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Abstract: Soil erosion is a severe threat to food production systems globally. Food production in
farming systems decreases with increasing soil erosion hazards. This review article focuses on
geo-informatics applications for identifying, assessing and predicting erosion hazards for sustainable
farming system development. Several researchers have used a variety of quantitative and qualitative
methods with erosion models, integrating geo-informatics techniques for spatial interpretations to
address soil erosion and land degradation issues. The review identified different geo-informatics
methods of erosion hazard assessment and highlighted some research gaps that can provide a basis
to develop appropriate novel methodologies for future studies. It was found that rainfall variation
and land-use changes significantly contribute to soil erosion hazards. There is a need for more
research on the spatial and temporal pattern of water erosion with rainfall variation, innovative
techniques and strategies for landscape evaluation to improve the environmental conditions in a
sustainable manner. Examining water erosion and predicting erosion hazards for future climate
scenarios could also be approached with emerging algorithms in geo-informatics and spatiotemporal
analysis at higher spatial resolutions. Further, geo-informatics can be applied with real-time data for
continuous monitoring and evaluation of erosion hazards to risk reduction and prevent the damages
in farming systems.

Keywords: soil erosion; hazard; farming systems; GIS; remote sensing

1. Introduction

Soil erosion is a natural phenomenon. Intensification of soil erosion causes environmental,
economic and social disturbances and hazardous situations [1]. It deteriorates the soil quality: loss
of nutrients [2], changes in physical, chemical and biological processes [3] and reducing agriculture
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productivity [4] resulting in global food insecurity [5]. Human interference and climate variation
lead to the intensification of soil erosion [6]. Many studies show that agricultural landscapes, mainly
farming systems, are more vulnerable to soil erosion due to present climate variation [7,8]. Keating and
McCown [9] described the farming system as an entire production system and management system
on a particular farm or similar farms. The Food and Agriculture Organization defined the farming
system as “a population of individual farm systems that have broadly similar resource bases, enterprise
patterns, household livelihoods and constraints and for which similar development strategies and
interventions would be appropriate. Thus a farming system can encompass a few dozen or many
millions of households” [10]. When the erosion rate is accelerated beyond the level of the permissible
rate, it leads to a hazard. Rahman et al. [11] defined a hazard as “a threatening situation to human
life, property or environment.” The soil erosion hazard influences the landscape processes such as
land productivity, hydrological processes and eventual human wellbeing. Therefore, soil erosion
assessment is important in understanding landscape processes. However, soil erosion assessment is
highly complex due to its multifactorial influences [12,13]. This complexity is reflected in the huge
number of publications pertaining to the subject. Hence, climatic, biophysical, topographic and
human interference (such as socio-economic and political factors) are needed to be considered for soil
erosion assessment.

Since the 1930s, several soil erosion models have been developed and tested; however, it is still
challenging for researchers to assess and predict soil erosion accurately due to its complex nature [3,14].
Karydas et al. [15] have identified 82 soil erosion models and classified them under eight geospatial
categories. They identified the integration of geospatial techniques as a landmark change for the soil
erosion assessment. In recent decades, soil erosion assessment integrated with geospatial technology has
enabled the development of simplified models to assess complex situations. Geo-informatics is a field
of study on the scientific investigation of economic, social, environmental, health & safety and security
challenges in multiple disciplines by analyzing big geospatial and temporal data and interpretation of
results for better understanding and decision-making [16]. It is widely applied in various disciplines
of engineering, earth science, climate science & meteorology, agriculture, public health, archaeology,
oceanography, military and so forth. The geo-informatics helps in the acquisition of different types
of data on socio-economic and biophysical parameters using geospatial technology—geographic
information systems (GIS), remote sensing (RS) and global positioning systems (GPS). It also facilitates
data storage, management, analysis and visualization to develop new theories and methodological
tools to address complex social and environmental challenges. Geo-informatics has great potential for
soil erosion assessment [17] and benefited for combining soil erosion modelling in recent past.

This review paper examines previous research methodologies and findings related to the
geo-informatics applications addressing soil erosion hazards from a wide range of sources: high-quality
journal articles, internet sources, books. In this context, this paper aims to address the research question
on “how geo-informatics technology has been applied to assess and reduce the impact of soil erosion
hazards in a study area.” This review identifies gaps in knowledge in order to answer the research
question and guide sustainable landscape solutions. The review is organized as follows: a brief
description of what a soil erosion hazard is and modelling of soil erosion and determinants of water
erosion. The review then provides an overview of advancements in geo-informatics technology in
the context of soil erosion, spatial and temporal detection and prediction, gully erosion susceptibility
mapping and management strategies. Then challenges, innovations and future directions are discussed.
The paper is finally concluded with implications for future research.

2. Soil Erosion Hazards

Soil erosion by water, that is, “water erosion” has been identified as the major threat to the
agriculture landscape and farming systems [18,19]. Water erosion in farmlands reduce the crop yield
and change the land-use patterns that may induce a risk of food insecurity [20,21]. Water erosion greatly
contributes to the soil erosion hazard [6,13]. Hazard is a situation or potential condition to harm or



Remote Sens. 2020, 12, 4063 3 of 25

threat to life, health or damage to property or environment [22]. Researchers revealed increasing rainfall
intensities and prolong seasonal dry periods due to climate variation have triggered an intensification
of soil erosion and temporal probability of hazard occurrence such as mass movements [23]. The extent,
frequency and magnitude of the soil erosion and its associated temporal probability of occurrence can
be increased due to future climate change [8,24]. The anthropogenic factors such as land use change
and forest fires further exacerbated the soil erosion hazard situation [23,25]. Moreover, water erosion
caused by environmental hazards was reported by many scholars with the main cause being highland
developments in the recent past [1,26,27].

The mass movement of soil is an indicator of a soil erosion hazard. This includes gully erosion,
riverbank erosion, rock-falls, debris-falls and landslides that can create damage to the environment and
livelihoods. Annually, more than thousands of lives are lost due to mass soil movement worldwide [28].
However, Blaschke et al. [29] revealed that impacts of mass movement on soil erosion and land
productivity are under-rated in the literature. Thus, less research attention was given on soil erosion
due to the mass movement. Most of the soil erosion hazards prevail during a rainy season or after
heavy rain [17,30]. Mostly, the tropical agricultural lands are vulnerable to gully erosion and landslides
due to heavy water erosion [1,31]. Researchers have identified that landslides and other types of mass
movement are responsible for losses of thousands of lives and hundreds of millions of US dollars’
worth of property and agricultural losses every year [32]. Therefore, understanding the potential risk
or susceptibility to soil erosion is very important for mitigation and risk minimization.

Several studies have highlighted sediment deposition in water sources and its impact on water
quality, biodiversity and natural resources [31,33]. Wilkinson et al. [34] have pointed out that
understanding of driving factors of gully initiation and assessing water erosion dynamics in the river
basin of northeast Australia is important due to its influence on Great Barrier Reef lagoon. Therefore,
it is vital to estimate flow discharge and corresponding erosion rates on steep-slope lands using realistic
runoff and water erosion models. This information is needed to map for conserving natural resources,
prevention and control soil erosion by aiming sustainable land management process [35]. Furthermore,
Poesen [6] highlighted more research is needed on soil erosion runoff and sediment deposition with
hydrological response related to present rainfall variation on sloping lands in order to identify better
conservation plans.

2.1. Modelling of Soil Erosion

The natural soil erosion process is induced due to heavy rainfall, runoff, drought, snowfall, wind,
fire and gravity. Soil erosion by water is the most significant factor of land degradation [14,36,37].
Water erosion can be observed throughout the world as one of the most important factors that can
induce mass soil movement. For instance, United States’ agricultural lands are having an average
annual water erosion 5–170 t ha−1 yr−1, China 150–200 t ha−1 yr−1, Australia 0.1–150 t ha−1 yr−1, India
0.3–40 t ha−1 yr−1, Belgium 3–30 t ha−1 yr−1, Ethiopia 8–42 t ha−1 yr−1, Colombia 0.2–61 t ha−1 yr−1,
Brazil 60 t ha−1 yr−1 Europe 2.46 t ha−1 yr−1 and Rassia 4.58 t ha−1 yr−1 [17,32,38,39].

The tolerable threshold value of soil erosion depends on soil production functions that maintains
by ecosystem service. Therefore, the rate of soil production varies with different regions [40]. Borrelli et
al. [25] revealed generic tolerable soil erosion threshold value is 10 t ha−1 yr−1. However, the tolerable
value of range between 4.5 and 11.2 t ha−1 yr−1 was proposed by the work of United States Department
of Agriculture. The European Environment Agency sets the threshold value between 1 t ha−1 yr−1 for
shallow sandy soils and 5 t ha−1 yr−1 on deeper, well-developed soils. Bui, Hancock and Wilkinson [41]
provided value of 0.85 t ha−1 yr−1 for Australia as reported by Food and Agriculture organization [40].

Research supports the assumption that rainfall accelerates soil erosion in hilly areas and watersheds
because soil erosion is highly sensitive to precipitation [38,42]. The process of water erosion consists
of detachment, transportation and deposition of sediment in a separate place [3,43,44]. There are
several types of water erosion such as splash erosion, sheet or inter-rill, rill, gully or ravine [31,45].
Figure 1 shows the types of soil erosion by water. The kinetic energy of water drops detaches the soil
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surface into soil particles, which are known as splash erosion. These soil particles move with runoff

water flow. These runoff water flows create tiny channels (rills) in hill slopes. When these water flows
of rills connect, they cause the formation of gullies. This process can be described as gully erosion.
The removal of soil layers is called sheet erosion. The rate of soil erosion depends on several key factors
such as rainfall intensity, soil infiltration, amount of runoff water and slope length [46]. However,
soil erosion may depend on some other factors such as anthropogenic activities as well. It is important
to understand the process of soil erosion and its impacting factors in order to select an effective method
for monitoring water erosion in the context of sustainable land management.
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Water erosion assessment methods can be categorized into three main approaches: (i) the field plot
experiment or fallout radionuclides methods using average soil loss measurements [47], (ii) the field
survey method by visible soil erosion indicators and identification of soil erosion influencing factors [48]
and (iii) soil erosion modelling [44]. The classification of soil erosion assessment methods shows in
Figure 2. Soil erosion assessment using field experiments was done by many researchers over several
decades [47,49]. Most of the methods were executed as field plot scale or watershed base experiments.
Poesen [6] identified hydrological discharge on the hill slopes or catchments are dependent on the area
and cannot generalize from a field plot experiment. The realistic runoff should be measured according
to the relief and corresponding erosion rates on hill-slopes. These understandings of soil erosion runoff

are important for better predicting sheet and rill erosion rates in different environments. Ganasri
and Ramesh [50] indicated that most of these conventional methods of soil erosion assessments are
expensive and time-consuming. However, soil erosion modelling approaches provide a quantitative
and reliable estimation for the erosion process and sediment yield in a diverse environment [50,51].

Numerous soil erosion models have been developed by utilizing different scientific methods and
modelling approaches. In general, three categories of soil erosion model based on the nature of the
basic algorithms exist (a) physics-based, (b) empirical and (c) conceptual models [31,42]. These three
categories of soil modelling will be discussed briefly in the following sections.
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2.1.1. Physics-Based Models

Physics-based models are built on field-based research and simulate climate, runoff, infiltration,
water balance, plant growth and decomposition, tillage and consolidation. These models are on the
basis of the physics of flow and sediment transport processes and their interaction on the transfer
of mass, momentum and energy [52]. It can be applied for a range of experiments such as from a
field plot scale to small watersheds and different time periods, including individual storm events,
monthly, yearly or an average annual value, based on the data from several decades. Major limitations
of these models are high complexity and computational costs. The Water Erosion Prediction Project
(WEPP) model is an example of a commonly used physical process-based water erosion model [53].
It was developed as a system modelling approach for predicting and assessing soil loss and identifying
watershed management practices for soil conservation.

2.1.2. Empirical Models

Empirical models are simplified natural processes based on experimental observations. Argent [54]
explained the models that calibrate the relationship between input and output without a detailed
description of the causes of each process. These equations are based on observations of the environment
that can be statistically quantified and proven [55]. Hence, empirical models are frequently employed
for soil erosion modelling and useful for identifying the sources of sediments and quantifying the
erosion rates [56]. Empirical-based models have been widely used in soil erosion assessments.
The Universal soil loss equation (USLE), the revised universal soil loss equation (RUSLE) and modified
universal soil loss equation (MUSLE) are commonly employed empirical-base models Equation (1) for
soil erosion assessments [57,58]. Tiwari et al. [59] compared runoff and soil loss amounts by RUSLE
and WEPP models. They found RUSLE and WEPP models satisfactorily predicted soil loss for the
analyzed conditions and RUSLE performance was better than WEPP.

A = R × K × LS × C × P. (1)

A—Average annual soil erosion rate in soil mass per unit area per year (t ha−1 year−1).
R—Rainfall erosivity factor (MJ mm ha−1 h−1 yr−1),
K—Soil erodibility factor (t ha h MJ−1 mm−1),
LS—Slope length and steepness factor (dimensionless),
C—Crop management factor (dimensionless)
P—Land management factor (dimensionless).
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2.1.3. Conceptual Models

Conceptual models are a combination of empirical and physical-based models. General
descriptions of catchment processes can incorporate to conceptual models without stipulating process
interactions, since detail catchment information would require for process interactions [56]. Therefore,
conceptual models provide measurements on quantitative and qualitative processes within an area
such as a watershed and consist with inherent limitations of empirical models such as a wide range of
data set are needed for calibration. The conceptual soil erosion model AGNPS (agricultural non-point
sources pollution model) that combines SCS (Soil conservation service) method and RUSLE that
predicts runoff with SCS and soil erosion loss. The SWAT (soil and water assessment tool) model
predicts runoff with SCS curve number and MUSLE for soil loss prediction [43].

Despite the above three categories of soil erosion modelling, recent studies have introduced several
new approaches on the model application and scenario-based simulations to predict the impacts of land
use and climate change on soil erosion. A combined approached of LTM (Artificial Neural Networks
algorithm- ANN), SCS-CN model and ARUMA has been applied to soil erosion assessment by Rizeel et
al. [60]. Arambarani et al. [61] have employed AHP and multi-criteria decision-making approach in the
GIS environment to investigate the erosion-prone areas. LTM together ANN with and USLE models
have been used to predict soil erosion and land cover dynamics [13]. Weights-of-evidence (WoE) and
evidential belief function (EBF) models were used by Gayen and Saha [62] to identify the soil erosion
in vulnerable areas. Another recent study employed ANN, geographically weighted regression (GWR)
and GWR–ANN ensemble model to predict soil erosion [63].

2.2. Determinants of Water Erosion

Water erosion accelerates on several factors such as rainfall, topography, soil susceptibility,
slope characteristics, crop factors and land management practices. Wischmeier and Smith [44]
identified that soil erosion depends on several key factors—rainfall kinetics, slope length and steepness
factor, crop and management factor. In addition, snow covers the surface of land area in winter and
spring seasons, at most part of arable land of the humid plains in the temperate zone. Hence, the soil
contains wet condition and makes it more vulnerable for the erosion due to repeated freezing and
melting [53]. Further to this, more soil erosion occurs with less ground cover areas due to snowmelt
runoff, usually during the late winter or spring [64]. The permeability of the surface soil increases
due to repeated freezing and melting that enhance more soil erosion [65]. Researchers have also been
widely considered various other factors for modelling such as land-use change, lithology, distance
to river and distance to the road. The following sections discuss key factors affecting water erosion
in detail.

2.2.1. Rainfall

The capability of rainfall to cause soil erosion is defined as the erosive power of rainfall or rainfall
erosivity. It has been observed that rainfall amount, intensity and spatiotemporal distribution may
vary with climate variation [24–66]. Besides, irregular and intense precipitation is the leading cause of
water erosion [67,68].

Several attempts have been made to study the impact of rainfall intensity and rainfall patterns on
soil erosion such as surface ceiling, runoff water, erosion hazard, loss of organic matter and soil fertility.
Studies have shown that rapid changes take place during rainfall, affecting infiltration and runoff in
the erosion processes [69,70]. The increasing of rainfall reduces the nutrient level [5] and enhances the
acidification in the soil.

Almagro et al. [71] have reported warm climates, temperature and intense rainfalls will increase
significantly due to an increase of global mean temperature from one degree Celsius. As a result,
the moisture retention capacity of the atmosphere will increase by 7%. Water vapor in the atmosphere
influences the circulation patterns of the hydrological cycle and initiates high intensity and extreme
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rainfall events [72]. In a recent paper, Poesen [6] highlighted that more research should be done on
rainfall characteristics such as rainfall amount, rainfall intensity, rainfall depth, erosivity and a number
of rainy days with present climate variation in different regions. For example: in Europe, researchers
have predicted that a relative mean rain erosivity may increase by 18% in 2050 (compared to 2010) due
to large spatial variability of rainfall [73]. Hence, understanding the impact of the extreme situations of
precipitation is important and it can be used to study rainfall erosivity and soil erosion for shorter
time intervals.

The expansion of erosion features based on precipitation events can also be examined through
high temporal resolutions. Hence, more research is needed for investigation on rainfall variation in
hill-slope against various crop management practices with present rainfall variation. Special attention
should be paid to soil erosion hazards caused by physical changes in the soil due to rainfall variation.

2.2.2. Slope Length and Steepness

Terrain characteristics such as slope steepness and slope length play a major role in soil loss [74,75].
In a hilly area, when the slope length increases, soil runoff in the downslope direction per unit area
also increases. While the slope steepness increases, the runoff velocity is increased. When the slope
increases, runoff water will find a path nearby increasing soil erosion and reducing infiltration [50]. The
slope length and steepness would increase the velocity of runoff by reducing infiltration, which causes
severe damage to the soil as well as livelihoods. The ground cover from plants or mulch helps to
reduce the runoff velocity. Hence, it is vital to make policy changes on land-use and soil conservation
measures to minimize the severity of damages in terms of the effect of rainfall variation in hillslopes.

2.2.3. Soil Erodibility

Soil erodibility reflects the soil susceptibility to erosion. Mainly, it depends on the organic matter
content, soil texture (silt, very fine sand, sand and organic matters), permeability and aggregate
stability [76]. Soil erodibility values for different types of soil can be obtained from nomographs [44].
However, runoff plots under the standard conditions of fallow soil is a reliable way to measure the soil
erodibility for local soil types. Studies should be carried out for a period of more than five years to
obtain satisfactory values from field plot experiments [77]. Hence, researchers commonly assumed that
once the soil erodibility value has been established for the soil in a particular area, this soil erodibility
value is permanent. Nonetheless, Poesen [6] has indicated that soil erodibility depends on climate
variation and it was not fully recognized. Therefore, more research is needed to study rainfall variation,
topography and vegetation impacts on soil erodibility.

2.2.4. Ground Cover

Vegetation cover helps to protect the soil from the disintegration of soil particles by rainfall
and acts as a barrier for the detachment of soil particles [78,79]. Hence, if vegetation cover is large
enough, the impact of the rainfall will reduce the erosion rate. Plant root systems also play a significant
role in soil erosion, where the above-ground mass is not prominent due to grazing, drought or fire.
A major contribution from a plant root system for the erodibility is the ability of mechanical soil
binding. Although plant roots do not have a prominent effect on splash erosion, some plants have
better-rooting patterns, so they hold the soil in better and prevent the formation of rills, gully and
shallow landslides [80,81]. Therefore, Poesen [6] suggests that more attention should be given to
examining the effect of root characteristics and soil erosion rates in different soil types.

2.2.5. Conservation Practices

Water erosion leads to land degradations in farming systems and low productivity of crop
production. Soil and water conservation structures help to reduce the water erosion [82], increase the
soil moisture, soil fertility and improve a response to commercial fertilizer that contributes to increase
crop yield [83]. According to Udayakumara et al. [84], soil conservation measures improve soil health
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and help to improve the ecosystems services in every aspect. Agricultural practices, such as multiple
cropping and agroforestry, also increase soil organic matters and soil carbon sequestration. Thus,
multiple cropping and agroforestry practices reduce the soil erosion through cover crops, deep-rooted
crops and verities [85,86]. Poor crop management practices are directly related to inducing water
erosion. This situation can be improved by implementing crop management strategies, such as
planting cover crops, minimum tillage and adding organic matter to enhance water infiltration through
improving the availability of soil moisture [87]. In addition, these strategies may also help to mitigate
the impacts of severe rainfall and drought events or from water erosion [88,89].

This review highlights several models that have been employed by researchers to monitor factors
of water erosion. Researchers have made huge progress in the process of soil erosion, identifying the
causative factors and its controlling mechanisms through modelling approaches. The USLE [44] and
RUSLE [90] are widely employed to assess long-term soil erosion rates from farmlands due to different
management practices [57]. Several studies have analyzed soil erosion and soil erosion hazards in
different agricultural sloping lands using the models of USLE and RUSLE around the world. Although
empirical models do not tend to be event responsive, instead they estimate soil erosion annually.

Integration of different models is used to identify and estimate soil erosion and soil erosion
hazard vulnerability in recent literature. Initially, USLE/RUSLE models had limitations with spatial
distribution, which have been overcome by integrating geo-spatial technology [57]. In this context,
geo-informatics played a vital role in advanced methodological development in estimating soil erosion
and soil erosion hazards [91].

3. Advancement of Geo-Informatics Technology in Soil Erosion Research

The geo-informatics technologies, that is, remote sensing, geographic information system (GIS) and
global positioning system (GPS) have been integrated with various soil erosion models for soil erosion
assessment and risk evaluation [11]. Many studies have been conducted using different soil erosion
models combined with geo-informatics techniques [1,37,50,91,92]. The capabilities of geo-informatics
such as efficient data collection, analysis and validation techniques, provide valid information on
dynamics and intensity of soil erosion over the time and space for controlling and forecasting [57,93,94].
Brits et al. [95] believe that the use of geo-informatics technology has been widely expanded due to its
rapid development and capabilities with new tools and software. The application of geo-informatics to
soil erosion studies has been popularized as a robust, low cost and high accuracy method [92]. It offers
a significant strength for soil erosion assessment at a larger spatial scale, particularly where difficulty
in reaching field investigations [57]. Soil erosion assessments have been conducted based on different
territorial units of spatial analysis (raster grid basis) such as watershed or river basin, country, regional
and global scale levels. Most parameters of water erosion are scale- dependent. For example: a smaller
geographical scale (plot experiment) mostly uses to study on-site impacts of soil erosion while a larger
geographical scale employs to investigate on off-site impacts of soil erosion. Because the same scale is
not always, appropriate for realistic soil erosion assessments [15].

The remote sensing-based airborne and space-borne sensors such as multi-spectral, hyperspectral,
Radio Detection and Ranging (RADAR) and Light Detection and Ranging (LiDAR) and their wide
range of applications have been used to detect soil erosion in different scales of landscape throughout
the world. The remote sensing platforms for soil erosion hazard assessment is illustrated below in
Figure 3. Das et al. [96] described that these methods could be used on rapid assessments without
disturbing the soil surface and have vast spatial coverage. In addition, these technologies help
for a sequence of a time-period assessment with a less cost [92]. Although high spatial resolution
satellite imagery such as IKONOS, QuickBird and Spot 5 are in high cost, coarse resolution satellite
imagery: Landsat, Moderate Resolution Imaging Spectrometer (MODIS), National Oceanic and
Atmospheric Administration Advanced Very High-Resolution Radiometer (NOAA-AVHRR) and
Advance Space-borne Thermal Emission and Reflectance Radiometer (ASTER) are freely available
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for researchers and can be utilized for the time series analysis. A summary of temporal and spatial
resolution is given in Table 1.
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Table 1. Summary of temporal and spatial resolution adapted from Reference [97].

Satellite Temporal Resolution Spatial Resolution

IKONOS 24 h 0.82 m panchromatic; 3.28 m multispectral,

QuickBird 3.5 days 2.4 m spatial resolution and a panchromatic
band at a 0.6 m

Spot 5 26 days 2.5 to 5 m in panchromatic mode and 10 m in
multispectral mode

Landsat 3–8, 16 days 15 m panchromatic 30 m multispectral

MODIS 1–2 days 250 m at nadir, with five bands at 500 m,
provides global coverage

NOAA-AVHRR twice per day 1.1 km
ASTER 6 days at the equator 60 km

Sentinel-2A 5 days 10–60 m

The majority of satellite image sources have a limitation with accurate surface reflectance retrieval.
Thus, land cover change detection is limited. A number of radiometric correction techniques have
been developed to address this limitation [98]. In contrast, NASA’s Earth Observing System (EOS)
and Moderate Resolution Imaging Spectroradiometer (MODIS) are equipped with surface reflectance
products for land cover change detection [99]. Further to this, the availability and low cost of
images are major benefits of Landsat series data. Hence, Landsat data can be used for long term
monitoring purposes. However, there are several limitations with Landsat series data: the low spectral
resolution of the sensor and limited capability of soil erosion parameters estimation such as vegetation
cover, outlining of bare surfaces, calculation of vegetation indices and change of topography [100].
Nevertheless, Sentinel 2 and Landsat 8 series data provide improved spatial, spectral radiometric and
temporal resolutions as a most required spatial tool for continuous monitoring [57].

The vegetation indices have been identified as a simple and quick feature extraction technique for
soil erosion by assessing and mapping from satellite data [57]. A number of researchers have suggested
that soil erosion classes could be delineated based on vegetation cover interpretation and multi-temporal
images allow to assess its expansion [101,102]. Research shows that vegetation cover is depressed
with the occurrence of land degradation [79]. The vegetation indices, such as Normalized Difference
Vegetation Index (NDVI) have been used for many studies of soil erosion [57,68,84,103]. NDVI is a
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vegetation index derived base on remote sensing techniques mostly apply with above-ground net
productivity and dynamics with spatial and temporal distribution of vegetation cover [104]. This index
can be used to obtain information about not only plant growth characteristics but also site-specific
qualities such as prevailing climate, ecosystem, terrain and physical soil properties [105,106]. Puente et
al. [68] have indicated that NDVI is a commonly used vegetation index for extraction of the vegetation
information from satellite data. This index identifies healthy and green vegetation. A number of
studies have been examined soil erosion patterns by analyzing the changes of NDVI values using
time series analysis in growing seasons and onset of the dry seasons [103,107]. In addition, the soil
properties have been studied by several researchers using NDVI images, that is, soil color [108,109],
soil texture and water holding capacity [107], root zone soil moisture [110] and soil carbon and nitrogen
content [106].

The digital elevation model (DEM) is one of the essential inputs required for soil erosion modelling,
which can be generated by analysis of remotely sensed spectral data such as stereoscopic optical
(ASTER), microwave (synthetic aperture radar-SAR), Shuttle Radar Topography Mission (SRTM) and
terrestrial LiDAR for 3D representation in a various resolution for landform recognition [24,111].
The radar has the capability of penetrating through the canopy cover and is independent from weather
and daylight to retrieve high resolution remotely sensed data [112]. LiDAR can produce high-resolution
topographic data, which can be used to generate Digital Terrain Models (DTM) and Digital Surface
Models (DSM) for detail terrain analysis [113].

There are several global geospatial databases available for soil erosion assessments. Global
Historical Climatology Network-Daily provides global daily rainfall data [114]. GTOPO30 provides
digital elevation model (DEM) with resolutions of 1000, 500 and 250 m [115]. Global soil degradation
data are available at GLASOD [116] and GLADIS [25,117]. Data of land degradation in dryland areas
can be accessible in LADA of FAO, UNEP-GEF [117]. However, these models have limited predictive
power due to coarse resolution [25].

The value of NDVI may deviate due to noises in the satellite data due to cloud cover, water,
snow, shadow, sources of errors, false highs or scan angles or transmission errors [118]. Hence, the
soil-adjusted vegetation index (SAVI) [119], the Transformed SAVI (TSAVI) [120], the Modified SAVI
(MSAVI) and the Global Environment Monitoring Index (GEMI) [121,122] are used to reduce soil
background reflectance. Furthermore, the Enhanced Vegetation Index (EVI) can be used to minimize
the contamination problems of NDVI images (canopy background and residual aerosol influences)
and provides complementary information about the spatial and temporal variation of the vegetation
cover [121]. The most popular general equations for vegetation indices are summarized in Table 2.

Table 2. Summary of vegetation indices.

Vegetation Index Equation Formula Reference

NDVI NDVI = (NIR−RED)
NIR+RED [123]

SAVI SAVI = (NIR−RED)(1+L)
NIR+RED+L

where L = correction factor between 0 and 1
[119]

EVI EVI = G (NIR−RED)
(NIR+C1. RED−C2. B+L)

G = 2.5; C1 = 6; C2 = 7.5; L = 1
[123]

TSVI = s(NIR−sRED−a)
(aNIR+RED−as+X(1+s2)

s = the soil line slope
a = the soil line intercept

X = an adjustment factor that is set to minimize soil noise

[120]

MSAVI MSAVI = (2∗NIR+1−sqrt ((2∗NIR+1)̂2−8∗(NIR−R)))
2

[122]

TSAVI (2) [120]
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Recent research studies have claimed that rainfall and land-use change play a major role in soil
erosion hazard of different regions [124,125]. Rainfall data is crucial for several applications such as
soil erosion assessment, risk evaluation and forecasting [126]. There are also satellite sensors that can
provide spatially contiguous soil moisture data (soil moisture active passive (SMAP) or advanced
scatterometer (ASCAT)) and spatial rainfall data [127]. The dynamic of land use and land cover can
be studied using space and airborne imageries [128] with different classification methods. Yang et
al. [129] reviewed landscape classification systems and realized that these classification systems were
important to understand the landscape patterns and changes for cross-comparison or validation.
The satellite image classification algorithms can be categorized as supervised, unsupervised and
hybrid methods (Figure 4). Recently, advanced non-parametric classifiers such as Neural Network,
Regression tree, Fuzzy set classification logic, Support Vector Machines (SVM) and Mahalanobis
distance classifier (MDC) have been used over the traditional parametric classification methods [111].
Moreover, Terrestrial laser scanning (TLS) method can be applied for a variety of applications such as
land-use changes [130,131], landslide susceptibility, rock-fall [132] and gully erosion assessment [133].
GIS-based TLS provides an accurate method for collecting much higher density dataset [130]. Temporal
comparison has also been used to find changes (enlargement) of eroded lands by using satellite data
(Landsat TM) and aerial photos [134]. Individual features such as gullies and large rills can be identified
by using satellite data. However, there are limitations with satellite data due to clouds and canopy
covers. Hence, aerial photography is a common method for detecting individual gullies as it provides
better differentiation [97].
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Unmanned Aerial Vehicles (UAV) derived data is becoming more popular due to its rapid
development in sensor technology [135], low cost and risk [113,136]. The UAV-based LiDAR and
hyperspectral images provide much more detailed estimates of earth surface processes and patterns
for geomorphological and hydrological modelling, including soil erosion estimate and river channel
morphology changes [137]. In addition, UAV well performs in DTM, biodiversity monitoring and
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land-cover change detection [138]. UAV data can be used to deriving vegetation indices such as NDVI,
which are correlated with biophysical characteristics of vegetation cover [139,140].

The integrated use of remote sensing, GIS and soil erosion modelling has been widely applied
by researches for soil erosion assessment. Table 3 provides a few examples of recent research on
integrating remote sensing-based soil erosion assessment in a GIS environment.

Table 3. Integrated soil erosion modelling approaches with remote sensing-based methods.

Soil Erosion
Model Remote Sensing-Based Methods Data Sources Study

Area Reference

RUSLE Normalized Difference Vegetation
Index (NDVI) for vegetation cover

Multi-source remotely sensed
data (MODIS, Gaofen (GF)-1) China [141]

RUSLE Land use/land cover classes
generation

Indian remote sensing (IRS)
satellite 1D-LISS-3 image India [50]

Soil plots and
RUSLE

Digital erosion Model (DEM) Rainfall
depths and intensity

Ground cover

Light Detection and Ranging
(LiDAR) and Shuttle Radar

Topography Mission (SRTM)-
radar rain-field data in

NetCDF, Landsat-8 imagery
Rapideye, Aerial photograph

Australia [76]

USLE
Land use/cover classification for C-
factor generation using Supervised

classification
SPOT 5 and Landsat ETM+ Malaysia [1]

RUSLE and Land-
use change

Object-based image classification for
land-use land cover change detection SPOT-5 Malaysia [142]

Field plot method Normalized Difference Vegetation
Index (NDVI) for vegetation cover ALOS data Sri Lanka [84]

Analytical
hierarchy process

(AHP)

NDVI Different land use/land cover
classification IRS-P6 LISS III China [14]

Biophysical factors
derivation

Vegetation cover, DEM and
topographic variables (slope, stream
erosivity-SPI, topographic wetness

index TWI)

Landsat TM images ASTER
DEM

South
Africa [92]

USLE Land transfer model (LTM) Spot 5 Malaysia [13]
RUSLE and

Sediment yield
Normalized Difference Vegetation

Index (NDVI) for C-factor generation Landsat images (TM) Iran [143]

Gully erosion
detection

Normalized Difference Vegetation
Index (NDVI) for vegetation cover

Unmanned Aerial Vehicles
(UAVs) Morocco [144]

Many researchers used remote sensing and GIS tools to monitor, mapping and forecast soil erosion
hazard and land-use/land-cover changes [13,145]. In addition, geo-informatics technology provides
a better understanding of spatio-temporal relationship in soil erosion hazards, that is, gully erosion
susceptibility mapping and landslide vulnerability mapping. The spatial and temporal distribution
of hazards are important to assess the causative factors, vulnerability and to study its correlation
with future incidents. The recent works of soil erosion assessment at a global scale have provided
new knowledge about future soil erosion rate and prediction. Borrelli et al. [8] predicted the future
rate of soil erosion by modelling potential global soil erosion by employing shared socioeconomic
pathway and representative concentrative pathway of IPCC climate scenarios (SSP-RCP). Furthermore,
Dube et al. [146] have conducted an assessment on linear erosion features of rills and gullies erosion at
a global scale. This study provided erosion modelling and spatial assessment of land susceptibility to
concentrated flow erosion for the restoration of ecosystems. This review found that the capability of
geo-informatics techniques could be utilized as a novel approach due to its vast application of potential
and promising characteristics.

Spatial and Temporal Detection and Predictions

Implementation of sustainable landscape management policies and strategies depend on the
basis of the spatial and temporal distribution of soil erosion hazard levels and risk assessment.
The spatiotemporal pattern of soil erosion hazard has been studied and predicted by several
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researchers [142,147,148]. Nampak et al. [142] employed remote sensing technology to predict land-use
change and its impact on soil erosion. They predicted land-use changes and soil erosion in the Cameron
Highlands of Malaysia by 2025. Tehrany et al. [149] explored soil erosion hazard susceptibility mapping
using evidential belief function and the frequency ratio by using nine conditioning factors based on A2
climate scenario for the present situation and predictions for 2100. However, it is still a challenge to
analyze, understand and predict the situation with dynamic factors such as rainfall, land-use and land
cover with the present climate variation.

The advances of geo-informatics and erosion models help to develop systematic and integrated
approaches in soil erosion hazard and risk evaluation. Due to the complex nature of the soil erosion
hazard process, several integrated approaches were applied. Some of these studies focused on the
development of a set of criteria and indexes which can be spatially represented as information layers
to quantitative and qualitative assessment [14,46]. In many recent research studies, soil erosion hazard
models were combined with several statistical approaches and algorithms in a geospatial environment to
quantify the assessment [150,151]. Such as expert decision tree and artificial neural-network evaluation
methods [74], geo-statistical multivariate approaches [152], sensitivity analysis approaches [153],
soft computing method [154] and analytical risk evaluation methods [155,156]. These models can be
categorized into four types—expert knowledge-based models, data-driven models, machine learning
model and hybrid method. This review focuses on geo-informatics involvement in one of the major
types of soil erosion hazard, that is, gully erosion in detail.

Gully Erosion Mapping

Gully erosion is one of the important indicators in soil erosion hazards and it has been a great threat
to agriculture by reducing soil fertility all over the world especially in arid and semi-arid regions in
tropical, sub-tropical and temperate countries [157]. Gully erosion has become more common due to the
impact of the climate change effect [6]. The high intense rainfall events in a bare landscape create gully
incisions [32,158]. Furthermore, they discharge a high amount of sediment into water sources [157,159].
The studies conducted in Australia have identified land-use change such as vegetation clearance,
animal grazing and alternating periods of extreme rainfall events and drought events, heavily induced
gully erosion [34,41,160]. Li et al. [161] have also claimed that the reduction of vegetation cover greatly
contributes to gully development.

Remote sensing and GIS-based models have been applied to identify spatial and temporal
distribution, investigate susceptibility to gully erosion and mapping the risk classes in order to
minimize soil erosion [162]. Image analysis techniques in satellite remote sensing such as object-based
analysis have been incorporated into detecting and mapping gullies in numerous studies. In addition,
several scientists have adapted advanced statistical, knowledge-based and machine learning models
for gully erosion assessment. Most of these research studies attempt to find out gully susceptibility
using soil, terrain, climatic and land use aspects with geo-informatics technology for the landscape
evaluations. Several recent studies with adapted geo-informatics technology for gully erosion mapping
are summarized in Table 4 below.

As previously mentioned, a sufficient level of research attention was given in the literature for
gully erosion susceptibility mapping. However, soil erosion susceptibility mapping has received less
attention compared to other natural hazards assessment in the literature [149]. According to Tehrany
et al. [127], a variety of statistical and advanced methods such as evidential belief function (EBF),
weights-of-evidence (WoE) and adaptive neuro-fuzzy inference system have been applied and tested
in the field situations of flooding and landslides but not in soil erosion hazard modelling. In fact,
few new research attempts can find out from recent studies on soil erosion susceptibility mapping using
weights-of-evidence (WoE) and evidential belief function (EBF) models [62]. However, continuous
attention is required to find potential best solutions and strategies to prevent these hazard situations in
order to maintain a sustainable landscape and farming systems.
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Table 4. Gully erosion assessment and mapping models.

Model Type Country Attributes Techniques Reference

Knowledge-based
model Iran

Elevation, slope degree, slope–length (LS),
slope aspect, plan curvature, lithology,

distance from the river, drainage density,
distance from the road, use/land cover,

topography
wetness index (TWI), stream power index

(SPI), land normalized difference vegetation
index (NDVI),

Analytic Hierarchy Process
(AHP) [150]

Statistical Models Iran

Soil texture, lithology, altitude, slope angle,
slope aspect, plan curvature, land use,

topographic wetness index (TWI), drainage
density and distance from rivers

Certainty Factor (CF), a
bivariate statistical

model;
[163]

Machine learning
model India

Soil type, altitude, Slope gradient, slope
aspect, plan curvature, land use, slope length
(LS), drainage density, topographical wetness
index (TWI), distance from the river and road,

distance from the lineament,

Flexible discriminant analysis
(FDA), Random forest (RF),

Multivariate additive
regression splines (Jin et al.) and
Support Vector Machine (SVM).

[157]

Machine learning
model Iran

Elevation, slope degree, slope aspect, plan
curvature, profile curvature, catchment area,
stream power index, topographic position

index, topographic wetness index, land use
and normalized difference vegetation index

Generalized linear
model, boosted regression tree
(BRT), multivariate adaptive

regression spline and artificial
neural network

(ANN).

[164]

Machine learning
model Australia

Digital elevation model, Annual precipitation,
Geology, Temperature, land-use, soil

characteristics, distance to the river and so on
Random forest [165]

Knowledge-based
model China Topographic factors, Vegetation cover and

land use
Remote sensing techniques with

visual interpretations [161]

Knowledge-based
model Morocco

Slop, Specific catchment area, Flow direction,
stream power index, Sediment transport

capacity index, NDVI
Object-based image analysis [166]

Hybrid method Iran

Elevation, slope, soil type, lithology, plan
curvature, stream power index (SPI),

topographic wetness index (TWI), distance to
road, distance to stream, drainage density,

land use/land cover and rainfall

Weighted regression (GWR),
Certainty factor (CF) and

Random forest (RF)
[167]

4. Management Strategies

The farming systems are vulnerable to the impacts of climate variability and extreme events [7].
Climate variation also causes several adverse impacts on infiltration, runoff and soil erosion,
consequently reduction of crop biomass and land-use change in farming systems [38]. Therefore,
reliable measures and investment in climate and environment monitoring actions to address these
issues effectively are required. Soil erosion and runoff assessment along with predictions are essential
to implement conservation measures as well as rehabilitation planning for improving sustainable
productivity on the long-term basis [168,169]. Pradhan and Lee [170] described soil erosion susceptibility
and hazard assessment with prediction models that contribute to a significant reduction of damages.
Hence, a better understanding of soil erosion rates and the effects of climate variables are important
for the revision of land-use policies and better soil and water conservation measures in farming
systems. Persichillo et al. [171] have emphasized the maintenance of man-made mechanical structures
are very important to prevent mass movement. In addition, more efforts are needed to develop or
improve effective erosion control techniques and strategies for soil erosion-prone areas using biological
conservation methods such as live vegetation cover.

The soil erosion hazard maps are important to identify erosion-prone areas with its magnitude
for detection of the vulnerability [14]. Rahman et al. [11] observed that soil erosion hazard and
risk assessment are key factors in risk management. Although a significant number of techniques
are available, Ashournejad et al. [172] have noted geo-informatics technology such as aerial and
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satellite images, GIS techniques, satellite and ground-based geodetic techniques, a global positioning
system (GPS) provide a better understanding of risk reduction. In addition, soil erosion hazard
maps provide a foundation for a further analytical tool for gully erosion, landslide susceptibility and
risk identification [149]. Hence, continuous monitoring and evaluation of mass movement using
geo-informatics technology are important for risk reduction and damage prevention.

Accurate mapping of susceptibility to erosion hazard is crucial to avoid economic losses and
life losses. To improve the land resources by hazard mitigation in regional development planning;
conservationists and policy-makers must understand how landforms, soil types, farming practices
and interaction with rainfall and water runoff on soil erosion process. Vrieling [97] highlighted the
importance of the validation process of data and maps. Ganasri and Ramesh [50] indicated that
validation could be done with ground-level data. However, when ground-level data and previous
research data were absent, it was very difficult. It is vital to compile and analyze valuable metadata
before they are lost for future generations [6]. Hence, large-scale data collection (data mining)
of published data on soil erosion rates, causative factors and sediment yield can be utilized for
future benefits.

Few studies have been conducted using different methods and criteria to develop indices and
metrics to evaluate the sustainability of the agricultural landscape. Metrics enable a quantitative and
objective analysis of the different types of agriculture landscape [173]. A quantitative model was
proposed on land planning and management scenario to identify the sustainability of olive farms
in Andalusia, Spain [174]. This study used different conditions of soil erosion and management
practices as criteria for modelling of abandonment, production and economic benefits of Olive farms.
In addition, multicriteria evaluation method was used by several other researchers to identify land
capability and suitability for agricultural activities by utilizing the physical characteristics such as soil
depth, soil texture, soil drainage, erosion hazard, land-use, altitude, slope and slope direction [175,176].
Montgomery et al. [177] have utilized the GIS-based Logic Scoring of Preference (LSP) method as an
effective tool for decision-making on agricultural land capability and land suitability assessment in
Colorado, USA. It was an improved multicriteria evaluation method which comprises social, economic
and physical characteristics as evaluation criteria: soil, topographic, climatic, economic, land-use and
accessibility attributes for the analysis. Furthermore, Gray et al. [178] have developed a new matrix
scheme to guide sustainable land management in New South Wales, Australia. This scheme was used
to identify the potential impact of various land degradation hazards and to promote sustainable land
management practices across the region. Hence, the development of sustainable landscape indices and
matrix with a proper monitoring system will guide scientific land management under the context of
climate variation to minimize its adverse impacts on land resources. Therefore, landscape indices and
matrix can be developed using geo-informatics technology to evaluate the land capability and identify
sustainable land-uses. Moreover, it is important to identify ecologically viable and economically sound
farming systems with future climate scenarios for sustainability. Therefore, this review provides
important directions on geo-informatics application for agricultural land vulnerability assessment
and developing models for future climatic variation that help to formulate management strategies
for climate-related risks reduction in farming systems. Furthermore, this work provides significant
insights to assess ecological viable and economically sound farming systems against soil erosion
hazards for future implications.

5. Challenges, Innovations and Future Directions

The complexity of morphological and other parameters in the larger land area is a more significant
challenge for soil erosion assessment and risk evaluation. Soil erosion assessment models as such
RUSLE/USLE have some drawbacks when predicting sediment pathways from hill slopes to water
bodies and gully erosion assessment [179]. When combined with geo-informatics techniques: geospatial
modelling and image fusion techniques can obtain successful research outcomes from soil erosion
assessment. Hence, it has been suggested that remote sensing-based soil erosion assessment is more
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innovative and practicable for larger landscape [57]. Although high-resolution commercial remote
sensing data have more potential, freely available Landsat archive data have been commonly used
for remote sensing-based soil erosion modelling studies. Freely available Sentinel satellite data from
the European Space Agency also has a great potential for future soil erosion studies with its high
temporal resolution and SAR sensor. The SAR (microwave/radar) sensor of Sentinel satellite avoids
misclassification due to cloud and haze. SAR is an ‘active’ remote sensing method and can be collected
real-time data in the day and night under all weather conditions [180]. For example, multi-temporal
X-band SAR (TerraSAR-X) [181,182] and GF-3 [183] have been used for soil moisture retrieval studies.
Sepuru and Dube [57] suggested that Sentinel data have a high potential for temporal scale soil
erosion assessment with 10 m resolution and 5-day repeat coverage. Similarly, the short revisit time
satellites data of the Canadian RADARSAT, the Japanese ALOS, PALSAR-2 and the Himawari-8 have
a great potential for temporal analysis, which can be facilitated to detect potential soil erosion hazards:
emerging gullies in farmlands and susceptibility for landslide in the larger extent of a landscape.
Moreover, detail and extensive monitoring and quantification of soil erosion using the above satellite
data will help to prevent and control soil erosion in a sustainable manner. The multi–temporal
topographic data provide better opportunity to detect geomorphological changes such as landslide
movements, gully erosion and detection of faults in earth surface [113]. Furthermore, cloud-based
geospatial data platforms such as the Google Earth engine and Land Viewer can support for the time
series data analysis.

In addition, many studies indicate rainfall erosivity highly correlated with soil erosion
and soil erosion hazards [36]. Moreover, spatially adjoining soil moisture data (SMAP) and
radar/microwave base spatial rainfall data (PR (Precipitation Radar (Tropical Rainfall Measurement
Mission), AMSR (Advanced Microwave Scanning Radiometer)) can be utilized as reliable data
sources [112] for future research on rainfall intensity and variation and potential soil erosion hazard in
farming systems, spatial-temporal assessment and prediction of climate scenarios.

However, increasing the availability of satellite data is also challenging, as the processing period
may also increase in data analysis. The capabilities of remote sensing-based and GIS software can be
utilized for processing the satellite data. Artificial Intelligence GIS techniques (AIGIS) such as GIS
incorporated with machine learning and deep learning techniques such as data mining software have
an excellent opportunity for satellite data handling.

6. Conclusions

Soil erosion has generated several issues in agriculture landscape and farming systems worldwide.
As a result, crop production losses and economic losses are countless. This review provides evidence
from literature, that soil erosion has been a great threat of land productivity: in terms of damages to
the soil physical, chemical and biological structure, resulting in erosion hazard which leads for low
agricultural productivity, economic damages and threats to human lives.

The review emphasizes that more research needs to be done on the spatial and temporal pattern
of soil erosion with present rainfall variation, need of developing new techniques and strategies to
landscape evaluation to improve the environmental condition sustainably. It further reveals less
research attention on the spatial and temporal pattern of soil erosion along with rainfall characteristics
such as rainfall amount, rainfall intensity, rainfall depth, erosivity and the number of rainy days
with present climate variation. The relationships between rainfall variation and potential soil erosion
hazards in different climatic regions are still far from clear in the literature.

Geo-informatics technology provides a platform with advanced capabilities and potentials of
real-time hazard detection with a spatiotemporal distribution and soil erosion hazard predictions.
Thus, geo-informatics can be applied for continuous monitoring and evaluation of soil erosion hazard
to risk reduction and prevent the damage in farming systems. In addition, geo-informatics provides
satisfactory real-time data sources with efficient data mining algorithms for effective analysis to solve
real-time issues. Outcomes of these analyses can be used to estimate erosion rates, the effects of
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climate variation and could help to develop new indices and matrix for sustainable management of
farming systems.

Finally, this review provides several implications for academicians, researchers and policy planners.
Soil erosion rates and soil erosion hazard susceptibility maps provide information for vulnerable areas
and its determinants, which will be useful to develop new models and applications in future research
for predictions and sustainable farming systems development. A combination of multi-temporal
data: commonly used optical satellite data, microwave short revisit satellite data and UAV data have
enormous potential to predict soil erosion hazard in farming systems against future climate scenarios.
Policy planners could utilize the outcomes of soil erosion hazard assessment to guide appropriate
actions such as measures of soil and water conservation and recommendations for sustainable landscape
development and natural resource management in the future.
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46. Drzewiecki, W.; Wężyk, P.; Pierzchalski, M.; Szafrańska, B. Quantitative and qualitative assessment of soil

erosion risk in Małopolska (Poland), supported by an object-based analysis of high-resolution satellite images.
Pure Appl. Geophys. 2014, 171, 867–895. [CrossRef]

47. Hurni, H. Degradation and conservation of the resources in the Ethiopian highlands. Mt. Res. Dev. 1988, 8,
123–130. [CrossRef]

48. Whitlow, R. A national soil erosion survey of Zimbabwe. J. Soil Water Conserv. 1987, 42, 239–242.
49. Hewawasam, T.; Illangasinghe, S. Quantifying sheet erosion in agricultural highlands of Sri Lanka by

tracking grain-size distributions. Anthropocene 2015, 11, 25–34. [CrossRef]
50. Ganasri, B.P.; Ramesh, H. Assessment of soil erosion by RUSLE model using remote sensing and GIS—A

case study of Nethravathi Basin. Geosci. Front. 2016, 7, 953–961. [CrossRef]
51. De Vente, J.; Poesen, J. Predicting soil erosion and sediment yield at the basin scale: Scale issues and

semi-quantitative models. Earth Sci. Rev. 2005, 71, 95–125. [CrossRef]
52. Kandel, D.D.; Western, A.W.; Grayson, R.B. Scaling from process timescales to daily time steps: A distribution

function approach. Water Resour. Res. 2005, 41, 1–16. [CrossRef]
53. Renard, K.G.; Foster, G.R.; Weesies, G.A.; McCool, D.K.; Yoder, D.C. Predicting Soil Erosion by Water: A Guide

to Conservation Planning with the Revised Universal Soil Loss Equation (RUSLE); United States Department of
Agriculture: Washington, DC, USA, 1997; p. 404.

54. Argent, R.M. A case study of environmental modelling and simulation using transplantable components.
Environ. Model. Softw. 2005, 20, 1514–1523. [CrossRef]

55. Nearing, M.A.; Lane, L.J.; Lopes, V.L. Modeling soil erosion. In Modeling Soil Erosion; Lal, R., Ed.; Soil and
Water Conservation Society (SWCS): Ankeny, IA, USA, 1994; pp. 127–156.

56. Merritt, W.S.; Letcher, R.A.; Jakeman, A.J. A review of erosion and sediment transport models. Environ.
Model. Softw. 2003, 18, 761–799. [CrossRef]

57. Sepuru, T.K.; Dube, T. An appraisal on the progress of remote sensing applications in soil erosion mapping
and monitoring. Remote Sens. Appl. Soc. Environ. 2018, 9, 1–9. [CrossRef]

58. Yang, X.; Zhu, Q.; Tulau, M.; McInnes-Clarke, S.; Sun, L.; Zhang, X. Near real-time monitoring of post-fire
erosion after storm events: A case study in Warrumbungle National Park, Australia. Int. J. Wildl. Fire 2018,
27, 413–424. [CrossRef]

59. Tiwari, A.K.; Risse, L.M.; Nearing, M.A. Evaluation of WEPP and its comparison with USLE and RUSLE.
Trans. Am. Soc. Agric. Eng. 2000, 43, 1129–1135. [CrossRef]

60. Rizeei, H.M.; Pradhan, B.; Saharkhiz, M.A. Surface runoff prediction regarding LULC and climate dynamics
using coupled LTM, optimized ARIMA, and GIS-based SCS-CN models in tropical region. Arab. J. Geosci.
2018, 11, 1–16. [CrossRef]

61. Arabameri, A.; Pradhan, B.; Pourghasemi, H.R.; Rezaei, K. Identification of erosion-prone areas using
different multi-criteria decision-making techniques and GIS. Geomat. Nat. Hazards Risk 2018, 9, 1129–1155.
[CrossRef]

62. Gayen, A.; Saha, S. Application of weights-of-evidence (WoE) and evidential belief function (EBF) models for
the delineation of soil erosion vulnerable zones: A study on Pathro river basin, Jharkhand, India. Model.
Earth Syst. Environ. 2017, 3, 1123–1139. [CrossRef]

http://dx.doi.org/10.1016/j.envsci.2015.08.012
http://dx.doi.org/10.1016/j.agee.2011.07.022
http://dx.doi.org/10.1016/j.agee.2015.01.027
http://dx.doi.org/10.13031/2013.35627
http://dx.doi.org/10.1016/S0341-8162(02)00143-1
http://dx.doi.org/10.1007/s00024-013-0669-7
http://dx.doi.org/10.2307/3673438
http://dx.doi.org/10.1016/j.ancene.2015.11.004
http://dx.doi.org/10.1016/j.gsf.2015.10.007
http://dx.doi.org/10.1016/j.earscirev.2005.02.002
http://dx.doi.org/10.1029/2004WR003380
http://dx.doi.org/10.1016/j.envsoft.2004.08.016
http://dx.doi.org/10.1016/S1364-8152(03)00078-1
http://dx.doi.org/10.1016/j.rsase.2017.10.005
http://dx.doi.org/10.1071/WF18011
http://dx.doi.org/10.13031/2013.3005
http://dx.doi.org/10.1007/s12517-018-3397-6
http://dx.doi.org/10.1080/19475705.2018.1513084
http://dx.doi.org/10.1007/s40808-017-0362-4


Remote Sens. 2020, 12, 4063 20 of 25

63. Mosavi, A.; Sajedi-Hosseini, F.; Choubin, B.; Taromideh, F.; Rahi, G.; Dineva, A.A. Susceptibility mapping of
soil water erosion using machine learning models. Water 2020, 12, 1995. [CrossRef]

64. Chakrabortty, R.; Pal, S.C.; Sahana, M.; Mondal, A.; Dou, J.; Pham, B.T.; Yunus, A.P. Soil erosion potential
hotspot zone identification using machine learning and statistical approaches in eastern India. Nat. Hazards
2020, 104, 1259–1294. [CrossRef]

65. Edwards, A.C.; Scalenghe, R.; Freppaz, M. Changes in the seasonal snow cover of alpine regions and its
effect on soil processes: A review. Quat. Int. 2007, 162–163, 172–181. [CrossRef]

66. Turner, W.; Spector, S.; Gardiner, N.; Fladeland, M.; Sterling, E.; Steininger, M. Remote sensing for biodiversity
science and conservation. Trends Ecol. Evol. 2003, 18, 306–314. [CrossRef]

67. Araro, K.; Legesse, S.A.; Meshesha, D.T. Climate change and variability impacts on rural livelihoods and
adaptation strategies in Southern Ethiopia. Earth Syst. Environ. 2020, 4, 15–26. [CrossRef]

68. Puente, C.; Olague, G.; Trabucchi, M.; Arjona-Villicaña, P.D.; Soubervielle-Montalvo, C. Synthesis of
Vegetation Indices using genetic programming for soil erosion estimation. Remote Sens. 2019, 11, 156.
[CrossRef]

69. Arshad, M.A.; Mermut, A.R. Micromorphological and physico-chemical characteristics of soil crust types in
Northwestern Alberta, Canada. Soil Sci. Soc. Am. J. 1988, 52, 724–729. [CrossRef]

70. Remley, P.A.; Bradford, J.M. Relationship of soil crust morphology to inter-rill erosion parameters. Soil Sci.
Soc. Am. J. 1989, 53, 1215–1221. [CrossRef]

71. Almagro, A.; Oliveira, P.T.S.; Nearing, M.A.; Hagemann, S. Projected climate change impacts in rainfall
erosivity over Brazil. Sci. Rep. 2017, 7, 1–12. [CrossRef]

72. Nearing, M.A.; Jetten, V.; Baffaut, C.; Cerdan, O.; Couturier, A.; Hernandez, M.; Le Bissonnais, Y.;
Nichols, M.H.; Nunes, J.P.; Renschler, C.S.; et al. Modeling response of soil erosion and runoff to changes in
precipitation and cover. CATENA 2005, 61, 131–154. [CrossRef]

73. Panagos, P.; Ballabio, C.; Meusburger, K.; Spinoni, J.; Alewell, C.; Borrelli, P. Towards estimates of future
rainfall erosivity in Europe based on REDES and WorldClim datasets. J. Hydrol. 2017, 548, 251–262. [CrossRef]

74. De La Rosa, D.; Mayol, F.; Moreno, J.A.; Bonsón, T.; Lozano, S. An expert system/neural network model
(ImpelERO) for evaluating agricultural soil erosion in Andalucia region, southern Spain. Agric. Ecosyst.
Environ. 1999, 73, 211–226. [CrossRef]

75. Kayet, N.; Pathak, K.; Chakrabarty, A.; Sahoo, S. Evaluation of soil loss estimation using the RUSLE model
and SCS-CN method in hillslope mining areas. Int. Soil Water Conserv. Res. 2018, 6, 31–42. [CrossRef]

76. Yang, X.; Gray, J.; Chapman, G.; Zhu, Q.; Tulau, M.; McInnes-Clarke, S. Digital mapping of soil erodibility for
water erosion in New South Wales, Australia. Soil Res. 2018, 56, 158–170. [CrossRef]

77. Loch, R.J.; Slater, B.K.; Devoil, C. Soil erodibility (K(m)) values for some Australian soils. Aust. J. Soil Res.
1998, 36, 1045–1055. [CrossRef]

78. De Rouw, A.; Rajot, J.L. Soil organic matter, surface crusting and erosion in Sahelian farming systems based
on manuring or fallowing. Agric. Ecosyst. Environ. 2004, 104, 263–276. [CrossRef]

79. Wibowo, A.; Ismullah, I.H.; Dipokusumo, B.S.; Wikantika, K. Land degradation model based on vegetation
and erosion aspects using remote sensing data. ITB J. Sci. 2012, 44, 19–34. [CrossRef]

80. Gyssels, G.; Poesen, J.; Bochet, E.; Li, Y. Impact of plant roots on the resistance of soils to erosion by water:
A review. Prog. Phys. Geogr. 2005, 29, 189–217. [CrossRef]

81. Vannoppen, W.; Vanmaercke, M.; De Baets, S.; Poesen, J. A review of the mechanical effects of plant roots on
concentrated flow erosion rates. Earth Sci. Rev. 2015, 150, 666–678. [CrossRef]

82. Fu, S.; Yang, Y.; Liu, B.; Liu, H.; Liu, J.; Liu, L.; Li, P. Peak flow rate response to vegetation and terraces under
extreme rainstorms. Agric. Ecosyst. Environ. 2020, 288, 106714. [CrossRef]

83. Dabi, N.; Fikirie, K.; Mulualem, T. Soil and water conservation practices on crop productivity and its
economic implications in Ethiopia: A review. Asian J. Agric. Res. 2017, 11, 128–136. [CrossRef]

84. Udayakumara, E.P.N.; Shrestha, R.P.; Samarakoon, L.; Schmidt-Vogt, D. People’s perception and
socioeconomic determinants of soil erosion: A case study of Samanalawewa watershed, Sri Lanka. Int. J.
Sediment Res. 2010, 25, 323–339. [CrossRef]

85. Hajjar, R.; Jarvis, D.I.; Gemmill-Herren, B. The utility of crop genetic diversity in maintaining ecosystem
services. Agric. Ecosyst. Environ. 2008, 123, 261–270. [CrossRef]

86. West, T.O.; Post, W.M. Soil organic carbon sequestration rates by tillage and crop rotation. Soil Sci. Soc. Am.
J. 2002, 66, 1930–1946. [CrossRef]

http://dx.doi.org/10.3390/w12071995
http://dx.doi.org/10.1007/s11069-020-04213-3
http://dx.doi.org/10.1016/j.quaint.2006.10.027
http://dx.doi.org/10.1016/S0169-5347(03)00070-3
http://dx.doi.org/10.1007/s41748-019-00134-9
http://dx.doi.org/10.3390/rs11020156
http://dx.doi.org/10.2136/sssaj1988.03615995005200030024x
http://dx.doi.org/10.2136/sssaj1989.03615995005300040038x
http://dx.doi.org/10.1038/s41598-017-08298-y
http://dx.doi.org/10.1016/j.catena.2005.03.007
http://dx.doi.org/10.1016/j.jhydrol.2017.03.006
http://dx.doi.org/10.1016/S0167-8809(99)00050-X
http://dx.doi.org/10.1016/j.iswcr.2017.11.002
http://dx.doi.org/10.1071/SR17058
http://dx.doi.org/10.1071/S97081
http://dx.doi.org/10.1016/j.agee.2003.12.020
http://dx.doi.org/10.5614/itbj.sci.2012.44.1.3
http://dx.doi.org/10.1191/0309133305pp443ra
http://dx.doi.org/10.1016/j.earscirev.2015.08.011
http://dx.doi.org/10.1016/j.agee.2019.106714
http://dx.doi.org/10.3923/ajar.2017.128.136
http://dx.doi.org/10.1016/S1001-6279(11)60001-2
http://dx.doi.org/10.1016/j.agee.2007.08.003
http://dx.doi.org/10.2136/sssaj2002.1930


Remote Sens. 2020, 12, 4063 21 of 25

87. Büchi, L.; Wendling, M.; Amossé, C.; Necpalova, M.; Charles, R. Importance of cover crops in alleviating
negative effects of reduced soil tillage and promoting soil fertility in a winter wheat cropping system. Agric.
Ecosyst. Environ. 2018, 256, 92–104. [CrossRef]

88. Lal, R. Erosion-crop productivity relationships for soils of Africa. Soil Sci. Soc. Am. J. 1995, 59, 661–667.
[CrossRef]

89. Sanchis, M.P.S.; Torri, D.; Borselli, L.; Poesen, J. Climate effects on soil erodibility. Earth Surf. Process. Landf.
2008, 33, 1082–1097. [CrossRef]

90. Morgan, R.P.C.; Morgan, D.D.V.; Finney, H.J. A predictive model for the assessment of soil erosion risk. J.
Agric. Eng. Res. 1984, 30, 245–253. [CrossRef]

91. Zeng, Z.Y.; Cao, J.Z.; Gu, Z.J.; Zhang, Z.L.; Zheng, W.; Cao, Y.Q.; Peng, H.Y. Dynamic monitoring of
plant cover and soil erosion using remote sensing, mathematical modeling, computer simulation and GIS
techniques. Am. J. Plant Sci. 2013, 4, 1466–1493. [CrossRef]

92. Seutloali, K.E.; Dube, T.; Mutanga, O. Assessing and mapping the severity of soil erosion using the 30-m
Landsat multispectral satellite data in the former South African homelands of Transkei. Phys. Chem. Earth
2017, 100, 296–304. [CrossRef]

93. Pradhan, B.; Abokharima, M.H.; Jebur, M.N.; Tehrany, M.S. Land subsidence susceptibility mapping at
Kinta Valley (Malaysia) using the evidential belief function model in GIS. Nat. Hazards 2014, 73, 1019–1042.
[CrossRef]

94. Tralli, D.M.; Blom, R.G.; Zlotnicki, V.; Donnellan, A.; Evans, D.L. Satellite remote sensing of earthquake,
volcano, flood, landslide and coastal inundation hazards. ISPRS J. Photogramm. Remote Sens. 2005, 59,
185–198. [CrossRef]

95. Brits, A.; Burke, M.; Li, T. Improved modelling for urban sustainability assessment and strategic planning:
Local government planner and modeller perspectives on the key challenges. Aust. Plan. 2014, 51, 76–86.
[CrossRef]

96. Das, B.S.; Sarathjith, M.C.; Santra, P.; Sahoo, R.N.; Srivastava, R.; Routray, A.; Ray, S.S. Hyperspectral remote
sensing: Opportunities, status and challenges for rapid soil assessment in India. Curr. Sci. 2015, 108, 860–868.

97. Vrieling, A. Satellite remote sensing for water erosion assessment: A review. CATENA 2006, 65, 2–18.
[CrossRef]

98. Hall, F.G.; Strebel, D.E.; Nickeson, J.E.; Goetz, S.J. Radiometric rectification: Toward a common radiometric
response among multidate, multisensor images. Remote Sens. Environ. 1991, 35, 11–27. [CrossRef]

99. Vermote, E.F.; El Saleous, N.Z.; Justice, C.O. Atmospheric correction of MODIS data in the visible to middle
infrared: First results. Remote Sens. Environ. 2002, 83, 97–111. [CrossRef]

100. Alatorre, L.C.; Beguería, S. Identification of eroded areas using remote sensing in a badlands landscape on
marls in the central Spanish Pyrenees. CATENA 2009, 76, 182–190. [CrossRef]

101. Dwivedi, R.S.; Ramana, K.V. The delineation of reclamative groups of ravines in the Indo-Gangetic alluvial
plains using IRS-ID LISS-III data. Int. J. Remote Sens. 2003, 24, 4347–4355. [CrossRef]

102. Sujatha, G.; Dwivedi, R.S.; Sreenivas, K.; Venkataratnam, L. Mapping and monitoring of degraded lands in
part of Jaunpur district of Uttar Pradesh using temporal spaceborne multispectral data. Int. J. Remote Sens.
2000, 21, 519–531. [CrossRef]

103. Wessels, K.J.; van den Bergh, F.; Scholes, R.J. Limits to detectability of land degradation by trend analysis of
vegetation index data. Remote Sens. Environ. 2012, 125, 10–22. [CrossRef]

104. Myeong, S.; Nowak, D.J.; Duggin, M.J. A temporal analysis of urban forest carbon storage using remote
sensing. Remote Sens. Environ. 2006, 101, 277–282. [CrossRef]

105. Sommer, R.; Fölster, H.; Vielhauer, K.; Carvalho, E.J.M.; Vlek, P.L.G. Deep soil water dynamics and depletion
by secondary vegetation in the Eastern Amazon. Soil Sci. Soc. Am. J. 2003, 67, 1672–1686. [CrossRef]

106. Sumfleth, K.; Duttmann, R. Prediction of soil property distribution in paddy soil landscapes using terrain
data and satellite information as indicators. Ecol. Indic. 2008, 8, 485–501. [CrossRef]

107. Lozano-García, D.F.; Fernández, R.N.; Johannsen, C.J. Assessment of regional biomass-soil relationships
using vegetation indexes. IEEE Trans. Geosci. Remote Sens. 1991, 29, 331–339. [CrossRef]

108. Mukherjee, F.; Singh, D. Assessing land use–land cover change and its impact on land surface temperature
using LANDSAT data: A comparison of two urban areas in India. Earth Syst. Environ. 2020, 4, 385–407.
[CrossRef]

http://dx.doi.org/10.1016/j.agee.2018.01.005
http://dx.doi.org/10.2136/sssaj1995.03615995005900030004x
http://dx.doi.org/10.1002/esp.1604
http://dx.doi.org/10.1016/S0021-8634(84)80025-6
http://dx.doi.org/10.4236/ajps.2013.47180
http://dx.doi.org/10.1016/j.pce.2016.10.001
http://dx.doi.org/10.1007/s11069-014-1128-1
http://dx.doi.org/10.1016/j.isprsjprs.2005.02.002
http://dx.doi.org/10.1080/07293682.2013.808680
http://dx.doi.org/10.1016/j.catena.2005.10.005
http://dx.doi.org/10.1016/0034-4257(91)90062-B
http://dx.doi.org/10.1016/S0034-4257(02)00089-5
http://dx.doi.org/10.1016/j.catena.2008.11.005
http://dx.doi.org/10.1080/0143116031000116994
http://dx.doi.org/10.1080/014311600210722
http://dx.doi.org/10.1016/j.rse.2012.06.022
http://dx.doi.org/10.1016/j.rse.2005.12.001
http://dx.doi.org/10.2136/sssaj2003.1672
http://dx.doi.org/10.1016/j.ecolind.2007.05.005
http://dx.doi.org/10.1109/36.73676
http://dx.doi.org/10.1007/s41748-020-00155-9


Remote Sens. 2020, 12, 4063 22 of 25

109. Singh, B.K.; Munro, S.; Reid, E.; Ord, B.; Potts, J.M.; Paterson, E.; Millard, P. Investigating microbial community
structure in soils by physiological, biochemical and molecular fingerprinting methods. Eur. J. Soil Sci. 2006,
57, 72–82. [CrossRef]

110. Wang, X.; Xie, H.; Guan, H.; Zhou, X. Different responses of MODIS-derived NDVI to root-zone soil moisture
in semi-arid and humid regions. J. Hydrol. 2007, 340, 12–24. [CrossRef]

111. Mulder, V.L.; de Bruin, S.; Schaepman, M.E.; Mayr, T.R. The use of remote sensing in soil and terrain
mapping—A review. Geoderma 2011, 162, 1–19. [CrossRef]

112. Scaioni, M.; Longoni, L.; Melillo, V.; Papini, M. Remote sensing for landslide investigations: An overview of
recent achievements and perspectives. Remote Sens. 2014, 6, 9600–9652. [CrossRef]

113. Tarolli, P. High-resolution topography for understanding Earth surface processes: Opportunities and
challenges. Geomorphology 2014, 216, 295–312. [CrossRef]

114. Menne, M.J.; Durre, I.; Vose, R.S.; Gleason, B.E.; Houston, T.G. An overview of the global historical climatology
network-daily database. J. Atmos. Ocean. Technol. 2012, 29, 897–910. [CrossRef]

115. Danielson, J.J.; Gesch, D.B. Global Multi-Resolution Terrain Elevation Data 2010 (GMTED2010); U.S. Geo-logical
Survey Open-File Report 2011–1073; 2011; 26p. Available online: https://pubs.usgs.gov/of/2011/1073/pdf/
of2011-1073.pdf (accessed on 11 December 2020).

116. Oldeman, L.R. Global Extent of Soil Degradation; ISRIC: Wageningen, The Netherlands, 1992.
117. Masoudi, M.; Jokar, P.; Pradhan, B. A new approach for land degradation and desertification assessment

using geospatial techniques. Nat. Hazards Earth Syst. Sci. 2018, 18, 1133–1140. [CrossRef]
118. Viovy, N.; Arino, O.; Belward, A.S. The best index slope extraction (Bise): A method for reducing noise in

NDVI time-series. Int. J. Remote Sens. 1992, 13, 1585–1590. [CrossRef]
119. Huete, A.R. A soil-adjusted vegetation index (SAVI). Remote Sens. Environ. 1988, 25, 295–309. [CrossRef]
120. Rondeaux, G.; Steven, M.; Baret, F. Optimization of soil-adjusted vegetation indices. Remote Sens. Environ.

1996, 55, 95–107. [CrossRef]
121. Qi, J.; Chehbouni, A.; Huete, A.R.; Kerr, Y.H.; Sorooshian, S. A modified soil adjusted vegetation index.

Remote Sens. Environ. 1994, 48, 119–126. [CrossRef]
122. Rogan, J.; YooL, S.R. Mapping fire-induced vegetation depletion in the Peloncillo Mountains Arizona and

New Mexico. Int. J. Remote Sens. 2001, 22, 3101–3121. [CrossRef]
123. Matsushita, B.; Yang, W.; Chen, J.; Onda, Y.; Qiu, G. Sensitivity of the Enhanced Vegetation Index (EVI) and

Normalized Difference Vegetation Index (NDVI) to topographic effects: A case study in high-density cypress
forest. Sensors 2007, 7, 2636–2651. [CrossRef] [PubMed]

124. Mwaniki, M.W.; Agutu, N.O.; Mbaka, J.G.; Ngigi, T.G.; Waithaka, E.H. Landslide scar/soil erodibility mapping
using Landsat TM/ETM+ bands 7 and 3 Normalised Difference Index: A case study of central region of
Kenya. Appl. Geogr. 2015, 64, 108–120. [CrossRef]

125. Zhu, A.X.; Miao, Y.; Wang, R.; Zhu, T.; Deng, Y.; Liu, J.; Yang, L.; Qin, C.Z.; Hong, H. A comparative study
of an expert knowledge-based model and two data-driven models for landslide susceptibility mapping.
CATENA 2018, 166, 317–327. [CrossRef]

126. Brocca, L.; Tullo, T.; Melone, F.; Moramarco, T.; Morbidelli, R. Catchment scale soil moisture spatial-temporal
variability. J. Hydrol. 2012, 422–423, 63–75. [CrossRef]

127. Zappa, L.; Forkel, M.; Xaver, A.; Dorigo, W. Deriving field scale soil moisture from satellite observations and
ground measurements in a Hilly Agricultural Region. Remote Sens. 2019, 11, 2596. [CrossRef]

128. Bakker, M.; Veldkamp, A. Changing relationships between land use and environmental characteristics
and their consequences for spatially explicit land-use change prediction. J. Land Use Sci. 2012, 7, 407–424.
[CrossRef]

129. Yang, H.; Li, S.; Chen, J.; Zhang, X.; Xu, S. The Standardization and harmonization of land cover classification
systems towards harmonized datasets: A review. ISPRS Int. J. Geo Inf. 2017, 6, 154. [CrossRef]

130. Olsoy, P.J.; Glenn, N.F.; Clark, P.E.; Derryberry, D.W.R. Aboveground total and green biomass of dryland
shrub derived from terrestrial laser scanning. ISPRS J. Photogramm. Remote Sens. 2014, 88, 166–173. [CrossRef]

131. Orwig, D.A.; Boucher, P.; Paynter, I.; Saenz, E.; Li, Z.; Schaaf, C. The potential to characterize ecological data
with terrestrial laser scanning in Harvard Forest, MA. Interface Focus 2018, 8, 20170044. [CrossRef]

132. Li, H.; Li, X.; Li, W.; Zhang, S.; Zhou, J. Quantitative assessment for the rockfall hazard in a post-earthquake
high rock slope using terrestrial laser scanning. Eng. Geol. 2019, 248, 1–13. [CrossRef]

http://dx.doi.org/10.1111/j.1365-2389.2005.00781.x
http://dx.doi.org/10.1016/j.jhydrol.2007.03.022
http://dx.doi.org/10.1016/j.geoderma.2010.12.018
http://dx.doi.org/10.3390/rs6109600
http://dx.doi.org/10.1016/j.geomorph.2014.03.008
http://dx.doi.org/10.1175/JTECH-D-11-00103.1
https://pubs.usgs.gov/of/2011/1073/pdf/of2011-1073.pdf
https://pubs.usgs.gov/of/2011/1073/pdf/of2011-1073.pdf
http://dx.doi.org/10.5194/nhess-18-1133-2018
http://dx.doi.org/10.1080/01431169208904212
http://dx.doi.org/10.1016/0034-4257(88)90106-X
http://dx.doi.org/10.1016/0034-4257(95)00186-7
http://dx.doi.org/10.1016/0034-4257(94)90134-1
http://dx.doi.org/10.1080/01431160152558279
http://dx.doi.org/10.3390/s7112636
http://www.ncbi.nlm.nih.gov/pubmed/28903251
http://dx.doi.org/10.1016/j.apgeog.2015.09.009
http://dx.doi.org/10.1016/j.catena.2018.04.003
http://dx.doi.org/10.1016/j.jhydrol.2011.12.039
http://dx.doi.org/10.3390/rs11222596
http://dx.doi.org/10.1080/1747423X.2011.595833
http://dx.doi.org/10.3390/ijgi6050154
http://dx.doi.org/10.1016/j.isprsjprs.2013.12.006
http://dx.doi.org/10.1098/rsfs.2017.0044
http://dx.doi.org/10.1016/j.enggeo.2018.11.003


Remote Sens. 2020, 12, 4063 23 of 25

133. Goodwin, N.R.; Armston, J.; Stiller, I.; Muir, J. Assessing the repeatability of terrestrial laser scanning for
monitoring gully topography: A case study from Aratula, Queensland, Australia. Geomorphology 2016, 262,
24–36. [CrossRef]

134. Dwivedi, R.S.; Ravi Sankar, T.; Venkataratnam, L.; Karale, R.L.; Gawande, S.P.; Seshagiri Rao, K.V.;
Senchaudhary, S.; Bhaumik, K.R.; Mukharjee, K.K. The inventory and monitoring of eroded lands using
remote sensing data. Int. J. Remote Sens. 1997, 18, 107–119. [CrossRef]

135. Valavanis, K.P.; Vachtsevanos, G.J. Handbook of Unmanned Aerial Vehicles; Springer: Dodlerk, The Netherlands,
2015.

136. Anderson, K.; Gaston, K.J. Lightweight unmanned aerial vehicles will revolutionize spatial ecology. Front.
Ecol. Environ. 2013, 11, 138–146. [CrossRef]

137. Hutton, C.; Brazier, R. Quantifying riparian zone structure from airborne LiDAR: Vegetation filtering,
anisotropic interpolation, and uncertainty propagation. J. Hydrol. 2012, 442–443, 36–45. [CrossRef]

138. Koh, L.P.; Wich, S.A. Dawn of drone ecology: Low-cost autonomous aerial vehicles for conservation. Trop.
Conserv. Sci. 2012, 5, 121–132. [CrossRef]

139. Lelong, C.C.D.; Burger, P.; Jubelin, G.; Roux, B.; Labbé, S.; Baret, F. Assessment of unmanned aerial vehicles
imagery for quantitative monitoring of wheat crop in small plots. Sensors 2008, 8, 3557–3585. [CrossRef]
[PubMed]

140. Sankey, T.; Donager, J.; McVay, J.; Sankey, J.B. UAV lidar and hyperspectral fusion for forest monitoring in
the southwestern USA. Remote Sens. Environ. 2017, 195, 30–43. [CrossRef]

141. Yan, H.; Wang, L.; Wang, T.W.; Wang, Z.; Shi, Z.H. A synthesized approach for estimating the C-factor of
RUSLE for a mixed-landscape watershed: A case study in the Gongshui watershed, southern China. Agric.
Ecosyst. Environ. 2020, 301, 107009. [CrossRef]

142. Nampak, H.; Pradhan, B.; Mojaddadi Rizeei, H.; Park, H.J. Assessment of land cover and land use change
impact on soil loss in a tropical catchment by using multitemporal SPOT-5 satellite images and Revised
Universal Soil Loss Equation model. Land Degrad. Dev. 2018, 29, 3440–3455. [CrossRef]

143. Fathizad, H.; Karimi, H.; Alibakhshi, S.M. The estimation of erosion and sediment by using the RUSLE
model and RS and GIS techniques (Case study: Arid and semi-arid regions of Doviraj, Ilam province, Iran).
Int. J. Agric. Crop Sci. 2014, 7, 303.

144. d’Oleire-Oltmanns, S.; Marzolff, I.; Peter, K.; Ries, J. Unmanned Aerial Vehicle (UAV) for Monitoring Soil
Erosion in Morocco. Remote Sens. 2012, 4, 3390–3416. [CrossRef]

145. Arsanjani, J.J.; Kainz, W.; Mousivand, A.J. Tracking dynamic land-use change using spatially explicit markov
chain based on cellular automata: The case of Tehran. Int. J. Image Data Fusion 2011, 2, 329–345. [CrossRef]

146. Dube, H.B.; Mutema, M.; Muchaonyerwa, P.; Poesen, J.; Chaplot, V. A Global Analysis of the Morphology of
Linear Erosion Features. Catena 2020, 190, 104542. [CrossRef]

147. Abdulkareem, J.H.; Pradhan, B.; Sulaiman, W.N.A.; Jamil, N.R. Prediction of spatial soil loss impacted by
long-term land-use/land-cover change in a tropical watershed. Geosci. Front. 2019, 10, 389–403. [CrossRef]

148. Zhu, A.X.; Wang, R.; Qiao, J.; Qin, C.Z.; Chen, Y.; Liu, J.; Du, F.; Lin, Y.; Zhu, T. An expert knowledge-based
approach to landslide susceptibility mapping using GIS and fuzzy logic. Geomorphology 2014, 214, 128–138.
[CrossRef]

149. Tehrany, M.S.; Shabani, F.; Javier, D.N.; Kumar, L. Soil erosion susceptibility mapping for current and 2100
climate conditions using evidential belief function and frequency ratio. Geomat. Nat. Hazards Risk 2017, 8,
1695–1714. [CrossRef]

150. Arabameri, A.; Rezaei, K.; Pourghasemi, H.R.; Lee, S.; Yamani, M. GIS-based gully erosion susceptibility
mapping: A comparison among three data-driven models and AHP knowledge-based technique. Environ.
Earth Sci. 2018, 77, 628. [CrossRef]

151. Arabameri, A.; Pradhan, B.; Rezaei, K.; Sohrabi, M.; Kalantari, Z. GIS-based landslide susceptibility mapping
using numerical risk factor bivariate model and its ensemble with linear multivariate regression and boosted
regression tree algorithms. J. Mt. Sci. 2019, 16, 595–618. [CrossRef]

152. Conoscenti, C.; Maggio, C.; Rotigliano, E. Soil erosion susceptibility assessment and validation using a
geostatistical multivariate approach: A test in Southern Sicily. Nat. Hazards 2008, 46, 287–305. [CrossRef]

153. Mendicino, G. Sensitivity analysis on GIS procedures for the estimate of soil erosion risk. Nat. Hazards 1999,
20, 231–253. [CrossRef]

http://dx.doi.org/10.1016/j.geomorph.2016.03.007
http://dx.doi.org/10.1080/014311697219303
http://dx.doi.org/10.1890/120150
http://dx.doi.org/10.1016/j.jhydrol.2012.03.043
http://dx.doi.org/10.1177/194008291200500202
http://dx.doi.org/10.3390/s8053557
http://www.ncbi.nlm.nih.gov/pubmed/27879893
http://dx.doi.org/10.1016/j.rse.2017.04.007
http://dx.doi.org/10.1016/j.agee.2020.107009
http://dx.doi.org/10.1002/ldr.3112
http://dx.doi.org/10.3390/rs4113390
http://dx.doi.org/10.1080/19479832.2011.605397
http://dx.doi.org/10.1016/j.catena.2020.104542
http://dx.doi.org/10.1016/j.gsf.2017.10.010
http://dx.doi.org/10.1016/j.geomorph.2014.02.003
http://dx.doi.org/10.1080/19475705.2017.1384406
http://dx.doi.org/10.1007/s12665-018-7808-5
http://dx.doi.org/10.1007/s11629-018-5168-y
http://dx.doi.org/10.1007/s11069-007-9188-0
http://dx.doi.org/10.1023/A:1008120231103


Remote Sens. 2020, 12, 4063 24 of 25

154. Gournellos, T.; Evelpidou, N.; Vassilopoulos, A. Developing an erosion risk map using soft computing
methods (case study at Sifnos Island). Nat. Hazards 2004, 31, 63–83. [CrossRef]

155. Masoudi, M.; Patwardhan, A.M.; Gore, S.D. Risk assessment of water erosion for the Qareh Aghaj subbasin,
southern Iran. Stoch. Environ. Res. Risk Assess. 2006, 21, 15–24. [CrossRef]

156. Wu, Q.; Wang, M. A framework for risk assessment on soil erosion by water using an integrated and
systematic approach. J. Hydrol. 2007, 337, 11–21. [CrossRef]

157. Gayen, A.; Pourghasemi, H.R.; Saha, S.; Keesstra, S.; Bai, S. Gully erosion susceptibility assessment and
management of hazard-prone areas in India using different machine learning algorithms. Sci. Total Environ.
2019, 668, 124–138. [CrossRef]

158. Dreibrodt, S.; Wiethold, J. Lake Belau and its catchment (Northern Germany): A key archive of environmental
history in northern central Europe since the onset of agriculture. Holocene 2015, 25, 296–322. [CrossRef]

159. Garosi, Y.; Sheklabadi, M.; Pourghasemi, H.R.; Besalatpour, A.A.; Conoscenti, C.; Van Oost, K. Comparison of
differences in resolution and sources of controlling factors for gully erosion susceptibility mapping. Geoderma
2018, 330, 65–78. [CrossRef]

160. Saxton, N.E.; Olley, J.M.; Smith, S.; Ward, D.P.; Rose, C.W. Gully erosion in sub-tropical south-east Queensland,
Australia. Geomorphology 2012, 173–174, 80–87. [CrossRef]

161. Li, Z.; Zhang, Y.; Zhu, Q.; He, Y.; Yao, W. Assessment of bank gully development and vegetation coverage on
the Chinese Loess Plateau. Geomorphology 2015, 228, 462–469. [CrossRef]

162. García-Ruiz, J.M.; Lana-Renault, N. Hydrological and erosive consequences of farmland abandonment in
Europe, with special reference to the Mediterranean region—A review. Agric. Ecosyst. Environ. 2011, 140,
317–338. [CrossRef]

163. Azareh, A.; Rahmati, O.; Rafiei-Sardooi, E.; Sankey, J.B.; Lee, S.; Shahabi, H.; Ahmad, B. Bin modelling
gully-erosion susceptibility in a semi-arid region, Iran: Investigation of applicability of certainty factor and
maximum entropy models. Sci. Total Environ. 2019, 655, 684–696. [CrossRef] [PubMed]

164. Garosi, Y.; Sheklabadi, M.; Conoscenti, C.; Pourghasemi, H.R.; Van Oost, K. Assessing the performance of
GIS- based machine learning models with different accuracy measures for determining susceptibility to gully
erosion. Sci. Total Environ. 2019, 664, 1117–1132. [CrossRef] [PubMed]

165. Kuhnert, P.M.; Henderson, A.K.; Bartley, R.; Herr, A. Incorporating uncertainty in gully erosion calculations
using the random forests modelling approach. Environmetrics 2010, 21, 493–509. [CrossRef]

166. Shruthi, R.B.V.; Kerle, N.; Jetten, V.; Abdellah, L.; Machmach, I. Quantifying temporal changes in gully
erosion areas with object oriented analysis. CATENA 2015, 128, 262–277. [CrossRef]

167. Arabameri, A.; Pradhan, B.; Rezaei, K. Gully erosion zonation mapping using integrated geographically
weighted regression with certainty factor and random forest models in GIS. J. Environ. Manag. 2019, 232,
928–942. [CrossRef]

168. Hajkowicz, S.; Young, M. Costing yield loss from acidity, sodicity and dryland salinity to Australian
agriculture. Land Degrad. Dev. 2005, 16, 417–433. [CrossRef]

169. Lu, C.; Barr, D.B.; Pearson, M.; Bartell, S.; Bravo, R. A longitudinal approach to assessing urban and suburban
children’s exposure to pyrethroid pesticides. Environ. Health Perspect. 2006, 114, 1419–1423. [CrossRef]
[PubMed]

170. Pradhan, B.; Lee, S. Delineation of landslide hazard areas on Penang Island, Malaysia, by using frequency
ratio, logistic regression, and artificial neural network models. Environ. Earth Sci. 2010, 60, 1037–1054.
[CrossRef]

171. Persichillo, M.G.; Bordoni, M.; Meisina, C. The role of land use changes in the distribution of shallow
landslides. Sci. Total Environ. 2017, 574, 924–937. [CrossRef]

172. Ashournejad, Q.; Hosseini, A.; Pradhan, B.; Hosseini, S.J. Hazard zoning for spatial planning using GIS-based
landslide susceptibility assessment: A new hybrid integrated data-driven and knowledge-based model.
Arab. J. Geosci. 2019, 12. [CrossRef]
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