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On a Compositeness Test for (2V +1)/3
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Abstract
In this note, we give a necessary condition for the primality of (27 -+ 1)/3.

1 Introduction

Let p be an odd prime and M, = 2? — 1. For n > 0 define the sequence {Sn}nzo
So = 4,
Sks1 = SE—2, k> 0.

by



The celebrated Lucas-Lehmer test states:
Theorem 1. M, is prime if and only if Sp—o =0 (mod M,).

The numbers M, have interested experts and non-experts throughout history. See 7]
for an interesting mathematical and historical account. These numbers have been a popular
focus among those searching for large primes because of their unique set of convenient prop-
erties for primality testing, the most important of these being the Lucas-Lehmer test, given
in Theorem 1. Indeed, via Lucas-Lehmer test, the determination of the primality of M, is
achieved through the calculation of p—2(<log M,) squares modulo M,. Furthermore, the
reduction of a 2p-bit integer modulo M, is very fast compared to the reduction modulo any
other number of a similar size.

Observe that M, = ¢,(2), where ¢p(X) is the p-th cyclotomic polynomial. In this paper,
we look at primes of the form

. 2P +1
Ny = ¢p(—2) = =,
For p a prime, the family of numbers {Np}p>3 shares some of the properties that make the
numbers {M,},~3 interesting to searchers of large primes. For instance, if Ny is prime, then
» must be a prime. Additionaly, divisors of N, are congruent to 1 modulo 2p, an observation
that helps in the search for small prime divisors of Np. Furthermore, Melham proved the
following theorem (see Theorem 7 in [5]), to which we will refer as Melham’s probable prime
test for N,,.

Theorem 2. Let p be an odd prime. Define the sequence {Sn}ngo by

If N, is prime then Sp—1 = ~34 (mod N,).

Similar congruences involving Fibonacci numbers and more general Lucas sequences in-
stead of only Mersenne numbers appear in [1] and [3].

It is easy to see that the reduction of a 2p-bit number modulo N, is also very fast.
However, it is not known whether the numbers {N,}p>3 have a very important property
enjoyed by the numbers {M,} 3. Specifically, it is not known if Sp-1 = =34 (mod N,)
implies that N, is prime.

The numbers {N,},>5 were studied by Bateman, Selfridge, and Wagstaff, Jr. [2] who
proposed the following conjecture.

Conjecture 3. If two of the following statements about an odd positive integer P are true,
then the third one is also true.

e p=2"41 orp=4F+3:
o M, is prime;

e N, is prime.



Observe that 2(i — 1) = —2v/2w, where w = (1 — i)/v/2 is a root of unity of order 8. Since
(mod 8). Thus, the left side of formula (4) is
(7o) @D/ = (—2/2) @D/ P =D/ (L 1)(@* D/ 98P /8 =2 (6)

:\_CX(, ObS@I‘VQ €hat
9N (g2 —1)/4 —1)/2
(T.’)(q 1)/4 __ (,l,,q-}-l)(q .

By Frobenius, we have that 79! = 797 = g7 = 2iv/2. Thus,
(72)(Q"~1)/4 _ {/27;.\/72)@—»1)/2 — ,i(q—l),/22(q-l>/2(\Vﬂ};)(q—U/? — _?‘,(\/’g‘)w—l)/’?? (7)

where we have used the fact that (¢ —1)/2 =1 (mod 4), which follows easily from the fact
that ¢ = 11 (mod 32). Inserting (6) and (7) into (4), and using also (%), we obtain

(2@)(1;2-.1)/4 _ (~i)(mi‘)(\/§)(q ..... /2 _ —(V’E)(q“l)/@,

. 2 1Y/ / -1 V/4 — — o
Using now 2@ ~D/4 = (2¢-1)(@+1/4 = 1 and o9 = a%a™! = /o, we deduce that

g\ (ath/4 . .
(i_) _ a(gw—l;/e; _ (20(,)(q2~1)/4 _ __(\/i)(q—l)/?_

(6%

Now, (g+1)/4 = (2P +4)/12 = (2?72 +1)/3. Thus,

s\ 2P
i (/B3 [ &
(@) v2) Iy

Applying the Frobenius automorphism, and summing the resulting relations, we arrive at

é 21:~'2,+ 2 21%3:-.(\/:2‘)3@_1)/2 _C_X__é
o 3 8 a)’

In the line immediately above, the left side is R,_1/(a8)* " = R,_1/2% . The right side is

-2

2 o /32
(V3D (a 3/j ) — _(V2)PRD24/3 = _oBa+T/4,
/.

Since (3¢ + 7)/4 = 2P7% 4+ 2, we obtain

RBpy _ 92°72+2

T ,
. . ; p—1 . . . . ;
which finally leads to R,., = —2% *2. Using (3), we obtain the desired result.
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