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On the Medication Distribution System for Home Health Care 

through Convenience Stores, Lockers, and Home Delivery 

 

 

Abstract 

Medication distribution service can be delivered based on a combination of home delivery 

and customer pickup. That is, medications are delivered either to customers’ homes directly 

or to the pickup facilities (e.g., lockers) close to customers’ homes. In Taiwan, there are 

more than 11,000 convenience stores (CSs) that provide a 24-hour service for customers to 

pick up the ordered items from e-commerce, which is unique to the world. In the medication 

distribution system, CSs can provide a unique opportunity for customers to more 

conveniently collect medications at stores, and also can reduce the operating cost for a 

logistics company providing the medication delivery service. Therefore, this work proposes 

a medication distribution system through CSs, lockers, and home delivery. Under this 

system, this work investigates how to simultaneously determine employment of CS chains, 

the CS locations to be visited, locations of lockers, vehicle routes for CSs and lockers, and 

vehicle routes for customers’ homes, so that the total operating cost is minimized. This 

work further proposes a genetic algorithm to solve the medication distribution problem. 

Through simulation, the experimental results show that the proposed algorithm is able to 

solve the problem efficiently. 

Keywords 

Home health care logistics, medication distribution, location routing problem, locker, home 

delivery, genetic algorithm 
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Introduction 

Home health care has been implemented in various medical care services [1], [2], and 

has been widely supported by the medication distribution based on home delivery services, 

which delivers medications from a pharmacy directly to customers’ homes [3], [4]. 

Generally, this convenient medication distribution service is much suitable for patients with 

chronic diseases taking maintenance medications [5] and patients with other regular-use 

prescriptions. However, such a medication distribution service based on home delivery 

requires visiting all patients’ homes by vehicles, which cause enormous transportation cost. 

In business, logistics companies have been striving to reduce the transportation cost to 

increase their competitiveness in a competitive market. To reduce the transportation cost, 

some logistics companies have developed efficient distribution systems that deliver items 

through pickup facilities (e.g., lockers) instead of distributing to customers’ homes directly 

[6], [7], [8], and thus vehicles do not need to visit all patients.  

A recent work in [6] has investigated the health care logistics of medication distribution 

in which lockers (which are automatic self-service cabinets and are available for 24 hours) 

enable customers to receive medications if customers’ homes are within the coverage 

distance of those lockers; otherwise, medications are delivered to customers’ homes 

directly. Lockers are visited by vehicles to replenish medications with an ideal situation 

that it must be replenished before a given time period of the day and before customers 

return home. Thus, the vehicle route that visits lockers is separated from the vehicle route 

that needs to visit customers’ homes when they are at homes. The work in [6] considered 

a number of potential locations where lockers can be installed, and then investigated a joint 

facility location and vehicle routing problem which simultaneously determines the 
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locations of installing lockers, the vehicle routes visiting all installing lockers, and the 

vehicle routes visiting all the customers that are not covered by any lockers.  

To the best of our understanding, the 24-hour convenience store (CS) pickup service in 

Taiwan is unique to the world. With this service, customers can pick up the ordered items 

at CSs whenever they are available after they receive pickup messages. In addition to 

providing flexible time for picking up items, this service is advantageous because an 

enormous number of CSs can support the arising number of customers. In 2019, the major 

CS chains in Taiwan (with an area of 35,808 km2) include 7-ElevenTM (having 5,579 

branches), FamilyMartTM (having 3,406 branches), Hi-LifeTM (having 1,380 branches), and 

OK MartTM (having 902 branches). On average, there is a CS every 0.31 km2 in Taiwan. 

The CS density in Taiwan is only lower than that in South Korea, and is ranked second in 

the world. Therefore, it has been popular and extensively used for customers in Taiwan to 

pick up items through CSs, especially for the items ordered from e-commerce. A unique 

opportunity for using CSs in the medication distribution system is that customers can more 

conveniently collect their medications at 24-hour CSs instead of going to hospitals or 

pharmacies in person. Multiple medication packages for different customers with close 

home locations can be jointly distributed to a CS just once, so that the transportation cost 

can be reduced. Furthermore, the total cost can be decreased when existing CSs are 

employed instead of constructing new pickup facilities. 

In light of the above, this work proposes a novel medication distribution system through 

CSs, lockers, and home delivery (Figure 1). The proposed system includes a depot (i.e., a 

logistics center of a pharmacy), customers’ homes, CSs, and lockers. For convenience of 

explanation, both CSs and lockers are called pickup facilities through the rest of this paper. 
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Although a lot of medication packages can be collected together within a pickup facility, 

this medication distribution system is secure. For using the locker pickup service, the 

customer requires providing a pickup code to open the locker. Similarly, for using the CS 

pickup service, the customer requires providing an identification document to be verified 

by the CS clerk. The pickup facilities are associated with a coverage distance. If a customer 

is within the coverage of a certain pickup facility, then this system delivers the customer’s 

medication to this facility; otherwise, medication is delivered to the customer’s home 

directly. Note that, although both lockers and CSs provide 24-hour pickup services, they 

differ as follows: 1) CSs have existed, but lockers are considered to be installed; 2) CSs are 

divided into multiple chain brands, and can join this service only when their chain has a 

contact with the pharmacy. Hence, employment of each CS chain (with a set of CSs) require 

payment of a contract fee; whereas employment of each locker requires an installation cost, 

which mainly depends the installation site. 

Under the above assumptions, this work investigates the medication distribution 

problem which integrates the location routing problem (LRP), consideration of 

employment of CS chain brands, and the covering concept for serving customers through 

pickup facilities. For convenience of notation, this problem is called the medication 

distribution problem with multiple delivery methods (MD2 for short). The MD2 problem 

simultaneously determines how to employ CS chains with contracts, the CS locations to be 

visited, the locations of installing lockers, the vehicle routing for pickup facilities, and the 

vehicle routing for uncovered customers, so that the total operating cost (including the total 

contract fee, cost of installing lockers, and the total routing cost) is minimized. This work 

further proposes a genetic algorithm (GA) to solve the MD2 problem, and then implements 
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and evaluates the GA on various problem instances. 

 

 

Figure 1. Illustration of the proposed medication delivery system through CSs, lockers, 

and home delivery. 

 

The main contributions of this work are as follows:  

 Different from the previous work in [6], this work proposes additionally considers CSs, 

which have existed and are available for being employed without further investment in 

construction, in the medication distribution system based on lockers and home delivery. 

 This work provides a GA solution to solve the MD2 problem. In addition, the 

performance of the proposed GA is evaluated on different-scale problem instances. 

Locker 

Convenience store 

Pharmacy 

Customer route

Convenience store and locker route 
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Literature Review 

The LRP generally joins the facility location problem (FLP) and the vehicle routing 

problem (VRP). Because both FLPs and VRPs are NP-hard, the LRP is also NP-hard [9], 

[10], [11], [12]. The essential characteristics of a standard LRP consist of the deterministic 

data, one planning period, a finite set of potential locations for deploying facilities, a single-

objective problem, satisfaction of customers’ demand, no load transfer, visiting only once 

for each customer by only one vehicle, and no inventory [9]. Furthermore, the standard 

LRP can be extended to solve various problems that consider additional characteristics [13], 

e.g., inclusion of uncertain information [14], subcontracting options [10], [15], capacitated 

constraints [16], [17], pickup and delivery [18], inventory decision [19], fuzzy demand [20], 

price-sensitive demand [21], and restricted time window constraints [18], [20], [22]. 

A variety of algorithms and heuristic approaches to address various LRPs have been 

developed. The work in [14] proposed a hybrid intelligent algorithm integrating uncertain 

simulation and GA to solve the sustainable multi-depot emergency facilities LRP with 

uncertain multi-objective. A hybrid heuristic method integrating simulated annealing (SA) 

and variable neighborhood search (VNS) was represented in [10] to solve the LRP with 

capacitated vehicles of small package shippers, in which the proposed idea of subcontract 

depot operations is similar to the work in [15], which employed an adaptive VNS algorithm 

that combines an approach for routing and customer selection in the shaking step. The 

adaptive VNS algorithm was also developed to determine the swap station locations and 

the vehicle routes with capacitated electric vehicles in [16]. 
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To solve the capacitated LRP with a tight capacity constraint on both depots and 

vehicles was proposed in [17] using a hybrid GA. They developed the algorithm that allows 

both feasible solutions and infeasible solutions kept in two subpopulations, and then 

combines them into the population subsequently. The work in [18] presented a column 

generation method to solve the LRP involved the vehicle route for both picking up the 

items and delivering items to the destination. The decision of inventory management at the 

facilities was integrated with the LRP in [19], which adopted the GA to determine the 

number and the locations of required warehouses, the inventory level at each retailer, and 

the routes. To solve the LRP with fuzzy demands and time windows, the work in [20] 

adopted a two-part GA for solving a mixed integer mathematical fuzzy model.  The work 

in [21] studied the profit-maximization LRP with price-sensitive demands, and further 

tackled the problem by a branch-and-price algorithm. The work in [22] solved an LRP 

within time window by an exact approach that simultaneously determined the routing of 

electric vehicles and the charging infrastructure. 

In general, the LRP is considered with only one level of routing within the network 

from depots to customers. Furthermore, the LRP can be extended to a so-called two-

echelon LRP (2E-LRP), which has two levels of routing: the routes from depots to satellites, 

and the routes from satellites to customers [23]. The work in [24] tackled the 2E-LRP 

arising in the city logistics by a hybrid metaheuristic approach combining local and large 

neighborhood search. Moreover, the work in [25] addressed a special case of the 2E-LRP, 

i.e., the two echelon open location routing problem (2E-OLRP) operated by the third party 

logistics providers, and hence the vehicle routes did not need to return to the depot and to 

satellites after finishing the service. They proposed a mixed-integer linear programming 
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method and a hybrid SA heuristic to solve this problem. The work in [7] solved the multi-

depot two-echelon VRP which involves two levels of VRPs including the delivery option 

for the last mile distribution. They proposed a hybrid multi-population GA to improve the 

search efficiency and speed up the evolution process obtained by the multi-population 

strategy. They included two subpopulations derived from feasible solutions and infeasible 

solutions similar to the work in [17]. 

LRPs have been particularly applied in the real world case with practical instances to 

increase efficient distribution networks and to increase competitiveness in the recent 

market. Some real-world case studies were presented in [6] and [26], which solved the LRP 

for the medication distribution in the Netherlands. The proposed model in [26] determined 

the facility and routing decisions simultaneously by considering three node types: depots, 

satellites, and customers. They formulated and solved the problem by Lagrangian 

relaxation, branch and cut algorithm, and upper bound heuristic approach. In their work, 

each customer had to be visited by vehicles, whereas the work in [6] did not need. That is, 

some customers were assigned to receive their medicines at lockers instead of receiving at 

home directly. The function of lockers in [6] was a temporary medication storage that is 

then distributed to customers. The work in [6] focused on the medication distribution from 

the depot (i.e., pharmacy) to patients in order to minimize the routing cost. They considered 

two types of routes: locker routes (from the depot to lockers) and patient routes (from the 

depot to patients’ homes). Their work further proposed a branch-and-bound algorithm and 

a hybrid heuristic algorithm for solving this LRP. 

Our problem is also related to the covering problem. In most of the covering problems, 

customers receive services from facilities depending on the distance between customers 
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and facilities. Basically, the decisions on the location of a set of facilities and a set of 

demand points are considered [27], [28]. The solutions to the covering location problem 

were proposed in [27] and [29] with exact methods for small instances and heuristics for 

large instances. The Lagrangian heuristic was employed to tackle the covering location 

problem under multi-period stochastic in [27], while the SA algorithm was proposed in [29] 

to solve the maximal covering location problem with numerous demand nodes and 

potential facilities. In addition, the covering tour problem, in which each facility might be 

visited more than once by a vehicle, was solved in [8], [30], [31], [32], and [33]. 

The work in [30] formulated an integer non-linear programming problem under 

probabilistic coverage, and solved it by a branch-and-cut algorithm and a local search 

heuristic based on VNS. The work in [8] proposed a branch-and-cut algorithm comparing 

to GA. The formulation of the covering tour problem arising in humanitarian logistics was 

solved by a heuristic approach in [31], [32] and a greedy randomized adaptive search 

procedure [33]. In [32], the covering tour method was employed to locate the satellite 

distribution centers for the humanitarian aid distribution in a disaster area. The decision on 

facilities was determined to cover all customers. The covering concept in [6] was also 

similar to [32] (i.e., the items were distributed to customers through facilities in the case 

that customers were covered by those facilities). However, the work in [6] proposed that 

the opened lockers do not need to cover all customers because the remaining customers can 

receive their parcels at their homes.  

 

Methodology 
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Problem description 

This work proposes the MD2 problem, in which medications are distributed through 

multiple delivery methods: CSs, lockers, and home delivery. The MD2 problem aims to 

determine the employed CS chains with contracts, the CS locations to be visited, the 

locations of installing lockers, the vehicle routing for pickup facilities, and the vehicle 

routing for uncovered customers, so that the total operating cost (including the total 

contract fee, cost of installing lockers, and the total routing cost) is minimized. 

Consider a problem instance with one depot, nB CS chains/brands, nCS CSs, nL potential 

locations for installing lockers, and nC customers. The instance can be represented as a 

complete graph G = (V, A), in which the node set V is partitioned as V = {0} ∪ NCS ∪ NL 

∪ NC; {0} represents the depot; set NCS includes nCS CSs denoted by S1, S2, …, 
CSnS ; set NL 

includes nL potential locker locations denoted by L1, L2, …, 
LnL ; set NC includes nC 

customers denoted by C1, C2, …, 
CnC ; each arc (i, j) ∈ A is associated with a distance dij, 

travel cost cij, and travel time tij. Each facility j ∈ NCS ∪ NL has a coverage distance rj for 

serving customers. Each node j ∈ V has a service time gj required to operate the service. 

For example, in Figure 2, there are 3 CS chains (i.e., nB = 3) and 8 CSs (i.e., nCS = 8) 

denoted by S1–S8, in which the first CS chain includes CSs S1–S3; the second CS chain 

includes CSs S4–S6; and the third CS chain includes CSs S7 and S8. There are 8 locker 

locations (i.e., nL = 8) denoted by L1–L8, and 23 customers (i.e., nC = 23) denoted by C1–

C23. 
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Figure 2. Illustration of an example of the medication distribution problem. 

 

The decision on the MD2 problem involves with employing multiple CS chains, and 

hence we consider that set NB represent nB CS chains. Note that only the CSs from the 

employed CS chains can be considered to visit or not. This problem considers two types of 

vehicle routes: routes consisting of pickup facilities (i.e., CSs and lockers); and routes for 

customers’ homes. Hence, two corresponding vehicle sets are denoted by M and K, in 

which each vehicle m ∈ M delivers items from the depot to pickup facility locations; 

whereas each vehicle k ∈ K delivers items from a depot to customers’ homes. 

Each customer i ∈ NC is assigned once to pick the medication up at either a CS, a locker, 

or the customer’s home. That is, if customer i is within the coverage distance rj of a pickup 

facility (i.e., a CS or a locker), the customer will be assigned to receive the medication item 
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from that facility; otherwise, the customer’s home will be identified as a node to be visited 

by some vehicle k ∈ K. However, the travel cost for vehicle k is penalized by a factor π  

that is greater than one, because the delivery through pickup facilities is preferred to the 

direct delivery to customers’ homes. In addition, the routing distance of each vehicle m ∈ 

M (resp., k ∈ K) must not exceed the maximum routing distance 1
maxr  (resp., 2

maxr ). Similarly, 

the travel duration of each vehicle m ∈ M (resp., k ∈ K) (composed of the total travel time 

and the total service time occurred at each visited node) must not exceed the maximum 

routing duration T1 (resp., T2). 

The MD2 problem aims to determine both the employed facilities and the vehicle routes 

of both types to serve all customers. Five types of decision variables in this problem include 

1) which CS chains will be employed, 2) which CSs (each of which belongs to some CS 

chain) will be utilized, 3) which locker locations will be selected to install lockers, 4) the 

vehicle routes visiting the employed facility locations, and 5) the vehicle routes visiting the 

uncovered customers’ homes. 

With the above notations, the objective of the MD2 problem is to minimize the total 

cost formulated as follows: 

, {0}; , {0};

open fee

Minimize   

                

C CS L

L B

c k f m
ij ij ij ij

i j N i j k K i j N N i j m M

j j j j
j N j N

c x c y

F v F u

π
∈ ∪ ≠ ∈ ∈ ∪ ∪ ≠ ∈

∈ ∈

⋅ ⋅ + ⋅

+ ⋅ + ⋅

   

 
       (1) 

The above objective function is to minimize four types of costs. The first term is the total 

transportation cost of the routes visiting the uncovered customers, where π is a penalty 

factor that is greater than one; 
c
ijc  is the travel cost between customers i and j; 

k
ijx  is a binary 
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variable deciding whether vehicle k ∈ K travels from customer i to customer j. The second 

term represents the transportation cost of the routes visiting the employed facilities, where 

f
ijc  is the travel cost between facilities i and j; m

ijy  is a binary variable deciding whether 

vehicle m ∈ M travels from customer i to customer j. The third term represents the total 

cost of installing lockers, where open
jF  is the fixed cost of installing a locker at locker 

location j; and vj is a binary variable deciding whether a locker is installed at location j. 

The fourth term represents the total contract fee for employing CS chains, where  fee
jF  is 

the contract fee for employing CS chain j; and uj is a binary variable deciding whether CS 

chain j is employed. 

 

Overview of the proposed GA 

This work proposes a GA approach to solve the MD2 problem. The GA is a 

metaheuristic approach inspired by the process of natural selection. The GA is a powerful 

search technique that performs the global search characteristic, and hence is suitable to 

solve large-scale optimization problems with the capability of reaching near-optimum 

values. The proposed GA is given in Algorithm 1, which is explained as follows. Consider 

a population of multiple chromosomes, each of which represents a candidate solution for 

the problem. The GA starts from randomly creating the initial population (Line 1), and its 

cost is evaluated (Line 2). Then, until the maximal number of iterations is achieved, a main 

loop in Lines 3 – 16 repeatedly selects the parent chromosomes from the current population 

(Line 4), executes GA operators on these parent chromosomes, i.e. crossover (Line 5) and 
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mutation (Lines 6 – 13), and remains the better chromosomes in P (Line 15). Finally, the 

chromosome with the best cost in P is outputted as the solution of the GA (Line 17). 

The main components are detailed in the following subsections. 

Algorithm 1 The Proposed GA 
1: Randomly generate the initial population P 
2: Evaluate the cost of each chromosome in P 
3: while the maximal number of iterations is achieved do 
4:  Apply the binary tournament selection mechanism to select a set of parent chromosomes Pparent 

from P 
5:  Randomly generate a number from {1, 2, .., 5}. If the number is no greater than 3 (resp., greater 

than 3), the one-point crossover operator (resp., uniform crossover operator) is conducted on 
Pparent to generate a set of offspring chromosomes Poffspring under the crossover rate Pc   

6:  Randomly select some chromosomes in Poffspring under the mutation rate Pm 
7:  for each selected chromosome s do 
8:   Randomly generate a number γ from {1, 2, …, 5} 
9:   if γ is 1, 2, or 3 then 

    Conduct the type-I mutation operation on the γth part of chromosome s 
10:   else (i.e., γ is 4 or 5) 
11:    Conduct the type-II mutation operation on the γth part of chromosome s 
12:   end if 
13:  next for 
14:  Evaluate the cost of each chromosome in P 
15:  Replace the chromosomes with better cost in P by the chromosomes with better cost in Poffspring 
16: end while 
17: Output the best chromosome in P 

 

Solution representation 

A chromosome (i.e., a candidate solution for the MD2 problem) in the proposed GA is 

represented as (b1, b2, …, 
Bnb  | h1, h2, …, 

C Snh  | l1, l2, …, 
Lnl  | f1, f2, …, 

CS Ln nf +  | s1, s2, …, 

Cns ), consisting of the following five types of decision variables: 

1) for i ∈ {1, 2, …, nB}, binary variable bi is one if CS chain i is contracted; 

2) for j ∈ {1, 2, …, nCS}, binary variable hj is one if CS j is employed, but it depends on 

the results derived from the results of bi (i.e., only the CSs of contracted CS chains 

can be employed and visited by vehicles); 
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3) for k ∈ {1, 2, …, nL}, binary variable lk is one if a locker is installed at location k; 

4)  f1, f2, …, 
CS Ln nf +  is a permutation of {S1, S2, …, 

CSnS , L1, L2, …, 
LnL } used for 

deciding the vehicle routes visiting facilities; 

5)  s1, s2, …, 
Cns  is a permutation of {1, 2, …, nC} used for deciding the vehicle routes 

visiting the uncovered customers.  

 

For example, a solution for this instance in Figure 2 shows a problem instance with nB 

= 3, nCS = 8, nL = 8, and nC = 23 is encoded in Figure 3. From Part 1, the 1st CS chain 

(corresponding to 3 CSs S1–S3 in Figure 2) and the 2nd CS (corresponding to 3 CSs S4–S6) 

are contracted, but the 3rd CS chain (corresponding to 2 CSs S7 and S8) is not. From Part 

2, CSs S2, S3, S4, S5, and S6 are employed, but S8 is not employed and visited, because its 

chain is not contracted (from b3 = 0 in Part 1). From Part 3, lockers are installed at locations 

L1, L2, L4, L6, and L8. Part 4 is a permutation of {S1, S2, …, S8, L1, L2, …, L8}. Based on 

Parts 1–3, the closed facilities are marked by ‘×’ below the permutation of Part 4 in Figure 

3. Hence, the permutation of the remaining facilities are L1–S3–L2–S5–L4–S2–L6–S4–L8–S6. 

Considering some constraints for vehicles, Figure 2 shows three facility routes L1–S3–L2–

S5, L4–S2–L6, and S4–L8–S6. Part 5 is a permutation of {1, 2, …, 23}. Based on the three 

facility routes, the customers covered by the visited facilities are marked by ‘v’ below the 

permutation of Part 5 in Figure 3. Hence, the permutation of the unvisited customers are 

C1–C2–C3–C11–C12–C13–C14–C15. Considering some constraints for vehicles, Figure 2 

shows two customer routes C1–C2–C3 and C11–C12–C13–C14–C15. 
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Figure 3. Solution representation for the problem instance in Figure 2. 

 

Cost evaluation 

This work sets the cost function in GA as the objective function (1) to minimize the 

total cost. The fittest chromosome in GA is corresponding to a solution with the minimal 

cost. 

Given a chromosome (b1, b2, …, 
Bnb  | h1, h2, …, 

C Snh  | l1, l2, …, 
Lnl  | f1, f2, …, 

CS Ln nf +  

| s1, s2, …, 
Cns ), the cost of the chromosome is evaluated in Algorithm 2, which is 

explained as follows. Line 1 initializes all the nC customers as uncovered customers. Then, 

Lines 2 – 6 refers to the chromosome encoding to determine which customers are covered 

by some CSs or lockers. Line 7 initializes the total cost ϕ to be zero, and also initializes 

two variables that will be used later. Then, Lines 8 – 18 calculates the cost for multiple 

1     1     0      1     1     0     1     0     1     0      1    

Part 4: Vehicle routes visiting facilities 

Part 5: Vehicle routes visiting uncovered customers  

0     1     1     1     1     1     0     1     

Part 1: CS chains  Part 2: CSs Part 3: Potential locker locations 

 

b1  b2  b3                    h1  h2  h3  h4  h5  h6  h7  h8               l1   l2   l3   l4    l5   l6   l7   l8 

f1  f2   f3   f4    f5   f6   f7   f8   f9   f10  f11  f12  f13  f14  f15  f16    

L1  L7  S3  L3  L2  L5  S5  L4  S1  S2   S7  L6  S4  S8   L8  S6    
×         ×          ×             ×         ×              ×     

v         v    v                    v    v   v    v         v    v         v         v    v   v    v   v 

(‘v’ denotes a visited customer) 

(‘×’ denotes a closed facility) 

22   1   5    7    2   3   11  8   16 17   9   12  6   19 13  18 14  20 10  23 21   4  15 

s1   s2   s3   s4  s5   s6   s7  s8   s9  s10 s11  s12 s13 s14  s15 s16  s17 s18  s19 s20 s21 s22 s23 
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routes for uncovered patients. Similarly, Lines 19 – 30 calculates the cost for multiple 

routes for facilities. Then, Line 31 calculates the cost of opening lockers, and Line 32 

calculates the cost of employing CS chains. Finally, Line 33 outputs the total cost.  

Algorithm 2 Cost evaluation(b1, …, 
Bnb  | h1, …, 

CSnh  | l1, …, 
Lnl  | f1, …, 

CS Ln nf +  | s1, …, 
Cns ) 

1: All the nC customers are initialized as uncovered customers 
2: for each t = 1 to nC do 
3:  if customer Ct is within the coverage rj of an opened CS Sj of a contracted CS chain i (i.e., bi = hj 

= 1 and d(Ct, Sj) < rj) for all i ∈ {1, 2, …, nB} and j ∈ {1, 2, …, nCS}, or within the coverage rk of 
an opened locker Lk (i.e., lk = 1 and d(Ci, Lk) < rk) for all k ∈ {1, 2, …, nL} do 

4:   Customer Ct is marked as a covered customer 
5:  end if 
6: next for 
7: Set the total cost ϕ = 0, the distance so far ds = 0, and the previous index p = 0 
8: for each t = 1 to nC do 
9:  if customer 

ts
C  is uncovered then 

10:   if ds + d(
psC , 

ts
C ) < 2

maxr   then 

11:    Let ϕ = ϕ + π ⋅ c
ptc  and ds = ds + c

ptd  

12:   else  
13:    Let ϕ = ϕ + π ⋅ ( c

0pc  + c
0tc ) and ds = c

0td  

14:   end if 
15:   p = t 
16:  next for 
17: next for 
18: If at least one route for uncovered patients exists, then ϕ = ϕ + π ⋅ c

0pc  

19: Set the distance so far ds = 0 and the previous index p = 0 
20: for each t = 1 to nCS + nL do 
21:  if the facility corresponding to ft is an opened locker or a CS of some employed chain then 
22:   if ds + d(fp, ft) < 1

maxr  then 

23:    Let ϕ = ϕ + f
ptc  and ds = ds + f

ptd  

24:   else  
25:    Let ϕ = ϕ + f

0pc  + f
0tc  and ds = f

0td  

26:   end if 
27:   p = t 
28:  end if 
29: next for 
30: If at least one route for facilities exists, then ϕ = ϕ + f

0pc  

31: For each k = 1 to nL, if lk = 1, then ϕ = ϕ + open
kF  

32: For each i = 1 to nB, if bi = 1, then ϕ = ϕ + fee
iF  

33: Output the total cost ϕ 
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Initializing the population 

This section presents initializing the population as follows. Each gene (i.e., binary 

variable) in Parts 1, 2, and 3 of each chromosome in the population is randomly assigned 

0 and 1. Part 4 in the chromosome is assigned a random permutation of {S1, S2, …, 
CSnS , 

L1, L2, …, 
LnL }, and Part 5 in the chromosome is assigned a random permutation of {1, 

2, …, nC}. 

Parent selection 

The chromosomes in the population are chosen for GA operations based on the binary 

tournament selection mechanism. The fitter chromosomes providing the lower cost are 

favored. The concept of binary tournament selection is that, two chromosomes are 

randomly selected from the population, and then the winner being a chromosome with the 

better cost value is chosen to be inserted into the mating pool (i.e., parent chromosomes). 

This mechanism can retain some good chromosomes while giving the chance for other 

weaker individuals to take part in mating. 

 

Crossover operator 

Crossover is an operator in the GA that recombines the gene-codes of two parents, 

which partially contribute characteristics to new chromosomes (or called offspring). In this 

process, pairs of parent chromosomes in the mating pool are mated randomly with a 

crossover rate Pc to create new offspring chromosomes. The chromosome representation 

in this work includes two encoding types (i.e., the binary encoding in Parts 1, 2, and 3 for 
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FLPs, and the permutation encoding in Parts 4 and 5 for VRPs), and hence the proposed 

GA conducts two types of crossover operators for the two chromosome encoding types, 

respectively. 

For the binary encoding in Parts 1, 2, and 3, we apply the one-point crossover operator. 

With loss of generality, consider the one-point crossover operator at Part 1 on two parent 

chromosomes x1 and x2. First, randomly cuts each of the two concerned parent 

chromosomes x1 and x2 at Part 1 into two binary substrings, in which the two substrings of 

x1 (resp., x2) is x11 and x12 (resp., x21 and x22), and then interchanges the two substrings of 

the two parent chromosomes to generate two offspring chromosomes: x11 x22 and x21 x12. 

For the permutation encoding in Parts 4 and 5, we apply the uniform crossover operator. 

First, a random binary string called mask is generalized. In the mask, if the ith bit value is 

1, the corresponding ith genes in the two parents are exchanged. The other genes masked 

by 0 in either parent are copied by the remaining genes in the order of the other parent to 

maintain the chromosome feasibility. That is, each offspring chromosome inherits some 

genes from one parent (when mask bits are 1) and also inherits remaining genes from the 

other parent (when mask bits are 0). 

Mutation operator  

Mutation is executed by changing a gene(s) in a chromosome to prevent the algorithm 

from becoming trapped in local optima and to explore new solutions in the solution space 

so as to increase diversity of solutions. In this mutation operator, a number of chromosomes 

in the population are randomly selected to be mutated with a mutation rate Pm. In each 

selected chromosome, we randomly determine a part to be mutated. If the selected part is 
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one of Parts 1, 2, or 3, the Type-I mutation operator is conducted; otherwise (i.e., Parts 4 

or 5), the Type-II mutation operator is conducted. The Type-I mutation operator is to 

randomly choose a gene from the concerned chromosome, and then to modify this gene to 

0 (resp., 1) if the original gene value is 1 (resp., 0). The Type-II mutation operator performs 

a swap operator, i.e., two genes in the concerned chromosome are randomly chosen to be 

swapped with each other, while other genes keep to remain their positions.  

 

Experimental Results 

This section evaluates the performance of the GA in an experimental environment. The 

performance on small-scale and large-scale instances is investigated, and the experimental 

analyses including a sensitivity analysis are conducted.  

Experimental environment and parameter setting 

The proposed GA is implemented in C++ programming language, and runs on a PC 

with an Intel® Core™ i7-7700, 3.60 GHz (4 Core) CPU and 8GB RAM. The parameters 

used in the proposed GA are set as follows: the population size is set as 40; the crossover 

rate Pc is set as 0.5; the mutation rate Pm is set as 0.01; the maximal number of iterations is 

set as 2,000.  

Analysis on small-scale instances 

This section describes the performance of the proposed GA on small-scale problem 

instance. The locations of CSs, potential lockers, and customers are randomly generated 

within a two-dimensional geographical region [0, 100] × [0, 100]. The depot is randomly 
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located in the range [25, 75] × [25, 75]. The distance between all nodes and covering radius 

of facilities are computed as the Euclidean measure. We assume that the travel time and 

the travel cost is set equal to the travel distance. The other parameter setting of the problem 

instances is given in Table 1, in which U is a uniform distribution function. 

 

Table 1. Parameter setting for small-scale instances. 

Parameter Value 
Number of CS chains (nB) 4 
Number of CSs (nCS) 70 
Number of CSs of each CS chain {25, 20, 15, 10} 
Contract fee of employing each CS chain ( fee

jF )  {40, 35, 30, 25} 

Cost of installing a locker ( open
jF ) U(50, 100) 

Coverage distance of a CS (rj) 20 
Coverage distance of a locker (rk) U(10, 20) 
Maximum routing distance for a facility route ( 1

maxr ) 70 

Maximum routing distance for a customer route  ( 2
maxr ) 70 

Service time at each node (gj) 10 
Penalty factor (π) 10 
Maximum routing duration for a facility route (T1) 100 
Maximum routing duration for a customer route  (T2) 100 

 

The convergence analysis under four various parameter settings of Pc and Pm (in which 

nL = 10 and nC = 50) is shown in Figure 4. From Figure 4, the case with Pc = 0.5 and Pm = 

0.01 performs best. That is, in this case, the improvement during 2000 iterations occurs up 

to the point where no further improvement is possible, and up to the point where the 

solution is in steady state, and hence this setting is applied in the rest of this work. 
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Figure 4. Convergence analysis of the proposed GA. 

 

Subsequently, we execute 100 runs of the four cases, and the results are shown in Figure 

5. Although the 100 runs of each case obtain different cost values, these cost values show 

stability within a reasonable range.  

The experimental results of the proposed GA on 54 instances under various settings of 

nC and nL (in which nCS is fixed) are compared in Table 2, in which the ‘best cost’ is the 

best value among 10 runs of the proposed GA under the same setting, and the ‘time’ is the 

CPU time taken to find the best solution. From Table 2, the proposed GA can search for 

the optimal solution within short CPU time. Overall, the CPU time increases slightly when 

the problem size grows up. 

In Table 2, every six instances form a group with the same nC value but with different 
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nL values. For each group of the experimental results, a gap of performance for an instance 

i is calculated as: 

gap = (cost of instance i – the best cost) / (the best cost) × 100% 

where ‘the best cost’ is the best cost among the six instances in the same group. From Table 

2, the best cost result in each group may not occur in the case with the same nL value. 

However, the best cost values derived from using nL = 10 are often the best in their 

respective group as 3 times (i.e., the results of instances R2, R32, and R38). According to 

the experiment results, there is no conclusion for the effect of changing numbers of lockers 

because differences of random instances may lead to different related costs such as 

uncertain locations of customers and pickup facilities. 

 

Figure 5. The cost values of 100 runs of the proposed GA under four parameter settings of 

Pc and Pm. 
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Table 2. Comparison of the experimental results of the proposed GA on 54 small-scale 

instances under various settings of nC and nL.  

Instance nC nCS nL Best cost Gap (%) Time (s)

R1 20 70 5 260.61 11.35 4.41
R2 20 70 10 234.05 0.00 4.81
R3 20 70 15 305.73 30.62 5.25
R4 20 70 20 292.99 25.18 6.02
R5 20 70 25 298.86 27.69 6.59
R6 20 70 30 300.32 28.31 6.60
R7 30 70 5 456.84 3.27 5.59
R8 30 70 10 456.09 3.10 6.04
R9 30 70 15 519.81 17.51 6.80
R10 30 70 20 553.70 25.17 7.23
R11 30 70 25 648.07 46.50 7.80
R12 30 70 30 442.36 0.00 8.55
R13 40 70 5 490.31 13.26 6.69
R14 40 70 10 449.39 3.81 7.16
R15 40 70 15 656.47 51.65 8.25
R16 40 70 20 432.89 0.00 8.61
R17 40 70 25 448.90 3.70 9.80
R18 40 70 30 537.31 24.12 10.38
R19 50 70 5 692.29 44.02 7.72
R20 50 70 10 494.36 2.84 8.43
R21 50 70 15 533.14 10.91 9.53
R22 50 70 20 480.71 0.00 10.31
R23 50 70 25 539.35 12.20 11.18
R24 50 70 30 582.13 21.10 12.50
R25 60 70 5 457.81 0.00 8.89
R26 60 70 10 517.64 13.07 10.01
R27 60 70 15 500.24 9.27 10.85
R28 60 70 20 584.45 27.66 11.82
R29 60 70 25 485.95 6.15 11.96
R30 60 70 30 562.03 22.76 13.37
R31 70 70 5 505.54 11.90 10.20
R32 70 70 10 451.77 0.00 11.62
R33 70 70 15 523.30 15.83 11.45
R34 70 70 20 488.49 8.13 13.43
R35 70 70 25 468.14 3.62 14.49
R36 70 70 30 530.98 17.54 16.14
R37 80 70 5 528.85 4.58 11.52
R38 80 70 10 505.68 0.00 12.72
R39 80 70 15 531.16 5.04 13.12
R40 80 70 20 588.15 16.31 15.36
R41 80 70 25 543.15 7.41 16.21
R42 80 70 30 545.30 7.83 17.41
R43 90 70 5 575.89 6.76 12.64
R44 90 70 10 545.09 1.05 14.23
R45 90 70 15 652.38 20.94 15.14
R46 90 70 20 639.77 18.60 16.15
R47 90 70 25 560.15 3.84 18.46
R48 90 70 30 539.45 0.00 20.43
R49 100 70 5 555.03 7.93 14.37
R50 100 70 10 554.41 7.81 15.16
R51 100 70 15 514.25 0.00 16.74
R52 100 70 20 638.57 24.18 19.03
R53 100 70 25 590.23 14.78 19.94
R54 100 70 30 555.40 8.00 22.40
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Analysis on Large-scale instances  

This section analyzes the experimental results on large-scale instances. The locations 

of CSs, potential lockers, and customers are randomly generated within a two-dimensional 

geographical region [0, 10200] × [0, 10200]. The depot is randomly located at the centre 

of this region. The other parameter setting of the large-scale problem instances is given in 

Table 3. The other settings are similar to those in the last subsection. 

 

Table 3. Parameter setting for large-scale instances. 

Parameter Value 
Number of CS chains (nB) 4 
Number of CSs (nCS) 308 
Number of CSs of each CS chain {138, 88, 64, 18} 
Contract fee of employing each CS chain ( fee

jF ) {40000, 35000, 30000, 25000} 

Cost of installing a locker ( open
jF ) U(10000, 20000) 

Coverage distance of a CS (rj) 500 
Coverage distance of a locker (rk) U(300, 500) 
Maximum routing distance for a facility route ( 1

maxr ) 14400 

Maximum routing distance for a customer route  ( 2
maxr ) 14400 

Service time at each node (gj) 180 
Penalty factor (π) 10 
Maximum routing duration for a facility route (T1) 18000 
Maximum routing duration for a customer route  (T2) 18000 

 

The 54 instances under various settings of nC and nL (in which nCS is fixed) solved by 

the proposed algorithm are compared the results in Table 4. This table shows that the 

proposed GA is able to search for the optimal solution during 10 runs within reasonable 

CPU time. Moreover, the CPU time increases slightly when the size of problem grows up.  
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Table 4. Comparison of the experimental results of the proposed GA on 54 large-scale 

instances under various settings of nC and nL. 

Instance nC nCS nL Best cost Gap (%) Time (s)

L1 20 308 5 277998 0.51 55.01
L2 20 308 10 305260 10.37 57.37
L3 20 308 15 302204 9.26 65.08
L4 20 308 20 366154 32.39 62.65
L5 20 308 25 358796 29.72 63.20
L6 20 308 30 276582 0.00 71.88
L7 30 308 5 725038 3.77 76.65
L8 30 308 10 706998 1.19 77.95
L9 30 308 15 698667 0.00 77.77
L10 30 308 20 726931 4.05 84.75
L11 30 308 25 739573 5.85 88.88
L12 30 308 30 785172 12.38 99.20
L13 40 308 5 695864 0.00 91.83
L14 40 308 10 742809 6.75 89.15
L15 40 308 15 801550 15.19 92.96
L16 40 308 20 807035 15.98 94.65
L17 40 308 25 776359 11.57 92.81
L18 40 308 30 893978 28.47 97.94
L19 50 308 5 819366 0.00 110.71
L20 50 308 10 880949 7.52 112.61
L21 50 308 15 887628 8.33 121.52
L22 50 308 20 929580 13.45 127.97
L23 50 308 25 867590 5.89 123.14
L24 50 308 30 997599 21.75 136.83
L25 60 308 5 1016659 0.00 125.43
L26 60 308 10 1061941 4.45 130.85
L27 60 308 15 1100571 8.25 136.93
L28 60 308 20 1101812 8.38 142.44
L29 60 308 25 1109730 9.15 149.50
L30 60 308 30 1253534 23.30 158.26
L31 70 308 5 970020 0.00 133.79
L32 70 308 10 1154079 18.97 143.01
L33 70 308 15 1174357 21.07 149.04
L34 70 308 20 1294203 33.42 155.33
L35 70 308 25 1380436 42.31 161.88
L36 70 308 30 1342194 38.37 166.91
L37 80 308 5 1259803 0.00 153.37
L38 80 308 10 1369819 8.73 160.97
L39 80 308 15 1371764 8.89 165.45
L40 80 308 20 1382363 9.73 183.98
L41 80 308 25 1410407 11.95 182.48
L42 80 308 30 1442512 14.50 191.75
L43 90 308 5 1397062 2.32 175.08
L44 90 308 10 1377890 0.92 178.37
L45 90 308 15 1403991 2.83 185.16
L46 90 308 20 1365327 0.00 186.27
L47 90 308 25 1425397 4.40 189.51
L48 90 308 30 1481756 8.53 204.71
L49 100 308 5 1466167 0.21 191.86
L50 100 308 10 1509689 3.18 191.33
L51 100 308 15 1463091 0.00 205.69
L52 100 308 20 1484684 1.48 206.02
L53 100 308 25 1497318 2.34 211.97
L54 100 308 30 1488898 1.76 235.96
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In Table 4, every six instances form a group with the same nC value but with different 

nL values. For each group, a gap of performance for an instance is calculated as mentioned 

in the explanation of Table.2. The best cost result in each group may not occur in the case 

with the same nL value. However, the best cost values derived from using nL = 5 are often 

the best in their respective group as 5 times (i.e., the results of instances L13, L19, L25, 

L31, and L37).  

According to the experiment results, it seems that there is no conclusion for the effect 

of changing numbers of lockers because differences of random instances may lead to 

different related costs such as uncertain locations of customers and pickup facilities. 

Furthermore, the number of existing CSs comparing to the number of defined lockers is 

enormous to serve customers, thus changing number of lockers may not significantly affect 

cost. In practical, lockers should be installed at the places where have customers but no 

existing CS such as in rural area in order to support the medication delivery efficiently. 

 

Sensitivity analysis 

This subsection presents the impacts of changing the values of four parameters (i.e., the 

coverage distance of a pickup facility, number of CSs, the contract fee of a CS chain, and 

the cost of installing a locker) on the cost. Each parameter is modified on four instances 

(i.e. 50 customers-10 lockers, 50 customers-20 lockers, 70 customers-10 lockers, and 70 

customers-20 lockers). The other parameter setting of these instances follows the parameter 

setting of large-scale instances in the last subsection, except the number of CSs follows the 

parameter setting of small-scale instances to reduce the computational time. The parameter 
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values are varied by multiplying the base case value (mentioned in previous subsections) 

by 0.8 up to 2 with step of 0.2 for the coverage distance and the number of CS, and by 0.5 

up to 3.5 with step of 0.5 for the contract fee and the cost of installing a locker. The results 

of the sensitivity analysis are presented in Figure 6. 

Figure 6(a) shows that when the coverage distance of a pickup facility increases, the 

cost value decreases consistently for all scenarios. It is clear that the coverage distance 

considerably affects the cost. Each facility can serve more customers when its coverage 

distance increases, so that both the number of uncovered customers and the number of 

employed facilities decrease. However, adjustment of this factor should be considered with 

customer satisfaction. Figure 6(b) shows the effect of changing the number of CSs. Even 

if the plot in Figure 6(b) seems to be fluctuate, the cost in all scenarios tends to drop slightly 

when the number of CS increases. This indicates that the number of CS slightly affects 

change of the cost. 

Figures 6(c) and 6(d) show the impact of changing the contract fee of CS chains and 

the cost of installing a locker, respectively. In this work, the contract fee is defined as a 

flat-rate pricing (i.e., whether number of CSs changes or not, the price does not change); 

whereas the cost of installing a locker is calculated depending on the number of lockers. 

The cost slightly increases if the coefficient on these two factors increases for instances C3, 

C4, D2, D3, and D4; whereas the cost is slightly stable for instances C1, C2, and D1. The 

reason why the cost has a little change is that these two types of cost are small as compared 

with other components of the cost function. 
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(a) (b) 

(c) (d) 

Figure 6. Sensitivity analysis. 
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medications at CSs. CSs have existed, and have a lot of branches available to serve 

customers. Even though the main function of CSs is similar to lockers in [6], a medication 

distribution service provider does not need to invest in constructing new pickup facilities. 

The covering concept is also considered in this work (i.e., this work focuses on both 

coverage distances of CSs and lockers to serve customers). Each customer is assigned to 

receive medications at either a CS or a locker if the customer is located within the service 

coverage of the facility; otherwise, the customer is assigned to be visited directly. To the 

best of our knowledge, this is a first work to propose the medication distribution system 

through CSs, lockers, and home delivery. 

The experimental results show that the proposed GA has been designed to be suited to 

solve our MD2 problem, and it can solve this problem within reasonable computational 

time. The proposed GA can solve the smallest-scale instance R1 (in which nC = 20, nCS = 

70, and nL = 5) within 4.41 seconds; while it can also solve the largest-scale instance L54 

(in which nC = 100, nCS = 308, and nL = 30) within 235.96 seconds or less than 4 minutes. 

However, the experimental results are not compared with other methods. Hence, a line of 

our further work is to explore an approach that can provide better performance to solve this 

problem and achieve better solution quality, and conduct a comprehensive experimental 

comparison with other methods. 

The feasibility to serve the medication distribution through the three pickup approaches 

in real-world implementation can be supported with the following reasons: (1) A lot of CS 

branches have existed in Taiwan, and they enable customers to access the service easily. It 

leads to a huge number of customers who have used the CS pickup service, especially for 

e-commerce. (2) In Taiwan, as compared with CSs, lockers are not the main stream to 
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receive parcels. However, lockers enable customers who live far away from CSs to receive 

parcels through installed lockers. (3) In Taiwan, a company that provides the home delivery 

service for medications has existed. Hence, if one would like to implement other pickup 

facility delivery methods, the home delivery method must be included. Home delivery can 

support customers who lives in places without CSs; and it can support the case that it is not 

worth investing in installing lockers when compared with the home deliver method. (4) 

The only skill that customers require to use the proposed service is to order medications 

through the Internet, i.e., customers only need to upload their prescriptions and make the 

order through an online channel. Generally, most inhabitants in Taiwan can access the 

Internet, and are able to use the Internet for healthcare purposes. For instance, the outpatient 

department in some hospitals requires patients to make an online reservation in advance, 

and hence, they may be familiar with the online healthcare service.  

In the future, this work can be applied to practical case studies with real data. We plan 

to consider more factors affecting the real-world vehicle routing situations, e.g., vehicle 

type, alternative path selection, traffic conditions, and so on. In addition, the customers’ 

satisfaction may be considered in the further framework to choose the delivery method 

which they are satisfied with.  

 

Conclusion 

This work has proposed the medication distribution problem with multiple delivery 

methods: CSs, lockers, and home delivery. Customers can receive medications through 

either CSs, lockers, or customers’ homes. The main contribution of this work is to 
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additionally employ the 24-hour CS pickup service serving customers to receive their 

medications at CSs. Although both CSs and lockers perform similar features as pickup 

facilities, they still have some different characteristics on the facility existence and the 

investment cost. This work further proposes a GA approach to solve the problem. The 

proposed GA can be used to evaluate the effects of the cost when the coverage distance of 

a pickup facility, number of CSs, the contract fee of a CS chain, and the cost of installing 

a locker are changed. In experimental results, various scenarios are created and observed 

when the number of potential locker locations and the number customers are adjusted 

whereas the number of CSs is fixed. Experimental results clearly indicate the effectiveness 

of the proposed GA.  

 

Acknowledgements 

The authors thank the anonymous referees for comments that improved the content as 

well as the presentation of this paper. This work has been supported in part by Ministry of 

Science and Technology, Taiwan, under Grants MOST 106-2221-E-009-101-MY3 and 

MOST 108-2628-E-009-008-MY3. 

 

References 

1. Winge M, Johannesson P, Perjons E, et al. The coordination hub: Toward patient-

centered and collaborative care processes. Health Inform J 2015; 21(4): 284–305. 

2. Hamann DJ, Bezboruah KC. Outcomes of health information technology utilization in 



33 
 

nursing homes: Do implementation processes matter?. Health Inform J 2020: 1-16. 

3. Fathollahi-Fard AM, Govindan K, Hajiaghaei-Keshteli M, et al. A green home health 

care supply chain: New modified simulated annealing algorithms. J Clean Prod 2019; 

240: 118200. 

4. Watson L, Ahmed N, Mccall H, et al. Home delivery of medication - the role of a 

patient information leaflet on maximising service uptake. Int J STD AIDS 2014; 

25(14):1035-1037. 

5. Anosike C, Adibe MO, Isah A, et al. Willingness to pay for pharmacist-provided home 

telemonitoring among patients with chronic diseases in Enugu metropolis. Health 

Inform J 2019: 1-12. 

6. Veenstra M, Roodbergen KJ, Coelho LC, et al. A simultaneous facility location and 

vehicle routing problem arising in health care logistics in the Netherlands. Eur J Oper 

Res 2018; 268(2): 703–715. 

7. Zhou L, Baldacci R, Vigo D, et al. A multi-depot two-echelon vehicle routing problem 

with delivery options arising in the last mile distribution. Eur J Oper Res 2018; 265(2): 

765–778. 

8. Pham TA, Hà MH, Nguyen XH. Solving the multi-vehicle multi-covering tour 

problem. Comput Oper Res 2017; 88: 258–278. 

9. Schneider M, Drexl M. A survey of the standard location-routing problem. Ann Oper 

Res 2017; 259(1-2): 389–414. 

10. Stenger A, Schneider M, Schwind M, et al. Location routing for small package 

shippers with subcontracting options. Int J Prod Econ 2012; 140(2): 702–712. 



34 
 

11. Ghaffari-Nasab N. Ghazanfar Ahari S. Ghazanfari M. A hybrid simulated annealing 

based heuristic for solving the location-routing problem with fuzzy demands. Sci Iran 

2013; 20(3): 919-930. 

12. Hu YP, Zhang KX, Yang J, et al. Application of hierarchical facility location-routing 

problem with optimization of an underground logistic system: A case study in China. 

Math Probl Eng 2018; 1-10. 

13. Drexl M, Schneider M. A survey of variants and extensions of the location-routing 

problem. Eur J Oper Res 2015; 241(2): 283–308. 

14. Zhang B, Li H, Li S, et al. Sustainable multi-depot emergency facilities location-

routing problem with uncertain information. Appl Math Comput 2018; 333: 506–520.  

15. Stenger A, Vigo D, Enz S, et al. An adaptive variable neighborhood search algorithm 

for a vehicle routing problem arising in small package shipping. Transport Sci 2013; 

47(1): 64–80. 

16. Hof J, Schneider M, Goeke D. Solving the battery swap station location-routing 

problem with capacitated electric vehicles using an AVNS algorithm for vehicle-

routing problems with intermediate stops. Transport Res B-Meth 2017; 97: 102–112. 

17. Yu X, Zhou Y, Liu X-F. A novel hybrid genetic algorithm for the location routing 

problem with tight capacity constraints. Appl Soft Comput 2019; 85: 105760. 

18. Capelle T, Cortés CE, Gendreau M, et al. A column generation approach for location-

routing problems with pickup and delivery. Eur J Oper Res 2019; 272(1): 121–131.  

19. Hiassat A, Diabat A, Rahwan I. A genetic algorithm approach for location-inventory-

routing problem with perishable products. J Manuf Syst 2017; 42: 93–103. 



35 
 

20. Fazayeli S, Eydi A, Kamalabadi IN. Location-routing problem in multimodal 

transportation network with time windows and fuzzy demands: Presenting a two-part 

genetic algorithm. Comput Ind Eng 2018; 119: 233–246. 

21. Ahmadi-Javid A, Amiri E, Meskar M. A profit-maximization location-routing-pricing 

problem: A branch-and-price algorithm. Eur J Oper Res 2018; 271(3): 866–881. 

22. Schiffer M, Walther G. The electric location routing problem with time windows and 

partial recharging. Eur J Oper Res 2017; 260(3): 995–1013. 

23. Cuda R, Guastaroba G, Speranza MG. A survey on two-echelon routing 

problems. Comput Oper Res 2015; 55: 185–199. 

24. Breunig U, Schmid V, Hartl RF, et al. A large neighbourhood based heuristic for two-

echelon routing problems. Comput Oper Res 2016; 76: 208–225. 

25. Pichka K, Bajgiran AH, Petering ME, et al. The two echelon open location routing 

problem: Mathematical model and hybrid heuristic. Comput Ind Eng 2018; 121: 97–

112. 

26. Zhu SX, Ursavas E. Design and analysis of a satellite network with direct delivery in 

the pharmaceutical industry. Transp Res E Logist Transp Rev 2018; 116: 190–207. 

27. Marín A, Martínez-Merino LI, Rodríguez-Chía AM, et al. Multi-period stochastic 

covering location problems: Modeling framework and solution approach. Eur J Oper 

Res 2018; 268(2): 432–449. 

28. Farahani RZ, Asgari N, Heidari N, et al. Covering problems in facility location: A 

review. Comput Ind Eng 2012; 62(1): 368–407. 

29. Zarandi MHF, Davari S, Sisakht SAH. The large-scale dynamic maximal covering 



36 
 

location problem. Math Comput Model 2013; 57(3-4): 710–719. 

30. Karaoğlan I, Erdoğan G, Koç Ç. The multi-vehicle probabilistic covering tour 

problem. Eur J Oper Res 2018; 271(1): 278–287. 

31. Nedjati A, Izbirak G, Arkat J. Bi-objective covering tour location routing problem with 

replenishment at intermediate depots: Formulation and meta-heuristics. Comput Ind 

Eng 2017; 110: 191–206. 

32. Naji-Azimi Z, Renaud J, Ruiz A, et al. A covering tour approach to the location of 

satellite distribution centers to supply humanitarian aid. Eur J Oper Res 2012; 222(3): 

596–605. 

33. Flores-Garza DA, Salazar-Aguilar MA, Ngueveu SU, et al. The multi-vehicle 

cumulative covering tour problem. Ann Oper Res 2017; 258: 761–780. 

 

 


