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1. Introduction

The use of fingerprints for identification purposes boasts worldwide adoption for a large

variety of applications, from governance centric applications such as border control to

personalised uses such as electronic device authentication. In addition to being an

inexpensive and widely used form of biometric for authentication systems, fingerprints are

also recognised as an invaluable biometric for forensic identification purposes such as law

enforcement and disaster victim identification. Since the very first forensic applications,

fingerprints have been utilised as one of the most commonly used form of forensic evidence

worldwide.

Applications of fingerprint identification are founded on the intrinsic characteristics of the

friction ridge arrangement present at the fingertips, which can be generally classified at

different levels or resolutions of detail (Figure 1). Generally speaking, fingerprint patterns

can be described as numerous curved lines alternated as ridges and valleys that are largely

regular in terms orientation and flow, with relatively few key locations being of exception

(singularities). A closer examination reveals a more detail rich feature set allowing for greater

discriminatory analysis. In addition, analysis of local textural detail such as ridge shape,

orientation, and frequency, have been used successfully in fingerprint matching algorithms

as primary features [1] [2] or in conjunction with other landmark-based features [3].

Both biometric and forensic fingerprint identification applications rely on premises that such

fingerprint characteristics are highly discriminatory and immutable amongst the general

population. However, the collectability of such fingerprint characteristics from biometric

scanners, ink rolled impressions, and especially, latent marks, are susceptible to adverse

factors such as partiality of contact, variation in detail location and appearance due to skin

elasticity (specifically for level 2 and 3 features) and applied force, environmental noises such
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Figure 1. Level 1 features include features such as pattern class (a), singularity points and ridge frequency (b). Level 2 features

(c) include minutiae with primitive types ridge endings and bifurcations. Level 3 features (d) include pores (open/closed) and

ridge shape. These fingerprints were sourced from the FVC2002 [47], NIST4 [46], and NIST24 [48] databases

as moisture, dirt, slippage, and skin conditions such as dryness, scarring, warts, creases, and

general ageing. Such influences generally act as a hindrance for identification, reducing both

the quality and confidence of assessing matching features between impressions (Figure 2).

In this chapter, we will firstly discuss the current state of forensic fingerprint identification
and how models play an important role for the future, followed by a brief introduction
and review into relevant statistical models. Next, we will introduce a Likelihood Ratio (LR)
model based on Support Vector Machines (SVMs) trained with features discovered via the
morphometric and other spatial analyses of matching minutiae for both genuine and close
imposter (or match and close non-match) populations typically recovered from Automated
Fingerprint Identification System (AFIS) candidate lists. Lastly, experimentation performed
on a set of over 60,000 publicly available fingerprint images (mostly sourced from NIST
and FVC databases) and a distortion set of 6,000 images will be presented, illustrating that
the proposed LR model is reliably guiding towards the right proposition in the identification
assessment for both genuine and high ranking imposter populations, based on the discovered
distortion characteristic differences of each population.
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Figure 2. Examples of different fingerprint impressions, including an ink rolled print (a), latent mark (b), scanned fingerprint

flats of ideal quality (c), dry skin (d), slippage (e), and over saturation (f). Fingerprints are sourced from the NIST 27 [48],

FVC2004 [51], and our own databases.

1.1. Forensic fingerprint identification

Historically, the forensic identification of fingerprints has had near unanimous acceptance as
a gold standard of forensic evidence, where the scientific foundations of such testimonies
were rarely challenged in court proceedings. In addition, fingerprint experts have
generally been regarded as expert witnesses with adequate training, scientific knowledge,
relevant experience, and following a methodical process for identification, ultimately giving
credibility to their expert witness testimonies.

Fingerprint experts largely follow a friction ridge identification process called ACE-V
(Analysis, Comparison, Evaluation, and Verification) [5] to compare an unknown fingermark
with known fingerprint exemplars. The ACE-V acronym also details the ordering of the
identification process (Figure 3). In the analysis stage, all visible ridge characteristics (level
1, 2, and 3) are noted and assessed for reliability, while taking into account variations caused
by pressure, distortion, contact medium, and development techniques used in the laboratory.
The comparison stage involves comparing features between the latent mark and either the
top n fingerprint exemplars return from an AFIS search, or specific pre-selected exemplars.
If a positive identification is declared, all corresponding features are charted, along with
any differences considered to be caused by environmental influence. The Evaluation
stage consists of an expert making an inferential decision based on the comparison stage
observations. The possible outcomes [6] are:

• exclusion: a discrepancy of features are discovered so it precludes the possibility of a
common source,

• identification: a significant correspondence of features are discovered that is considered
to be sufficient in itself to conclude to a common source, and

• inconclusive: not enough evidence is found for either an exclusion or identification.

The Verification stage consists of a peer review of the prior stages. Any discrepancies in
evaluations are handled by a conflict resolution procedure.

Identification evaluation conclusions [7] made by fingerprint experts have historical influence
from Edmond Locard’s tripartite rule [8]. The tripartite rule is defined as follows:
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Figure 3. Flowchart of modern ACE-V process used in conjunction with AFIS. The iterative comparison of each exemplar

fingerprint in the AFIS candidate list is performed until identification occurs or no more exemplars are left. The red flow lines

indicate the process for the verification stage analysis. The purple flow line from the agreement of features test shows the ACE

process that skips the evaluation stage.

• Positive identifications are possible when there are more than 12 minutiae within sharp
quality fingermarks.

• If 8 to 12 minutiae are involved, then the case is borderline. Certainty of identity will
depend on additional information such as finger mark quality, rarity of pattern, presence
of the core, delta(s), and pores, and ridge shape characteristics, along with agreement by
at least 2 experts.

• If a limited number of minutiae are present, the fingermarks cannot provide certainty
for an identification, but only a presumption of strength proportional to the number of
minutiae.

Holistically, the tripartite rule can be viewed as a probabilistic framework, where the
successful applications of the first and second rules are analogous to a statement with 100%
certainty that the mark and the print share the same source, whereas the third rule covers
the probability range between 0% to 100%. While some jurisdictions only apply the first
rule to set a numerical standard within the ACE-V framework, other jurisdictions (such as
Australia, UK, and USA [9]) adopt a holistic approach, where no strict numerical standard
or feature combination is prescribed. Nevertheless, current fingerprint expert testimony is
largely restricted to conclusions that convey a statement of certainty, ignoring the third rule’s
probabilistic outcome.
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1.2. Daubert and criticisms

Recently, there has been a number of voiced criticisms on the scientific validity of forensic
fingerprint identification [10] [11] [12] [13] [14] [15]. Questions with regards to the scientific
validity of forensic fingerprint identification began shortly after the Daubert case [17]. In the
1993 case of Daubert v. Merrell Dow Pharmaceuticals [18] the US Supreme Court outlined
criteria concerning the admissibility of scientific expert testimony. The criteria for a valid
scientific method given were as follows:

• must be based on testable and falsifiable theories/techniques,

• must be subjected to peer-review and publication,

• must have known or predictable error rates,

• must have standards and controls concerning its applications, and

• must be generally accepted by a relevant scientific community.

The objections which followed [13] [14] [15] from a number of academic and legal
commentators were:

• the contextual bias of experts for decisions made within the ACE-V (Analysis,
Comparison, Evaluation, and Verification) framework used in fingerprint identification

• the unfounded and unfalsifiable theoretical foundations of fingerprint feature
discriminability, and

• the ‘unscientific’ absolute conclusions of identification in testimonies (i.e., either match,
non-match, or inconclusive).

There have been a number of studies [16] over the last 5 years concerning contextual bias and
the associated error rates of ACE-V evaluations in practice. The experiments reported by [19]
led to conclusions that experts appear more susceptible to bias assessments of ‘inconclusive’
and ‘exclusion’, while false positive rates are reasonably low within simulation of the ACE-V
framework. It has also been suggested from results in [20] and [21] that not all stages
of ACE-V are equally vulnerable to contextual bias, with primary effects occurring in the
analysis stage, with proposals on how to mediate such variability found in [22]. While
contextual bias is solely concerned with the influence of the expert, the remaining criticisms
can be summarised as the non-existence of a scientifically sound probabilistic framework for
fingerprint evidential assessment, that has the consensual approval from the forensic science
community.

The theoretical foundations of fingerprint identification primarily rest on rudimentary
observational science, where a high discriminability of feature characteristics exists.
However, there is a lack of consensus regarding quantifiable error rates for a given pair of
’corresponding’ feature configurations [23]. Some critics have invoked a more traditional
interpretation for discriminability [24] [25], claiming that an assumption of ‘uniqueness’
is used. This clearly violates the falsifiable requirement of Daubert. However, it has
been argued that modern day experts do not necessarily associate discriminability with
uniqueness [26]. Nevertheless, a consensus framework for calculating accurate error rates
for corresponding fingerprint features needs to be established.
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1.3. Role of statistical models

While a probabilistic framework for fingerprint comparisons has not been historically
popular and was even previously banned by professional bodies [8], a more favourable
treatment within the forensic community is given in recent times. For example, the IAI
have recently rescinded their ban on reporting possible, probable, or likely conclusions [27]
and support the future use of valid statistical models (provided that they are accepted as
valid by the scientific community) to aid the practitioner in identification assessments. It
has also been suggested in [28] that a probabilistic framework is based on strong scientific
principles unlike the traditional numerical standards.

Statistical models for fingerprint identification provide a probabilistic framework that can
be applied to forensic fingerprint identification to create a framework for evaluations, that
do not account for the inherent uncertainties of fingerprint evidence. Moreover, the use of
such statistical models as an identification framework helps answer the criticisms of scientific
reliability and error rate knowledge raised by some commentators. For instance, statistical
models can be used to describe the discriminatory power of a given fingerprint feature
configuration, which in hand can be used to predict and estimate error rates associated
with the identification of specific fingerprint features found in any given latent mark.

Statistical models could potentially act as a tool for fingerprint practitioners with evaluations
made within the ACE-V framework, specifically when the confidence in identification or
exclusion is not overtly clear. However, such applications require statistical models to be
accurate and robust to real work scenarios.

2. Likelihood Ratio models

A likelihood ratio (LR) is a simple yet powerful statistic when applied to a variety of forensic
science applications, including inference of identity of source for evidences such as DNA [29],
ear-prints [30], glass fragments [31], and fingerprints [32] [33] [34] [35]. An LR is defined as
the ratio of two likelihoods of a specific event occurring, each of which follow a different prior
hypothesis, and thus, empirical distribution. In the forensic identification context, an event,
E, may represent the recovered evidence in question, while the prior hypotheses considered
for calculating the two likelihoods of E occurring are:

• H0: E comes from a specific known source, P, and

• HA: E has an alternative origin to P.

Noting any additional relevant prior information collected from the crime scene as Ics, the
LR can be expressed as

LR =
P(E|H0, Ics)

P(E|HA, Ics)
(1)

where P(E|H0, Ics) is the likelihood of the observations on the mark given that the mark
was produced by the same finger as the print P, while P(E|HA, Ics) is the likelihood of the
observations on the mark given that the mark was not produced by the same finger as P. The
LR value can be interpreted as follows:

• LR < 1: the evidence has more support for hypothesis HA,
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• LR = 1: the evidence has equal support from both hypotheses, and

• LR > 1: the evidence has more support for hypothesis H0.

The general LR form of equation (1) can be restated specifically for fingerprint identification
evaluations. Given an unknown query impression, y, (e.g., unknown latent mark) with m′

marked features (denoted as y(m
′)), and a known impression, x, (e.g., known AFIS candidate

or latent mark) with m marked features (denoted as x(m)), the LR is defined as

LR f inger =
P(y(m

′)|x(m), H0, Ics)

P(y(m
′)|x(m), HA, Ics)

(2)

where the value P(y(m
′)|x(m), H0, Ics) represents the probability that impressions x and y

agree given that the marks were produced by the same finger, while P(y(m
′)|x(m), HA, Ics) is

the probability that x and y agree given that the marks were not produced by the same finger,

using the closest q corresponding features between x(m) and y(m
′) with q ≤ min(m, m′). Thus,

hypotheses used to calculate the LR numerator and denominator probabilities are defined
as:

• H0: x and y were produced by the same finger, and

• HA: x and y were produced by different fingers.

The addendum crime scene information, Ics, may include detail of surrounding fingermarks,
surficial characteristics of the contacted medium, or a latent mark quality/confidence
assessment. In order to measure the within-finger and between-finger variability of

landmark based feature configurations required to derive values for P(y(m
′)|x(m), H0, Ics)

and P(y(m
′)|x(m), HA, Ics), models either use statistical distributions of dissimilarity metrics

(used as a proxy for direct assessment) derived from either the analysis of spatial properties
[33] [34] [35], or analysis of similarity score distributions produced by the AFIS [36] [37] [38].

2.1. AFIS score based LR models

AFIS score based LR models use estimates of the genuine and imposter similarity score
distributions from fingerprint matching algorithm(s) within AFIS, in order to derive a LR
measure. In a practical application, a given mark and exemplar may have an AFIS similarity
score of s, from which the conditional probability of the score can be calculated (Figure 4) to
give an LR of

LR =
P(s|H0)

P(s|HA)
. (3)

2.1.1. Parametric Based Models

In order to estimate the score distributions used in equation (3), the authors of [36] proposed
using the Weibull W(λ, β) and Log-Normal lnN (µ, σ2) distributions with scale/shape
parameters tuned to estimate the genuine and imposter AFIS score distributions, respectively.
Given query and template fingermarks with an AFIS similarity score, s, the LR is
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Figure 4. Typical AFIS imposter and genuine score distributions. The LR can be directly calculated for a given similarity score

using the densities from these distributions.

LR =
fW(s|λ, β)

flnN (s|µ, σ2)
(4)

using the proposed probability density functions of the estimated AFIS genuine and imposter
score distributions.

An updated variant can be found in [37], where imposter and genuine score distributions
are modelled per minutiae configuration. This allows the rarity of the configuration to be
accounted for.

2.1.2. Non-Match Probability Based Model

The authors of [38] proposed a model based on AFIS score distributions, using LR and
Non-Match Probability (NMP) calculations. The NMP can be written mathematically as

NMP = P(HA|s) =
P(s|HA)P(HA)

P(s|HA)P(HA) + P(s|H0)P(H0)
, (5)

which is simply the complement of the probability that the null hypothesis (i.e., x and y come
from the same known source) is true, given prior conditions x, y, and Ics (i.e., background
information).

Three main methods for modelling the AFIS score distributions where tested, being (i)
histogram based, (ii) Gaussian kernel density based, and (iii) parametric density based
estimation using the proposed distributions found in [36]. Given an AFIS score, s, the NMP
and LR were calculated by setting P(HA) = P(H0), while estimating both P(s|HA) and
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P(s|H0) either by normalised bin (method (i)) or probability density (methods (ii) and (iii))
values for respective distributions. Experimentation revealed that the parametric method
was biased. In addition, the authors suggest that the kernel density method is the most
ideal, as it does not suffer from bias while it can be used to extrapolate NMP scores where
no match has been observed, unlike the histogram based representation.

2.1.3. Practicality of AFIS based LR Models

AFIS score based LR models provide a framework that is both practically based and simple
to implement in conjunction with the AFIS architecture. However, model performance is
dependent on the matching algorithm of the AFIS. In fact, LR models presented will usually
reflect the exact information contained in a candidate list of an AFIS query. A more complex
construction, for instance, multiple AFIS matching algorithms with a mixture-of-experts
statistical model would be more ideal and avoid LR values that are strictly algorithm
dependent.

The scores produced from matching algorithms in AFIS detail pairwise similarity between
two impressions (i.e., mark and exemplar). However, the methods used in [36] [38], which
generalise the distributions for all minutiae configurations, do not allow evidential aspects
such as the rarity of a given configuration to be considered. A more sound approach would
be to base LR calculations on methods that do not have primary focus on only pairwise
similarities, but consider statistical characteristics of features within a given population.
For instance, the LR for a rare minutiae configuration should be weighted to reflect its
significance. This is achieved in the method described in [37] by focusing distribution
estimates of scores for each minutiae configuration.

2.2. Feature Vector based LR models

Feature Vector (FV) based LR models are based on FVs constructed from landmark (i.e.,
minutiae) feature analyses. A dissimilarity metric is defined that is based on the resulting
FV. The distributions of such vector dissimilarity metrics are then analysed for both genuine
and imposter comparisons, from which an LR is derived.

2.2.1. Delauney Triangulation FV Model

The first FV based LR model proposed in the literature can be found in [33]. FVs are derived
from Delaunay triangulation (Figure 5 left) for different regions of the fingerprint. Each FV
was constructed as follows:

x = [GPx, Rx, Ntx, {A1x, L1x−2x}, {A2x, L2x−3x}, {A3x, L3x−1x}] (6)

where GPx is the pattern of the mark, Rx is the region of the fingerprint, Ntx is the number
of minutiae that are ridge endings in the triangle (with Ntx ∈ {0, 1, 2, 3}), Aix is the angle of
the ith minutia, and Lix−((i+1) mod 3)x is the length in pixels between the ith and the ((i + 1)

mod 3)th minutiae, for a given query fingerprint. Likewise, these structures are created for
candidate fingerprint(s):

y =
[

GPy, Ry, Nty, {A1y, L1y−2y}, {A2y, L2y−3y}, {A3y, L3y−1y}
]

. (7)

An AFIS Candidate List Centric Fingerprint Likelihood Ratio Model Based on Morphometric and Spatial Analyses (MSA)
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Radial TriangulationDelaunay Triangulation

Figure 5. Delaunay triangulation (left) and radial triangulation (right) differences for a configuration of 7 minutiae. The blue

point for the radial triangulation illustration represents the centroid (i.e., arithmetic mean of minutiae x-y coordinates).

The FVs can be decomposed into continuous and discrete components, representing the
measurement based and count/categorical features, respectively. Thus, the likelihood ratio
is rewritten as:

LR =
P(xc, yc|xd, yd, H0, Ics)

P(xc, yc|xd, yd, HA, Ics)
︸ ︷︷ ︸

LRc|d

.
P(xd, yd|H0, Ics)

P(xd, yd|HA, Ics)
︸ ︷︷ ︸

LRd

= LRc|d.LRd (8)

where LRd is formed as a prior likelihood ratio with discrete FVs xd = [GPx, Rx, Ntx] and
yd =

[

GPy, Ry, Nty
]

, while continuous FVs xc and yc contain then remaining features in x and
y, respectively. The discrete likelihood numerator takes the value of 1, while the denominator
was calculated using frequencies for general patterns multiplied by region and minutia-type
combination probabilities observed from large datasets.

A dissimilarity metric, d(xc, yc), was created for comparing the continuous FV defined as:

d(xc, yc) = ∆
2 A1 + ∆

2L1−2 + ∆
2 A2 + ∆

2L2−3 + ∆
2 A3 + ∆

2L3−1 (9)

with ∆
2 as the squared difference of corresponding variables from xc and yc. This was used

to calculate the continuous likelihood value, with:

LRc|d =
P(d(xc, yc)|xd, yd, H0, Ics)

P(d(xc, yc)|xd, yd, HA, Ics)
. (10)
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Finger/Region LR True < 1 LR False > 1

Index/All 2.94 % 1.99 %

Middle/All 1.99 % 1.84 %

Thumbs/All 3.27 % 3.24 %

Index/Core 4.19 % 1.36 %

Middle/Core 3.65 % 1.37 %

Thumbs/Core 3.74 % 2.43 %

Index/Delta 1.95 % 2.62 %

Middle/Delta 2.96 % 2.58 %

Thumbs/Delta 2.39 % 5.20 %

Table 1. Some likelihood ratio error rate results for different finger/region combinations.

Density functions of both P(d(xc, yc)|xd, yd, H0, Ics) and P(d(xc, yc)|xd, yd, HA, Ics) were
estimated using a kernel smoothing method. All LR numerator and denominator likelihood
calculations were derived from these distribution estimates.

Two experiments were configured in order to evaluate within-finger (i.e., genuine) and
between-finger (i.e., imposter) LRs. Ideally, LRs for within-finger comparisons should be
larger than all between-finger ratios. The within-finger experiment used 216 fingerprints
from 4 different fingers under various different distortion levels. The between-finger
datasets included the same 818 fingerprints used in the minutia-type probability calculations.
Delaunay triangulation had to be manually adjusted in some cases due to different
triangulation results occurring under high distortion levels. Error rates for LRs greater than
1 for false comparisons (i.e., between-finger) and LRs less than 1 for true comparisons (i.e.,
within-finger) for index, middle, and thumbs, are given in Table 1. These errors rates indicate
the power that 3 minutiae (in each triangle) have in creating an LR value dichotomy between
within and between finger comparisons.

2.2.2. Radial Triangulation FV Model: I

Although the triangular structures of [33] performed reasonably well in producing higher
LRs for within-finger comparisons against between-finger comparisons, there are issues with
the proposed FV structure’s robustness towards distortion. In addition, LRs could potentially
have increased dichotomy between imposter and genuine comparisons by including more
minutiae in the FV structures, rather than restricting each FV to only have three minutiae.

The authors of [34] defined radial triangulation FVs based on n minutiae x = [GPx, xs] with:

x(n) = [{Tx,1, RAx,1, Rx,1, Lx,1,2, Sx,1}, {Tx,2, RAx,2, Rx,2, Lx,2,3, Sx,2},

. . . , {Tx,n, RAx,n, Rx,n, Lx,n,1, Sx,n}],
(11)

(and similarly for y and y(n)), where GP denotes the general pattern, Tk is the minutia type,
RAk is the direction of minutia k relative to the image, Rk is the radius from the kth minutia
to the centroid (Figure 5 right), Lk,k+1 is the length of the polygon side from minutia k to
k+ 1, and Sk is the area of the triangle defined by minutia k, (k+ 1) mod n, and the centroid.

An AFIS Candidate List Centric Fingerprint Likelihood Ratio Model Based on Morphometric and Spatial Analyses (MSA)
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The LR was then calculated as

LR =
P(x(n), y(n)|GPx, GPy, H0, Ics)

P(x(n), y(n)|GPx, GPy, HA, Ics)
︸ ︷︷ ︸

LRn|g

.
P(GPx, GPy|H0, Ics)

P(GPx, GPy|HA, Ics)
︸ ︷︷ ︸

LRg

= LRn|g.LRg (12)

The component LRg is formed as a prior likelihood with P(GPx, GPy|H0, Ics) = 1 and
P(GPx, GPy|HA, Ics) equal to the FBI pattern frequency data. Noting that the centroid FVs
can be arranged in n different ways (accounting for clockwise rotation):

y
(n)
j = ({Ty,k, RAy,k, Ry,k, Ly,k,(k+1) mod n, Sy,k},

k = j, (j + 1) mod n, . . . , (j − 1) mod n),

for j = 1, 2, . . . , n, LRn|g was defined as

LRn|g =
P(d(x(n), y(n))|GPx, GPy, H0, Ics)

P(d(x(n), y(n))|GPx, GPy, HA, Ics)
(13)

where the dissimilarity metric is

d(x(n), y(n)) = min
i=1,...,n

d(x(n), y
(n)
i ). (14)

The calculation of each of the d(x(n), y
(n)
i ) is the Euclidean distance of respective FVs

which are normalised to take a similar range of values. The two conditional probability

density functions of P(d(x(n), y(n))|GPx, GPy, H0, Ics) and P(d(x(n), y(n))|GPx, GPy, HA, Ics)
were estimated using mixture models of normal distributions with a mixture of three and
four distributions, respectfully, using the EM algorithm to estimate distributions for each
finger and number of minutiae used.

This method modelled within and between finger variability more accurately in comparison
to the earlier related work in [33], due to the flexibility of the centroid structures containing
more than three minutiae. For example, the addition of one extra minutia halved the LR
error rate for some fingerprint patterns. In addition, the prior likelihood is more flexible
in real life applications as it is not dependent on identifying the specific fingerprint region
(which is more robust for real life fingermark-to-exemplar comparisons).

2.2.3. Radial Triangulation FV Model: II

The authors of [35] proposed a FV based LR model using radial triangulation structures.
In addition, they tuned the model using distortion and examination influence models. The
radial triangulation FVs used were based on the structures defined in [34], where five features
are stored per minutia, giving
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y
(n)
i = ({δj, σj, θj, αj, τj}, i = j, (j + 1) mod n, . . . , (j − 1) mod n),

for a configuration y(n) starting from the ith minutia, for i = 1, 2, . . . , n, where δj is the

distance between the jth minutia and the centroid point, σj is the distance between the jth

minutia and the next contiguous minutia (in a clockwise direction), θj is the angle between
the direction of a minutia and the line from the centroid point, αj is the area of the triangle

constituted by the jth minutia, the next contiguous minutia and the centre of the polygon,
and τj is the type of the jth minutia (ridge ending, bifurcation, unknown).

The distance between configurations x(n) and y(n), each representing n minutiae, is

d(x(n), y(n)) = min
i=1,...,n

dc(x(n), y
(n)
i ) (15)

where

dc(x(n), y
(n)
i ) =

n

∑
j=1

∆j (16)

with

∆j = qδ.(x(n)(δj)− y
(n)
i (δj))

2 + qσ.(x(n)(σj)− y
(n)
i (σj))

2

+qθ .dθ(x(n)(θj), y
(n)
i (θj))

2 + qα.(x(n)(αj)− y
(n)
i (αj))

2

+qτ .dT(x(n)(τj), y
(n)
i (τj))

2

(17)

where x(n)(δj) (and y
(n)
i (δj)) is the normalised value for δ for the jth minutiae, and likewise

for all other normalised vector components σ, θ, α, and τ, while dθ is the angular difference
and dT is the defined minutiae type difference metric. The multipliers (i.e., qδ, qσ, qθ , qα, and
qτ) are tuned via a heuristic based procedure.

The proposed LR calculation makes use of:

• distortion model: based on the Thin Plate Spline (TPS) bending energy matrices
representing the non-affine differences of minutiae spatial detail trained from a dataset
focused on finger variability,

• examiner influence model: created to represent the variability of examiners when
labelling minutiae in fingerprint images.

Let y(k) be the configuration of a fingermark, x
(k)
min the closest k configuration found, and

z
(k)
i,min the closest configuration for the ith member of a reference database containing N

impressions. Synthetic FVs can be generated from minute modifications to minutiae locations
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represented by a given FV, via Monte-Carlo simulation of both distortion and examiner

influence models. A set of M synthetic FVs are created for x
(k)
min ({ζ

(k)
1 , . . . , ζ

(k)
M }) and for

each z
(k)
i,min ({ζ

(k)
i,1 , . . . , ζ

(k)
i,M}), from which the LR is given as

LR =
N ∑

M
i=1 ψ

(

d(y(k), ζ
(k)
i )
)

∑
N
i=1 ∑

M
j=1 ψ

(

d(y(k), ζ
(k)
i,j )
) (18)

where ψ is defined as

ψ(d(y(k), •)) = exp

(

−λ1d(y(k), •)

T(k)

)

+
B(d(y(k), •), λ2k)

B(d0, λ2k)
(19)

which is a mixture of Exponential and Beta functions with tuned parameters λ1 and λ2, while

d0 is the smallest value into which distances were binned, and T(k) is the 95th percentile of

simulated scores from the examiner influence model applied on y(k). Experimental results
from a large validation dataset showed that the proposed LR model can generally distinguish
within and between finger comparisons with high accuracy, while an increased dichotomy
arose from increasing the configuration size.

2.2.4. Practicality of FV based LR Models

Generally speaking, to implement robust FV based statistical models for forensic
applications, the following must be considered:

• Any quantitative measures used should be based on the data driven discovery of

statistical relationships of features. Thus, a rich dataset for both within and between

finger data is essential.

• Effects of skin distortion must be considered in models. Latent marks can be highly

distorted from skin elasticity and applied pressure. For instance, differences in both

minutiae location (relative to other features) and type (also known as type transfer) can

occur when different distortion exists.

• Features used in models must be robust to noisy environmental factors, whilst

maintaining a high level of discriminatory power. For instance, level 1 features such as

classification may not be available due to partiality. In addition, level 2 sub-features such

as ridge count between minutiae, minutiae type, and level 3 features such as pores, may

not be available in a latent mark due to the material properties of the contacted medium

or other environmental noise that regularly exist in latent mark occurrences.

• The model should be robust towards reasonable variations in feature markings from

practitioners in the analysis phase of ACE-V. For instance, minutiae locations can vary

slightly depending on where a particular practitioner marks a given minutia.
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The LR models proposed in [33] and [34] use dissimilarity measures of FVs (equations
(9) and (14)) which are potentially erroneous as minutiae types can change, particularly
in distorted impressions. While the method in [35] has clearly improved the dissimilarity
function by introducing tuned multipliers, squared differences in angle, area, and distance
based measures are ultimately not probabilistically based. A joint probabilistic based metric
for each FV component using distributions for both imposter and genuine populations would
be more consistent with the overall LR framework.

With regards to skin distortion, the radial triangulation FV structures of [34] [35] are robust,
unlike the Delaunay triangulation structure of [33]. Furthermore, the model proposed in
[35] models realistic skin distortion encountered on flat surfaces by measuring the bending
energy matrix for a specialised distortion set. However, this only accounts for the non-affine
variation. Affine transformations such as shear and uniform compression/dilation are not
accounted for. Such information can be particularly significant for comparisons of small
minutiae configurations encountered in latent marks. For instance, a direct downward
application of force may have prominent shear and scale variations (in addition to non-affine
differences) for minutiae configurations, in comparison to the corresponding configurations
of another impression from the same finger having no notable downward force applied.

3. Proposed method: Morphometric and Spatial Analyses (MSA) based

Likelihood Ratio model

In this section, we present a newly formulated FV based LR model that focuses on the
important sub-population of close non-matches (i.e., highly similar imposters), with intended
practicality for fingermark-to-exemplar identification scenarios where only sparse minutiae
triplet information may be available for comparisons. First we discuss relevant background
material concerning morphometric and spatial measures to be used in the FVs of the
proposed model. The proposed model is presented, which is based on a novel machine
learning framework, followed by a proposed LR calculation that focuses on the candidate
list population of an AFIS match query (i.e., containing close non-match exemplars and/or
a matching exemplar). Finally, an experimental framework centred around the simulation of
fingermark-to-exemplar close non-match discovery is introduced, followed by experimental
results.

3.1. Morphometric and spatial metrics

The foundations of the morphometric and spatial analyses used in the proposed FV based
LR model are presented. This includes a non-parametric multidimensional goodness-of-fit
statistic, along with several other morphometrical measures that describe and contrast shape
characteristics between two given configurations. In addition, a method for finding close
non-match minutiae configurations is presented.

3.1.1. Multidimensional Kolmogorov-Smirnov Statistic for Landmarks

A general multidimensional Kolmogorov-Smirnov (KS) statistic for two empirical
distributions has been proposed in [39] with properties of high efficiency, high statistical
power, and distributional freeness. Like the classic one dimensional KS test, the
multidimensional variant looks for the largest absolute difference between the empirical

An AFIS Candidate List Centric Fingerprint Likelihood Ratio Model Based on Morphometric and Spatial Analyses (MSA)
http://dx.doi.org/10.5772/51184

235



16 New Trends and Developments in Biometrics

and cumulative distribution functions, as a measure of fit. Without losing generality, let
two sets with m and n points in R

3 be denoted as X = {(x1, y1, z1), . . . , (xm, ym, zm)} and
Y = {(x′1, y′1, z′1), . . . , (x′n, y′n, z′n)}, respectively. For each point (xi, yi, zi) ∈ X we can divide
the plane into eight defined regions

qi,1 = {(x, y, z)|x < xi, y < yi, z < zi},

qi,2 = {(x, y, z)|x < xi, y < yi, z > zi},

...

qi,8 = {(x, y, z)|x ≥ xi, y ≥ yi, z ≥ zi},

and similarly for each (x′
j
, y′

j
, z′

j
) ∈ Y,

q
′
j,1 = {(x, y, z)|x < x

′
i
, y < y

′
i
, z < z

′
i
},

q
′
j,2 = {(x, y, z)|x < x

′
i
, y < y

′
i
, z > z

′
i
},

...

q
′
j,8 = {(x, y, z)|x ≥ x

′
j
, y ≥ y

′
j
, z ≥ z

′
j
}.

Further defining

Dm = max
i=1,...,m
s=1,...,8

| |X ∩ qi,s| − |Y ∩ qi,s| | (20)

which is the maximum pairwise difference of point tallies for X and Y within each of the
eight defined regions centred and evaluated at each point in X, and likewise,

Dn = max
j=1,...,n
s=1,...,8

| |X ∩ q
′
j,s| − |Y ∩ q

′
j,s| | (21)

which is the maximum pairwise difference of point tallies for the eight defined regions
centred and evaluated at each point in Y, the three dimensional KS statistic is

Zm,n,3D =
√

n.m/(n + m).

(

Dm + Dn

2

)

. (22)

The three dimensional KS statistic can be specific to the minutiae triplet space where
each minutia spatial and directional detail is represented as a three dimensional point,
(x, y, θ). Given m = n matching minutiae correspondences from two configurations X and
Y, alignment is performed prior to calculating the statistic, in order to ensure that minutiae
correspondences are close together both spatially and directionally. However, direction has
a circular nature that must be handled differently from the spatial detail. Instead of raw
angular values, we use the orientation difference defined as
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z = z(θ, θ0) =
π

2
− min(2π − |θ − θ0|, |θ − θ0|) (23)

where z ∈ [−π
2 , π

2 ]. Each minutia, (x, y, θ), is then transformed to (x, y, z(θ, θ0)) if the centred
minutia used to create the eight regions has a direction of θ0, while region borders are defined
in the third dimension by z ≥ 0 and z < 0.

3.1.2. Thin Plate Spline and Derived Measures

The Thin Plate Spline (TPS) [40] is based on the algebraic expression of physical bending
energy of an infinitely thin metal plate on point constraints after finding the optimal affine
transformations for the accurate modelling of surfaces that undergo natural warping (i.e.,
where a diffeomorphism exists). Two sets of landmarks from each surface are paired in
order to provide an interpolation map on R

2 → R
2. TPS decomposes the interpolation

into an affine transform that can be considered as the transformation that expresses the
global geometric dependence of the point sets, and a non-affine transform that fine tunes the
interpolation of the point sets. The inclusion of the affine transform component allows TPS
to be invariant under both rotation and scale.

Given n control points

{p1 = (x1, y1), p2 = (x2, y2), . . . , pn = (xn, yn)}

from an input image in R
2 and control points

{

p
′
1 = (x′1, y′1), p

′
2 = (x′2, y′2), . . . , p

′
n = (x′n, y′n)

}

from a target image R
2, the following matrices are defined in TPS:

K =









0 u(r12) . . . u(r1n)
u(r21) 0 . . . u(r2n)

. . . . . . . . . . . .
u(rn1) u(rn2) . . . 0









,

where u(r) = r2 log r2 with r as the Euclidean distance, rij = ‖pi − pj‖,

P =









1 x1 y1

1 x2 y2

. . . . . . . . .
1 xn yn









, V =

[

x′1 x′2 . . . x′n
y′1 y′2 . . . y′n

]

, Y =
[

V 02×3

]T
, L =

[

K P

PT 03×3

]

,

where K, P, V, Y, L have dimensions n × n, 3 × n, 2 × n, (n + 3)× 2, and (n + 3)× (n + 3),
respectively. The vector W = (w1, w2, . . . , wn) and the coefficients a1, ax, ay, can be calculated
by the equation

L
−1

Y = (W| a1 ax ay)
T . (24)
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The elements of L−1Y are used to define the TPS interpolation function

f (x, y) =
[

fx(x, y), fy(x, y)
]

, (25)

with the coordinates compiled from the first column of L−1Y giving

fx(x, y) = a1,x + ax,xx + ay,xy +
n

∑
i=1

wi,xU(‖pi − (x, y)‖) (26)

where
[

a1,x ax,x ay,x
]T

is the affine transform component for x, and likewise for the second
column, where

fy(x, y) = a1,y + ax,yx + ay,yy +
n

∑
i=1

wi,yU(‖pi − (x, y)‖) (27)

with
[

a1,y ax,y ay,y
]T

as the affine component for y. Each point (or minutia location in our
application) can now be updated as

(xnew, ynew) = ( fx(x, y), fy(x, y)). (28)

It can be shown that the function f (x, y) is the interpolation that minimises

I f ∝ WKW
T = V(L−1

n KL
−1
n )V

T
, (29)

where I f is the bending energy measure

I f =
∫ ∫

R2

(

∂2z

∂x2

)2

+ 2

(

∂2z

∂x∂y

)2

+

(

∂2z

∂y2

)2

dxdy (30)

and Ln is the n× n sub-matrix of L. Affine transform based metrics relating to shear, rotation,
and scale (i.e., compression and dilation) can be calculated straight from Singular Value
Decomposition (SVD) of the affine matrix

USV
T = SVD

([

ax,x ax,y

ay,x ay,y

])

. (31)

From this decomposition, we define an angle cost

dθ = min(θ, 2π − θ) (32)
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with θ = |(arctan(V1,2, V1,1)− arctan(U1,2, U1,1)|, a shear cost

dshear = log(S1,1/S2,2), (33)

and a scale cost

dscale = log

(

max

(

S1,1, S2,2,
1

S1,1
,

1

S2,2

))

. (34)

3.1.3. Shape Size and Difference Measures

Shape size measures are useful metrics for comparing general shape characteristics. Given a
matrix X of dimensions k × m, representing a set of k m-dimensional points, the centroid size
[41] is defined as

S(X) =

√

√

√

√

k

∑
i=1

‖(X)i − X̄‖2, (35)

where (X)i is the ith row of X and X̄ is the arithmetic mean of the points in X (i.e., centroid
point). Given a second landmark configuration Y also with k m-dimensional points, we
define the shape size difference as

dS = |S(X)− S(Y)|. (36)

Another useful shape metric is derived from the partial Procrustes method [41], which finds
the optimal superimposition of one set of landmarks, X, onto another, Y, using translation
and rotation affine operators:

min
Γ,γ

‖Y − XΓ − 1kγT‖2 (37)

where 1k is a (k × 1) vector of ones, Γ is a m × m rotation matrix and γ is the (m × 1)
translation offset vector. Using centred landmarks, Xc = CX and Yc = CY where C =
Ik −

1
k 1k1T

k , the ordinary partial Procrustes sum of squares is

OSSp(Xc, Yc) = trace
(

X
T
c Xc

)

+ trace
(

Y
T
c Yc

)

− 2‖Xc‖‖Yc‖ cos ρ (Xc, Yc) (38)

with ρ (Xc, Yc) as the Procrustes distance defined as

ρ (Xc, Yc) = arccos

(

m

∑
i=1

λi

)

(39)

where λ1, . . . , λm are the square roots of the eigenvalues of ZT
XZYZT

Y ZX with ZX =
HX/‖HX‖ and ZY = HY/‖HY‖ for the Helmert sub-matrix, H, with dimension k × k.
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3.1.4. Close Non-Match Discovery and Alignment

In order to reproduce the process of an examiner querying a minutiae configuration marked
on fingermark with an AFIS, a method for finding close configurations was developed. To
find close non-matches for a particular minutiae configuration, we employed a simple search
algorithm based solely on minutiae triplet features, in order to maintain robustness towards
such fingermark-to-exemplar match scenarios. The minutiae triplet features are extracted in
a fully automated manner using the NIST mindtct tool [49] without particular attention to
spurious results, besides minimum quality requirements as rated by the mindtct algorithm.

Algorithm 1 f indCloseTripletCon f igs: Find all close triplet configurations to X

Require: A minutiae triplet set X and a dataset of exemplars D.
candidateList = null
for all minutiae configurations Y ∈ D with |X| = |Y| do

for all minutiae (xY , yY , θY) ∈ Y do
f ound ← false
for all minutiae (xX , yX , θX) ∈ X do

Y′ ← Y
rotate Y′ by (θX − θY) {This includes rotating minutiae angles.}
translate Y′ by offset (xX − xY , yX − yY)
if Y′ is close to X then

f ound = true
goto finished:

end if
end for

end for
finished:
if f ound = true then

Y′ ← PartialProcrustes(X, Y′) {Translate/Rotate Y′ using partial Procrustes}
TPS(X, Y′) {non-affine registration by TPS}
if I f < Imax then

add Y′ to candidateList {Add if bending energy < limit (equation (29))}
end if

end if
end for
return candidateList

Once feature extraction is complete, the close match search algorithm (Algorithm 1) finds
all equally sized close minutiae configurations in a given dataset of exemplars to a specified
minutiae set configuration (i.e., potentially marked from a latent) in an iterative manner by
assessing all possible minutiae triplet pairs via a crude affine transform based alignment on
configuration structures. Recorded close minutiae configurations are then re-aligned using
the partial Procrustes method using the discovered minutiae pairings. Unlike the Procrustes
method, the partial Procrustes method does not alter scale of either landmarks. For the
application of fingerprint alignment, ignoring scale provides a more accurate comparison
of landmarks since all minutiae structures are already normalised by the resolution and
dimensions of the digital image. The TPS registration is then applied for a non-affine
transformation. If the bending energy is higher than a defined threshold, we ignore the
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potential match due to the likely unnatural distortion encountered. Finally, a candidate list
with all close minutiae configurations is produced for analysis.

3.2. Proposed model

We now propose an LR model based on what is found in [4], developed specifically to aid
AFIS candidate list assessments, using the intrinsic differences of morphometric and spatial
analyses (which we label as MSA) between match and close non-match comparisons, learnt
from a two-class probabilistic machine learning framework.

3.2.1. Feature Vector Definition

Given two matching configurations X and Y (discovered from the procedure described in
Section 3.1.4) a FV based on the previously discussed morphometric and spatial analyses is
defined as:

xi = {Zm,n,3D, I f , dθ , dshear, dscale, S(X), dS, OSSp(Xc, Yc), dmc} (40)

where Zm,n,3D is the three dimensional KS statistic of equation (22) using the transformed
triplet points, I f , dθ , dshear, and dscale are the defined measures of equations (29) and (32-34)
resulting from registering X onto Y via TPS, S(X) and dS are the shape size and difference
metric of equations (35-36), OSSp(Xc, Yc) is the ordinary partial Procrustes sum of squares of
equation (38), and dmc is the difference of the number of interior minutiae within the convex
hulls of X and Y. The dmc measure is an optional component to the FV dependent on the
clarity of a fingermark’s detail within the given minutiae configuration. For the experiments
presented later in this chapter, we will exclude this measure.

The compulsory measures used in the proposed feature vector rely solely on features that
are robust to the adverse environmental conditions of latent marks, all of which are based
on minutiae triplet detail. The FV structures are categorised by genuine/imposter (or
match/close non-match) classes, number of minutiae in the matching configurations, and
configuration area (categorised as small, medium, and large).

3.2.2. Machine Learning of Feature Vectors

Using the categories prescribed for the defined FVs, a probabilistic machine learning
framework is applied for finding the probabilities for match and close non-match classes.
The probabilistic framework employed [42] is based on Support Vector Machines (SVMs)
with unthresholded output, defined as

f (x) = h(x) + b (41)

with

h(x) = ∑
i

yiαik(xi, x) (42)
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where k(•, •) is the kernel function, and the target output yi ∈ {−1, 1} represents the two
classes (i.e., ‘close non-match’ and ‘match’, respectively). We use the radial basis function

k(xi, x) = exp(−γ‖xi − x‖2) (43)

due to the observed non-linear relationships of the proposed FV. Training the SVM minimises
the error function

C ∑
i

(1 − yi f (xi))+ +
1

2
‖h‖F (44)

where C is the soft margin parameter (i.e., regularisation term which provides a way to
control overfitting) and F is the Reproducing Kernel Hilbert Space (RKHS) induced by
the kernel k. Thus, the norm of h is penalised in addition to the approximate training
misclassification rate. By transforming the target values with

ti =
yi + 1

2
, (45)

the posterior probabilities P(yi = 1| f (xi)) and P(yi = −1| f (xi)) which represents the
probabilities that xi is of classes ‘match’ and ‘close non-match’, respectively, can now be
estimated by fitting a sigmoid function after the SVM output with

P(xi is a match| f (xi)) = P(yi = 1| f (xi)) =
1

1 + exp(A f (xi) + B)
(46)

and

P(xi is a close non-match| f (xi)) = P(yi = −1| f (xi)) = 1 −
1

1 + exp(A f (xi) + B)
. (47)

The parameters A and B are found by minimising the negative log-likelihood of the training
data:

arg minA,B

[

−
(

∑i ti log
(

1
1+exp(A f (xi)+B)

)

+ (1 − ti) log
(

1 − 1
1+exp(A f (xi)+B)

))]

(48)

using any optimisation algorithm, such as the Levenberg-Marquardt algorithm [43].

3.2.3. Likelihood Ratio Calculation

The probability distributions of equations (47-48) are posterior probabilities. Nevertheless,
for simplicity of the initial application, we assume uniform distributions for P( f (xi)) = z
for some constant, z, whereas P(xi is a match) = a and P(xi is a close non-match) = 1 − a
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where a reflects the proportion of close minutiae configuration comparisons that are ground
truth matches. Thus, the LR is equivalent to the posterior ratio (PR)

LR =

(

1 − a

a

)

.PR =

(

1 − a

a

)

.
P(xi is a match| f (xi))

P(xi is a close non-match| f (xi))
. (49)

For future consideration, the probabilities P(xi is a match) and P(xi is a close non-match)
can be adaptively based on Cumulative Match Characteristic (CMC) curve [44] statistics of a
given AFIS system or any other relevant background information.

As already noted, the LR formulas are based on different distributions specified per FV
categories of minutiae count and the area of the given configuration. This allows the LR
models to capture any spatial and morphometric relational differences between such defined
categories. Unlike previous LR methods that are based on the distributions of a dissimilarity
metric, the proposed method is based on class predictions based on a number of measures,
some of which do not implicitly or explicitly rate or score a configuration’s dissimilarity (e.g.
centroid size, S(Xi)). Instead, statistical relationships of the FV measures and classes are
learnt by SVMs in a supervised manner, only for class predictions.

In its current proposed form, the LR of equation (49) is not an evidential weight for the entire
population, but rather, an evidential weight specifically for a given candidate list.

3.3. Experimentation

3.3.1. Experimental Databases

Without access to large scale AFISs, a sparse number of fingermark-to-exemplar datasets
exists in the public domain (i.e., NIST27 is the only known dataset with only 258 sets). Thus,
to study the within-finger characteristics, a distortion set was built.

We follow a methodology similar to that of [35] where live scanned fingerprints have eleven
directions applied, eight of which are linear directions, two torsional, and central application
of force. Using a readily available live scan device (Suprema Inc. Realscan-D: 500ppi with
rolls, single and dual finger flats), we follow a similar methodology, described as follows:

• sixteen different linear directions of force,

• four torsion directions of force,

• central direction of force,

• all directions described above have at least three levels of force applied,

• at least five rolled acquisitions are collected,

• finally, numerous impressions with emphasis on partiality and high distortion are
obtained by recording fifteen frames per second, while each finger manoeuvres about
the scan area in a freestyle manner for a minimum of sixty seconds.

This gave a minimum total of 968 impressions per finger. A total of 6,000 impressions from
six different fingers (from five individuals) were obtained for our within-finger dataset, most
of which are partial impressions from the freestyle methodology. For the between-finger
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comparisons, we use the within-finger set in addition to the public databases of NIST 14
[45] (27000 × 2 impressions), NIST 4 [46] (2000 × 2 impressions), FVC 2002 [47] (3 × 110 × 8
flat scan/swipe impressions), and the NIST 27 database [48] (258 exemplars + 258 latents),
providing over 60,000 additional impressions.

3.3.2. SVM Training Procedure

A simple training/evaluation methodology was used in the experiments. After finding all

FVs for similar configurations, a random selection of 50% of the FVs were used to train each

respective SVM by the previously defined categories (i.e., minutiae configuration count and

area). The remaining 50% of FVs were used to evaluate the LR model accuracy. The process

was then repeated by swapping the training and test sets (i.e., two-fold cross-validation). Due

to the large size of the within-finger database, a substantially larger number of within-finger

candidates are returned. To alleviate this, we randomly sampled the within-finger candidates

to be of equal number to the between-finger counterparts (i.e., a = 0.5 in equation (49)). All

individual features within each FV were scaled to have a range of [0, 1], using pre-defined

maximum and minimum values specific to each feature component.

A naive approach was used to find the parameters for the SVMs. The radial basis kernel

parameter, γ, and the soft learning parameter, C, of equations (43) and (44), respectively,

were selected using a grid based search, using the cross-validation framework to measure

the test accuracy for each parameter combination, (γ, C). The parameter combination with

the highest test accuracy was selected for each constructed SVM.

3.3.3. Experimental Results

Experiments were conducted for minutiae configurations of sizes of 6, 7, and 8 (Figure 6)
from the within-finger dataset, using configurations marked manually by an iterative circular
growth around a first minutiae until the desired configuration sizes were met. From the
configuration sizes, a total of 12144, 4500, and 1492 candidates were used, respectively, from
both the within (50%) and between (50%) finger datasets. The focus on these configuration
settings were due to three reasons: firstly, the high computational overhead involved in the
candidate list retrieval for the prescribed datasets, secondly, configurations of such sizes
perform poorly in modern day AFIS systems [50], and finally, such configuration sizes are
traditionally contentious in terms of Locard’s tripartite rule, where a probabilistic approach
is prescribed to be used.

The area sizes used for categorising the minutiae configurations were calculated by adding
up the individual areas of triangular regions created using Delaunay triangulation. Small,
medium, and large configuration area categories were defined as 0 < A < 4.2mm2, 4.2mm2 ≤
A < 6.25mm2, and A ≥ 6.25mm2, respectively.

The results clearly indicate a stronger dichotomy of match and close non-match populations
when the number of minutiae was increased. In addition, the dichotomy was marginally
stronger for larger configuration areas with six minutiae. Overall, the majority of FV’s of
class ‘match’ derive significantly large LR values.
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Figure 6. Tippett plots for minutiae configurations of 6 (top row), 7 (middle row), and 8 (bottom row) minutiae

with small, medium, and large area categories (left to right, respectively), calculated from P(xi is a match| f (xi)) and
P(xi is a close non-match| f (xi)) distributions. The x-axes represents the logarithm (base 2) of the LR values in equation (49)
for match (blue line) and close non-match (red line) populations, while the y-axes represents proportion of such values being
greater than x. The green vertical dotted line at x = 0 signifies a marker for LR = 1 (i.e., x = log21 = 0).
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4. Summary

A new FV based LR model using morphometric and spatial analysis (MSA) with SVMs,
while focusing on candidate list results of AFIS, has been proposed. This is the first LR
model known to the authors that use machine learning as a core component to learn spatial
feature relationships of close non-match and match populations. For robust applications
for fingermark-to-exemplar comparisons, only minutiae triplet information were used to
train the SVMs. Experimental results illustrate the effectiveness of the proposed method in
distinguishing match and close non-match configurations.

The proposed model is a preliminary proposal and is not focused on evidential value for
judicial purposes. However, minor modifications can potentially allow the model to also be
used for evidential assessments. For future research, we hope to evaluate the model with
commercial AFIS environments containing a large set of exemplars.
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