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Abstract

Heterogeneous agent models (HAMs) in finance and economics are often charac-
terised by high dimensional nonlinear stochastic differential or difference systems.
Because of the complexity of the interaction between the nonlinearities and noise,
a commonly used indirect approach to the study of HAMs combines theoretical
analysis of the underlying deterministic skeleton with numerical analysis of the
stochastic model. However, a natural question to ask is whether this indirect
approach properly characterises the nature of the stochastic model. This paper
aims to tackle this question by developing a direct and analytical approach to the
analysis of a stochastic model of speculative price dynamics involving two types
of agents, fundamentalists and chartists, and the market price equilibria of which
can be characterised by the stationary measures of a stochastic dynamical system.
Using the stochastic method of averaging, we show that the stochastic model dis-
plays behaviour consistent with that of the underlying deterministic model when
the time lag in the formation of the price trends used by the chartists is not too
close to zero. However, when this lag approaches zero, such consistency breaks
down.
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1 Introduction

Traditional economic and finance theory based on the paradigm of the representative

agent with rational expectations has not only been questioned because of the strong as-

sumptions of agent homogeneity and rationality, but has also encountered some difficulty

in explaining the market anomalies and stylised facts that show up in many empirical

studies, including high trading volume, excess volatility, volatility clustering, long-range

dependence, skewness, and excess kurtosis (see Pagan (1996) and Lux (2009) for a de-

scription of the various anomalies and stylised facts). As a result, there has been a rapid

growth in the literature on heterogeneous agent models that is well summarised in the

recent survey papers by Hommes (2006), LeBaron (2006), Hommes and Wagener (2009)

and Chiarella, Dieci and He (2009). These models characterise the dynamics of financial

asset prices and returns resulting from the interaction of heterogeneous agents having

different attitudes to risk and having different expectations about the future evolution

of prices. For example, Brock and Hommes (1997, 1998) propose a simple Adaptive

Belief System to model economic and financial markets. A key aspect of these models is

that they exhibit feedback of expectations. The resulting dynamical system is nonlinear

and, as Brock and Hommes (1998) show, capable of generating complex behaviour from

local stability to (a)periodic cycles and even chaos. By adding noise to the underlying

deterministic system and using the simulation approach, many models (see, for example,

Hommes (2002), Chiarella, He and Hommes (2006a, 2006b)) are able to generate realistic

time series. In particular, it has been shown (see for instance Hommes (2002), He and Li

(2007) and Lux (2009)) that such simple nonlinear adaptive models are capable of cap-

turing important empirically observed features of real financial time series, including fat

tails, clustering in volatility and power-law behaviour (in returns). Most of the stylised

simple evolutionary adaptive models that one encounters in the literature are analysed

within a discrete-time framework and their numerical analysis provides insights into the

connection between individual and market behaviour.

One of the most important issues for many heterogeneous agent asset pricing models

is the interaction of the behaviour of the heterogeneous agents and the interplay of noise

with the underlying nonlinear deterministic market dynamics. Indeed He and Li (2007) in

their simulations find that these two effects interact in ways which are not yet understood

at a theoretical level. The noise can be either fundamental noise or market noise, or both.

The commonly-used approach (except the stochastic approach developed in Lux (1995,

1997, 1998)), referred to as the indirect approach for convenience, is first to consider the

corresponding deterministic “skeleton” of the stochastic model where the noise terms

are set to zero and to investigate the dynamics of this nonlinear deterministic system

by using stability and bifurcation theory; one then uses simulation methods to examine

the interplay of various types of noise with the deterministic dynamics. This approach

relies on a combination of simulations and faith that the properties of the deterministic

system carry over to the stochastic one. However it is well known that the dynamics
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of stochastic systems can be very different from the dynamics of the corresponding

deterministic systems, see for instance Mao (1997). Ideally we would like to deal directly

with the dynamics of the stochastic systems, but this direct approach can be difficult.

A number of stochastic asset pricing models have been constructed in the heteroge-

neous agents literature. The earliest of which we are aware of is that of Föllmer (1974)

who allows agents’ preferences to be random and governed by a law that depends on their

interaction with the economic environment. Rheinlaender and Steinkamp (2004) study

a one-dimensional continuously randomised version of Zeeman’s (1974) model and show

a stochastic stabilisation effect and possible sudden trend reversal. Brock, Hommes and

Wagener (2005) study the evolution of a discrete financial market model with many types

of agents by focusing on the limiting distribution over types of agents. They show that the

evolution can be well described by the large type limit (LTL) and that a simple version

of LTL buffeted by noise is able to generate important stylised facts, such as volatility

clustering and long memory, observed in real financial data. Föllmer, Horst and Kirman

(2005) consider a discrete-time financial market model in which adaptive heterogeneous

agents form their demands and switch among different expectations stochastically via

a learning procedure. They show that, if the probability that an agent will switch to

being a “chartist” is not too high, the limiting distribution of the price process exists, is

unique and displays fat tails. Other related works include Hens and Schenk-Hoppé (2005)

who analyse portfolio selection rules in incomplete markets where the wealth shares of

investors are described by a discrete random dynamical system, Böhm and Chiarella

(2005) who consider the dynamics of a general explicit random price process of many

assets in an economy with overlapping generations of heterogeneous consumers forming

optimal portfolios, Böhm and Wenzelburger (2005) who provide a simulation analysis of

the empirical performance of portfolios in a competitive financial market with heteroge-

neous investors and show that the empirical performance measure may be misleading,

and Horst and Wenzelburger (2007) who show how multiple stable long run distributions

may emerge in a model with chartists. Most of the cited papers focus on the existence

and uniqueness of limiting distributions of discrete time models. For continuous time

models, we refer to the one-dimensional continuously randomised version of Zeeman’s

(1974) stock market model studied by Rheinlaender and Steinkamp (2004) and the work

of Horst and Rothe (2008) who examine the impact of time lags in continuous time

heterogeneous agent models.

In this paper, we extend the continuous-time deterministic models of speculative

price dynamics of Beja and Goldman (1980) and Chiarella (1992) to a stochastic model,

of which the market price equilibria can be characterised by stationary measures. We

choose this very basic model of fundamentalist and speculative behaviour as it cap-

tures in a very simple way the essential aspects of the heterogeneous boundedly rational

agents paradigm. By comparing both the indirect and direct approaches, we show that

the stochastic model displays a bifurcation of very similar nature to that of the underly-

ing deterministic model when the time lag is not too close to zero. Using the stochastic

3



method of averaging, we show through a so-called phenomenological (P)-bifurcation anal-

ysis that the corresponding stationary measure displays a significant qualitative change

near the threshold value from single-peak (unimodal) to crater-like (bimodal) joint dis-

tributions (and also marginal distributions) as the chartists become more active in the

market. However, when the time lag in the formation of the price trends used by the

chartists approaches zero, the stochastic model can display very different features from

those of its underlying deterministic model. Economically, in the agent-based financial

market model with stochastic noise, we study how the distributional properties of the

model, which can be characterised by the stationary distribution of the market price

process, change as agents’ behaviour changes and how the market price distribution is

influenced by the underlying deterministic dynamics. Mathematically, we seek to un-

derstand the connection between different types of attractors and bifurcations of the

underlying deterministic skeleton and changes in stationary measures of the stochastic

system. The issue of the consistency of the results under both the direct and indirect

approaches is the main motivation of this paper.

The paper unfolds as follows. Section 2 reviews the heterogeneous agents financial

market models developed by Beja and Goldman (1980) and Chiarella (1992). Sections

3 and 4 examine the dynamical behaviour of the stochastic model compared with that

of the deterministic model when the time lag is positive or goes to zero, respectively.

Section 5 concludes. All proofs are contained in the Appendix.

2 The Model

We consider a financial market consisting of investors with different beliefs. Based on

the result of Boswijk, Hommes and Manzan (2007) (who estimate a heterogeneous agents

model using S&P500 market data) that the market mainly consists of fundamentalists

and chartists, we assume that there are just two types of investors, fundamentalists

and chartists, in the market. For simplicity, we also assume that there are only two

types of assets, a risky asset (for instance a stock market index) and a riskless asset

(typically a government bond). The fundamentalists base their investment decisions on

an understanding of the fundamentals of the market, perhaps obtained through extensive

statistical and economic analysis of various market factors. In contrast, the chartists do

not necessarily have information about the fundamentals and their investment decisions

are based on recent price trends. Following Beja and Goldman (1980) and Chiarella

(1992), the changes of the risky asset price P (t) are brought about by aggregate excess

demand D(t) of the fundamentalists (Df
t ) and of the chartists (Dc

t ), defined below, at a

finite speed of price adjustment. Furthermore in the market, the transactions and price

adjustments are assumed to occur simultaneously. Accordingly, these assumptions may

be expressed as

dp(t) = D(t)dt = [Df
t + Dc

t ]dt, (2.1)
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where pt = ln P (t) is the logarithm of the risky asset price P (t) at time t and Df
t , Dc

t

are the excess demands of the fundamentalists and chartists, respectively.

The excess demand of the fundamentalists is assumed to be given by

Df
t (p(t)) = a[F (t)− p(t)], (2.2)

where F (t) denotes the logarithm of the fundamental price1 that clears fundamental

demand at time t so that Df
t (F (t)) = 0 and a > 0 is a constant measuring the risk

tolerance of the fundamentalists brought about by the market price deviation from the

fundamental price. The linear excess demand function in (2.2) reflects the fundamental-

ists’ superior knowledge on the fundamental price and strong belief in the convergence

of the market price to the fundamental price at a speed measured by their risk tolerance.

Unlike the fundamentalists, the chartists do not necessarily know the fundamental

price and they consider the opportunities afforded by the existence of continuous trading

out of equilibrium. Their excess demand is assumed to reflect the potential for direct

speculation on price changes, reflecting price momentum which is well documented in the

literature, see for example Lee and Swaminathan (2000). Let ψ(t) denote the chartists’

assessment of the current trend in p(t). Then the chartists’ excess demand is assumed

to be given by

Dc
t (p(t)) = h(ψ(t)), (2.3)

where h is a nonlinear continuous and differentiable function, satisfying h(0) = 0, h′(x) >

0 for x ∈ R, limx→±∞ h′(x) = 0; h′′(x)x < 0 for x 6= 0 and h(3)(0) < 0 where h(n) denotes

the n-th order derivative of h(x) with respect to x. These properties imply that h is an

S-shaped function, indicating that when the expected trend in the price is above (below)

zero, the chartists would like to hold a long (short) position in the risky asset. We also

impose upper and lower bounds on the chartists’ demand function, supx |h(x)| < ∞,

reflecting their budget constraints or cautiousness as the price trend becomes large in

absolute value. The asymmetric treatment of the excess demands of the fundamentalists

and chartists reflects their boundedly rational characteristics. With the knowledge of the

fundamental price, the fundamentalists are confident about the mean-reversion of the

market price to the fundamental price and are assumed to have no budget constraint. In

contrast, the chartists do not necessarily have knowledge about the market fundamental

price. They trade based on the market price trend and within their budget constraint.

They extrapolate the market price when the trend is small, but become cautious when the

trend is too strong. In addition, h′(·) measures the intensity of the chartists’ reaction to

the long/short signal ψ. When h′(·) is small, the chartists react weakly to the long/short

signals as they believe it may have become unsustainably large in absolute value. Under

the above assumptions, the intensity of the chartists’ reaction is always bounded and in

particular, the chartists are most sensitive at the equilibrium, that is maxx h′(x) = h′(0).

1We consider the market price and the fundamental price to both be detrended by the risk-free rate
or correspondingly, the risk-free rate is assumed to be zero. Also, the fundamentalists are assumed to
know the distribution of the fundamental price with infinite precision.
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Note that the chartists’ speculation on the adjustment of the price primarily depends

on an assessment of the state of the market as reflected in price trends. Typically, the

assessment of the price trend is based at least in part on recent price changes and is

an adaptive process of trend estimation. One of the simplest assumptions is that ψ

is taken as an exponentially declining weighted average of past price changes, that is,

ψ(t) = c
∫ t

−∞ e−c(t−s)dp(s), which can be expressed as the first order differential equation

dψ(t) = c[dp(t)− ψ(t)dt], (2.4)

where c ∈ (0,∞) is the decay rate, which can also be interpreted as the speed with which

the chartists adjust their estimate of the trend to past price changes. Alternatively the

quantity τ = 1/c may be viewed as the average time lag in the formation of expectations

and it can be shown that2 in a loose sense ψ(t)dt ≈ dp(t− τ).

Summarising the above set up, we obtain the asset price dynamics





dp(t) = a
[
F (t)− p(t)

]
dt + h

(
ψ(t)

)
dt,

dψ(t) =
1

τ

[
− ap(t)− ψ(t) + h

(
ψ(t)

)
+ aF

]
dt.

(2.5)

In the earlier cited literature that focuses on the deterministic dynamics of the financial

market model, it is usually assumed that F is constant. When the fundamental price

F follows a stochastic process, for example a random walk, (2.5) becomes a stochastic

dynamical system. We shall examine the dynamical behaviour of (2.5) when the average

time lag τ of the chartists in the formation of expectations is either positive or zero, the

latter being treated as a limiting case of the former one as τ → 0+.

3 Dynamical Behaviour with Lagged Price Trend

In this section, we first consider the dynamics of the deterministic model, followed by

the dynamics of the stochastic model, in order to highlight the comparison between the

deterministic and stochastic dynamics. Here we focus on τ strictly positive and discuss

the limiting case τ → 0+ in Section 4.

3.1 The Deterministic Dynamical Behaviour

When the log fundamental price is constant with F ≡ F ∗, it is easy to verify that the

corresponding deterministic model has a unique steady-state (p∗, ψ∗) = (F ∗, 0). Under

the assumption that the chartists use a finite speed of adjustment in adapting to the

price trend, that is 0 < c < ∞, or equivalently that the chartists always estimate the

2Equation (2.4) can be written as dp(t) = τdψ(t) + ψ(t)dt ≈ ψ(t + τ)dt. Hence ψ(t)dt ≈ dp(t − τ).
Alternatively one can calculate that the average time lag for the exponential weighting function is
τ = 1/c. So in an approximate sense ψ is based on the change in p evaluated at the average time lag τ .
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price trend with a delay τ > 0, Beja and Goldman (1980) perform a local linear analysis

around the steady-state. By considering the nonlinear nature of the function h(x),

Chiarella (1992) conducts a nonlinear analysis of the same model. Letting b = h′(0)

represent the slope of the demand function at ψ = 0 for the chartists, it is found that

this parametner plays a very important role in determining the dynamics. In this paper,

we take b as the key parameter through which to examine the role of the chartists in

determining the market price. The main result in Chiarella (1992) is summarised in the

following theorem.

Theorem 3.1 If F ≡ F ∗, the system (2.5) has a unique steady-state (p∗, ψ∗) = (F ∗, 0).

Assume that τ > 0 and let b = h′(0) and b∗ = 1+aτ , then (p∗, ψ∗) is locally asymptotically

stable for b < b∗ and unstable for b > b∗. In addition, (p∗, ψ∗) undergoes a supercritical

Hopf bifurcation at b = b∗ and a stable limit cycle exists for b > b∗.

To further study the impact of the behaviour of the fundamentalists and chartists

on the price, we analyse the characteristics of the stable limit cycle generated from the

supercritical Hopf bifurcation. We set φ = ψ̇ and then (2.5) can be transformed into the

system 



ψ̇ = φ,

φ̇ = K(ψ, φ)− aψ

τ
,

(3.1)

where K(ψ, φ) =
[
ς + h′(ψ)− b

]
φ/τ and ς = b− b∗. We consider ψ in the neighborhood

of 0 and restrict our analysis to be local. Making the polar coordinate transformation

ψ = r
η
sin(θ − ηt) and φ = r cos(θ − ηt) where η2 = a/τ , we can use the method of

averaging (see Andronov, Vitt and Khaikin (1966)) to obtain a first order approximation

to the amplitude function r(t) satisfying

ṙ = U (r) =
1

2π

∫ 2π

0

K(
r

η
sin t, r cos t) cos tdt =

r

τ

[
H(r)− b

2
+

ς

2

]
, (3.2)

where H(r) = 1
2π

∫ 2π

0
h′( r

η
sin t) cos2 tdt. The function H(r) has the properties

H(0) =
b

2
, lim

r→+∞
H(r) = 0 and H ′(r) < 0 for r > 0,

Hmax ≡ max
r

{
H(r)− b

2
+

ς

2

}
=

b− b∗

2
, Hmin ≡ min

r

{
H(r)− b

2
+

ς

2

}
=
−b∗

2
.

(3.3)

For the system (3.2), the steady state satisfies

U (r) = 0. (3.4)

When b is small, in particular b < b∗ = 1 + aτ , then Hmax < 0 and r = 0 is a unique

solution of (3.4). Thus r = 0 is a unique steady state of (3.2) and stable. When b is

large, in particular b > b∗ = 1 + aτ , we have Hmax > 0 and Hmin < 0. Then (3.4) has
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Figure 1: (a) The nonzero steady state of the polar radius in (3.2), and (b) the phase

plot in (ψ, φ)-plane. In both cases, b > b∗. We have taken h(x) = α tanh(βx) with a = 1,

α = 1, β = 2.2 and τ = 1 so that b = β = 2.2 and b∗ = 1 + aτ = 2.

a nonzero solution, denoted by r∗, see Fig. 1(a)3. From stability analysis, r = r∗ is a

stable steady state of (3.2) while r = 0 becomes an unstable steady state, as illustrated

in Fig. 1(b).

By comparative static analysis, it is easy to see that the size of the limit cycle r∗

decreases with the increase of either the risk tolerance of the fundamentalists (a) or the

time lag used in the assessment of the current price trend by the chartists (τ). These

results highlight the stabilising role of the fundamentalists and the destabilising influence

of the chartists as they more actively adjust their estimate of the price trend.

3.2 The Stochastic Dynamical Behaviour

We now examine the stochastic dynamics generated from the randomness of the fun-

damental price. We assume that the log fundamental price F (t) follows a random walk.

That is, F (t + h) − F (t) is normally distributed with mean 0 and variance σ2h, inde-

pendently of past values of F (s) (s ≤ t). Using the notation of the stochastic differential

equation, the log fundamental value F (t) can be considered to follow the Itô stochastic

differential equation (SDE)

dF = σdW, (3.5)

where σ > 0 is the standard deviation (volatility) of the fundamental returns and W is

a standard Wiener process.

By incorporating the random log fundamental price process F (t) of (3.5) into the

continuous-time model (2.5), we obtain the corresponding stochastic version of the fi-

nancial market model. Setting φ dt = dψ, a nonlinear SDE system in ψ and φ can be

3In this paper, we take h(x) = α tanh(βx) in all numerical simulations.

8



obtained, namely





dψ = φ dt,

dφ =
1

τ

[(
ς + h′(ψ)− b

)
φ dt− aψ dt + aσdW

]
.

(3.6)

Once the dynamics of ψ(t) have been obtained, the dynamics of the price p(t) can be

obtained by integrating the first equation in (2.5).

Assume that h′(ψ)− b = h′(ψ)−h′(0) is small, that is ψ is near 0. Following Arnold,

Sri Namachchivaya and Schenk-Hoppé (1996), we restrict our analysis to be local and

change parameters by rescaling (to “blow up” the neighbourhood around ψ = 0) and

introducing the (small) parameter ε so that h′(ψ)− b → ε2(h′(ψ)− b), ς → ε2ς, σ → εσ.

Then the SDE system (3.6) can be rewritten as





dψ = φdt,

dφ = ε2K(ψ, φ)dt− aψ

τ
dt +

εaσ

τ
dW,

(3.7)

for which the corresponding Kolmogorov backward equation is

∂pε

∂t
= φ

∂pε

∂ψ
− η2ψ

∂pε

∂φ
+ ε2

[
a2σ2

τ 2

∂2pε

∂φ2
+K(ψ, φ)

∂pε

∂φ

]
,

where pε = pε(t; ψ, φ; ψ1, φ1) denotes the probability density of a transition from the

point (ψ, φ) to the point (ψ1, φ1) in period of time t for a trajectory of (3.7). We apply

the same polar coordinate transformation ψ = r
η
sin(θ − ηt), φ = r cos(θ − ηt) as in the

deterministic case, and set

uε(t; r, θ; r1, θ1) = pε(t;
r

η
sin(θ − ηt), r cos(θ − ηt);

r1

η
sin(θ1 − ηt), r1 cos(θ1 − ηt)).

Then it can be verified that uε satisfies

∂uε

∂t
= ε2Lε(r, θ, t)uε, (3.8)

where the operator Lε(r, θ, t) is given by

Lε(r, θ, t) =
a2σ2

τ 2

[
cos2(θ − ηt)

∂2

∂r2
− sin 2(θ − ηt)

r

∂2

∂r∂θ
+

sin2(θ − ηt)

r2

∂2

∂θ2

+
sin2(θ − ηt)

r

∂

∂r
+

sin 2(θ − ηt)

r2

∂

∂θ

]

+K(
r

η
sin(θ − ηt), r cos(θ − ηt))

[
cos(θ − ηt)

∂

∂r
− sin(θ − ηt)

r

∂

∂θ

]
,

which is of the standard form to which the stochastic method of averaging can be ap-

plied. Using the techniques outlined in Khas’minskii (1963), the probability density of a
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transition of the random process p0(t; r, θ; r1, θ1) is found to satisfy the partial differential

equation

∂p0

∂t
=

a2σ2

2τ 2

[
∂2p0

∂r2
+

1

r2

∂2p0

∂θ2
+

1

r

∂p0

∂r

]
+ U (r)

∂p0

∂r
− V (r)

r

∂p0

∂θ
, (3.9)

where V (r) = 1
2π

∫ 2π

0
K( r

η
sin t, r cos t) sin tdt. Then for any R > 0 and T > 0, it can be

shown that

uε(t; r, θ; r1, θ1)− p0(tε
2; r, θ; r1, θ1) → 0 as ε → 0,

uniformly with respect to r, θ, r1, θ1 for r < R, r1 < R and with respect to t for

0 ≤ t ≤ T/ε2. Making use of the fact that the stationary density of the two-dimensional

process is 2π periodic in θ, we can assert that the stationary density p(r, θ) corresponding

to the solution of (3.9) is independent of θ and has the form p(r, θ) = p(r)
2π

, where p(r)

is the solution of the ordinary differential equation

a2σ2

2τ 2

[
d2p(r)

dr2
− d

dr

p(r)

r

]
− d

dr
(U (r)p(r)) = 0, r ∈ [0, +∞). (3.10)

Furthermore, we can obtain the following result.

Theorem 3.2 There exists a unique stationary probability density of (3.10) given by

p(r) = Cr exp

(
2τ 2

a2σ2

∫ r

0

U (s)ds

)
,

where C is a normalisation constant.

Note that p(r) attains its extremum at the point r = re satisfying

U (re) = − a2σ2

2τ 2re

. (3.11)

It is clear that when σ = 0, (3.11) reduces to the case of the steady state solution of the

polar radius in the deterministic case, that is the one given by (3.4). Let G(r) = −a2σ2

2τr2

and then (3.11) may be written as

H(r) +
ς

2
− b

2
= G(r). (3.12)

By (3.3) and the monotonicity of G(·) for r ∈ (0,∞), (3.12) only has one solution r = re

and in particular, p(·) attains its maximum value at r = re.

When b is small, in particular b < b∗ = 1 + aτ , then Hmax < 0 and (3.12) is

approximated by −a2σ2

2τr2 = ς
2
. Then p(r) attains its maximum value near re ≈ aσ√−ςτ

,

which is close to zero for small σ, see Fig. 2(a). This in turn implies a joint stationary

density of (ψ, φ) with a single peak around the origin, as illustrated in Fig. 3(a)4. In

4Note that the distributions displayed in Fig. 3 are those of the system (3.6) and the first equation
of (2.5), obtained by use of the Euler-Maruyama scheme with one sample path up to time 500,000.
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Figure 2: The functions G and H and the determination of re (a) for b < b∗ and (b) for

b > b∗. Here a = 1, σ = 0.02 and h(x) = α tanh(βx) with α = 1 so that b = β and

b∗ = 1 + aτ = 2.

particular, when σ → 0, we have re → 0 consistently with the deterministic case. When

b is large, in particular b > b∗ = 1+aτ , we have Hmax > 0 and Hmin < 0. In this case, the

solution of (3.12) is far away from zero, as shown in Fig. 2(b) which can be regarded as

the stochastic version of Fig. 1(a). This indicates a crater-like density whose maximum

is located on a circle (around r = 0 which is the steady state of the deterministic system)

with a large radius, shown in Fig. 3(g). Figure 3(d) illustrates the distribution of the

transition from the single-peak to the crater-like density distribution. The plots in the

second and third columns of Fig. 3 illustrate the corresponding marginal distributions

of ψ and p.

From the above analysis, we see the qualitative change of the stationary density

when the parameter b changes. If we treat this stationary density (when b is large) as a

bifurcation from the case when b is small, the maximum radius of the density function

corresponds to a Hopf bifurcation. In stochastic bifurcation theory, such a bifurcation is

known as a phenomenological (P)-bifurcation5. It is in this sense that we argue that the

stochastic model shares the corresponding dynamics to those of the deterministic model.

4 Dynamical Behaviour in the Limit τ → 0+

In this section, we consider the limiting case τ → 0+. This corresponds to the

situation in which the chartists use the most recent price change to estimate the trend of

the price. Different from the previous case τ > 0, the limiting case is of interest because

it has a similar structure to the catastrophe theory model of Zeeman (1974), a structure

5The P-bifurcation approach to stochastic bifurcation theory is used to examine the qualitative
changes of the stationary measure when a parameter varies, which is based on the definition given by
Arnold (1998).
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(a) joint distribution with b = 1.5 (b) marginal distribution of ψ (c) marginal distribution of p

(d) joint distribution with b = 2.0 (e) marginal distribution of ψ (f) marginal distribution of p

(g) joint distribution with b = 2.2 (h) marginal distribution of ψ (i) marginal distribution of p

Figure 3: Joint stationary densities of ψ and φ and the corresponding marginal distribu-

tions for ψ and p. We have taken h(x) = α tanh(βx) with a = 1, α = 1, τ = 1, σ = 0.02,

so that b = β and b∗ = 1 + aτ = 2.

that has been suggested by some empirical studies, such as Anderson (1989). Similar to

the approach of Section 3, we first consider the deterministic model and then move to

the stochastic model.

4.1 The Deterministic Dynamical Behaviour

When F ≡ F ∗, the system (2.5) can be rewritten as

Στ :

{
ṗ = f(p, ψ) := a(F ∗ − p) + h(ψ)

τ ψ̇ = g(p, ψ) := a(F ∗ − p) + h(ψ)− ψ.
(4.1)

When τ → 0+, dynamical systems such as (4.1) are known as singularly perturbed

systems. As we show in the following, the dynamics have the catastrophe theory char-

acteristics, that is the dynamics are fast in one direction (here the ψ-direction) and slow

12



in the other direction (here the p-direction), see Yurkevich (2004) for a more detailed

study of such systems.

In fact, in the limiting case τ → 0+, the system (4.1) becomes

Σ0 :

{
ṗ = f(p, ψ),

0 = g(p, ψ),
(4.2)

which is a differential-algebraic equation (DAE)6 with an algebraic constraint on the

variables. The dynamical system Στ has apparently lost a dimension in the limit τ = 0.

By differentiating the second equation of Σ0 with respect to t and using the fact that

ṗ = ψ, we obtain the result that the dynamics of ψ are given by

(
1− h′(ψ)

)
ψ̇ = −aψ. (4.3)

dψ

dt

> 0

dψ

dt

< 0

0

(a) b < 1: the unique steady state is stable.

dψ

dt

> 0

dψ

dt

> 0

dψ

dt

< 0
dψ

dt

< 0

ψ1b ψ2b0

(b) b > 1 and h′(ψ1b) = h′(ψ2b) = 1: one steady
state and two singular points.

Figure 4: The vector field of ψ.

Note that when b < 1, h′(ψ) < 1 for all ψ, so that in this case ψ = 0 is a unique

steady state of (4.3) and is stable, as illustrated in Fig. 4(a). However, when b > 1, there

exist two values ψ1b and ψ2b with ψ1b < 0 < ψ2b such that h′(ψ1b) = h′(ψ2b) = 1. These

values are shown in Fig. 4(b) along with the signs of ψ̇, obtained from (4.3), at various

values of ψ. By the analysis of the vector field of ψ, the flow of ψ with nonzero initial

value moves away from the origin towards ψ1b or ψ2b. This means that the steady state

ψ = 0 loses its stability at b = 1 and becomes unstable as b increases from 1− to 1+. In

addition, note that when there is a value ψ∗ such that h′(ψ∗) = 1, then the solution of

the second equation of Σ0 with respect to ψ is nonunique because the Implicit Function

Theorem does not hold at ψ = ψ∗, which is known as a singular point. At the singular

point, ψ̇|ψ=ψ∗ = ∞. Thus, singular phenomena occur for b ≥ 1.

For system Σ0, its singularity, the bifurcation of the fundamental equilibrium (p, ψ) =

(F ∗, 0) near the singular parameter (the so-called singularity induced bifurcation), and

its dynamics are described by the following theorem7.

Theorem 4.1 A singularity induced bifurcation occurs at b = 1 and the steady state

(F ∗, 0) loses its stability at b = 1 and becomes unstable as b increases from 1− to 1+.

6For more information about DAEs, we refer the reader to the book of Brenan, Campbell and Petzold
(1989).

7For the more information about the proof of singularity induced bifurcations, we refer the reader to
Chiarella, He and Zheng (2008).
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Figure 5: (a) The limiting limit cycle as τ → 0+; (b) the projection of (a) onto the

(ψ, p)-plane with the parallelogram-like figure being the limiting case τ → 0+ ; (c) the

jump fluctuation in the phase plane and (d) the corresponding time series of p(t) and

ψ(t) at τ → 0+. Here a = 1 and h(x) = α tanh(βx) with α = 1 and β = 2.2.

To understand the complete dynamics of the system Σ0, we consider the limiting

dynamics of the singularly perturbed system Στ as τ → 0+. We shall show that the

singular phenomenon for the system Σ0 corresponds to the limiting case of the Hopf

Bifurcation in the system Στ for b∗ = 1 + aτ (τ 6= 0) when τ → 0+.

Recall that, at b∗ = b∗(τ) = 1 + τa, the system Στ has a pair of purely imaginary

eigenvalues λ1,2 = ±
√
−a/τ and when τ → 0+, b∗ → 1 and |λ1,2| → ∞. With a

fixed b > b∗(τ0) (τ0 > 0), as τ → 0+, the limit cycle persists, as suggested by the

numerical simulations in Fig. 5(a). Figure 5(b) gives a projection of Fig. 5(a) onto

the (ψ, p)-plane. In fact, in the (ψ, p)-plane, the following observations are made about

the system Σ0. As illustrated in Fig. 5(c), for g(p, ψ) 6= 0, ψ moves infinitely rapidly

toward the curve defined by g(p, ψ) = 0 since ψ̇ → ∞ as τ → 0+, such a region is

denoted as the fast region. For g(p, ψ) = 0, as τ → 0+ the dynamics are governed by

the differential equation for p, namely ṗ = a(F ∗− p) + h(ψ), along the curve g(p, ψ) = 0

which is called the slow manifold. Specifically, consider how the motion evolves from

the initial point Q in the fast region in Fig. 5(c). The variable ψ moves instantaneously
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horizontally to the point N on the slow manifold g(p, ψ) = 0. Motion is then down

the slow manifold under the influence of ṗ = a(F ∗ − p) + h(ψ). When the singular

point B is reached, which corresponds to ψ1b in Fig. 4(b), ψ jumps instantaneously

horizontally across to C on the opposite branch of the slow manifold. Motion is then

up to another singular point D which corresponds to ψ2b in Fig. 4(b) and the cycle

then repeats itself. Therefore, the singular phenomenon in system Σ0 corresponds to

a jump phenomenon and the limit cycle with the jump phenomenon consists of two

slow movements along the manifold of Σ0 shown in Fig. 5(c), A → B, and C → D,

and two jumps at the singular points B and D in Σ0, namely B ³ C and D ³ A.

The corresponding time series in Fig. 5(d) clearly shows the periodic slow movement

in price p and sudden jumps in ψ from time to time. This phenomenon indicates that

the model is able to generate significant transitory and predictable fluctuations around

the equilibrium. Using a different approach, this jump fluctuation phenomenon in the

model of fundamentalists and chartists was studied by Chiarella (1992) who points out

that it is merely the relaxation oscillation well-known in mechanics and expounded for

example by Grasman (1987). Our analysis shows that strong reaction to price changes

by the chartists can make the fundamental price unstable, leading to predictable cycles

for the market prices and jumps in their estimate of the price trends.

4.2 The Stochastic Dynamical Behaviour

We now analyse the behaviour of the stochastic dynamics in the limit τ → 0+. As

τ → 0+, we see from (2.4) that dp → ψdt whilst from the first equation of (2.5), the log

price p is governed by dp =
[
a(F − p) + h(ψ)

]
dt. It follows that ψ = a(F − p) + h(ψ),

which implies that ψ is a continuous process. Assuming that ψ is an Itô process of the

form

dψ = Mdt + �dW (4.4)

and taking the stochastic differential of the two sides of ψ = a(F − p) + h(ψ), we find

that

dψ = a(dF − dp) + h′(ψ)dψ +
1

2
h′′(ψ)(dψ)2

= a(σdW − ψdt) + h′(ψ)(Mdt + �dW ) +
1

2
h′′(ψ)�2dt,

from which after some algebraic manipulations and comparing with (4.4), we obtain the

result that

� = �(ψ) =
aσ

1− h′(ψ)
and M = M(ψ) =

−aψ

1− h′(ψ)
+

1

2
�′(ψ)�(ψ). (4.5)

Hence, if there exists ψ∗ such that h′(ψ∗) = 1, then (4.4) is singular at ψ = ψ∗. Similarly

to the deterministic case, for the different cases, b < 1, b = 1 and b > 1, the stochastic

differential equation (4.4) will have a different number of singular points and therefore
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exhibit different behaviour. We will now discuss each case in turn. To simplify the

analysis, in this subsection, we make some technical assumptions that there exists x1 <

0 < x2 such that h(3)(ψ) < 0 for ψ ∈ (x1, x2), h(3)(ψ) > 0 otherwise, and ψh(4)(ψ) > 0

for ψ ∈ (x1, x2), as illustrated in Fig. 6. These conditions are satisfied by the hyperbolic

tangent function used in the numerical simulations of this paper.
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y=h(3)(x)

y=h’’(x)

y=h(4)(x)

Figure 6: Plots of functions h′′(x), h(3)(x) and h(4)(x).

When b < 1, we have 1−h′(ψ) > 0 for any ψ and there is no singularity in (−∞, +∞).

The only singular points are ±∞. Based on the theory of the classification of singular

boundaries8, we obtain the following result.

Theorem 4.2 When b < 1, there exists a unique stationary density p for ψ, given by

p(ψ) = N
(1− h′(ψ))

aσ
exp

( ψ∫

0

−2y(1− h′(y))

aσ2
dy

)
(4.6)

and N is a normalisation constant.

Note that when ψ satisfies

h′′(ψ) +
2ψ(1− h′(ψ))2

aσ2
= 0, (4.7)

the stationary density p(·) attains its extremum. This, together with the assumptions

on the function h, leads to the following result on the P-bifurcation with respect to ψ.

Theorem 4.3 (P-Bifurcation) Let bp = 1−
√
−h(3)(0)aσ2

2
.

(1) When h(3)(0) > − 2
aσ2 and 0 < b < bp, the stationary density p(·) has a unique

extreme point ψ = 0, at which p(·) attains its maximum.

8We refer to Lin and Cai (2004) for more information about the theory of the classification of various
singular boundaries, including entrance, regular, and (attractively and repulsively) natural boundaries
used in our discussion.
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Figure 7: The determination of the extreme points of the stationary density p(·)

(2) When max{bp, 0} < b < 1, the stationary density p(·) has three extreme points ψ∗1,
0 and ψ∗2 satisfying ψ∗1 < 0 < ψ∗2. In addition, the stationary density p(·) attains

its minimum value at ψ = 0 and its maximum values at ψ = ψ∗1 and ψ∗2.

Theorem 4.3 indicates that, as the chartists place more and more weight on the recent

price changes (that is τ → 0+), the number of the extreme points of the stationary density

p(·) in (4.6) changes from one to three as the parameter b changes (but b < 1). This is

shown in Fig. 7. This means that, a moderate increase in activity (such that b < 1) of

the chartists who weight the recent price changes very heavily results in a large deviation

of their estimate of the price trend ψ from its mean value, illustrated by the changes9

from the unimodal to bimodal stationary distribution in the upper panel of Fig. 8. The

changes are further illustrated by the underlying time series for ψ in the bottom panel

of Fig. 8.

The appearance of the P-bifurcation discussed above cannot be inferred from any

information in the corresponding deterministic case because when b < 1, Theorem 4.1

implies that in the deterministic model, the unique steady state (F ∗, 0) is always stable

and there is no bifurcation10. This result illustrates that, from the P-bifurcation point of

9In Figs 8 and 9, we have taken h(x) = α tanh(βx) with β = 1, a = 1 and σ = 0.1 so that b = α. In
Fig. 8, α = 0.7, α = 0.9 and α = 0.95 for the first, second and third columns and in Fig. 9, α = 1.2 so
that b = α > 1.

10The phenomenological (P)-bifurcation analysis focuses on the stationary distribution and is, in
general, not related to path-wise stability. There is another type of stochastic bifurcation, known as
the dynamical (D)-bifurcation approach which does focus on path-wise stability and is based on the
invariant measure and the multiplicative ergodic theorem. By using D-bifurcation analysis, Chiarella,
He, Wang and Zheng (2008) (see also Chiarella, He and Zheng (2008) for complete details) show that
the random dynamical system generated from (4.4) has no D-bifurcation since the invariant measure
about ψ is unique and always has a negative Lyapunov exponent. This result is consistent with the
stable case in the corresponding deterministic model when b < 1.
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Figure 8: When τ → 0+ and h(3)(0) > − 2
aσ2 , a P -bifurcation occurs at b = bp. The top

panel shows different typical stationary densities p of ψ with different parameter ranges

and the bottom panel shows the underlying time series.

view, the stochastic dynamical system can be very different from that of the underlying

deterministic system11.

When b = 1, that is h′(0) = 1, the drift term M(0) in (4.4) becomes unbounded

and furthermore ψ = 0 is a regular boundary. With the increase of b to b > 1, there

exist ψ1b < 0 < ψ2b satisfying h′(ψ1b) = h′(ψ2b) = 1, both of which are also regular

boundaries. The appearance of the regular boundary at b = 1 corresponds to the oc-

currence of a singularity induced bifurcation in the corresponding deterministic case and

ψ1b, ψ2b correspond to the jump points in the deterministic case. In fact, at the same

time, the stochastic model may share some of the features of the deterministic model.

For example, when b > 1, we know from the previous section that the deterministic

dynamics exhibit fast motion in the ψ-direction and slow motion in the p-direction. For

the stochastic model, we observe a similar behaviour, as suggested by the simulations

in Fig. 9. However, once a regular boundary appears, it renders the stationary solution

11This observed difference is based on Arnold’s definition of the P-bifurcation. The qualitative change
of the stationary distributions under change of variables is also discussed in Wagenmarkers, Molenarra,
Grasman, Hartelman and van der Maas (2005) for continuous time random dynamical systems (see also
Diks and Wagener (2006) for discrete time random dynamical systems), in a way different from that of
Arnold, these authors use the level-crossing function to characterise the change. Correspondingly, this
difference between the deterministic and stochastic cases in the paper observed under Arnold’s definition
may disappear, but this issue is beyond the scope of our discussion.
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Figure 9: Fast motion in ψ and slow motion in p in the limit of τ → 0+ for b > 1

nonunique12 without further stipulation on the behaviour of (4.4) (see Feller (1952)).

Unlike the case of b < 1, this causes some difficulties in obtaining analytical properties

of the stationary densities of the stochastic system. However, from a practical point

of view, this additional freedom may be a blessing since it may permit certain realistic

behaviour to be incorporated into the context of the financial model, but we leave such

considerations to future research.

5 Conclusion

In this paper, within the framework of the heterogeneous agent paradigm, we extend

the basic deterministic model of Beja and Goldman (1980) and Chiarella (1992) to a

stochastic model for the market price, and examine the consistency of the stochastic

dynamics under the indirect and direct approaches. By using P(Phenomenological)-

bifurcation analysis, we examine the qualitative changes of the stationary measures of

the stochastic model.

For the simple stochastic financial market model studied here, when the time lag used

by the chartists to form their expected price trends is not zero, we show that near the

steady state of the underlying deterministic model, the approximation of the stochastic

model shares the corresponding Hopf bifurcation dynamics of the deterministic model.

When the time lag used by the chartists to form their expected price changes approaches

zero, so that the chartists are placing more and more weight on recent price changes,

then the system can have singular points. In this case, the stochastic model displays

very different dynamics from those of the underlying deterministic model. In particular,

12Note that in the deterministic case, the occurrence of the singularity induced bifurcation corresponds
to the appearance of a singular point where the Implicit Function Theorem does not hold, hence the
solution for the implicit function can be nonunique.
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the fundamental noise can destabilise the market equilibrium and result in a change

of the stationary distribution through a P-bifurcation of the stochastic model, while

the corresponding deterministic model displays no bifurcation. Our results demonstrate

the important connection, but also the significant difference, of the dynamics between

deterministic and stochastic models.

Economically, we have considered a very simple financial market model with hetero-

geneous agents. This stylised model and the role played by the chartists are shared by

many heterogeneous agent-based discrete-time models in recent literature. However rig-

orous analysis and theoretical understanding of the stochastic behaviour underlying this

intuition are important to policy analysis, investment strategies and market design, but

have drawn less attention, mainly due to the difficult nature of these issues. Ultimately

we need to apply the theory of stochastic bifurcation directly rather than simulate the

models indirectly. Applications of the tools and concepts of stochastic bifurcation theory

to financial market models to obtain analytic insight into these intuitions and to improve

our understanding about the interaction of the behaviour of heterogeneous agents and

noise are the main contributions of this paper.

In order to bring out the basic phenomena associated with stochastic bifurcation we

have focused on a highly simplified model. The simplicity of the model limits its ability

to generate the stylised facts observed in financial markets. In order to do so the model

would need to be embellished in a number of ways in future research, in particular:

deriving the asset demands of agents from an intertemporal optimisation framework;

introducing other types of randomness such as market noise to characterise the excess

volatility; allowing for switching of strategies according to some fitness measure (see for

example Brock and Hommes (1997, 1998)); and analysing in closer detail the stochastic

dynamics to replicate the stylised facts and power-law behaviour.

Appendix

A1. Proof of Theorem 3.2

The proof is based on the theory of the classification of singular boundaries in Lin and Cai
(2004). First, note that (3.10) has two boundaries rl = 0 and rr = +∞. The drift and diffusion
coefficients corresponding to (3.10) are respectively M(r) = U (r) + a2σ2

2τ2r
and %2(r) = a2σ2

τ2 . It
is easy to see that the left boundary rl = 0 is a singular boundary of the second kind, that
is M(rl) = ∞. In addition, from its definition, %2(r) = O|r − rl|0 and based on the fact that
U (r) is bounded around rl, it follows that M(r) = O|r− rl|−1 as r → r+

l ; so the diffusion and
drift exponents of rl are given by, respectively, �l = 0, �l = 1, and the character value of rl is

cl = lim
r→r+

l

2M(r)(r − rl)�l−�l

%2(r)
= 1.

These quantities indicate that the left-hand boundary rl = 0 is an entrance.
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Similarly, the right-hand boundary rr = +∞ is a singular boundary of the second kind at
infinity, that is M(+∞) = ∞. In this case, one can show that the diffusion and drift exponents
of rr are given by, respectively �r = 0 and �r = 1. Note that b−ς = 1+aτ > 0 and lim

x→∞h′(x) =

0, hence M(+∞) < 0. Therefore, the right-hand boundary rr = +∞ is repulsively natural.
Since each of the two boundaries is either an entrance or repulsively natural, then a nontrivial
stationary solution exists in [0,∞), which has the form p(r) = Cr exp

(
2τ2

a2σ2

∫ r
0 U (s)ds

)
. Note

that p(r) > 0 for r ∈ (0,∞), so the stationary probability is unique, see Kliemann (1987).

A2. Proof of Theorem 4.2

Based on Lin and Cai (2004), it is not difficult to verify the result that the boundaries ±∞
are singular boundaries of the second kind at infinity, that is |M(±∞)| = ∞ and the diffusion
exponents and drift exponents of ±∞ are respectively �±∞ = 0 and �±∞ = 1. In addition,
M(±∞) ≶ 0. Therefore, ±∞ are repulsively natural, implying that there exists a nontrivial
stationary solution in (−∞,+∞). In fact, from the Fokker-Planck Equation, we know that
the stationary probability is given by (4.6). Note that p(ψ) > 0 for all ψ, so the stationary
probability density is unique.

A3. Proof of Theorem 4.3

It is obvious that ψ = 0 is one of the solutions to (4.7) for any of the cases considered.
In the following, we only consider the case ψ ∈ (−∞, 0) and a similar reasoning holds for
the case ψ ∈ (0,+∞). Let S(ψ) = −2ψ(1−h′(ψ))2

aσ2 . By the assumptions on h, we know that
h′′(ψ) is a concave function on (x1, 0) and lim

ψ→−∞
h′′(ψ) = ` where 0 ≤ ` < +∞. In addition,

lim
ψ→−∞

S(ψ) = +∞, S′(ψ) < 0 for ψ ∈ (−∞, 0), S′′(ψ) > 0 for ψ ∈ (x1, 0). When

h(3)(0) > − 2
aσ2

and b < 1−
√
−h(3)(0)aσ2

2
, (A.1)

then S′(0) < h(3)(0) < 0. By the convexity and concavity of S(·) and h′′(·) in [x1, 0) and
monotonicity of h in (−∞, x1), there is no solution of (4.7) on (−∞, 0). When (A.1) is satisfied,
(4.7) has a unique solution ψ = 0 on (−∞,+∞) and p′′(0) = N

aσ (−h(3)(0) − 2(1−b)2

aσ2 ) < 0,
implying that ψ = 0 is the maximum point of p(·).

When b > 1 −
√
−h(3)(0)aσ2/2, then S′(0) > h(3)(0). Therefore, there exists a solution

of (4.7) in (−∞, 0), denoted by ψ∗1. To demonstrate the uniqueness of the solution of (4.7) in
(−∞, 0), we consider the following two cases:

(i) If the solution ψ∗1 is on [x1, 0), by the concavity of h′′(·) and convexity of S(·) in [x1, 0),
there is a unique solution of (4.7) on [x1, 0). On the other hand, on (−∞, x1), h′′(·) is
monotonically increasing and S(·) is monotonically decreasing. Hence, there is no other
solution on (−∞, 0).

(ii) When ψ∗1 ∈ (−∞, x1), there is no solution of (4.7) on the interval [x1, 0), otherwise there
is a contradiction with the case (i). With the monotonicity of h′′(·) and S(·) on (−∞, x1),
there is only one solution ψ∗1 on (−∞, 0).
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In addition, when b > 1 −
√
−h(3)(0)aσ2/2, we have p′′(0) > 0. So ψ = 0 is the minimum

point of p(·). We note that at ψ∗1, it must be the case that

h(3)(ψ)
∣∣∣
ψ∗1

> (
−2ψ(1− h′(ψ))2

aσ2
)′
∣∣∣∣
ψ∗1

. (A.2)

Otherwise, by lim
ψ→−∞

h′′(ψ) = `(< +∞) and lim
ψ→−∞

S(ψ) = +∞, there must be another solution

ψ̃(< ψ∗1) of (4.7), which is a contradiction of the uniqueness of the solution of (4.7) on (−∞, 0).
Then, through (4.7) and (A.2)

p′′(ψ)

∣∣∣∣∣
ψ=ψ∗1

=

[
−h(3)(ψ)

aσ
+

6ψh′′(ψ)(1− h′(ψ))
a2σ3

− 2(1− h′(ψ))2

a2σ3

+
4ψ2(1− h′(ψ))3

a3σ5

]
N exp(

ψ∫

0

−2y(1− h′(y))
aσ2

dy)

∣∣∣∣∣∣
ψ=ψ∗1

< 0. (A.3)

Therefore, ψ∗1 is a maximum point of p(·).
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