If there

is no feasible solution, we update the lower bound to bb, i.e., LB = bb. Therefore, at each iteration

either LB or UB is tightened. If the length of interval between the lower and upper bounds is 1, i.e.,

UB−LB = 1, the upper bound is equal to the optimal makespan because we deal with integer values for

all problem input data. We note that because problem 1|(aj , Lj , bj)|Cmax is strongly NP-hard it is less

likely that we observe a quick convergence of the proposed binary search heuristic in a reasonably short

time. Therefore, we set the stopping criterion of the heuristic as either UB − LB = 1 or when a time

limit is reached, whichever occurs the first. Under the latter condition the most recent upper bound is a

valid makespan for the problem. Algorithm 1 summarizes the proposed binary search heuristic.

Algorithm 1: The binary search heuristic for the coupled task scheduling problem.

1 Input: lb (a lower bound), ub (an upper bound), time limit.

2 Output: A schedule.

3 UB := ub;

4 LB := lb;

5 elapsed time := 0;

6 while UB − LB > 1 and elpased time < time limit do

7 Calculate bb, bb ∈ [LB,UB];

8 Set Cmax ≤ bb;

9 if a feasible solution exists then

10 UB := bb;

11 else

12 LB := bb;

13 end

14 end

15 return UB;

We note that the binary search algorithm is also known as dichotomous search in the literature. Di-

chotomous search has been successfully applied to various optimization problems, including the traveling

salesman problem (França et al., 1995), the project scheduling problem (Carlier and Néron, 2003) and

the job-shop scheduling problem (Grimes and Hebrard, 2015). Next, we detail the main components of

Algorithm 1 including the calculation of lower and upper bounds and solving the feasibility problem.

3.1 Lower bound

In the coupled task scheduling problem, a trivial LB on Cmax can be obtained by scheduling all tasks

without any idle time between them (Li and Zhao, 2007). We denote this lower bound by lb0, where

lb0 =
∑

j∈J (aj + bj). However, exclusion of parameter Lj , j ∈ J from lb0 results in a loose lower bound.

5

Therefore, we propose two remedies for this. We note that not always the values of Lj can be included

in lb0, for example, when aj = bj = Lj = p, p ∈ Z+.

As the first remedy, we can improve lb0 by checking whether there are some jobs with delays smaller

than the minimum processing times, i.e., if Lj < pmin, j ∈ J , where pmin = minj∈J{aj , bj}. These jobs

are known as “singleton” in the literature (Li and Zhao, 2007). For the singleton jobs the delay period

cannot be utilized to schedule any other task. Therefore, Lj associated with the singleton jobs can be

included in the lower bound. We let lb1 denote this. Equation (11) shows the calculation of lb1.

lb1 =
∑
j∈J

(aj + bj) +
∑
j∈J

Lj<pmin

Lj . (11)

It is clear that lb1 ≥ lb0 for any instance of the problem.

As the second remedy, we may improve lb0 if we are able to locate those jobs that their delay periods

cannot be completely utilized to schedule other tasks. Assume that we aim to concatenate as much tasks

as possible in the delay period of job j, which has a length of Lj . This can be modeled as a 0-1 knapsack

problem. In other words, the initial and completion tasks of all jobs other than job j are eligible to be

inserted into this delay period. We define ph the processing time of task h. We note that if task h is an

initial task for some job j, then we have ph = aj . Similarly, if task h is a completion task for some job

j, then we have ph = bj . We also define a binary decision variable yh that takes the value of 1 if task h

is selected. Such a concatenation problem can be formulated as problem K.

Problem K

z = max
∑
h∈H

h/∈{2j,2j−1}

phyh (12)

subject to

∑
h∈H

h/∈{2j,2j−1}

phyh ≤ Lj , (13)

y2j′−1 + y2j′ ≤ 1, ∀j′ ∈ J \ {j}, if aj′ + Lj′ + bj′ > Lj , (14)

y2j′−1 − y2j′ ≥ 0, ∀j′ ∈ J \ {j}, if Lj′ < aj , (15)

y2j′ − y2j′−1 ≥ 0, ∀j′ ∈ J \ {j}, if Lj′ < bj , (16)

where, the objective function (12) maximizes the summation of processing time of the selected tasks, and

it is forced to be no larger than the delay period of job j (constraint (13)). Constraints (14) imply that

only either of tasks of job j′ can be selected if the nesting of job j′ inside job j is not possible. Constraints

(15) (constraints (16)) ensure that if the delay period of job j′ is not as large as the initial (completion)

task of job j, the completion (initial) task of job j′ would only be selected if its initial (completion) task

is selected as well.

Solving problem K for job j results in whether Lj can be completely filled with some tasks. If not, it

means that there is an idle time Ij within Lj , which is equal to Lj− z∗K . This implies that in the optimal

6

schedule of problem P1 there will be an idle time (inside Lj) at least equal to Ij . If we solve problem

K for all jobs j ∈ J , i.e., solving n 0-1 knapsacks, and add the maximum idle time among all found

idle times, i.e., maxj∈J{Ij} to lb0, a tighter lower bound can be obtained. We let lb2 denote this lower

bound (see Equation (17)). The Knapsack problem is NP-hard in the ordinary sense. Nonetheless, the

problem can be efficiently solved even for large inputs by the pseudo-polynomial time dynamic program

of Martello et al. (1999). That algorithm is able to solve instances with up to 10,000 items in less than

a second.

lb2 =
∑
j∈J

(aj + bj) + max
j∈J
{Ij}. (17)

It is clear that lb2 is a tighter lower bound than lb0 since lb2 ≥ lb0 for any instance of the problem. It

should be noted that we cannot add the summation of the idle times (instead of their maximum value)

to lb0 because the idle times may be overlapped. Given lb1 ≥ lb0 and lb2 ≥ lb0, Equation (18) follows

directly:

Cmax ≥ max{lb1, lb2}. (18)

Next, we propose an upper bound for the problem.

3.2 Upper bound

A trivial upper bound on Cmax can be calculated as
∑

j∈J (aj + Lj + bj). That is, to schedule the jobs

one by one without any interleaving or nesting. This is called “appending” in the literature. This bound,

however, is expected to be of a large value, and might not therefore be tight because interleaving, nesting

and pairwise interchange operations are excluded from the calculation of the bound. We may tighten this

bound by applying a local search algorithm. The proposed local search algorithm, which is summarized

in Algorithm 2, starts with a given sequence π0 of jobs, and then iteratively improves it by performing

adjacent pairwise interchanges. We obtain π0 = (1, . . . , n), i.e., we add the jobs index to π0 in increasing

order of indices. We implement the first improvement criterion, i.e., once a sequence with an improved

(feasible) schedule is obtained we accept it and we update the sequence.

For a sequence π, the algorithm generates a feasible schedule with nesting, interleaving and appending

operations as follow. For a pair of consecutive (adjacent) jobs j, j′ ∈ π, where j comes before j′, if nesting

of job j′ inside job j is possible, i.e., aj′ +Lj′ + bj′ ≤ Lj , then job j′ is inserted inside job j. However, if

nesting is not possible but interleaving, i.e., Lj ≥ aj′ ∧Lj′ ≥ bj , then the interleaving is performed where

job j is the first job in the pair. If neither nesting nor interleaving of a pair of jobs is possible, job j′

is adjacently appended after job j. The algorithm performs this procedure for all consecutive (adjacent)

pairs of jobs until all jobs are scheduled. We note that the worst-case time complexity of the local search

algorithm is O(n2).

7

Algorithm 2: The local search algorithm.

1 Input: π0 = (1, . . . , n), Cπ0 , j = 1.

2 Output: A sequence π with makespan Cπ.

3 π := π0;

4 Cπ := Cπ0 ;

5 while j ≤ n− 1 do

6 improve := false;

7 k := j + 1;

8 for k ≤ n do

9 π′ ← swap(j, k);

10 Sπ′ ← Generate a feasible schedule for π′;

11 Cπ′ ← makespan(Sπ′);

12 if Cπ′ < Cπ then

13 π := π′;

14 Cπ := Cπ′ ;

15 improve := true;

16 end

17 end

18 if improve is false then

19 j := j + 1;

20 end

21 end

22 return Cπ;

3.3 The feasibility problem

Given lower and upper bounds on the value of the makespan, the next step is to systematically tighten

the gap between the bounds until the stopping criterion is met, i.e., either no further tightening is possible

or the computation time limit is reached.

We tighten the gap between the lower and upper bounds by iteratively solving a feasibility problem

associated with problem P1. We generate such a feasibility problem by changing the objective function of

problem P1 into a constant and bounding Cmax from above by bb. We let P2 represent the new problem.

Problem P2 is shown in the following.

Problem P2

z = min ζ (19)

subject to

(2), (4) to (10),

Cmax ≤ bb, (20)

where ζ is a constant. We do not include constraints (3) in problem P2 because these constraints do not

impact the feasibility of the problem. Constraint (20) sets the binary bound as an upper bound on the

8

value of the makespan.

Solving problem P2 is essentially equivalent to identifying a feasible solution for problem P1. Also, if

problem P2 does not have a feasible solution, neither does problem P1. We may use standard optimization

solvers for solving problem P2. Even though problem P2 might be easier to solve than problem P1 because

at least no “optimization” phase is performed, it might be still challenging to find a feasible solution for

problem P2, implying that the process may be computationally expensive, particularly for large problem

instances, i.e., for problems with large number of jobs. We therefore propose two speed-up techniques to

decrease, to some extent, the computation burden of solving problem P2.

Speed-up 1. The first speed-up that we propose benefits from the “call-back” functionality of the

solver. A call-back provides additional information during the solve process of the solver. We can use

such additional information to stop the solver as soon as a feasible solution is found.

Speed-up 2. The second speed-up focuses on modifying the “solve focus” of the solver. Various solvers

have different name for this feature. For example, the solver Gurobi names the feature “MIPfocus”.

Changing the focus of the solver towards obtaining a feasible solution, rather than, e.g., an optimal

solution (which focuses on proving the optimality of the current solution), is an effective computation

burden reduction strategy.

Next, we evaluate the performance of the proposed binary search heuristic algorithm, i.e., Algorithm 1.

4 Computational experiment

We perform an extensive computational experiment to evaluate the performance of the proposed binary

search heuristic. We test the algorithm on the general benchmark instances of the coupled task scheduling

problem proposed in Khatami et al. (2020), denoted as “general set”. The benchmark consists of 240

instances in eight different sizes, where n ∈ {5, 10, 15, 20, 25, 40, 50, 100}. Per each value of n, 30 instances

were randomly generated and that in three categories of small (S), medium (M) and large (L). Each

category includes 10 instances. The processing time of tasks and the duration of delays are from the

discrete uniform distribution with parameters aj , bj ∼ U(1, 20), Lj ∼ U(10, 80) for the category S, aj , bj ∼
U(1, 50), Lj ∼ U(25, 200) for the category M and aj , bj ∼ U(1, 100), Lj ∼ U(50, 400) for the category L.

We utilize Gurobi version 8.0.0 (Gurobi Optimization, 2018), as the solver within the binary search

heuristic algorithm, to solve problem P2. We use the same solver Gurobi as the stand-alone solver to

solve the same instances by optimizing problem P1. Also, we utilize Gurobi to solve problem K (for

delivering LB). We implement problems P1, P2 and K, as well as all algorithms in the programming

language Python version 3.6. Unless otherwise stated we perform all computational experiments on a

standard PC with Intel R© CoreTM i5-7500 CPU clocked at 3.40GHz with 8GB of memory under Linux

Ubuntu 18.04 operating system, and we set the time limit to 3600 seconds for both the binary search

heuristic and the stand-alone Gurobi and we utilize four processors. We use the default value for the

remaining parameters of Gurobi.

Recall that the binary bound is in the ranges [LB,UB], i.e., bb ∈ [LB,UB]. We investigate two

strategies to choose bb: (1) bb = lb+ub
2 , i.e., it is equal to the midpoint of the interval, and (2) bb = lb+3ub

4 ,

i.e., it is equal to the three fourth of the interval. We solve the 240 instances with both strategies. We

let bb1/2 and bb3/4 denote these two strategies.

We use four criteria of “feas”, “best”, “opt” and “gap” (in %) to compare the proposed binary search

heuristic and Gurobi. The criteria feas, best and opt denote the number of feasible, best and optimal

9

solutions obtained by each method. The criterion gap reports the average gap of 10 instances. The gap

of an instance is calculated as z−z∗
z∗ × 100, where z is the objective function value obtained by the tested

method/strategy and z∗ is the best objective function value among the tested methods/strategies. We

note that the criterion gap is calculated over the instances for which a feasible solution is delivered. We

report the outcomes of the computational experiments in Tables 1 to 4, where a table represents one

evaluation criterion.

Table 1 summarizes the performance of the methods for the criterion feas. The table shows that the

binary search heuristic under both bb1/2 and bb3/4 strategies obtain feasible solution for all 240 instances,

whereas Gurobi is unable to find feasible solution for 43 instance, for which n = 40, 50, 100. In particular,

Gurobi cannot deliver feasible solution for any of the instances with 100 jobs. This shows that Gurobi is

not able to even generate acceptable solution for large instances. It is also clear that Gurobi’s performance

deteriorates for medium sized instances.

Table 1: The number of feasible solutions (criterion feas) obtained by the binary search and Gurobi.
n Job category bb1/2 bb3/4 Gurobi

5
S 10 10 10
M 10 10 10
L 10 10 10

10
S 10 10 10
M 10 10 10
L 10 10 10

15
S 10 10 10
M 10 10 10
L 10 10 10

20
S 10 10 10
M 10 10 10
L 10 10 10

25
S 10 10 10
M 10 10 10
L 10 10 10

40
S 10 10 9
M 10 10 10
L 10 10 10

50
S 10 10 4
M 10 10 6
L 10 10 8

100
S 10 10 0
M 10 10 0
L 10 10 0

Total 240 240 197

Table 2 shows that Gurobi is slightly superior to the binary search in obtaining the optimal solution

for the instances with a small number of jobs. We note that the binary search heuristic under both

strategies still obtains the optimal solution for all instances with 5 jobs but one. Both the binary search

heuristic and Gurobi find the optimal solution for all instances with 10 jobs. For the instances with 15

jobs, Gurobi finds the optimal solution for only two instances. Overall, Gurobi delivers optimal solution

for 62 instances, i.e., only for three more instances than the binary search heuristic.

10

Table 2: The number of optimal solutions (criterion opt) obtained by the binary search and Gurobi.
n Job category bb1/2 bb3/4 Gurobi

5
S 10 10 10
M 10 10 10
L 9 9 10

10
S 10 10 10
M 10 10 10
L 10 10 10

15
S 0 0 1
M 0 0 0
L 0 0 1

20
S 0 0 0
M 0 0 0
L 0 0 0

25
S 0 0 0
M 0 0 0
L 0 0 0

40
S 0 0 0
M 0 0 0
L 0 0 0

50
S 0 0 0
M 0 0 0
L 0 0 0

100
S 0 0 0
M 0 0 0
L 0 0 0

Total 59 59 62

For the criterion best, i.e., the best obtained solutions, which is reported in Table 3, in general, the

strategy bb3/4 outperforms the strategy bb1/2 and also Gurobi, in particular, for large instances. We note

that Gurobi is not comparable to the binary search heuristic when the number of jobs increases, more

precisely, when n = 25, 40, 50, 100. Similar outcomes is observed for the criterion gap, which is reported

in Table 4. Indeed, Gurobi performs well only for instances with small number of jobs. The Gurobi’s

solutions are of poor quality when n ≥ 25. It is clear that the strategy bb3/4 performs better than bb1/2

and also than Gurobi, because it has the smallest average gap. In Table 4, the “-” indicates that the

criterion gap cannot be calculated because not a single feasible solution was reported by Gurobi.

11

Table 3: The number of best solutions (criterion best) obtained by the binary search and Gurobi.
n Job category bb1/2 bb3/4 Gurobi

5
S 10 10 10
M 10 10 10
L 9 9 10

10
S 10 10 10
M 10 10 10
L 10 10 10

15
S 0 1 9
M 0 0 10
L 1 0 9

20
S 0 4 8
M 1 2 8
L 1 4 5

25
S 6 3 1
M 1 7 2
L 3 6 1

40
S 7 3 0
M 7 2 1
L 6 3 1

50
S 1 8 1
M 3 5 2
L 2 4 4

100
S 7 10 0
M 9 10 0
L 10 10 0

Total 124 141 122

Table 4: The gap (in %) from the best solution.
n Job category bb1/2 bb3/4 Gurobi

5
S 0.0 0.0 0.0
M 0.0 0.0 0.0
L 0.0 0.0 0.0

10
S 0.0 0.0 0.0
M 0.0 0.0 0.0
L 0.0 0.0 0.0

15
S 1.8 1.6 0.0
M 2.6 1.5 0.0
L 2.2 1.7 0.0

20
S 3.0 1.0 0.2
M 3.3 1.1 0.2
L 3.1 0.6 0.5

25
S 0.8 0.5 2.1
M 1.8 0.4 1.8
L 1.5 0.8 2.1

40
S 1.2 3.1 37.4
M 2.5 5.9 28.3
L 3.9 3.5 30.8

50
S 5.6 0.8 7.8
M 5.5 1.7 43.4
L 4.4 5.8 23.2

100
S 3.5 0.0 -
M 1.3 0.0 -
L 0.0 0.0 -

Average 2.0 1.25 7.48

We summarize the outcomes of both tested strategies of the binary search heuristic and Gurobi in

Table 5, where the highlighted values denote the superior ones. The table shows that all methods perform

close to one another for small instances in which n = 5, 10, 15, 20. Once the number of jobs increases,

Gurobi cannot even deliver feasible solution for all problem instances. When Gurobi does find a feasible

12

solution, however, it is usually of poor quality. The binary search heuristic reports superior solution

for large instances. The results also indicate that the binary search heuristic under the strategy bb3/4

outperforms the one under the strategy bb1/2.

Table 5: An overview of the outcomes of the binary search heuristic and Gurobi.
Criterion bb1/2 bb3/4 Gurobi

Feas 240 240 197
Opt 59 59 62
Best 124 141 122
Gap (in %) 2.00 1.25 7.48

According to Table 2, The stand-alone Gurobi is able to optimally solve only two instances with

n = 15 within the time limit of 3600 seconds. Also, we observe that the stand-alone Gurobi may not

benefit from an additional computation time, even to the extent of a few days. Therefore, we use the

solver Gurobi on the NEOS server to solve the instances that Gurobi cannot solve to optimality. This is

important to further demonstrate the quality of the solutions produced by our binary search heuristic.

The NEOS server (Czyzyk et al., 1998) is a free cloud service for solving optimization problems that

includes various solvers including Gurobi. The solvers are run on distributed high-performance machines,

resulting in solving problems that cannot be generally solved on standard machines, even though, each

solver on the NEOS server is limited to 3 GB of memory and 8 hours of run time and that the solver

is restricted to a maximum of 4 processors per an optimization problem submitted to the NEOS server.

The NEOS server is hosted by the Wisconsin Institute for Discovery at University of Wisconsin–Madison.

In total, with the help of the NEOS server we obtain the optimal solution for an additional 12 instances

with n = 15. We report the outcomes in Table 6. In the table, we also report the detailed outcomes for

each strategy of the binary search heuristic and the stand-alone Gurobi, including the objective function

value (denoted by z), the computation time (in seconds) and the gap (in %) from the best found solution.

We highlight the optimal solutions. For the remaining 16 instances with n = 15 that we still do not have

the optimal solution, we attempt an exhaustive search to optimally solve them. For this reason, we use

the best solution reported by the NEOS server in order to warm-start the stand-alone Gurobi solver on

our standard PC, however, with an increased time limit of 24 hours. With this procedure, we obtain the

optimal solution for one additional instance, more precisely, for instance 15-1-S. In Table 6, we use the

“*” to denote the optimal objective function value for that instance.

In summary, we now have the optimal solution for 15 instances with n = 15, i.e., for 50% of the

instances. The results show that the average gap for the instances under the strategy bb3/4 is 2.4,

while it is equal to 3.1 for the strategy bb1/2. Those results further indicate that the binary search

heuristic is able to produce quality solutions, needless to say that most of the optimal solutions even

for the instances with n = 15 are obtained after 8 (or more) hours of computational time on the high-

performing machines of the NEOS server. Clearly, those large computational times may not justify the

marginal improvement in the objective function value, particularly, for practical applications, e.g., in

the healthcare appointment scheduling (see Section 1). More importantly, these applications frequently

demand for (quality) schedules, typically on a daily or weekly basis.

Our efforts in solving the instances with n = 20 by using the Gurobi solver of the NEOS server failed

as the solver could not solve any of those instances to optimality. That further indicates the challenges

of obtaining the optimal solution even for small instances. Therefore, we may argue that none of larger

instances with n > 20 can be solved to optimality, neither on the NEOS server nor on our machine,

within a reasonable amount of time.

13

Table 6: The detailed results for instances with n = 15.
Instance bb1/2 bb3/4 Gurobi NEOS

z Time Gap (in %) z Time Gap (in %) z Time Gap (in %) z Time Gap (in %)

15 1 S 280 3600.4 2.6 280 3600.3 2.6 275 3600.0 0.7 273 40030.4∗ 0.0
15 2 S 386 3600.5 2.4 384 3600.4 1.9 379 3600.0 0.5 377 28800.0 0.0
15 3 S 316 3600.4 2.6 314 3600.4 1.9 308 3600.0 0.0 310 28800.0 0.6
15 4 S 261 3600.3 1.6 264 3600.3 2.7 258 3600.0 0.4 257 10861.9 0.0
15 5 S 324 3600.3 0.6 332 3600.3 3.1 322 3600.0 0.0 322 2653.8 0.0
15 6 S 322 3600.4 0.3 321 3600.4 0.0 322 3600.1 0.3 322 28800.0 0.3
15 7 S 333 3600.3 3.7 331 3600.4 3.1 327 3600.0 1.9 321 26122.7 0.0
15 8 S 323 3600.3 4.9 317 3600.3 2.9 313 3600.0 1.6 308 23576.8 0.0
15 9 S 278 3600.3 3.0 273 3600.4 1.1 270 1266.9 0.0 270 893.5 0.0
15 10 S 278 3600.3 1.8 278 3600.3 1.8 273 3600.0 0.0 273 18268.9 0.0

15 1 M 856 3600.4 3.0 846 3600.3 1.8 832 3600.0 0.1 831 26934.9 0.0
15 2 M 985 3600.3 2.3 980 3600.3 1.8 969 3600.0 0.6 963 28800.0 0.0
15 3 M 754 3600.3 2.0 750 3600.3 1.5 740 3600.0 0.1 739 26781.4 0.0
15 4 M 718 3600.4 3.5 714 3600.3 2.9 694 3600.0 0.0 694 28800.0 0.0
15 5 M 662 3600.3 2.5 658 3600.3 1.9 654 3600.0 1.2 646 28349.9 0.0
15 6 M 886 3600.4 8.4 848 3600.4 3.8 831 3600.0 1.7 817 28800.0 0.0
15 7 M 744 3600.4 3.5 739 3600.3 2.8 734 3600.0 2.1 719 13668.6 0.0
15 8 M 840 3600.3 2.1 835 3600.4 1.5 827 3600.0 0.5 823 28800.0 0.0
15 9 M 910 3600.4 3.2 921 3600.4 4.4 902 3600.0 2.3 882 28800.0 0.0
15 10 M 754 3600.4 5.3 734 3600.4 2.5 725 3600.0 1.3 716 28800.0 0.0

15 1 L 1516 3600.3 6.7 1462 3600.3 2.9 1421 3600.0 0.0 1421 26741.1 0.0
15 2 L 1763 3600.4 1.4 1780 3600.4 2.4 1753 3600.0 0.8 1739 28800.0 0.0
15 3 L 1877 3600.3 4.9 1850 3600.4 3.4 1826 3600.0 2.0 1790 26382.8 0.0
15 4 L 1304 3600.3 2.1 1298 3600.3 1.6 1294 3600.0 1.3 1277 28327.4 0.0
15 5 L 1582 3600.4 5.0 1524 3600.3 1.1 1518 3600.0 0.7 1507 28800.0 0.0
15 6 L 2004 3600.4 5.4 1971 3600.4 3.6 1939 3600.0 1.9 1902 28800.0 0.0
15 7 L 1308 3600.3 2.5 1300 3600.3 1.9 1292 3600.0 1.3 1276 28800.0 0.0
15 8 L 1370 3600.3 1.5 1412 3600.3 4.6 1373 3600.0 1.7 1350 28800.0 0.0
15 9 L 1802 3600.6 1.2 1821 3600.4 2.2 1794 3600.0 0.7 1781 28800.0 0.0
15 10 L 1426 3600.3 2.1 1442 3600.3 3.3 1396 1871.6 0.0 1396 1416.2 0.0

Average 3.1 2.4 0.9 0.0

* The reported time for the instance 15-1-S is the summation of the time elapsed on the NEOS server, i.e., 8 hours, and the run time
on our standard PC.

14

5 Concluding remarks

There are a few solution methods available in the literature for the strongly NP-hard single machine

coupled task scheduling problem with the objective function of minimizing the makespan. Due to the

increasing interest in the coupled task scheduling problem in recent years, as well as the emerging ap-

plications of the problem, there is a demand for efficient solution methods for the problem. In order to

fulfill this aim, we proposed a binary search heuristic algorithm, which systematically tightens a lower

and an upper bound. We improved the best available lower bound by solving multiple 0-1 knapsacks.

We applied a fast local search to calculate an upper bound. Our computational results indicate that

the proposed binary search heuristic is an effective solution method for the single machine coupled task

scheduling problem under the optimization criterion of minimizing the makespan.

The proposed binary search heuristic algorithm relies on quality bounds, as well as on an efficient

solution to the feasibility problem. Future research directions can therefore focus on alternative feasibility

problems that can be solved in short time because the overall procedure requires solving a large number

of such feasibility problems, particularly, for large instances.

Acknowledgments

Mostafa Khatami is the recipient of UTS International Research Scholarship (IRS) and UTS President’s

Scholarship (UTSP). Amir Salehipour is the recipient of an Australian Research Council Discovery Early

Career Researcher Award (project number DE170100234) funded by the Australian Government.

Conflict of interest

The authors declare that they have no conflict of interest.

References

Ageev, A. A. and Baburin, A. E. (2007). “Approximation algorithms for UET scheduling problems with

exact delays”. Operations Research Letters 35(4), 533 –540.

Azadeh, A., Farahani, M. H., Torabzadeh, S, and Baghersad, M. (2014). “Scheduling prioritized patients

in emergency department laboratories”. Computer Methods and Programs in Biomedicine 117(2), 61–

70.

Békési, J., Galambos, G., Jung, M. N., Oswald, M., and Reinelt, G. (2014). “A branch-and-bound algo-

rithm for the coupled task problem”. Mathematical Methods of Operations Research 80(1), 47–81.

Brauner, N., Finke, G., Lehoux-Lebacque, V., Potts, C., and Whitehead, J. (2009). “Scheduling of coupled

tasks and one-machine no-wait robotic cells”. Computers & Operations Research 36(2), 301 –307.

Carlier, J. and Néron, E. (2003). “On linear lower bounds for the resource constrained project scheduling

problem”. European Journal of Operational Research 149(2), 314–324.

Condotta, A. and Shakhlevich, N. (2012). “Scheduling coupled-operation jobs with exact time-lags”.

Discrete Applied Mathematics 160(16), 2370 –2388.

Condotta, A. and Shakhlevich, N. (2014). “Scheduling patient appointments via multilevel template: A

case study in chemotherapy”. Operations Research for Health Care 3(3), 129 –144.

15

Czyzyk, J., Mesnier, M. P., and Moré, J. J. (1998). “The NEOS Server”. IEEE Journal on Computational

Science and Engineering 5(3), 68 –75.

França, P. M., Gendreau, M., Laporte, G., and Müller, F. M. (1995). “The m-traveling salesman problem

with minmax objective”. Transportation Science 29(3), 267–275.

Graham, R., Lawler, E., Lenstra, J., and Kan, A. R. (1979). “Optimization and approximation in deter-

ministic sequencing and scheduling: A survey”. Annals of Discrete Mathematics 5, 287 –326.

Grimes, D. and Hebrard, E. (2015). “Solving variants of the job shop scheduling problem through conflict-

directed search”. INFORMS Journal on Computing 27(2), 268–284.

Gurobi Optimization, L. (2018). Gurobi Optimizer Reference Manual.

Khatami, M., Salehipour, A., and Cheng, T. (2020). “Coupled task scheduling with exact delays: Liter-

ature review and models”. European Journal of Operational Research 282(1), 19 –39.

Lehoux-Lebacque, V., Brauner, N., and Finke, G. (2015). “Identical coupled task scheduling: polynomial

complexity of the cyclic case”. Journal of Scheduling 18(6), 631–644.

Li, H. and Zhao, H. (2007). “Scheduling coupled-tasks on a single machine”. IEEE Symposium on Com-

putational Intelligence in Scheduling, 137–142.

Marinagi, C. C., Spyropoulos, C. D., Papatheodorou, C., and Kokkotos, S. (2000). “Continual planning

and scheduling for managing patient tests in hospital laboratories”. Artificial Intelligence in Medicine

20(2), 139–154.

Martello, S., Pisinger, D., and Toth, P. (1999). “Dynamic programming and strong bounds for the 0-1

knapsack problem”. Management Science 45(3), 414–424.

Orman, A. and Potts, C. (1997). “On the complexity of coupled-task scheduling”. Discrete Applied Math-

ematics 72(1), 141 –154.

Pérez, E., Ntaimo, L., Wilhelm, W. E., Bailey, C., and McCormack, P. (2011). “Patient and resource

scheduling of multi-step medical procedures in nuclear medicine”. IIE Transactions on Healthcare

Systems Engineering 1(3), 168–184.

Pérez, E., Ntaimo, L., Malavé, C. O., Bailey, C., and McCormack, P. (2013). “Stochastic online appoint-

ment scheduling of multi-step sequential procedures in nuclear medicine”. Health care management

science 16(4), 281–299.

Shapiro, R. D. (1980). “Scheduling coupled tasks”. Naval Research Logistics Quarterly 27(3), 489–498.

Sherali, H. D. and Smith, J. C. (2005). “Interleaving two-phased jobs on a single machine”. Discrete

Optimization 2(4), 348 –361.

Simonin, G., Giroudeau, R., and König, J.-C. (2011a). “Complexity and approximation for scheduling

problem for a torpedo”. Computers & Industrial Engineering 61(2), 352 –356.

Simonin, G., Darties, B., Giroudeau, R., and König, J.-C. (2011b). “Isomorphic coupled-task scheduling

problem with compatibility constraints on a single processor”. Journal of Scheduling 14(5), 501–509.

Simonin, G. (2009). “L’impact de I’introduction du graphe de compatibilité dans les problèmes d’ordonnancement

en présence de tâches-couplées”. PhD thesis. Montpellier, France: Universite de Montpellier II.

16

	Introduction
	Problem statement and formulation
	A binary search heuristic
	Lower bound
	Upper bound
	The feasibility problem

	Computational experiment
	Concluding remarks

