Suppression and Reversal of Cigarette Smoke-Induced Inflammasome Activation/Activity and Lung Injury by Novel Mitochondria-Targeted Sulfide Delivery Molecules

M. Whiteman¹, D. Pacitti¹, A. Brown², R. Torregrossa¹, L. Balachandran¹, V. Kumar², N. Hansbro³, M. E. Wood⁴, T. J. Haw², C. Scotton¹, P. M. Hansbro³; ¹University of Exeter Medical School, Exeter, United Kingdom, ²Hunter Medical Research Institute, University of Newcastle, Newcastle, Australia, ³Centenary Institute, University of Technology Sydney, Sydney, Australia, ⁴Biosciences, University of Exeter, Exeter, United Kingdom.

Corresponding author's email: m.whiteman@exeter.ac.uk

RATIONALE: The major risk factor in the development of chronic obstructive pulmonary disease (COPD) is cigarette smoke (CS) with \sim 50% of smokers developing the disease. Thus, interventions to prevent/reverse CS-induced lung damage offer a novel treatment option in COPD and related lung diseases. CS has very recently been shown to deplete lung levels of the newly identified endogenous anti-inflammatory signalling molecule, hydrogen sulfide (H₂S). Lung/sputum H₂S levels negatively correlate with smoking pack years, are depleted in COPD, and further lowered after CS exposure. During oxidative stress (such as occurs in the COPD lung, or after CS exposure) H₂S-synthesising enzymes translocate to mitochondria and H₂S stimulates ATP synthesis, inducing cytoprotective mechanisms and indicating mitochondrial H₂S is beneficial to the lung in regulating cellular bioenergetics. Pharmacological inhibition or genetic silencing of endogenous H₂S synthesising enzymes exacerbates lung inflammation, mitochondrial damage and oxidative injury indicating that impairment of H₂S synthesis and/or loss of H₂S bioavailability is detrimental in COPD and negatively impacts on mitochondrial health. METHODS: We have investigated whether novel slow release selective mitochondriatargeted H₂S delivery molecules (mtH₂SD) we have developed (e.g. AP39 and RT01) could suppress and/or reverse CS-induced inflammation and lung injury. To examine the effects of mtH₂SD on suppressing COPD development, female C57BI/6 mice were exposed to CS (12 cigarettes, b.i.d, 5 days/week) or air for 8 weeks with (1.0 mg/kg i.p.,q.d.). The effects of mtH₂SD on reversing CS-induced lung inflammation and remodelling were also assessed: mice were exposed to CS for 8 weeks as described above followed by either 4 weeks of rest or continued CS exposure, each with mtH₂SD (1.0 mg/kg i.n.,q.d.). Airway inflammation was assessed by differential enumeration of inflammatory cells in bronchoalveolar lavage fluid (BALF) and BALF IL-1ß levels determined by ELISA. Lung function was assessed by forced oscillation and forced manoeuvre techniques. RESULTS: CS exposure lowered lung H_2S levels and induced inflammasome activity. mtH₂SD significantly (p<0.05) suppressed CS-induced alveolar destruction, fibrosis and improved lung gas exchange (DF_{CO}). Administration of mtH₂SD to mice with experimental COPD (at 8 weeks), reversed CS-induced lung neutrophil, eosinophil and macrophage infiltration, loss of lung function, and partially reversed airway resistance in both

continued smoking and after rest models. CONCLUSIONS: Targeting H₂S to mitochondria may be a novel therapeutic approach to prevent and/or reverse mitochondria-driven inflammation and lung injury in COPD and related diseases.

This abstract is funded by: Medical Research Council (UK); National Health and Medical Research Council (Australia)

Am J Respir Crit Care Med 2020;201:A2543 Internet address: www.atsjournals.org

Online Abstracts Issue