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Abstract
Jacobi’s two-square theorem states that the number of representations of a positive
integer k as a sum of two squares, counting order and sign, is 4 times the surplus
of positive divisors of k& congruent to 1 modulo 4 over those congruent to 3 modulo
4. In this paper we give numerous identities, each of which yields an analogue
of Jacobi’s result. Our identities are drawn from a much larger list, and involve
polygonal numbers. The formula for the n*® k—gonal number is

F,=Fr(n)=n(k—2)n—(k—4))/2.

1. Introduction

Let f and ¢ be functions from the integers to the non-negative integers, and suppose
that

o0 o0 oo
( Z qf(n)> < Z qg(n)> = Zanqn_ (1)
n=-—o00 n=—0o0 n=0
Then the number of solutions of the diophantine equation f(m) + g(n) = k,k > 0,
is ay. Here, as is implied by the limits on the left of (1), m and n can be positive,
negative, or zero, and two solutions (my,n1) and (maq, ny) are taken to be distinct
when m1 # mg and n; # ngy. In this paper we take |¢| < 1 and choose f and g so
that each sum on the left of (1) converges.
As an example let f = g = n?. Then
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144 i i (q(4n+1)(m+l) _ q(4n+3)(m+1)> @)

n=0m=0
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Even without a formal proof, we can easily convince ourselves of the validity of
(2). With the aid of a computer algebra system we simply evaluate, say,

35 35 250 1000
( Z qn2> ( Z q"2> 1 _42 Z (q(4n+1)(m+1) _q(4n+3)(m+1)) .

n=-—35 n=-—35 n=0m=0

This verifies that G4(g)? and the right side of (2) agree up to ¢'°°°. We performed
similar checks on all the identities in this paper, as well as those in [13]. In fact, in
each case, we checked that both sides, as expansions in powers of g, matched up to
powers of ¢*™, where m is the modulus in question. This was an arbitrary choice
that seemed appropriate. For instance, in (9) we checked that both sides were equal
up to powers of ¢*%°, and in (13) we checked that both sides were equal up to powers
of ¢®52. In addition, we checked for symmetry in each of our identities. We checked
our formulas meticulously and repeatedly over a period of months, taking this task
very seriously, since the presence of errors serves to erode credibility. The strongest
statement that we can reasonably make in this regard is that we are as sure as we
can be that the formulas are error free.

There are also well-known identities, analogous to (2), for G4(q)Ga(q?),
G4(q)Ga(q®), and G4(q)G4(q"), that are attributed to Dirichlet and Lorenz, Lorenz,
and Ramanujan, respectively. Here, and in [13], we list only identities that, to
the best of our knowledge, are new and are not consequences of the identities for
G4(q)G4(g®), k = 1,2,3,0r,7. Without this restriction our lists would have been
considerably longer. For instance, identities that we have discovered, but have not
stated, are identities for G5 (¢) G5 (¢), Gs (¢) G5 (¢%), G5 (¢) G5 (¢7), G7 (¢) G7 (q),
Gs (q) Gs (), and G1a(q) G12(q), to indicate just a few. For further instances of
such identities (ie, those that are provable with the use of the four classical identi-
ties) see [10] and [11].

Our aim, in the present paper, is to give an abridged version of [13]. Specifically,
we present only those identities in [13] that we have called homogeneous, meaning
that in each such identity the generating functions involve polygonal numbers of
the same type. The only homogeneous identities that we have managed to discover
(apart from those mentioned in the paragraph above) involve triangular numbers,
pentagonal numbers, and heptagonal numbers.

Here, and in [13], our aim has been to put our identities on display in the hope
that interested readers may wish to supply proofs. We expect that to prove many
of the identities in our lists will call for genuine skill and innovation. To see this,
one need only examine the various proofs of (2).

At the time of writing, we see scope for further work, and so we expect to en-
large these lists. Indeed, on many occasions during the process of discovery we
felt that the work had reached a plateau. However, on each of these occasions we
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3. Hints Regarding the Methods of Discovery

In this section we give the reader some hints regarding our methods of discovery.
Our methods were developed and refined over the four years during which this
research took place. Starting very modestly, we developed computer programs to
execute the associated algebraic calculations.

To illustrate one of our methods of discovery, we outline how we discovered (6).
It is well known (for instance, see [10]) that

G3(q)G3(q) = Z (d1,a(4n+1) —d34(4n + 1)) ¢". (4)

n>0

Here, the modulus in question is 4, and we require the positive divisors of 4n + 1.
If a similar result for G3(¢) Gs (¢°) exists, a reasonable guess for the modulus in
question is 20. Furthermore, we surmise that we require the positive divisors of
2"n+s, in which r could be 1,2,3,..., and s could be 1,3, 5, .... Of course we settle
on upper limits for  and s before our search begins. Then we write

19
G3 (q) Gg (q5) = Z (Z cidi,20(2rn -+ S)) qn. (5)

n>0 \i=1

Next, beginning with (r,s) = (1,1), we equate enough coefficients of powers of
g on both sides of (5) in order to find the ¢;. If the system of linear equations in
question is inconsistent, we try (r,s) = (1,3) and proceed similarly. Eventually, for
(r,s) = (2,3) we are able to find the required c;. Once the ¢; are known, it is not
difficult to construct (6) as we have presented it.

In fact, we discovered the majority of our results by using the method just de-
scribed. Furthermore, during the early days of the discovery process, after obtaining
only a modest number of new results, we profited much by studying the symmetry of
such results. This led to an alternative approach for relatively simple types. For in-
stance, the discovery of (7) led us to surmise that an expansion for G (q2) G3 (q3),
if such an expansion exists, might look like

L an+b cn+d en+ f gn—+h
2 3\ _ q q q q
Gs (¢°) Gs (¢°) = Z (1 — q24n+3 Tz q?Ant9 ] — gAntls ] q24n+21> ’
n=0

in which e —a = g —c = 12, and d — b divides h — f. We then checked each
such possibility by expanding the right side in powers of ¢ to see if this expansion
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Then

S N N.
13 1 2
Gs(q) Gs (¢") = Z (1 S L q52n+39> : (11)

n=0

Once again it is convenient to define certain numerators. Since there is no danger
of confusion, here, and subsequently, we use the same notation used in (11).
Let

Ny = gion—1 4 ¢28n 4 (3In+l 4 (4743 | Tind,
Ny = o1 BTntll y g46n414 | (53n+17 | 69n+23,
N3y = glln+t g glon+9 | (350419 | (43n+24 4 (51n+29 4 83n+49,
Ny = M1z g33n+26 | 4Int33 4 5TnddT 4 65n454 | T3n+61
Then
o
Gs (q) Z ( 88n+11 T1C ;Z:n+33
n=0
+1 — qusn+55 T 1 £§n+77> (12)
Let
Ny = @14 gBTnt8 4 g#5n+d | 53n+5 | (6947,
Ny = @ion+d | 23047 | (BInt10 4 (47Tn+16 4 (Tin+25,
Ny = gl gOmrt 4 g25nt1d | o33nH19 4 (490429 4 8ln+d9,
Ny = BmHl 4 glin+8 | 2Tn+22 4 (59n+50 4 (67n+57 | (75n+64
Then
o
Gs ( : Z < 1— q88n+11 + 1— £§n+33
n=0
+ 1— ggmss 1= g§n+77> (13)
Put
Ny = @ion=1 glon | g28n+l 4 (3In43 | (35n+d | (3905

+ q43n+6 + q51n+8 + q55n+9 + q59n+10 + q79n+15 -+ q87n+17

+ q91n+18 + q103n+21 4 q119n+25 + q131n+28 + q135n+29 + q143n+31;
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N2 _ q5n—2 +q13n+1 +q45n+13 + q53n+16 +q93n+31 _|_q109n+37
+ qll7n+40 =+ q125n+43 + q141n+49 + q149n+52 4 q165n+58 + q173n+61
+ q181n+64 + q197n+70;
N3 _ q35n+18+q51n+28_,_q59n+33+q67n+38+q83n+48+q91n+53
+ q107n+63 4 q115n+68 + q123n+73 + q139n+83 + q179n+108 + q187n+113
+ q219n+133 + q227n+138;
N4 _ q17n+11 _|_q41n+32+q73n+60_‘_q89n+74+q97n+81 _I_q105n+88
4 q113n+95 + q137n+116 + q153n+130 + ql77n+151 + q185n+158 + q193n+165

+ q201n+172 + q217n+186.

Then

o0
Ny Ny
Gs(¢%) G3 (¢¥) = Z (1 — q232+29 ] _ 2320487

N3 Ny
+1 — q232n+145 - 1— q232n+203> ) (16)

5. Pentagonal Numbers

Interestingly, the identities we have discovered that involve only pentagonal numbers
parallel the cases above for triangular numbers, with two exceptions: we have not
been able to find identities for G5 (¢) G5 (¢°) and G5 (¢%) G5 (¢%).

Let

n 13n+3 17n+4 + q29n+7 _

N, = ¢"—¢q —q g3 . gAIn+10
4 qiomt12 _ g53nt13,
Ny = g5 _ glind8 _ glon+14 | 23n417 _ (31n423 | A3n+32
4 gATnH35 _ g5onaa,
Then
[ee]
N N.
5\ _ 1 2
Gs(9)Gs (¢°) =) <1 —gooniis T 12 q60n+45> : (17)
n=0
Put
Nl — qlln +q59n+2,
)

N2 — q31n+6 + q79n+16;
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Next, define
Ny = g'n 4 glontl y g3ln+2 | (6Tn+5 4 (116049 | (151n+12,
Ny = giln+d g g4Tnt19 4 (59424 | (Tin+20 | 83034 4 (119n+49,
Ny = @3Tn+21 gT3n+42 | (85nd9 4 (O7n456 | (109n+63 | ,145n+84,
Ny = gOn4 p ghin+3T o 89n+81 | (125n4114 | (137n+125 4 149n+136
Then

Gs ()G (@) = S Al Ak
5(9) Gs (q ) = Z 1 — gi56n+13 + 1 — ¢156n+65

n=0
1= qjl\?énwl 1= qugn+143> ' (20)
Next, set

Ny = O+ 4 gloTn+6 4 (215n+8 | 239049 | (263n+10,
Ny = ¢bTn+13 4 0Int18 | (1150423 4 (1630433 | (235n-+48,
Ny = gi7n+d g gdlntll 4 (65n+18 | (1610446 | 233n+67,
Ny = @3Tn+16 | 1330460 | (157nd71 | (18In+82 4 2297+104,
Ny = gB0n+18 | g88nad | (1070457 4 (131n470 4 (227n+122,
Ne = g3ln+2l gl0sn+72 | (19904140 4 (22304157 | 247n+174,
Ny = 29n+22 4 gl0In79 | (149n+117 | (17304136 | (197n+155,
Ny = g4 g?on+23 | qA9n+46 | (97n+02 4 (169n+161

Then

oo
G5 (a) Gs (¢) = Z (" 1— q]2\£14n+11 1= qj2\?4n+55 1 qlz\gin+77

Ny Ns Ng
T = goeAn+ial Tz 2o+ 143 Tz 26An T 18T

N7 Ng
1 — ¢264n+209 + 1 — ¢264n+253 |

+ (21)
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N3 — qn—l +q25n+13 _l_q49n+27 +q73n+41 +q85n+48 + q121n+69
+ q145n+83 + q157n+90 + q169n+97 + q181n+104 4 q229n+132 + q289n+167

+ q337n+195 + q349n+202 + q361n+209 + q373n+216 + q397n+230 + q433n+251;

N4 — q5n+3 + q17n+14 + q29n+25 + q89n+80 + q113n+102 + q125n+113
161n4-14 2 1 24, 2 2 234 281n+4256 41 11
+q6n+ 6+q09n+90+q 5n—l—23+q57n+3 +q n+25 +q3 n+3

41
+q353n+322 +q365n+333 4 q389n+355 + q401n+366 +q 3n+377 +q425n+388.

Then
oo
Na
Gs () Gs (a Z < 1— q444n+37 Tz gHAn+185
n=0
N3 Ny 23
+1 — qM4nt259 ] _ g44dn+407 (23)
Put
Ny = glin=2 4 g131n+43 | (155nd | 251nd8 | 2T5n49 | 395n+14
4 gMBnt16 | (46TRHLT | 49In18 | (530n+20 | 563n+21 4 o611n+23
4 gB3om+2A | (659425,
Ny = g1 glodn+19 4 (I51n429 | (175n+34 | (1990439 | 223n+44
4 gROOMHEY | (343069 4 415084 | (439489 4 463n+04 | 48TN+99
4 gB35m+109 4 631n+120,
Ny = q7Tn+20 | (101n+27 | 221n462 | (2690476 | (203n+83 4 /317090
4 gB65n104 4 (389n111 | (437125 | (461n+132 4 485n+139
4 gB3In+153 | (653n+188 | 677n+195,
Ny = V2 4 g?5n+9 4 g49n+20 | (12In+53 | 169n+75 4 241n+108

+ q265n+119 + q289n+130 + q313n+141 + q361n+163 4 q457n+207

520n+240 | 625n+284 | 673n+306,
+q +q +4q ;
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N3 — qn—l +q25n+6 +q49n+13 +q121n+34 -+ q169n+48 + q241n+69

+ q265n+76 + q289n+83 < q313n+90 + q361n+104 + q457n+132 + q529n+153

625m+181 | 673n+195,
+q +q ;

N4 q77n+34+q101n+45+q221n+100+q269n+122+q293n+133+ 317n+144

1 1 461n+21
+ q365n+ 66 + q389n+177 + q437n+ 99 +q 61n+210 + q485n+221

+ q533n+243 + q653n+298 + q677n+309;

1 4 2
N5 = q In+9 +q 3n—+22 + q163n+87 + q211n+113 + q235n+126 + 259n+139

+q307n+165+q331n+178+q379n+204+q403n+217+ 42714230

475n+256 | 59514321 | 619n+334,
t4q +4q +q ;

NG — q47n+32+q95n+66+q119n+83+q143n+100+q191n+134+q215n+151

2
+q 63n+185 + q287n+202 4 q311n+219 + q359n+253 4 q479n+338

+ q503n+355 + q599n+423 + q623n+440;

N7 q37n+28 +q6ln+47 + q85n+66 + q133n+104 +q157n+123 +q205n+161

22 1 2 421 2

+q 9n+180 + q253n+199 + q301n+ 37 +q n+33 + q445n+351
493n+-389 541n+427 565n+446 685n+541,

+q +q +q +q ;

NS — ql7n+15 _I_q41n+38 + q89n+84 +q113n+107 +q137n+130 +q185n+176

+ q305n+291 + q329n+314 + q377n+360 + q425n+406 + q449n+429

4 gB09n+544 |y (61Tn+590 | (641n+613 | 665n+636
Then

N3
1 — go96n+203

Gs (qz) Gs (ng) _ i ( Ny Ny

1 — 696n+29 1 _ (696n+145 +
n=0

Ny N5 Ng
L. £096n+319 ] _ 4696n+377 1z 40961193
Ny

Ng
+ —
1 go%n+551 ] _ govbnteer ) -

(25)
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Similarly, let £(x m)(n) denote the number of solutions, in non-negative integers,
of

n= k”’l(“z“) +m‘”2($;+1). (28)

Then Theorem 1 of Adiga, Cooper and Han [1] produces (among many such rela-
tions) the following:

ra,2)(8n+5) = 4ize(n),
T8 +6) = 4t (n),
renBn+T7) = 4te1)(n),
re2@n+T7) = 4ts9)(n). (29)

In (29) we have listed only those relations that are relevant to the present work.
For any integer n > 1, write

8n + 6 = 2(4n + 3) = 2 x 5° X ny, (30)

for an integer s > 0, and an integer ng > 1 with (ng,20) = 1. Then by a result in
Dickson [6], page 84,

T Bn+6)=(1- Lo (d1,20(n0) + d3,20(n0) + d7,20(n0) + do,20(20)
5

—d11,20(no) — d13,20(no) — di7,20(no) — dig,20(n0)) . (31)

There are four possibilities for ng modulo 20, namely

ng = 20z + 3, ng = 20z + 7, ng = 20z + 11, or ng = 20z + 19,

for z a nonnegative integer. From here, using the same path set forth by the referee
(see the comments above, on the work of Sun), we used the second entry in in (29)
to prove our conjecture (6). Again, in Dickson [6], pages 84-86, there are results for
7(3,2)(n), 7(6,1)(n), and r(5 2y(n). These results, when coupled with the appropriate
entries in (29), yield proofs of our conjectures (7), (8), and (10).

Interestingly, Dickson [6] gives 7z ) (n) for several other instances of (k,m). For
each of these instances, however, Theorem 1 of Adiga, Cooper, and Han [1] is not
broad enough in scope to enable any of our remaining conjectures to be proved.





