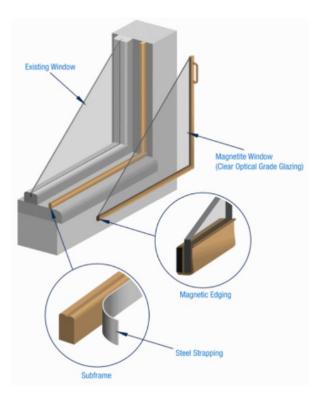
1 **1. Introduction**

Buildings and the building construction sector together represent 36% of the global energy
demand, accounting for nearly 40% of the total global CO₂ emissions (IEA 2019). In Australia,
energy efficiency measures in buildings has the potential to deliver more than one quarter of
the national target to reduce overall emissions by 26-28% on 2005 levels by 2030 (Department
of the Environment and Energy, 2015; Australian Sustainable Built Environment Council,
2016). Accordingly, energy retrofits in existing buildings can play a key role to cut emissions
both globally and in Australia.


9 Windows are an important element of the building envelope, allowing for ventilation and access to daylight (Chen et al., 2015; Shin 2007). Their relatively large surface area, however, creates 10 11 a significant heat flow through conduction, radiation and convection, which can result in energy 12 losses of up to 60% depending on various conditions (Cuce and Riffat 2015; Jelle et al., 2012; 13 Grynning et al., 2013). Windows, on the other hand, can also help save energy by letting solar 14 energy through, reducing the demand for heating and lighting. Several factors impact the energy efficiency of windows, such as their design and orientation, surface area, airtightness and the 15 16 materials used (Cuce 2017; Grynning et al., 2013; Jelle et al., 2012).

Well-designed windows enhance indoor thermal and acoustic comfort and, as a result, improve the health and well-being of building occupants (Menzies and Wherrett 2005). The link between indoor comfort and occupant health and well-being is established in the literature (Bonnefoy et al., 2004; Jantunen et al., 1998; Bluyssen et al., 1995). Poor indoor thermal comfort and lighting can result in the so-called; Sick Building Syndrome (SBS) causing upper-respiratory problems, headaches, fatigue, and rashes (Redlich, Sparer, and Cullen 1997). Good indoor comfort, on the other hand, can lead to positive changes in behavioural patterns¹ of occupants
in relation to occupants' health, well-being and productivity (Nikolopoulou, Baker, and
Steemers 2001; Kolcaba and DiMarco 2005; Ali, Chua, and Lim 2015).

Given the above mentioned benefits they offer, windows are often one of the first elements of a building to be addressed in an energy efficiency retrofit. Although most buildings in Australia have single glazed windows, there is, however, a strong increase in the number of installed double glazed windows (Mediaedge Communication Australia 2009). Double glazed windows, which have two sheets of glazing with a sealed air gap, offer numerous benefits over single glazed windows, such as improved energy efficiency and enhanced thermal, noise and UV control (Bluhm et al., 2007; Menzies and Wherrett 2005; Singh, Garg, and Jha 2008).

Replacing existing windows with new ones, however, could be costly and cause disturbances to occupants during retrofit. Secondary glazing - installing an independent window frame inside of an existing window - has therefore emerged as an easier-to install and lower-cost alternative to double glazing. Figure 1 is an illustration of a window retrofit by using secondary glazed window that is attached to the existing window by magnetic edgings.

¹ Behaviour is defined as 'observable actions or reactions of a person in response to external or internal stimuli, or actions or reactions of a person to adapt to ambient environmental conditions such as temperature or indoor air quality or sunlight' (Chen et al., 2015).

40

Figure 1 – Retrofit with a secondary glazed window with magnetic edgings

(Copyright by Magnetite Australia Pty. Ltd.)

Despite having been used for a relatively long time, particularly on buildings having heritage 41 42 value to preserve the original window frames, there is limited research on secondary glazing in 43 the literature compared to double glazing. The available research, nevertheless shows that secondary glazing not only provides considerable energy savings and energy peak use 44 reduction, but also improves indoor thermal comfort by reduced air infiltration and 45 46 condensation (Kim and Felkner 2018; Fitton et al., 2017; Smith et al., 2012). Reporting on simulations for different secondary glazed windows in four different locations in New Zealand, 47 Smith et al., (2012) and Smith & Isaacs, (2009) found that secondary glazing can improve, 48 49 compared to single glazing, the R-value of a window from 130% through to 290%, depending 50 on the glazing and materials used. An experimental study from the United Kingdom (UK), 51 showed that an eco-friendly PVC sheet could reduce the thermal transmittance of old single glazing windows by up to 57% and provide a higher and more stable indoor air temperature
(Harjunowibowo et al 2019).

Mainly investigating double glazed windows, post-retrofit surveys suggest improved perceived 54 thermal indoor comfort as a result of multi-layered glazing. A post-retrofit study conducted in 55 the UK report showed improved thermal comfort due to reduced draughts after the installation 56 57 of double glazed windows, which minimised the need for occupants to control draughts (Walker, Lowery, and Theobald 2014). Another study from the UK show improved perceived 58 59 enhanced indoor thermal comfort following the installation of double glazed windows as a 60 result of occurrances of extreme temperatures in winter and summer (Chiu et al., 2014). In an Australian context, a study conducted in Victoria, where heat shrink films were used, suggested 61 62 some indoor thermal comfort improvements were achieved, with reduced draughts and more 63 stable indoor temperatures (Sustainability Victoria 2017).

Retrofit secondary glazed windows are marketed on a range of criteria: overall noise reduction (Schomer et al., 1991), thermal improvement, comfort, lower risk of condensation, daylighting potential, extent of air leakage, cost, ease of operation and a general aesthetic effect (Ariosto and Memari 2012). In spite of their recognised benefits, the adoption of such a window system by Australian residents has been low (Sustainability Victoria, 2017). We argue that it is important to measure occupants' perceptions about these windows, not just as a measure of product evaluation but also because of the role of customers in attracting new buyers.

Satisfied and engaged customers are effective product endorsers. Retrofit windows are a durable good, and are regarded as 'high-involvement', in view of the time, interest and effort invested by customers in the pre-purchase search for such products. In view of the financial expense and psychological commitment made, retrofit windows are seen as an important part of the customers' life (Zaichkowsky, 1985). Customers' involvement with the product is viewed as stable and on-going. Consumer behaviour literature recognises such highly involved buyers as possessing greater knowledge about a product category than other customers (Corey, 1971).
These buyers willingly discuss the product with others (Bloch, 1981). Therefore, it may not be
surprising when such involved individuals are called upon to advise others on their purchases
(Price and Feick, 1984). Thus, current users of retrofit windows are potentially strong advocates
for this product category.

There is, however, a gap in the literature about a post-retrofit evaluation of secondary glazing. This research addresses this gap by presenting the results of an online survey completed by 56 respondents who had retrofitted their home with secondary glazed windows in the Australian Capital Territory (ACT) and New South Wales (NSW), Australia.

86 2. Research Methodology

87 This research seeks to ascertain the views and perceptions of home owners and occupants on the levels of comfort following a retrofit of secondary glazing (Patton 2013). The data collection 88 89 method used in this research was a self-administered online survey targeted at occupants living in a property that had been recently retrofitted with secondary glazing. Self-administered online 90 91 surveys are a time- and resource-efficient data collection method (Patton 2013). A larger 92 number of potential respondents could be reached by online surveys compared to other methods 93 of data collection, such as face-to-face surveys, where an administrator would be needed (Yin, 2015). In addition to this, respondents may also prefer to answer online surveys over other 94 95 methods, as they often require less time and planning (Brace 2005).

The online survey used in this study was designed based on best practices and recommendations available in the literature and included multiple-selection, open-ended and 5-point Likert scale questions to collect both quantitative and qualitative data (Brace 2005; Albaum 1997). A list of the survey questions can be found in Annex A. The survey invitation with the link to Google Forms², the online survey administration platform used, was e-mailed to 445 occupants who retrofitted their property with secondary glazed windows in Canberra and Sydney between August 2017 to November 2017. Two reminders were sent to those who did not respond in order to collect further data. A total of 56 respondents, of which 34 were female and 22 were male, answered the survey. Three quarters of the survey respondents lived in a house and the remaining 25% lived in apartment buildings. No other background information about the respondents was collected.

107 **2.1** *Limitations*

Self-administrated surveys can create sampling problems if the respondent does not belong to the target group or, if they answer the survey more than once (Wright 2006). Sampling risks associated with this study in this regard can be considered low given that the list of recipients included only those who were known to have installed secondary glazing panels, and the survey could not be answered multiple times from the same IP address. It is, however, important to note that the respondents could be more likely to respond to the survey if they were satisfied with the retrofits, which has the potential to create sampling bias.

The responses to the survey produced a response rate of 13%. Given the voluntary nature of the online survey - no incentives were offered - a relatively low response rate was expected. According to the literature, low response rates to online surveys do not necessarily impact the validity of the results (Rindfuss et al., 2015; Morton et al., 2012). Considering this, and a quality check of the data already collected, no further reminders were sent to recipients.

120 Another limitation of this study is that the survey data was collected from occupants who were 121 located in a relatively small geographic area and installed secondary glazed windows from the

polyvinylchloride (PVC) clear sheet panels which are retrofitted (internally or externally) to improve energy performance of existing buildings. ² https://www.google.com/forms/

same manufacturer. Furthermore no questions were asked about any variations in performance that may be experienced across different seasons. It is possible that different climatic conditions and varying specifications and quality of the installed secondary glazed systems could influence the occupant perceptions, hence the findings.

126 **3. Findings**

127 The online survey, provided in Annex A, included questions on occupants' experienced indoor 128 comfort and well-being changes post-retrofit, as well as their views on energy efficiency and 129 its perceived economic benefits.

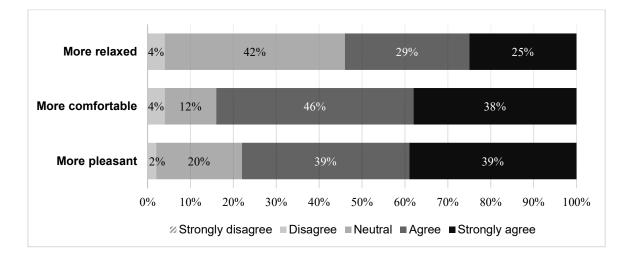
In line with the findings of the studies on the thermal insulation properties of secondary glazed windows, open ended answers provided by some respondents in our study suggest better indoor thermal stability, and; a reduced demand for heating and cooling (Kim and Felkner 2018; Fitton et al., 2017; Harjunowibowo 2019; Smith et al., 2012). One of the respondents commented on this with the following:

135 *"Both heating and cooling times have been reduced. Our air conditioners are rarely used."*

136

Respondent A

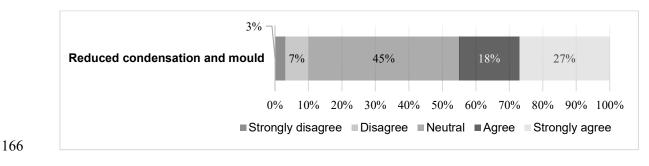
Accordingly, when asked about the impacts of secondary glazed windows on their energy bills,
some respondents reported no changes, while others mentioned that their energy bills had been
reduced. No respondents reported paying higher energy bills post-retrofit.


Enhanced thermal comfort can be expected to influence the overall comfort and satisfaction of building occupants. The results (Figure 2) show that 78% and 84% of the respondents agreed, or strongly agreed, that they live in a more pleasant and comfortable environment, respectively. When asked to elaborate, the respondents associated the improvement in overall comfort with 144 enhanced indoor thermal and acoustic comfort post-retrofit. One respondent explained the145 improved thermal comfort stating:

- 146 *"Less layers of clothing (are) required in cold weather. More comfort in warmer weather."*
- 147

Respondent B

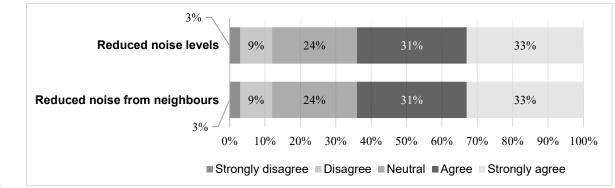
The reported overheating issues with multi-layered glazing in the literature were not evident in the results of our study (Walker, Lowery, and Theobald 2014). It should be, however, pointed out that overheating issues are highly dependent on the climate and the orientation of windows in a building. It is, therefore, not possible to draw conclusions on the overheating impacts of secondary glazing based on the results.



155 Figure 2 - Internal comfort improvement post installation of secondary glazed windows.
156

Double glazed windows can reduce condensation and mould growth (Chiu et al., 2014). When asked if there was less condensation and mould growth following retrofit of secondary glazing systems, 45% of the respondents agreed or strongly agreed (Figure 3). One of the respondents mentioned that they installed secondary glazing specifically to target condensation and mould in one of their rooms. The results also suggest that 45% of the respondents neither agreed, nor

- 162 disagreed, that secondary glazing reduce condensation and mould. This may suggest an absence
- 163 of problems with condensation and mould growth pre-retrofit, but it can also be dependent on
- 164 climatic conditions and building designs and sealings.
- 165


Figure 3 - Condensation and mould reduction post installation of secondary glazed windows.

169

170 Multi-layered glazing was found to provide better acoustic protection from outside noise in several studies (Mishra, Parida, and Rangnekar 2010; Kaiser, Pietrzko, and Morari 2003). The 171 open-ended answers from the survey suggest that secondary glazing provides better acoustic 172 insulation in comparison to single glazed windows by blocking out noise from outside. Nearly 173 174 54% of the respondents agreed or strongly agreed that they lived in a more relaxed environment post-retrofit (Figure 2), which could be related to better noise insulation, as suggested by results 175 presented in Figure 4. This was pointed out by one of the respondents with the comment: "noise 176 177 levels have (been) reduced from neighbours' (houses) which has made it easier to sleep in the mornings and be at home without noise disruptions." 178

179

Respondent C

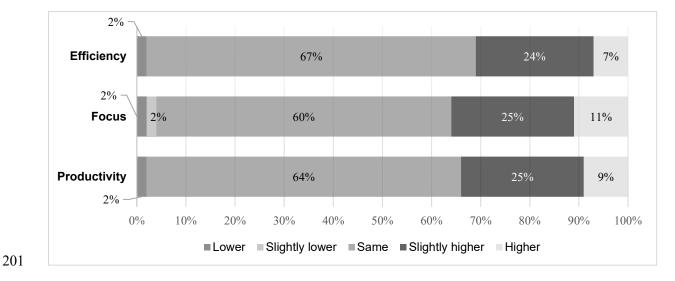


Figure 4 - Noise pollution reduction post installation of secondary glazed windows.

Positive behavioural changes by occupants, such as improved sleep, productivity and focus, as a result of enhanced indoor comfort post-retrofit can be expected based on previous studies in the literature (Bonnefoy et al., 2004; Jantunen et al., 1998; Bluyssen et al., 1995). Around a third of respondents in our study reported improved productivity (34%), ability to focus (36%) and efficiency (31%) post retrofit, as shown in Figure 5. Some respondents reported better sleep post-retrofit as a result of improved sound insulation.

190 Productivity is often studied in the context of office buildings; however, it can also apply to 191 residential cases as people increasingly work from home. The number of employees working from home has increased dramatically as a result of the COVID-19 pandemic, whose impacts 192 193 on working culture could be permanent (Kovar 2020). As a result of this, people may consider 194 retrofit measures that have impacts on overall productivity. It should be noted that productivity may not necessarily be related to work, as it is also common to study at home, spend time on 195 196 hobbies and do housework, such as cleaning and cooking. The results show that only a small percentage of respondents (<4%) felt there was reduced productivity, efficiency and ability of 197 198 focus after the installation of a secondary-glazed window system. It is not known if this is associated with the retrofit or if there were other factors that contributed to this perception. 199

Figure 5 - Ability to focus and think, and personal productivity post installation of secondary glazed windows.

204

Attitudes to energy efficiency and its associated benefits, particularly economic, are important 205 for increasing the rate of building retrofits. Several questions were included in the online survey 206 207 to investigate the perceptions and attitudes of the survey respondents on energy efficiency. The 208 results (Table I) suggest a high level of awareness for energy efficiency, with over 90% of the 209 respondents who strongly agreed or agreed that "responding to an energy conservation 210 program is a good idea" and, that; "in Australia, there is a strong need to conserve energy". In addition, nearly all respondents either strongly agreed (70%) or agreed (27%) that "everyone 211 212 has a role to play in energy conservation" (Table 1), indicating that energy efficiency is 213 considered a shared responsibility. The high level of awareness for energy issues identified in 214 our study, however, could be related to the fact that the occupants have decided on the retrofit 215 themselves, compared to for example cases of retrofit in public housing.

On the perceived benefits of secondary glazing, a vast majority of the respondents in our study strongly agreed or, agreed that; "*additional insulation is worth the effort*" and, "*products that reduce energy use are worth investing in*", as presented in Table 1. The results reflect a high level of satisfaction with the retrofit, as nearly 8 out of 10 respondents thought that installing secondary glazed windows increased the value of their property (Figure 6). It indicates that the respondents consider the additional windowpane as something that would add value to their property and not the opposite, showing that secondary glazing is considered to be low-risk from a property value perspective. In addition, 77% of the respondents find it likely or very likely that they would get their new house retrofitted with secondary-glazing if they had to move to a new property, which could be interpreted as a strong sign of satisfaction with the retrofit with secondary glazing.

227

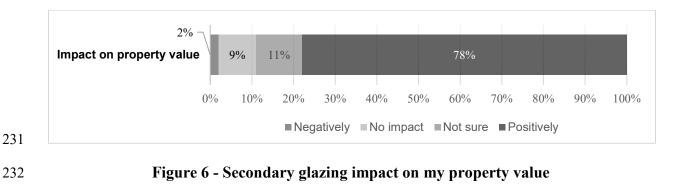

	Strongly disagree (%)	Disagree (%)	Neutral (%)	Agree (%)	Strongly agree (%)
In Australia, there is a strong need to conserve energy	0	4	0	25	71
Everyone has a role to play in energy conservation	0	0	3	27	70
Responding to an energy conservation program is a good idea	0	0	4	23	73
Products that reduce energy use are worth investing in	0	0	5	18	77
Additional insulation is worth the extra effort	0	3	2	18	77

Table I - Energy conversation attitudes; need to conserve, roles, conservation is good,

229

worth investing in and installing insulation.

230

233

234 Conclusions

The literature shows that energy retrofits to residental property offers the opportunity to reduce energy consumption and greenhouse gas emissions and to improve thermal comfort. Furthermore a considerable amount of energy leaks from poorly sealed single glazed windows and retrofitting with secondary glazing offers added benefits of reducing external noise pollution. Whilst evidence has been gained from studies outside of Australia of these benefits, they are not widely known or adopted in Australia. This research sought to acertain the views of building occupants who had retrofitted secondary glazing to their homes.

242

Based on a post-retrofit online survey answered by 56 respondents from Australia, this research
addresses a knowledge gap by reporting on occupant perceptions of secondary glazed windows.
The key findings from this study are as follows:

- More than 8 out of 10 respondents agree that their residence was more comfortable post 247 retrofit.
- Most respondents felt that retrofitting with secondary glazing improved their wellbeing
 through better sleep, noise insulation and thermal comfort.
- Regarding energy efficiency awareness, 95% of respondents were willing to invest in
 products to reduce energy use.
- Approximately 79% stated that the new window systems had a positive impact on their property value. Nearly 77% of the respondents found it likely or, very likely, that they would get their new property retrofitted with secondary-glazing if they had to move.

Based on the results it can be posited that retrofitting existing windws with secondary glazing is considered a low-risk energy efficiency measure that significantly improves indoor comfort, through enhanced thermal and acoustic insulation. In the light of our results and the documented thermal insulation properties of secondary glazed windows in the literature, secondary glazed windows can be promoted as an viable alternative to double glazed windows in retrofits. They 260 can be particularly useful for retrofits where installing double glazed windows may not be 261 possible for various reasons, such as high costs and inconveniences associated with the 262 replacement of the window frames or heritage listing.

This study is a first attempt to evaluate post-retrofit occupant satisfaction with secondary glazed 263 windows in Australia. Although the results of this study indicate a high level of occupant 264 satisfaction post-retrofit, the survey data was collected from a limited geopraphical area with a 265 relatively similar climate. There is, therefore, a need for further research on post-retrofit 266 267 evaluations of secondary glazed windows in various climates to draw conclusions on their perceived thermal and acoustic insulation properties and health and well-being benefits. 268 Nevertheless, this study contributes to the further use of secondary glazed windows by 269 270 informing policy-makers, market actors and occupants on their benefits.

271 Funding

This work was supported by Magnetite Australia Pty Ltd, which provided access to the e-mail addresses of the respondents. The funder has not influenced the research design, data collection and the findings of this study and was not involved in the submission of this article.

275

276

277

278

279

281 Appendix A.

282		Survey Questions
283	1.	Gender:
284	-	Male
285	-	Female
286	-	Prefer not to say
287	-	Other:
288	2.	Do you live in a:
289	-	House
290	-	Unit
291	-	Townhouse
292	-	Other:
293	3.	Age:
294	4.	Occupation:
295	5.	When did you retrofit your window(s) with secondary glazing?
296	6.	How many rooms did you retrofit with secondary glazing?
297	7.	Which rooms were retrofitted?

298	8. Since installation	on of your do	ouble-glazed windows,	how much is yo	our average energy
299	bill in winter?				
300	9. Since installation	on of your do	ouble-glazed windows,	how much is yo	our average energy
301	bill in summer	?			
302	10. Since installation	on of your se	condary glazed window	vs, to what exte	nt do you agree with
303	the statements	below?			
304	It is more pleasant				
305	Strongly disagree				Strongly agree
306	1	2	3	4	5
307	It is more relaxing				
308	Strongly disagree				Strongly agree
309	1	2	3	4	5
310	It is more comfortable				
311	Strongly disagree				Strongly agree
312	1	2	3	4	5
313					

314 11. To what extent do you agree with the following statements?

315	Since installation of seco	ondary glazed wind	lows, the noise lev	el in my ho	use/building has
316	reduced				
317	Strongly disagree				Strongly agree
318	1	2	3	4	5
319	Since installation of seco	ondary glazed wind	lows, any sounds f	rom the nei	ghbours' house have
320	reduced				
321	Strongly disagree				Strongly agree
322	1	2	3	4	5
323	Secondary glazed windo	ows help reduce con	ndensation and mo	uld in the b	uilding
324	Strongly disagree				Strongly agree
325	1	2	3	4	5
326	12. Since installation	n of the secondary g	glazed windows: H	low would y	you rate your
327	personal product	ivity?			
328	Lower than before				Higher than before
329	1	2	3	4	5
330	How would you rate you	ar ability to focus a	nd think?		
331	Lower than before				Higher than before
332	1	2	3	4	5

333	How would you rate yo	our contribu	ution to a piece of work?		
334	Lower than before				Higher than before
335	1	2	3	4	5
336	How would you rate ye	our overall	efficiency?		
337	Lower than before				Higher than before
338	1	2	3	4	5
339	13. To what extent	do you agr	ee with the following sta	tements?	
340	In Australia, there is a	strong need	l to conserve energy		
341	Strongly disagree				Strongly agree
342	1	2	3	4	5
343					
344	Everyone has a role to	play in ene	rgy conservation		
345	Strongly disagree				Strongly agree
346	1	2	3	4	5
347	Responding to an energy	gy conserva	ation program is a good i	dea	
348	Strongly disagree				Strongly agree
349	1	2	3	4	5

			_		
351	Strongly disagree				Strongly agree
352	1	2	3	4	5
353	Putting additional ins	sulation in a hor	ne is worth the extra e	effort	
354	Strongly disagree				Strongly agree
355	1	2	3	4	5
356	14. How do you t	hink the second	lary glazed windows l	have impacted of	on the value of your
357	property?				
358	- Positively				
359	- Negatively				
360	- No impact				
361	- Not sure				
362	15. If you had to	move house, h	ow likely is it that you	ı would get you	r new house
363	retrofitted wit	h secondary-gla	azing?		
364	Not at all likely				Very likely
365	1	2	3	4	5
366	16. Due to the wi	ndow installatio	on, has there been a ch	nange in any of	the following
367	(choose as ma	any as are releva	ant, and explain):		

Products that reduce energy use are worth investing in

368	•	Garments/ dress while in-doors
369	•	Food consumption
370	•	Amount of drinks consumed
371	•	Sleeping
372	•	Entertaining
373	•	Working from home
374	Please expla	ain in what way have any of the above-ticked behaviours changed?
375		
376		
377		
378		
379		
380		
381		
382		
383		
384		

References

386	Albaum, Gerald. 1997. "The Likert Scale Revisited." Market Research Society. Journal.
387	Volume 39. pp. 1-21 https://doi.org/10.1177/147078539703900202.
388	Ali, Azlan Shah, Shirley Jin Lin Chua, and M. E.L. Lim. 2015. "The Effect of Physical
389	Environment Comfort on Employees' Performance in Office Buildings: A Case Study of
390	Three Public Universities in Malaysia." Structural Survey. Volume 33, pp- 294-308
391	https://doi.org/10.1108/SS-02-2015-0012.
392	Ariosto, T., & Memari, A. M. (2012). State-of-the-art review of window retrofit options for
393	energy saving in single family dwellings. In 1st Residential Building Design &
394	Construction Conference, Bethlehem, United States.
395	Australian Sustainable Built Environment Council. 2016. "Low Carbon, High Performance."
396	available at: https://www.asbec.asn.au/research-items/low-carbon-high-performance-report/
397	(accessed 26 September 2020)
398	Bloch, P. H. (1981). An exploration into the scaling of consumers' involvement with a product
399	class. ACR North American Advances.
400	Bluhm, Gösta Leon, Niklas Berglind, Emma Nordling, and Mats Rosenlund. 2007. "Road
401	Traffic Noise and Hypertension." Occupational and Environmental Medicine. Volume
402	64, pp. 122-126 https://doi.org/10.1136/oem.2005.025866.
403	Bluyssen, Philo, Eduardo De Oliveira Fernandes, P O Fanger, L Groes, G Glausen, Claude-
404	Alain Roulet, CA Bernhard, and O Valbjorn. 1995. "European Audit Project to
405	Optimize Indoor Air Quality and Energy Consumption in Office Buildings," available at:
406	https://www.researchgate.net/publication/37460762_European_audit_project_to_optimize_indoo

407	r_air_quality_and_energy_consumption_in_office_buildings (accessed 27 September 2020)
408	Bonnefoy, Xavier, 2007. "Inadequate Housing and Health," International Journal of
409	Environment and Pollution. Volume 30, pp. 411-429,
410	https://doi.org/10.1504/IJEP.2007.014819
411	Brace, Ian. 2005. "Questionnaire Design: How to Plan, Structure and Write Survey Material
412	for Effective Market Research." Choice Reviews Online.
413	https://doi.org/10.5860/choice.42-3520.
414	Chen, Shuqin, Weiwei Yang, Hiroshi Yoshino, Mark D. Levine, Katy Newhouse, and Adam
415	Hinge. 2015. "Definition of Occupant Behavior in Residential Buildings and Its
416	Application to Behavior Analysis in Case Studies." Energy and Buildings. Volume 104,
417	1 October 2015, Pages 1-13, https://doi.org/10.1016/j.enbuild.2015.06.075.
418	Chiu, Lai Fong, Robert Lowe, Rokia Raslan, Hector Altamirano-Medina, and Jez Wingfield.
419	2014. "A Socio-Technical Approach to Post-Occupancy Evaluation: Interactive
420	Adaptability in Domestic Retrofit." Building Research and Information. Volume 42, pp
421	574-590 https://doi.org/10.1080/09613218.2014.912539.
422	Corey, L. G. (1971). People who claim to be opinion leaders: identifying their characteristics
423	by self-report. Journal of Marketing, 35(4), 48-53.
424	Cuce, Erdem. 2017. "Role of Airtightness in Energy Loss from Windows: Experimental
425	Results from in-Situ Tests." Energy and Buildings. Volume 139, 15 March 2017, Pages
426	449-455 https://doi.org/10.1016/j.enbuild.2017.01.027.
427	Cuce, Erdem, and Saffa B Riffat. 2015. "Vacuum Tube Window Technology for Highly
428	Insulating Building Fabric: An Experimental and Numerical Investigation." Vacuum

429	Volume 111: Pages 83–91. https://doi.org/https://doi.org/10.1016/j.vacuum.2014.10.002.
430	Department of the Environment and Energy. 2015. "Australia's 2030 Climate Change
431	Target." 2015. available at: https://www.environment.gov.au/climate-
432	change/publications/factsheet-australias-2030-climate-change-target. (accessed 26
433	September 2020)
434	Errett, Jessica, Erica E. Bowden, Marc Choiniere, and Lily M. Wang. 2006. "Effects of Noise
435	on Productivity: Does Performance Decrease over Time?" In AEI 2006: Building
436	Integration Solutions - Proceedings of the 2006 Architectural Engineering National
437	Conference. https://doi.org/10.1061/40798(190)18.
438	Fitton, Richard, Will Swan, Tara Hughes, and Moaad Benjaber. 2017. "The Thermal
439	Performance of Window Coverings in a Whole House Test Facility with Single-Glazed
440	Sash Windows." <i>Energy Efficiency</i> Volume 10 (6), pp. 1419–1431.
441	https://doi.org/10.1007/s12053-017-9529-0.
442	Grynning, Steinar, Arild Gustavsen, Berit Time, and Bjørn Petter Jelle. 2013. "Windows in
443	the Buildings of Tomorrow: Energy Losers or Energy Gainers?" Energy and Buildings
444	Volume 61, Pages 185–192.
445	https://doi.org/https://doi.org/10.1016/j.enbuild.2013.02.029.
446	Harjunowibowo, D., Prasetyo, R.A., Ahmadi, F., Rahman, T., Wirabuana, R.N., &
447	Zeinelabdein, R. (2019). "Improving Thermal Performance of Dwelling Single Glass
448	Windows Using Secondary Glazing in the UK". International Journal on Advanced
449	Science, Engineering and Information Technology, Volume 9, pp. 1148-1153.
450	IEA. 2019. "Energy Efficiency : Buildings." 2019. available at:

Jantunen, Matti J., Otto Hänninen, Klea Katsouyanni, Helmut Knöppel, Nino Kuenzli, Erik 452 453 Lebret, Marco Maroni, Kristina Saarela, Radim Srám, and Denis Zmirou. 1998. "Air 454 Pollution Exposure in European Cities: The 'EXPOLIS' Study." Journal of Exposure Analysis and Environmental Epidemiology. Volume 8, pp. 495-518 455 456 Jelle, Bjørn Petter, Andrew Hynd, Arild Gustavsen, Dariush Arasteh, Howdy Goudey, and Robert Hart. 2012. "Fenestration of Today and Tomorrow: A State-of-the-Art Review 457 and Future Research Opportunities." Solar Energy Materials and Solar Cells Volume 458 459 96, pp. 1–28. https://doi.org/https://doi.org/10.1016/j.solmat.2011.08.010. 460 Jones, Phil, Joanne Patterson, and Simon Lannon. 2007. "Modelling the Built Environment at an Urban Scale-Energy and Health Impacts in Relation to Housing." Landscape and 461 Urban Planning. https://doi.org/10.1016/j.landurbplan.2007.05.015. 462 Kaiser, O. E., S. J. Pietrzko, and M. Morari. 2003. "Feedback Control of Sound Transmission 463 464 through a Double Glazed Window." Journal of Sound and Vibration. Volume 263, pp. 775-795 https://doi.org/10.1016/S0022-460X(02)01259-2. 465 Kim, Donghwan, and Juliana Felkner. 2018. "A Sustainable Approach to the Adaptive Reuse 466 of Historic Brick Buildings: Analysis of Energy Efficiency Strategies for Historic Facade 467 468 Retrofits." In Healthy, Intelligent, and Resilient Buildings and Urban Environments, pp. 145-150. Syracuse, NY: International Building Physics Association, 2018. 469 470 https://doi.org/10.14305/ibpc.2018.be-7.01.

Kolcaba, Katharine, and Marguerite A. DiMarco. 2005. "Comfort Theory and Its Application
to Pediatric Nursing." *Pediatric Nursing*. Volume 31. pp. 187-194

473	Kovar, Joseph F. 2020. "Some May Work From Home Permanently After COVID-19:
474	Gartner." CRN, 2020. available at: https://www.crn.com/news/running-your-
475	business/some-may-work-from-home-permanently-after-covid-19-gartner?itc=refresh.
476	(accessed 26 September 2020)
477	Mediaedge Communication Australia. 2009. "We Can See Clearly Now." Excellence in
478	Construction and Design Award - Volume 2 Number 8, 2009.
479	Menzies, G. F., and J. R. Wherrett. 2005. "Windows in the Workplace: Examining Issues of
480	Environmental Sustainability and Occupant Comfort in the Selection of Multi-Glazed
481	Windows." Energy and Buildings. Volume 37, pp. 623-630
482	https://doi.org/10.1016/j.enbuild.2004.09.012.
483	Mishra, R. K., M. Parida, and S. Rangnekar. 2010. "Evaluation and Analysis of Traffic Noise
484	along Bus Rapid Transit System Corridor." International Journal of Environmental
485	Science and Technology. Volume 7, pp. 737-750 https://doi.org/10.1007/BF03326183.
486	Morton, Susan M.B., Dinusha K. Bandara, Elizabeth M. Robinson, and Polly E. Atatoa Carr.
487	2012. "In the 21st Century, What Is an Acceptable Response Rate?" Australian and New
488	Zealand Journal of Public Health.Volume 36, pp. 106-108
489	https://doi.org/10.1111/j.1753-6405.2012.00854.x.
490	Nikolopoulou, Marialena, Nick Baker, and Koen Steemers. 2001. "Thermal Comfort in
491	Outdoor Urban Spaces: Understanding the Human Parameter." Solar Energy. Volume
492	70, pp. 227-235 https://doi.org/10.1016/S0038-092X(00)00093-1.
493	Price, L. L., & Feick, L. F. (1984). The role of interpersonal sources in external search: An
494	informational perspective. ACR North American Advances.

- 495 Redlich, Carrie A, Judy Sparer, and Mark R Cullen. 1997. "Sick-Building Syndrome." The
- 496 *Lancet* Volume 349 (9057), pp. 1013–1016.
- 497 https://doi.org/https://doi.org/10.1016/S0140-6736(96)07220-0.
- 498 Rindfuss, Ronald R., Minja K. Choe, Noriko O. Tsuya, Larry L. Bumpass, and Emi Tamaki.
- 499 2015. "Do Low Survey Response Rates Bias Results? Evidence from Japan."
- 500 Demographic Research.Volume 32, pp 797-828
- 501 https://doi.org/10.4054/DemRes.2015.32.26.
- 502 Schomer, P. D., Buchta, E., & Hirsch, K. W. (1991). Decibel annoyance reduction of low-
- frequency blast attenuating windows. *The Journal of the Acoustical Society of America*, 89(4),
 1708-1713.
- 505 Shin, Won Sop. 2007. "The Influence of Forest View through a Window on Job Satisfaction
- and Job Stress." *Scandinavian Journal of Forest Research*. Volume 22, 08 May 2007,
- 507 Pages 248-253 https://doi.org/10.1080/02827580701262733.
- 508 Singh, M. C., S. N. Garg, and Ranjna Jha. 2008. "Different Glazing Systems and Their Impact
- on Human Thermal Comfort-Indian Scenario." *Building and Environment*. Volume 41,
- 510 pp. 1596-1602 https://doi.org/10.1016/j.buildenv.2007.10.004.
- 511 Smith, Nick, and Nigel Isaacs. 2009. "A Cost Benefit Analysis of Secondary Glazing as a
- 512 Retrofit Alternative for New Zealand Households." available at:
- 513 <u>https://researcharchive.vuw.ac.nz/xmlui/handle/10063/1248</u> (accessed 26 September 2020)
- 514 Smith, Nick, Nigel Isaacs, John Burgess, and Ian Cox-Smith. 2012. "Thermal Performance of
- 515 Secondary Glazing as a Retrofit Alternative for Single-Glazed Windows." *Energy and*
- 516 *Buildings* Volume 54, pp. 47–51.
- 517 https://doi.org/https://doi.org/10.1016/j.enbuild.2012.07.038.

518	Sustainability Victoria. 2017. "Window Film Secondary Glazing Retrofit Trial." available at:
519	https://www.sustainability.vic.gov.au/About-us/Publications/Retrofit-Trial-Window-
520	Film-Secondary-Glazing. (accessed 26 September 2020)
521	Walker, S. L., D. Lowery, and K. Theobald. 2014. "Low-Carbon Retrofits in Social Housing:
522	Interaction with Occupant Behaviour." Energy Research and Social Science. Volume 2,
523	pp. 102-114 https://doi.org/10.1016/j.erss.2014.04.004.
524	Wright, Kevin B. 2006. "Researching Internet-Based Populations: Advantages and
525	Disadvantages of Online Survey Research, Online Questionnaire Authoring Software
526	Packages, and Web Survey Services." Journal of Computer-Mediated Communication.
527	Volume 10, https://doi.org/10.1111/j.1083-6101.2005.tb00259.x.
528 529 530	Yin, R.K., 2015. Qualitative research from start to finish. Guilford publications.
530 531	Zaichkowsky, J. L. 1985. Measuring the invovlement construct. Journal of Consumer
532	Research, Volume 12, Issue 3, December 1985, Pages 341–352,