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Abstract - Inherent fuzzy entropy is an objective 

measurement of electroencephalography (EEG) 
complexity, reflecting the robustness of brain systems. In 
this study, we present a novel application of multi-scale 
relative inherent fuzzy entropy using repetitive 
steady-state visual evoked potentials (SSVEPs) to 
investigate EEG complexity change between two migraine 
phases, i.e. inter-ictal (baseline)  and  pre-ictal (before 
migraine attacks) phases.  We used a wearable headband 
EEG device with O1, Oz, O2 and Fpz electrodes to collect 
EEG signals from 80 participants (40 migraine patients 
and 40 healthy controls [HCs]) under the following two 
conditions: during resting state and SSVEPs with five 
15-Hz photic stimuli. We found a significant enhancement 
in occipital EEG entropy with increasing stimulus times in 
both HCs and patients in the inter-ictal phase but a 
reverse trend in patients in the pre-ictal phase. In the 1st 
SSVEP, occipital EEG entropy of the HCs was 
significantly higher than that of patents in the pre-ictal 
phase (FDR-adjusted p < 0.05). Regarding the transitional 
variance of EEG entropy between the 1st and 5th SSVEPs, 
patients in the pre-ictal phase exhibited significantly lower 
values than patients in the inter-ictal phase (FDR-adjusted 
p < 0.05). Furthermore, in the classification model, the 
AdaBoost ensemble learning showed an accuracy of     
81±6% and AUC of 0.87 for classifying inter-ictal and 
pre-ictal phases. In contrast, there were no differences in 
EEG entropy among groups or sessions by using other 
competing entropy models, including approximate entropy, 
sample entropy and fuzzy entropy on the same dataset. In 
conclusion, inherent fuzzy entropy offers novel 
applications in visual stimulus environments and may have 
the potential to provide a pre-ictal alert to migraine 
patients. 
 

Index Terms - Migraine, SSVEP, EEG, Inherent Fuzzy 
Entropy  
 

I. INTRODUCTION 
igraine is a type of neurovascular headache that 
presents a severe throbbing head pain and is 

accompanied by nausea, vomiting or extreme sensitivity to 
light and sound [1]. Episodic migraine is considered a 
recurrent headache with a cycle that includes inter-ictal, 
pre-ictal, ictal and post-ictal phases [2]. The ictal phase is the 
period during which migraine patients suffer from headache; 
the pre-ictal phase is defined as 72 hours before the ictal phase, 
which is preceded by the inter-ictal phase. 

The activation and sensitization of brain activities, which 
have powerful potential applications, can be characterized by 
the visual stimulus environment [3]. In particular, steady-state 
visual evoked potentials (SSVEPs) are responses to photic 
stimuli at a multiple of or equal to the frequency of the stimuli. 
The visual system of the brain is intimately connected with the 
environment via the eyes, which contain light receptors on the 
retina. These receptors send electrical signals to the brain, 
which can be detected by cortical electroencephalography 
(EEG). These messages are generally sent to the occipital 
region [4], which causes cortical activation directing to 
specific frequency stimulations [5]. Migraine patients are 
more vulnerable to visual stimuli, and previous studies have 
reported that visual stimuli are effective for examining the 
dishabituation in the inter-ictal or pre-ictal phases [6-11]. In 
previous SSVEP studies, it has been shown that the cortical 
responses would be enhanced in patients with migraine as 
compared to those of control subjects, in a broad range of 
stimulation frequency, supporting the concept of central 
hyper-responsiveness in patients with migraine. Initially, 
stimulation frequencies at median-to-high range (i.e., 15 - 30 
Hz) were demonstrated to have such differentiating property 
[12, 13]. Lately, it was realized that stimulations at lower 
frequencies (i.e., 3 - 6 Hz) were also able to elicit such 
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differences [14]. Considering overt visual stimulation could 
evoke migraine attacks, or even provoke seizures [15], we thus 
decided to use only one stimulation frequency (i.e., 15 Hz), 
which was well located in the middle of the frequency 
distribution, to avoid the possible adverse effects. 

To efficiently extract features from SSVEP-based models, 
multivariate linear regression [16] and multi-set/-layer/-way 
canonical correlation analysis [17-19], which were developed 
and focused on frequency recognition. In addition to the above 
measurements, recently developed entropy analysis 
approaches in the temporal domain have helped us to 
understand brain dynamics and allowed us to assess how 
complexity provides information about a wide range of 
physiological systems [20]. Entropy is generally an objective 
measure of how the complexity of physiological signals 
represents the robustness of brain systems [21]. Different 
entropy analysis approaches, such as approximate entropy 
(ApEn) [22] and sample entropy (SampEn) [23] have been 
developed to measure complex signals. 

Fuzziness, featured by uncertainty, can avoid a sharp 
distinction of the boundary of a set [24]. For example, the 
fuzzy entropy (FuzzEn) algorithm [25, 26] incorporates a 
fuzzy membership function instead of the Heaviside function 
to assess the degree of similarity between two vectors’ shapes, 
which can effectively overcome the deficiency in existing 
subspace filtering techniques [27]. Integrated brain systems 
are often multi-scaled and can interact with fast or slow 
processes, depending on the scale of the bio-signal of interest. 
Thus, we recently developed a multi-scale inherent fuzzy 
entropy (Inherent FuzzEn) algorithm [28] that has the 
robustness to operate under noise, nonlinear and 
non-stationary signals and is capable of operating on EEG 
signals across a range of temporal (time) scales. Compared to 
ApEn, SampEn or FuzzEn, the Inherent FuzzEn algorithm 
shows stable complexity and the smallest root mean square 
deviation in the resting-state condition. Therefore, we applied 
the Inherent FuzzEn algorithm to explore resting-state EEG 
complexity before migraine attacks [29], which showed that 
the EEG complexity of patients in the pre-ictal phase was 
significantly higher than that of patients in the inter-ictal phase 
in the prefrontal area. 

To the best of our knowledge, high and low complexity 
represent healthy (robust) and diseased (vulnerable) brain 
systems [20, 29]. We hypothesize that a healthy brain system 
demonstrates strong robustness after repetitive visual 
stimulation (linked to habituation) [30] but that migraine 
patients may exhibit less robustness of the brain system. 
However, existing studies have not investigated the brain 
complexity in migraine patients as well as healthy controls 
(HCs) using entropy analysis approaches in repetitive visual 
stimulus sessions. Thus, we aimed to 1) understand the effects 
of repetitive SSVEPs in migraine patients and HCs by 

measuring inherent fuzzy entropy; 2) classify inter-ictal and 
pre-ictal migraine phases using input features of inherent 
fuzzy entropy; 3) compare our method to other entropy 
algorithms (ApEn, SampEn and FuzzEn). Our study represents 
a novel application of inherent fuzzy entropy in a visual 
stimulus environment for migraine patients, and the extracted 
features have the potential to provide pre-ictal alerts to 
migraine patients. 

This paper is organized as follows. First, a relative inherent 
fuzzy entropy algorithm that minimizes individual differences 
is presented in Section II. Section III introduces the 
experimental procedures, including the recruitment of 
participants, the wearable EEG device, the experimental 
paradigm, the data processing classification models and the 
statistical analysis. In Section IV, the application 
performances of the relative inherent fuzzy entropy algorithm 
are assessed regarding migraine patients and HCs. Section V 
discusses the experimental results. Section VI provides the 
conclusion. 
 

II. EEG COMPLEXITY: RELATIVE MULTI-SCALE INHERENT 
FUZZY ENTROPY  

EEG complexity is measured by the relative multi-scale 
inherent fuzzy entropy algorithm [28], which is divided into 
three parts: A. a de-trending process; B. a multi-scale 
procedure; and C. fuzzy entropy assessment. In this study, to 
minimize individual differences, we estimated the differences 
in multi-scale inherent fuzzy entropy between the baseline 
(resting) and stimulus sessions (refer to part D), termed the 
relative multi-scale inherent fuzzy entropy (RE). As shown in 
Fig. 1, we present an overview of our proposed relative 
multi-scale inherent fuzzy entropy. 

 

 
 

Figure 1 An overview of relative multi-scale inherent fuzzy entropy 
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A. De-trending process to extract inherent modes 
We applied empirical mode decomposition to decompose 

the raw EEG signal 𝑠(𝑡) into several intrinsic mode functions 
and reconstructed the signal 𝑠̂(𝑡). 

In the initial step, extrema of the signal	𝑠(𝑡) are found, 
corresponding to 𝐸)*+*),  and 𝐸),-*),.	 Then, the regions 
between 𝐸)*+*),  and 𝐸),-*),  are interpolated, yielding an 
envelope with 𝑒𝑛123(𝑡) and 𝑒𝑛),-	(𝑡). 

First, we compute the mean: 

𝑀(𝑡) = (𝑒𝑛123(𝑡) + 𝑒𝑛178(𝑡))/2                                       (1) 

Second, we extract the candidate of inherent functions:  

Ca(𝑡) = 𝑠(𝑡) −𝑀(𝑡)                                                             (2) 

Third, we confirm 𝐶𝑎(𝑡), belonging to an intrinsic mode 
function. If 𝐶𝑎(𝑡) satisfies the constraint conditions, 𝐶𝑎(𝑡) is 
saved, and the residue is computed: 

𝑟𝑒𝑠(𝑡) = 𝑠(𝑡) − ∑ 𝐶𝑎(𝑡)B
2CD                                                   (3)      

Next, we solve 𝑡 = 𝑡 + 1 and treat 𝑟𝑒𝑠(𝑡 + 1) as input data. 
Otherwise, we treat 𝐶𝑎(𝑡 + 1)	as input data. Iterations are 
performed on the residual 𝑟𝑒𝑠(𝑡) and continued until the final 
residue 𝑟	satisfies the stopping criterion.  

Finally, the components of intrinsic mode functions surviving 
high trends are automatically removed by a trend filter. The 
signal 𝑠̂(𝑡) is reconstructed by the cumulative sum of the 
remaining intrinsic mode functions: 

𝑠̂(𝑡) = 	∑ 𝐶𝑎(𝑡)2C1
2C3                                                                 (4) 

The parameter 𝑖 is the order number of the components from 
the intrinsic mode functions, and parameters 𝑚 and 𝑛 are the 
upper and lower boundaries of the selected components, 
respectively. 
 

B. Multi-scale procedure 
The initial step is to normalize the EEG signal using the 

Z-score measurement. The EEG signal 𝑠̂(𝑡) subtracts the mean 
prior to dividing by the standard deviation. The normalized 
EEG signal is marked as 𝑥(𝑡). Afterwards, the multi-scale 
procedure involves coarse-graining the signals into different 
time scales. 

For a given time series, multiple coarse-grained time series 
are constructed by averaging the data points within 
non-overlapping windows of increasing lengths, and the τ 
element of the coarse-grained time series 𝑥IJ

(K) is expressed as: 

𝑥IJ
(K) = D

K
	∑ 𝑥2

JK
2C(JLD)KMD                                                           (5) 

where τ represents the scale factor, and 1 ≤ 𝑗 ≤ 𝑁/𝜏.  

C. Fuzzy entropy assessment    
First, considering the 𝑁 sample time series {𝑥I(𝑖): 1 ≤ 𝑖 ≤

𝑁},	 given m, n, and r, a vector set sequence {𝑋21, 𝑖 =
1, … ,𝑁 − 𝑚+ 1}  is calculated, and the baseline is removed: 

𝑋21 	= 	 Y
𝑥I(𝑖), 𝑥I(𝑖	 + 	1) … ,
	𝑥I(𝑖	 + 	𝑚	 − 	1) Z		− 	𝑚

LD ∑ 𝑥I(𝑖 + 𝑗)1LD
JC[ 			          (6)                      

where 1 ≤ 𝑖 ≤ 𝑁 −𝑚 + 1, and 𝑋21  presents 𝑚  consecutive 𝑢 
values, beginning with the	𝑖th point. 

Second, given a vector 𝑋21 , the similarity degree 𝐷2J1 
between 𝑋21  and 𝑋J1	 is defined by the fuzzy membership 
function: 

𝐷2J1 = 𝑓𝑢_𝑑2J1, 𝑛, 𝑟a = 𝑒𝑥 𝑝c−
defg

hi
j

k
l                                   (7)                                                                                              

where the fuzzy membership function 𝑓𝑢 is an exponential 
function that is more appropriate for processing physiological 
signals in term of robustness to noise and independence on the 
data length [25, 31, 32], and 𝑑2J1 is the maximum absolute 
difference between the corresponding scalar components of 
𝑋21 and 𝑋m1. 

The parameter 𝑚  is the length of the sequences to be 
compared to other entropy algorithms. The other two 
parameters, 𝑟 and 𝑛, determine the width and the gradient of 
the boundary of the fuzzy membership function, respectively. 

Then, the function 𝜑1 is constructed. Similarly, for 𝑚	 + 	1, 
the above steps are repeated and denoted 𝜑1MD(𝑛, 𝑟).  

𝜑1(𝑛, 𝑟) = (𝑁 −𝑚)LD ∑ ((𝑁 −𝑚 − 1)LD ∑ 𝐷2J1)oL1
JCD,Jp2

oL1
2CD                  

                                                                                                (8) 

Finally, the 𝑒𝑛𝑡𝑟𝑜𝑝𝑦	(𝑚, 𝑛, 𝑟, 𝑁) parameter of the sequence 
{𝑥I(𝑖): 1	 ≤ 	𝑖	 ≤ 	𝑁}  is defined as the negative natural 
logarithm of the deviation of 𝜑1 from 𝜑1MD: 

𝑒𝑛𝑡𝑟𝑜𝑝𝑦(𝑚, 𝑛, 𝑟,𝑁) = ln 𝜑1(𝑛, 𝑟) − ln𝜑1MD(𝑛, 𝑟)           (9)  

Of note, the measurement of Eq. (9) is consistent with the 
previously developed approximate entropy, sample entropy, 
and fuzzy entropy. The entropy measures the likelihood that 
runs of the patterns that are close to the observations remain 
close on the next incremental comparisons, which can quantify 
physiological time-series complexity. Please see below the 
proof to verify that the measurement in Eq. (9) represents an 
entropy.  
 
Proof Eq. (9): 
 
Let 𝐵2 be the number of vectors 𝑋21 within 𝑟 of 𝑋J1 and Let 𝐴2 
be the number of vectors 𝑋21MD within 𝑟 of 𝑋J1MD.  
 
Define the function 𝐶21(𝑛, 𝑟) = (𝐵2)/(𝑁 − 𝑚)  and 
𝐶21MD(𝑛, 𝑟) = (𝐴2)/(𝑁 −𝑚 + 1). 
 



 

𝐶21(𝑛, 𝑟) is the probability that any vector 𝑋21 is within 𝑟 of 
𝑋J1. 
 
𝐶21MD(𝑛, 𝑟) is the probability that any vector 𝑋21MD is within 𝑟 
of 𝑋J1MD. 
 
Then, based on the Grassberger and Procaccia’s work [33], 
define the function: 
 
 𝜑1(𝑛, 𝑟) = (𝑁 − 𝑚)LD ∑ 𝐼𝑛	[𝐶21(𝑟)oL1

2CD ] 
 
which is the average of natural logarithms of functions 
	𝐶21(𝑛, 𝑟) 
 
Similarly, 
 
 𝜑1MD(𝑛, 𝑟) = (𝑁 − 𝑚 + 1)LD ∑ 𝐼𝑛	[𝐶21MD(𝑛, 𝑟)oL1MD

2CD ] 
 
With the limitation as 𝑁	 → ∞,  

𝜑1(𝑛, 𝑟) = (𝑁 −𝑚)LD | 𝐼𝑛	[𝐶21(𝑟)
oL1

2CD

] 

𝜑1MD(𝑛, 𝑟) = (𝑁 −𝑚)LD | 𝐼𝑛	[𝐶21MD(𝑟)
oL1

2CD

] 

 
Based on Pincus’s work [22], entropy measures the likelihood 
that runs of the patterns that are close to m observations 
remain close on the next incremental comparisons. 
 
𝐸𝑛𝑡𝑟𝑜𝑝𝑦 = ln𝜑1(𝑛, 𝑟) − ln𝜑1MD(𝑛, 𝑟)		 

= (𝑁 −𝑚)LD{| 𝐼𝑛	[𝐶21(𝑛, 𝑟)−𝐼𝑛𝐶21MD(𝑛, 𝑟)
oL1

2CD

]} 

 
which equals the average over 𝑖  of 𝐼𝑛	[𝐶21(𝑛, 𝑟)/
𝐶21MD(𝑛, 𝑟)] = 𝐼𝑛	[𝐵2/𝐴2]	. 

We noted that the ratio [𝐵2/𝐴2]	represents an entropy. 

D. Relative inherent fuzzy entropy 
To minimize individual differences, we introduced a 

relative multi-scale inherent fuzzy entropy (𝑅𝐸). First, the 
inherent fuzzy entropy at baseline (resting) and during 
stimulus sessions is calculated. The two sessions are 
simplified to 𝐸𝑛𝑡𝑟𝑜𝑝𝑦~7���23�  and 𝐸𝑛𝑡𝑟𝑜𝑝𝑦����� , 
respectively. 

Next, we calculated the variation in the multi-scale inherent 
fuzzy entropy between the baseline (resting) condition and the 
stimulus condition during which SSVEPs were induced in five 
stimulus trials. This function is termed the relative inherent 
fuzzy entropy, which is expressed as: 

𝑅𝐸�					 = 𝐸𝑛𝑡𝑟𝑜𝑝𝑦�����(�)−	𝐸𝑛𝑡𝑟𝑜𝑝𝑦~7���23�                      (10) 

where 𝑘 is the stimulus time. 
 

III. EXPERIMENTAL PROCEDURES AND METHODS 

A. Participants 
Forty outpatients with migraine without aura (F:M = 30:10, 

mean age: 38.1 ± 8.2) were recruited from the Headache 
Clinic of Taipei Veterans General Hospital and were asked to 
keep a headache diary to determine migraine phases on a daily 
basis. All enrolled patients fulfilled the diagnostic criteria of 
the International Classification of Headache Disorders 2nd 
edition (ICHD-II) and had a migraine frequency ranging from 
1 to 6 days per month. Forty age- and sex-matched HCs (F:M 
= 32:8,  mean age: 36.1 ± 9.8) were recruited from hospital 
colleagues or their relatives or friends. The individuals who 
served as HCs did not have a past medical history or a family 
history of migraine. As we used the same dataset in another 
recent study [29], the comparisons of demographics, headache 
profile, and psychological characteristics between HCs and 
patients are summarized in that report. 

As shown in Fig. 2, the days on which the EEG 
examinations were performed were classified into one of four 
migraine phases (inter-ictal, pre-ictal, ictal, or post-ictal) based 
on the headache diary. The ictal phase was coded when the 
patient was suffering from a migraine attack on the day of the 
EEG study. Based on previous criteria [34, 35], the pre-ictal 
and post-ictal phases were coded on the day of the EEG study 
if the patient was within 72 hours before or after an ictal phase, 
respectively. The inter-ictal phase was coded if the patient had 
not had a migraine attack within 72 hours before or after the 
EEG examination. Only EEG data collected during the 
inter-ictal and pre-ictal phases were selected for analysis in 
this study, as these periods are significant phases before 
migraine attacks and potential to detect the transition of 
migraine phases.  

All the participants had normal vision and no systemic 
diseases, connective tissue disorders, neurological, psychiatric 
disorders, or other painful conditions according to their 
self-reports. None of our migraine patients received preventive 
treatment, and they were asked not to take any analgesics 
within two days before the EEG recording. The Institutional 
Review Board of Taipei Veterans General Hospital approved 

 
Figure 2 Headache diary and migraine cycle. 
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this study. Informed consent was obtained from all 
participants before they entered in the study. 

 

B. Wearable EEG device 
EEG signals were recorded at a sampling rate of 500 Hz by 

a “Mindo” EEG device (Brain Rhythm Inc., Zhubei District, 
Hsinchu, Taiwan), which is a wearable headband EEG device 
with dry sensors [36]. Each dry-contact electrode was 
designed to include a probe head, a plunger, a spring, and a 
barrel. The probes were inserted into a flexible substrate via an 
established injection molding procedure using a one-time 
forming process. These dry electrodes are more convenient for 
measuring EEG signals than conventional wet electrodes and 
are preferred because they avoid the need to use conductive 
gel and extensive skin preparation procedures while achieving 
a signal quality comparable to that of wet electrodes. In this 
study, as shown in Fig. 3-A, four dry-contact electrodes (Fpz, 
O1, Oz, and O2) were placed according to the extended 
International 10–20 system, and two extra channels (A1 and 
A2) were used as reference channels. The collected EEG 
signals were transmitted by Bluetooth to a personal computer. 

 

C. Experimental paradigm 
The EEG experiment was performed in a static room at 

Taipei Veterans General Hospital, Taiwan. To avoid light 
source interference, we turned the fluorescent lamps off during 
the experimental procedure. As shown in Fig. 3-B, the 
illumination of monitor (Viewsonic V3D231) was 90 lux 
s/pulse at 20 cm in front of the participants’ eyes, and the 
participants were asked to put their chin on the shelf. 
Additionally, the screen offers the functions to inspect the raw 
EEG signals and stimulate repetitive visual stimulus flicks in 
the form of alternating graphical patterns. 

As shown in Fig. 3-C and Fig. 3-D, the experiment 
consisted of the following two sessions: a resting session and a 
visual stimulus session with five stimulus trials. The resting 
session comprised three epochs, during which the eyes were 
open for 1 min and closed for 1 min. To prevent the migraine 
patients from receiving excessive visual stimuli, we 
administered five trials of 10-second, 15-Hz stimuli to evoke 
SSVEPs with 10-second intervals between stimuli in the 
eyes-closed condition. To evaluate the EEG complexity 
changes related to visual stimulation, resting EEG recording 
during eye-closed condition was served as the baseline [37] 
and was then extracted to calculate the relative multi-scale 
inherent fuzzy entropy. 

Of note, patients and HCs participated in five sessions of 
identical resting-state and SSVEP EEG examinations over 3–7 
months, and each examination was separated by an interval of 
2-8 weeks. This protocol aimed to acquire EEG data for 
patients who experienced different phases of migraine, 
particularly the inter-ictal and pre-ictal phases. 
 

D. EEG processing 
All the EEG data were analyzed using the EEGLAB 

toolbox (http://sccn.ucsd.edu/eeglab/) with MATLAB 
software (Mathworks, Inc.), an open source toolbox for 
electrophysiological signal processing. The EEG signals were 
recorded from the O1, Oz, O2 and Fpz electrodes for the 
resting and SSVEP epochs during the eyes-closed condition. 
 
1. Pre-processing 

The original EEG was reviewed by experienced EEG 
specialists. EEG activity was sampled at 500 Hz, 
down-sampled to 250 Hz, and then filtered through 1-Hz 
high-pass and 30-Hz low-pass finite impulse-response filters. 
Segments contaminated with non-physiological artifacts, 
including movement artifacts, electrode detachment, sweating 
artifacts, or 60-Hz noise were marked and discarded.  
 
2. CCA-based artificial removal 

Several studies have applied canonical correlation analysis 
(CCA) to improve signal quality [38-40], and we also have 
reported that the quality of EEG signals can be enhanced by 
CCA-based algorithms [41]. In this study, the filtered EEG 
signal s(𝑥) was expressed as: 

EEG data: S(𝑥) = �

𝑂1
𝑂𝑧
𝑂2
𝐹𝑝𝑧

�                                                     (11) 

The template sinusoidal and cosinusoidal signals associated 
with the flickering frequency S(𝑦) were expressed as: 

 
Figure 3 Experimental paradigm. (A) Wearable headband EEG device; 

(B) experimental environment and setting; (C) experiment during 
resting condition; (D) experiment during SSVEP condition. 
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Template signal:	S(𝑦) =

⎣
⎢
⎢
⎡sin

(2𝜋𝑓D𝑛)
cos(2𝜋𝑓D𝑛)
sin(2𝜋𝑓�𝑛)
cos(2𝜋𝑓�𝑛)⎦

⎥
⎥
⎤
                               (12) 

where 𝑓D	is the frequency of the stimulation, 𝑓�  is the second 
harmonic frequency to the stimulus frequency, and n is the 
length of the EEG signal according to the following equation: 
𝑛 = D

��
                                   (13) 

where 𝑓� is the sampling rate.  
The template sine and cosine signals were 15 Hz, and the 

template second harmonic sine and cosine signals were 30 Hz.  
Then, we calculated the correlation between S(𝑥) and S(𝑦): 

�	𝐶88LD𝐶8�𝐶��LD𝐶�8	�𝑊8 = 𝜌�𝑊8                     (14) 

where	C88  is the covariance matrix of S(𝑥), and 𝐶��  is the 
covariance matrix of S(𝑦) . 𝐶8�  and 𝐶�8  are the 
cross-covariance matrices between S(𝑥)  and 𝑆(𝑦) . 𝑊8 
contains the eigenvectors and eigenvalues of 
matrices	S(𝑥)	and	𝑆(𝑦). 

Considering the components of the eigenvector that are 
similar to the stimulus frequency, the first two selected 
components were comprised matrix 𝐴 . In addition, we 
transposed matrix 𝐴 and multiplied it by the original EEG data 
S(𝑥): 

𝑌£ = 𝐴¤	S(𝑥)	                                                                       (15) 

The inverse of matrix	𝐴 was also transposed and multiplied by 
matrix	𝑌£: 

S(𝑥)£ = (𝐴¤)LD	𝑌′	                                                               (16) 

The matrix S(𝑥)£	represents the EEG signals after CCA-based 
artifact removal. 

Finally, the artifact-free EEG signals were inspected again 
using the automatic continuous rejection function in 
EEGLAB. 

 
3. Entropy estimation 

The artifact-free EEG data were estimated by the relative 
multi-scale inherent fuzzy entropy algorithm (refer to Section 
II). During the multi-scale procedure, each coarse-grained 
time series was calculated for different temporal scales from 1 
to 20. Of note, the values of the relative inherent fuzzy entropy 
in the resting and stimulus conditions were obtained by 
averaging the entropy estimates of three 1-min eyes-closed 
blocks and 10-s SSVEP blocks, respectively. The prefrontal 
entropy was calculated from the entropy values calculated 
from data recorded from the Fpz electrode, and the occipital 
entropy was calculated by averaging the entropy values 
corresponding to the O1, Oz, O2 electrodes. The entropy 
estimates for each patient were averaged over the same 
migraine phase if the participant had more than one EEG 
recordings during inter-ictal or pre-ictal phase, and the entropy 
estimates of each HC were averaged over the examinations. 

 

E. Classification models 
A binary classification model was developed to discriminate 

among migraine phases (inter-ictal vs. pre-ictal). In this study, 
we employed six commonly used algorithms, including linear 
discriminant analysis (LDA), a k-nearest neighbors classifier 
(kNN), multilayer perceptron (MLP), a Bayesian classifier, a 
support vector machine (SVM) with a linear or radial basis 
function (RBF) kernel [42], Gaussian processes (GP) [43], 
random forest (RF) [44], and adaptive boosting (AdaBoost) 
[45] to classify migraine phases based on EEG entropy 
features with significant levels. These classification algorithms 
were all implemented using PRTools [46], LIBSVM [47], 
GPML [43] or MATLAB File Exchanges in MATLAB 
software. 

The performances of the six algorithms were validated and 
compared via a 3-fold cross-validation procedure. That is, all 
data were randomly partitioned into 3 approximately 
equally-sized clusters. Two clusters were combined and used 
as the training data, and the remaining cluster was retained as 
the validation data to test the model. For example, the original 
sample (40 patients) was randomly partitioned into 3 
equally-sized subsamples. Of the 3 subsamples, 2 subsamples 
(~27 patients) were used as training data, and the remaining 
subsample (~13 patients) was retained as the validation data 
for testing the model. The cross-validation process was 
repeated 100 times. Additionally, due to the limitation of a 
small dataset, the approach for optimizing hyperparameter is 
tuned by cross-validation (k-fold) to evaluate the model 
performance. Specifically, we first split train and test subsets 
with 3-folds, and randomized search of parameters on train 
subset. Then, we selected the best estimator obtained after the 
randomized search based on accuracy. Finally, we tested the 
tuned classifiers with test subset and obtained the accuracy 
scores.  

The performance metrics covered classification accuracy, 
recall, precision, and F-measure [48]. Specifically, accuracy is 
the most intuitive performance measure, which is simply a 
ratio of the correctly predicted observations to the total 
observations. Recall (also called sensitivity) is the ratio of 
correctly predicted positive observations to all observations in 
the actual class. Precision (also called positive predictive value) 
is the ratio of correctly predicted positive observations to the 
total predicted positive observations. F-measure is the 
weighted average of precision and recall, which takes both 
false positives and false negatives into account. Additionally, 
the receiver operating characteristic (ROC) curves and area 
under the curve (AUC) were employed to evaluate the 
performance of various classifiers. 
 



 

F. Statistical analysis 
To determine the independence of different entropy 

variables in of repetitive visual stimulation (i.e. between the 1st 
and 5th stimuli), we performed paired t-tests for each entropy 
scale to compare EEG complexity within the same group (HCs, 
inter-ictal, and pre-ictal patients). Furthermore, paired t-tests 
were applied to compare EEG complexity between inter-ictal 
and pre-ictal patients, and independent t-tests were used to test 
for differences between groups (HCs vs. inter-ictal or pre-ictal 
patients). False discovery rate (FDR) correction was used to 
control for multiple comparisons. The intra-class correlation 
was estimated to quantify a test-retest reliability. One-way 
ANOVA was used to compare the performances of the 
classification algorithms, followed by Tukey’s post hoc test to 
test all pairwise comparisons. All the statistical tests were 
two-tailed, and statistical significance was set at p < 0.05. 

 

IV. RESULTS 
EEG complexity was measured with multi-scale relative 

inherent fuzzy entropy (RE), simply referred to as “entropy” 
in the following sections, over different time scales τ ranging 

from 1 to 20 in repetitive SSVEPs from prefrontal and 
occipital areas. With increased stimulus times, we noted 
monotonic enhancement in the occipital EEG entropy of HCs 
and patients during the inter-ictal phase, but a monotonic 
reduction in the occipital EEG entropy in patients during the 
pre-ictal phase (Fig. 4-A). However, no significant differences 
or trends in the EEG entropy were observed among the 
different groups in the prefrontal region. Therefore, in the 
following sections, we present the detailed findings of the 
occipital regions. 
 

A. Intra-group comparisons of EEG entropy  
In this section, we compared the differences in EEG entropy 

between different sessions (1st stimuli vs. 5th stimuli) in three 
groups of participants, i.e., HCs, inter-ictal patients, and 
pre-ictal patients. As shown in Fig. 4-B, EEG entropy showed 
a decreasing trend in entropy with an increasing time scale in 
the 1st stimulus session, which changed to an increasing trend 
in the 5th stimulus session in HCs. Furthermore, when 
comparing EEG entropy between the 1st and 5th stimulus 
sessions, the results showed an enhancement in occipital EEG 
entropy with increasing stimulus times for HCs. Table I shows 
the values of EEG entropy and p values in the 1st and 5th 
stimuli sessions. The EEG entropy increased from negative to 
positive values in the HCs group. The paired t-tests revealed 

 
 

 
 

Figure 4 The trends in EEG entropy in the occipital area. (A) The changes in EEG entropy during the five (1st, 2nd, 3rd, 4th, and 5th marks) SSVEP stimuli over 
time scales ranging from 1 to 20 in HCs and migraine patients during the inter-ictal and pre-ictal phases. (B) Comparisons of EEG entropy between the 1st and 
5th stimuli over time scales ranging from 1 to 20 in HCs. (C) Comparison of EEG entropy between the 1st and 5th stimuli over a time scale of 1 to 20 in patients 
of inter-ictal phase. (D) Comparisons of EEG entropy between the 1st and 5th stimuli over time scales ranging from 1 to 20 in patients during the pre-ictal phase. 

(E) Comparisons of EEG entropy among the inter-ictal phase, the pre-ictal phase and HCs over time scales ranging from 1 to 20 in the 1st stimuli session. (F) 
Comparisons of EEG entropy among the inter-ictal phase, the pre-ictal phase and HCs over time scales ranging from 1 to 20 in the 5th stimuli session. (G) 

Variance (5th stimuli EEG entropy minus 1st stimuli EEG entropy) comparisons among the inter-ictal phase, the pre-ictal phase and HCs. Of note, the traces 
represent the mean ± standard deviation (SD) of the EEG entropy of the inter-ictal phase, the pre-ictal phase or HCs. The asterisk or cross denotes a significant 

difference between different conditions (FDR-adjusted p < 0.05).  



 

that the EEG entropy in the 5th SSVEP session was 
significantly higher than that in the 1st SSVEP session in most 
time scales (FDR-adjusted p < 0.05). 

 For migraine patients in the inter-ictal phase (Fig. 4-C), 
EEG entropy had an ascending tendency with increasing time 
scales in the 1st and 5th stimulus sessions. Furthermore, EEG 
entropy had an increasing trend from the 1st to the 5th stimulus 
in all time scales, although the difference was not significant. 
However, for migraine patients in the pre-ictal phase (Fig. 
4-D), although EEG entropy also retained an ascending 
tendency with increasing time scales in the 1st and 5th stimulus 
sessions, the entropy showed an opposite trend from the 1st to 
the 5th stimulus in all time scales. That is, EEG entropy 
showed a decreasing trend in the 5th stimuli session compared 
with the 1st stimuli session. 
 

B. Inter-group comparisons of EEG entropy 
In this section, we compared the differences in EEG entropy 

in the specific stimuli sessions among the three groups (HCs, 
inter-ictal patients and pre-ictal patients). During the 1st 
stimuli session (Fig. 4-E), the HCs group presented lower 
occipital EEG entropy relative to the migraine patients. The 
EEG entropy values of the HCs and the migraine patients were 
negative and positive, respectively, for all time scales. We did 
not find a significant difference in EEG entropy between the 
HCs and the patients in the inter-ictal phase, but patients in the 
pre-ictal phase had significantly higher EEG entropy 
compared with the HCs (FDR-adjusted p < 0.05). In Table I, 
we present the values of EEG entropy and the p values for 
HCs and patients in the pre-ictal phase. In migraine patients, 
the pre-ictal phase was associated with a rising trend in EEG 
entropy at large time scales compared with the inter-ictal 

phase, although there were no significant differences between 
these two phases. 

By the 5th stimulus (Fig. 4-F), participants in all three 
groups exhibited positive entropy values in most time scales. 
Patients in the pre-ictal phase presented the lowest occipital 
EEG entropy relative to HCs and patients in the inter-ictal 
phase, although the EEG entropy did not significantly differ 
among the three groups. Of note, EEG entropy of HCs is 
similar to that of patients of inter-ictal phase in most time 
scales.  

 Additionally, we defined the transitional variance of EEG 
entropy as the difference in EEG entropy between the 1st and 
5th stimulus sessions. As shown in Fig. 4-G, patients in the 
pre-ictal phase exhibited a significantly lower transitional 
variance of EEG entropy than that in the inter-ictal phase for 
most large time scales. Similarly, patients in the pre-ictal 
phase had a significantly lower transitional variance of EEG 
entropy than the HCs for all time scales (FDR-adjusted p < 
0.05). Table II shows the transitional variance of EEG entropy 
and the p values for HCs and patients in the inter-ictal and 
pre-ictal phases. Considering the transitional variance of EEG 
entropy in individuals from the inter-ictal to pre-ictal phase, 
for the time scale of 20, entropy decreased in 28 of the 40 
patients (70%) when they entered the pre-ictal phase from the 
inter-ictal phase. In contrast, an increment in entropy was 
observed in 12 patients. Additionally, 8 patients with two 
pre-ictal examinations were selected for the test-retest 
reliability. According to the quoted guidelines for 
interpretation of inter-rater agreement measures, our results 
showed a good reliability with an intra-class correlation 

Table I EEG entropy (mean (standard deviation)) in HCs and patients. 

𝛕 
HC Pre-ictal  

P1 P2 
1st SSVEP 5th SSVEP 1st  SSVEP 

1 -0.007 (0.005) 0.008 (0.003) 0.009 (0.003) 0.053 0.014 
2 -0.018 (0.011) 0.014 (0.006) 0.017 (0.007) 0.059 0.012 
3 -0.025 (0.013) 0.012 (0.006) 0.015 (0.009) 0.014 0.016 
4 -0.027 (0.014) 0.009 (0.006) 0.011 (0.009) 0.025 0.028 
5 -0.028 (0.014) 0.006 (0.006) 0.008 (0.010) 0.032 0.039 
6 -0.026 (0.014) 0.006 (0.006) 0.007 (0.010) 0.037 0.057 
7 -0.024 (0.014) 0.007 (0.006) 0.008 (0.010) 0.045 0.069 
8 -0.026 (0.014) 0.008 (0.007) 0.011 (0.011) 0.043 0.057 
9 -0.027 (0.016) 0.008 (0.009) 0.015 (0.012) 0.048 0.041 
10 -0.030 (0.018) 0.013 (0.010) 0.021 (0.014) 0.039 0.029 
11 -0.029 (0.020) 0.015 (0.013) 0.029 (0.016) 0.064 0.029 
12 -0.035 (0.023) 0.021 (0.014) 0.032 (0.018) 0.030 0.024 
13 -0.032 (0.026) 0.026 (0.018) 0.043 (0.019) 0.045 0.027 
14 -0.046 (0.028) 0.033 (0.017) 0.046 (0.021) 0.018 0.012 
15 -0.030 (0.033) 0.053 (0.022) 0.055 (0.023) 0.030 0.039 
16 -0.047 (0.035) 0.038 (0.020) 0.060 (0.024) 0.019 0.014 
17 -0.039 (0.039) 0.051 (0.025) 0.067 (0.026) 0.036 0.027 
18 -0.064 (0.039) 0.060 (0.027) 0.076 (0.028) 0.008 0.005 
19 -0.046 (0.039) 0.068 (0.027) 0.072 (0.029) 0.019 0.019 
20 -0.049 (0.047) 0.054 (0.027) 0.097 (0.032) 0.049 0.012 

τ represents the time scales. 
1 1st SSVEP vs. 5th SSVEP for HCs. 
2 Pre-ictal patients vs. HCs in the 1st SSVEP session. 

Table II  Variance of EEG entropy (mean (standard deviation))  
in HCs and patients 

𝛕 HC Patients P1 P2 
Inter-ictal Pre-ictal 

1 0.015 (0.005) 0.007 (0.004) -0.005 (0.004) 0.004 0.024 
2 0.031 (0.011) 0.014 (0.008) -0.012 (0.010) 0.006 0.035 
3 0.037 (0.014) 0.014 (0.010) -0.014 (0.014) 0.013 0.074 
4 0.036 (0.015) 0.012 (0.010) -0.013 (0.015) 0.024 0.129 
5 0.034 (0.015) 0.009 (0.009) -0.013 (0.015) 0.030 0.182 
6 0.032 (0.015) 0.008 (0.009) -0.013 (0.015) 0.036 0.208 
7 0.031 (0.015) 0.008 (0.009) -0.015 (0.016) 0.034 0.183 
8 0.033 (0.016) 0.010 (0.010) -0.017 (0.018) 0.028 0.125 
9 0.034 (0.017) 0.014 (0.011) -0.019 (0.019) 0.033 0.095 
10 0.043 (0.020) 0.014 (0.012) -0.025 (0.022) 0.016 0.081 
11 0.044 (0.023) 0.019 (0.014) -0.030 (0.024) 0.023 0.047 
12 0.056 (0.025) 0.020 (0.010) -0.031 (0.027) 0.015 0.049 
13 0.057 (0.030) 0.017 (0.018) -0.039 (0.029) 0.019 0.045 
14 0.078 (0.032) 0.028 (0.021) -0.040 (0.034) 0.008 0.048 
15 0.082 (0.036) 0.028 (0.023) -0.044 (0.035) 0.013 0.070 
16 0.085 (0.035) 0.033 (0.025) -0.049 (0.037) 0.008 0.050 
17 0.090 (0.041) 0.047 (0.026) -0.052 (0.040) 0.012 0.019 
18 0.123 (0.044) 0.034 (0.027) -0.051 (0.041) 0.005 0.044 
19 0.113 (0.046) 0.045 (0.030) -0.053 (0.041) 0.009 0.036 
20 0.103 (0.052) 0.029 (0.031) -0.063 (0.045) 0.018 0.049 
 
τ represents the time scales. 
1 Pre-ictal patients vs. HCs. 
2 Pre-ictal vs. inter-ictal phases. 



 

coefficient r1 of  0.70 (p = 0.04). 
 

C. Performance of classification models 
 To capture useful input variables, we selected features 

(transitional variance of EEG entropy) for specific time scales 
with significant changes. Thus, the transitional variance of 
EEG entropy with time scales of τ =
	1, 2, 11, 12, 13, 14, 17, 18, 19, 20	were chosen as the input 
features of the classification models.  

As shown in Table III, the performances of six binary 
classification models (LDA, kNN, MLP, Bayesian, 
Linear/RBF-SVM, GP, RF, and AdaBoost) for classifying 
migraine phases (inter-ictal vs. pre-ictal) were evaluated. 
Furthermore, we selected four matrices (accuracy, recall, 
precision, and F-measure) to assess classification performance. 
In terms of accuracy and recall, the AdaBoost ensemble 
learning classifier (81±6% accuracy and 80±6% recall) 
significantly outperformed other classifiers (p < 0.05) except 
for the RBF-SVM. In terms of precision and F-measure, the 
AdaBoost ensemble learning classifier (79±6% precision and 
78±5% F-measure) had comparable results that were 
significantly better than the results obtained with the LDA, 
kNN, MLP, Bayesian, Linear-SVM, GP and RF classifiers (p 
< 0.05). 

Additionally, the ROC curves and AUC were employed to 
evaluate the performance of various classifiers. Figure 5 
showed the ROC curves and AUC of the classifiers to 
compare the classification performance among various 
classifiers. Of note, AdaBoost had the highest AUC of 0.87, 
and SVMRBF had the second-highest AUC of 0.84 in 
estimating the migraine phases. 

 

D. Performance of competing entropy algorithms 
In this section, we used the same EEG processing steps but 

estimated entropy using the competing entropy algorithms 
(ApEn, SampEn, and FuzzEn). In HCs (Fig. 6), we could not 
distinguish EEG entropy between the 1st and 5th stimuli 
sessions using ApEn or SampEn without a fuzzy structure. 
However, the FuzzEn algorithm could only distinguish the 
EEG entropy of these two sessions at larger time scales (τ =
	17, 18, 19, 20), suggesting that the fuzzy structure (including 
FuzzEn and Inherent FuzzEn) is better than the non-fuzzy 
structure (including ApEn and SampEn) in estimating EEG 
entropy in SSVEPs. 

Additionally, there was no significant difference in EEG 
entropy between each session in migraine patients, indicating 
that the relative inherent fuzzy entropy algorithm is superior to 
the other competing models, including ApEn, SampEn and 
FuzzEn, for use in SSVEP-based migraine studies. 

 

V. DISCUSSION 

A. Complexity characteristics 
Systemic analyses indicate that entropy dynamics reflect the 

nonlinear complex characteristics of the brain that allow it to 
adapt to constantly changing stimulus situations rather than 
the linear characteristics of the brain [49]. The associated 
entropy models, which can be used to quantify brain 
complexity to express the robustness of brain systems, are 
crucial for quantifying the critical characteristics of nonlinear 
neuro-dynamics [50]. Additionally, as biological systems 

Table III Performances of the classification models 

 Accuracy Recall Precision F-measure 

LDA 0.72 (0.05)* 0.69 (0.05)* 0.72 (0.05)* 0.71 (0.05)* 

kNN 0.70 (0.06)* 0.68 (0.06)* 0.70 (0.06)* 0.69 (0.06)* 

MLP 0.69 (0.07)* 0.63 (0.05)* 0.67 (0.06)* 0.66 (0.07)* 

Bayesian 0.67 (0.06)* 0.63 (0.06)* 0.67 (0.06)* 0.67 (0.06)* 

S
V
M 

Linear 0.74 (0.05)* 0.71 (0.05)* 0.75 (0.06)* 0.73 (0.05)* 

RBF 0.79 (0.05) 0.78 (0.06) 0.77 (0.05) 0.76 (0.05) 

GP 0.73 (0.05)* 0.70 (0.05)* 0.72 (0.05)* 0.72 (0.05)* 

RF 0.75 (0.06)* 0.73 (0.05)* 0.75 (0.06)* 0.74 (0.05)* 

AdaBoost 0.81 (0.06) 0.80 (0.06) 0.79 (0.06) 0.78 (0.06) 

 
Parameters: LDA: default settings; KNN: k=3; MLP: structure with one hidden 
layer and number of units=5; Bayesian: default settings; SVM with linear kernel: 
c=0; SVM with RBF kernel: c=15, g=10; GP: exponential covariance [-0.73 -0.12] 
and Gaussian likelihood -2.58; RF: the number of decision trees n=20; AdaBoost: 
the number of weak classifiers n=8 (LDA, kNN, MLP, Bayesian, Linear-SVM, 
RBF-SVM, GP, and RF). 
 
*: After utilizing one-way ANOVA, Tukey's post hoc test was performed for 
pair-wise comparisons: p < 0.05 (AdaBoost vs. Other Classifiers).  
 

 
Figure 6 Comparisons of EEG entropy between the 1st and 5th stimuli over 

1 to 20 time scales in HCs as measured by ApEn, SampEn and FuzzEn. 

 
Figure 5 ROC curves and AUC are analyzed and plotted for each of the 
classifiers. The AUC is marked in the brackets of the legends (e.g., 0.87 

AUC in AdaBoost). 
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functioning on different time scales may exhibit different 
behaviors, so bio-signals are often examined at multiple time 
scales. Our results showed that EEG complexity was enhanced 
in the occipital area after repetitive visual stimulations at 
different time scales, which was in line with the finding of a  
previous study showing that EEG entropy exhibited an 
increasing trend in response to long-term audio-visual 
stimulation [51]. 

On the other hand, healthy individuals learn to stop 
responding to stimuli that are no longer biologically relevant 
[52, 53]. For example, healthy humans can habituate to 
repeated visual stimuli when they learn these have no 
consequences. This habituation performance is a form of 
adaptive behavior that reflects the robustness of brain systems. 
Our finding that EEG complexity was significantly enhanced 
during repetitive SSVEPs in HCs is considered another form 
of habitation indicating the robustness of brain systems. 
Traditionally researchers who study habituation have focused 
on a time/frequency dimension of the behavior (i.e. response 
potential or magnitude).  Our high throughput entropy 
analyses of habituation for complexity estimation have 
changed this view. Our study offers a new way to think about 
the role of inherent fuzzy entropy in the context of adaptive 
behavioral strategies, i.e., habituation. 

B. EEG complexity in migraine patients 
Prior studies have noted that healthy brain system present 

robustness with high complexity but diseased brain systems 
show vulnerable characteristics with low complexity [20, 29]. 
Healthy subjects exhibit normal habituation to repetitive visual 
stimulation [30] but dishabituation has been observed in 
migraine patients [6-11]. Our study discovered changes in 
EEG complexity in migraine patients by using a multi-scale 
relative inherent fuzzy entropy algorithm in a repetitive 
SSVEP environment. We found that occipital complexity was 
slightly, although not significant, enhanced with increasing 
stimulus times for migraine patients in the inter-ictal phase, 
but a reversed trend was observed for migraine patients in the 
pre-ictal phase. Thus, our findings are consistent with the prior 
studies and may suggest that migraine patients in the pre-ictal 
phase are more vulnerable to adapt a repetitive visual 
simulation environment than those in the inter-ictal phase. 

Regarding the values of relative inherent fuzzy entropy in 
the 1st SSVEP session, a key result is that migraine patients 
and HCs have positive and negative entropy values, 
respectively. This finding suggests that migraine patients and 
HCs have higher and lower EEG complexities, respectively, 
relative to baseline (resting-state) when responding to the 1st 
visual stimulation. 

Additionally, it would be, nevertheless, of great interest to 
evaluate the EEG complexity by using different stimulation 
frequencies, either lower or higher ones. Since previous 
SSVEP studies all demonstrated a hyper-responsive pattern in 
patients with migraine throughout a low- to median-to-high 
frequency range, we speculate the results would be similar. 
Further studies are required to confirm this point. 

 

C. EEG-based headband BCI migraine system 
Because of its broad availability and cost-effectiveness, 

EEG is widely used as a non-invasive means to assess 
dynamic changes in brain electrical activity. The rapid 
development of dry sensors and wearable devices [36, 54, 55] 
has led to a reduction in the preparatory work required for 
long-term monitoring. Moreover, the headband design with 
occipital electrodes is convenient for long-term monitoring 
and daily use [36, 54, 55]. Therefore, it is possible to 
implement EEG-based models in laboratories and real-world 
settings.  

Considering the transitional variance in EEG entropy, our 
findings showed that migraine patients in the pre-ictal phase 
presented significantly lower occipital complexity than 
migraine patients in the inter-ictal phase or HCs. Due to the  
distinctive specifications of each classifier, we used 9 
EEG-based classifiers with the input of the transitional 
variance in EEG entropy, to test and compare the performance 
on which of two migraine phases a new EEG signal belongs. 
Of them, the SVM constructs a hyperplane in a 
high-dimensional space, which has the largest distance to the 
nearest training-data point of any class. The GF is a 
probabilistic classification model specified by a mean function 
and a covariance function. The RF is basically an ensemble of 
decision trees, and each tree classifies the dataset using a 
subset of variables. Especially, the AdaBoost, a machine 
learning meta-algorithm, can be used in conjunction with 
many other types of classifiers to improve the performance. In 
the study, the output of the other classifiers including LDA, 
kNN, MLP, Bayesian, Linear-SVM, RBF-SVM, GP, and RF, 
called weak classifiers, is combined into a weighted sum that 
represents the final output of the boosted classifier. This 
outstanding outcome contributed to discriminating between 
inter-ictal and pre-ictal migraine phases with 81±6% accuracy, 
80±6% recall, 79±6% precision and 78±6% F-measure, as 
well as the AUC of 0.87.  

In a 2-class decoding problem with a small set (n=80), the 
classification performance significantly exceeds chance if the 
accuracy reaches 70%  (p < 10-4) [56]. In our study, the 
accuracy of classifiers is larger than 70%, which indicated that 
the performance of our classifiers exceeded the chance level. 
Thus, the wearable EEG solution and the characteristics of 
multi-scale relative inherent fuzzy entropy can be easily 
assessed in repetitive visual stimulation paradigms. However, 
the transitional variance of EEG entropy indeed affects the 
performance of classifiers to obtain a good generalization of 
validation. What is more, the computational time of the 
multi-scale inherent fuzzy entropy algorithm prevents online 
applications or even the processing of long data sets, due to 
the computational time of the fuzzy entropy value. Our  next 
step will conduct a follow-up study to record daily EEG 
signals in out-patient individuals to evaluate the transitional 
variance between the two migraine phases, and calculate 
entropy values with less computational time. In the future, we 
believe that occipital complexity features can be evaluated to 
develop a brain-computer interface (BCI) system that can be 
used to recognize migraine phases before a migraine attack. 

 



 

D. Advantages of inherent fuzzy entropy 
Despite recent progress that has been made in visual 

stimulus research, extracting corticocerebral complexity using 
EEG-based multi-scale entropy approaches that can be used to 
determine the robustness of brain systems remains 
challenging. 

In previous studies, researchers have generally ignored the 
superimposed trends in EEG signals, which leads to poor 
performance of entropy algorithms in realistic EEG 
applications. Thus, we developed a multi-scale inherent fuzzy 
entropy algorithm [28] that has been applied in a previous 
resting-state migraine study [29]. In this SSVEP-based study, 
we modified the original version of the algorithm to a 
multi-scale relative inherent fuzzy entropy algorithm aiming to 
eliminate individual differences. 

In addition to testing the Inherent FuzzyEn algorithm, we 
employed the same data processing steps using other entropy 
algorithms, one with a fuzzy structure (FuzzyEn) and one with 
a non-fuzzy structure (SampEn and ApEn). Considering 
healthy subjects who received repetitive visual stimulations, 
our findings showed that the entropy algorithms with fuzzy 
structures (Inherent FuzzyEn and FuzzEn) exhibited good 
performance compared with algorithms with non-fuzzy 
structures (SampEn and ApEn). Furthermore, the performance 
of the Inherent FuzzyEn algorithm was superior to the 
performances of the FuzzyEn, SampEn and ApEn models. In 
summary, the Inherent FuzzyEn algorithm was more effective 
in evaluating EEG signals from healthy subjects and migraine 
patients not only during resting-state but also during the 
repetitive SSVEP condition. 

 

VI. CONCLUSION 
This study extracted SSVEP-based multi-scale relative 

inherent fuzzy entropy from migraine patients and HCs using 
a wearable headband EEG device. Our results highlight the 
feasibility of using a novel entropy measurement to compare 
EEG complexity in repetitive visual stimulation. Occipital 
EEG entropy showed an enhanced trend in patients in the 
inter-ictal phase; whereas,  a reverse trend in patients in the 
pre-ictal phase. Additionally, patients in the pre-ictal phase 
exhibited a significantly lower transitional variation in EEG 
entropy than patients in the inter-ictal phase. Of note, we also 
noted that inherent fuzzy entropy was superior to other 
competing entropy models for conducting SSVEP 
experiments. In summary, inherent fuzzy entropy can be used 
in novel applications of visual stimulus environments for 
migraine studies, which may potentially be used in the future 
to provide a pre-ictal alert to migraine patients. 

In this study, we have demonstrated the feasibility of the 
SSVEP-based complexity using a wearable headband EEG in 
support of detection of migraine attacks. The use of dry 
electrodes allows for easy and rapid monitoring on a daily 
basis and the advances in EEG recording and analysis ensure a 
promising future in support of individual solutions. We have 
ongoing advances in practical approaches of brain signal 
recording and sophisticated designs of extracting knowledge 
from neuro-information and home healthcare solutions are 

envisioned to guide to a wide range of real-life applications in 
the near future. 
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