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ABSTRACT This paper is devoted to the exponential synchronization of switched neural networks with
mixed time-varying delays via static/dynamic event-based rules. At first, by introducing an indicator
function, the switched neural networks are transformed into neural networks with general form. Then,
sufficient conditions are deduced to achieve exponential synchronization for drive-response systems by two
different types of event-triggering rules, i.e., static and dynamic event-triggering rules. Meanwhile, we can
ensure that the Zeno phenomenon does not occur by proving that the time interval between two successive
trigger events has a positive lower bound. Finally, two illustrative examples are elaborated to substantiate
the theoretical results.

INDEX TERMS Switched neural network, exponential synchronization, event-based control, time-varying
delay, distributed delay.

I. INTRODUCTION
Neural network in modern sense usually refers to the math-
ematical model, which can preliminary simulate the animal
brain on the basis of fully understanding of the structure and
operation mechanism of biological neural network and mod-
ern network theory. This model is distributed, highly fault-
tolerant and intellectually capable of processing information.
It is widely used in biology [1], [2], physics [3]–[5], com-
puter science [6]–[14], and cognitive science [15]–[20]. With
the continuous exploration of the neural network system,
the diversity of the dynamic behavior has been extensively
studied for various typical neural networks. For example,
the stability [21], passivity [21]–[24] and finite-time cluster
synchronization [25]; The exponential stabilization [26], lag
synchronization [27], dissipativity [28] and attractivity [29]
of memristive neural networks; The Mittag-Leffler stability
[30], projective synchronization [31], bifurcation [32] of frac-
tional neural network and so on.

With the development of intelligent control, switched sys-
tem has been widely used [33], [34]. The switched neural
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network is obtained by introducing the idea of switching into
neural networks. Because highly interconnected switched
neural networks provide a framework for designing large-
scale parallel processors, they have potential applications in
image processing, pattern recognition, associative memory,
optimization of combinations as well as other fields, and
attracted much attention [35], [36]. Switched neural network
is a very important hybrid dynamic system as its dynamic
behavior is very complex for the existence of switching. In
addition, the unavoidable delay often makes the switched
neural network unstable or oscillating, andmakes the analysis
of the switched system become more complex [37]–[39].
Therefore, the research of delayed switched neural network
is of great significance.

Synchronization reflects the way in which individu-
als achieve certain goals through information exchange.
Researchers in various fields have revealed the mechanism
of synchronization from different perspectives and applied
it to engineering [40]–[45]. The theory and practice prove
that the synchronizable neural network system is helpful to
the design of secure communication based on chaos [46].
However, for individual independent dynamic systems, even
if the dynamic equations of each node are the same, different
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initial values will cause them to change asynchronously.
Therefore, it becomes an indispensable topic to synchronize
neural networks by appropriate measures.

To reduce the update frequency of the control signal, the
event-triggering algorithm was proposed to reduce the net-
work load and improve the operation efficiency of the whole
system [47], [48]. The basic idea is that when the preset
trigger condition was established, the trigger control task
is executed. In recent years, researchers have introduced
event-triggering mechanism into different systems [49]–[53].
Based on this, the modeling, stability analysis and design of
event-triggering conditions of event-triggering systems are
discussed. Although the event-triggering mechanism has the
advantages mentioned above, the constant trigger parameter
can not dynamically adjust the sampling interval according to
the change of state error. A new problem has been raised, that
is, how to improve the event-triggering mechanism so that
the waste of network bandwidth can be reduced. At present,
there is little research on this issue. Therefore, this paper
considers using adaptive event-triggering mechanism to meet
these requirements.

Inspired by the discussions above, the exponential synchro-
nization is investigated for switched neural networks with
mixed time-varying delays via event-triggering rules. The
main contributions are as follows:

1) Mixed time-varying delays are taken into account in
switched neural networks.

2) Sufficient conditions are studied for delayed switched
drive-response neural network systems to achieve
exponential synchronization via static and dynamic
event-triggering algorithms.

3) Positive lower bounds can be achieved for the inter
event time of both the two different event-triggering
control schemes, which ensures that Zeno behavior
does not occur.

This paper proceeds as follows. In Section II, the
delayed switched neural network models are introduced and
some necessary definitions and lemmas are presented. In
Section III, the event-based controller is developed and the
main results on static and dynamic event-triggering control
are derived, respectively. Then, illustrative numerical exam-
ples are elaborated in Section IV to substantiate the validity of
the obtained results. Finally, conclusions and future directions
of research are given in Section V.

II. PRELIMINARIES
In this section, some notations used in this paper are
introduced at first. Then, the drive-response switched neural
network models are described. Finally, some necessary defi-
nitions and lemmas are presented.

A. NOTATIONS
N+ represents the positive integer set. Let Rn be the n-
dimensional Euclidean space andRn×m be the space of n×m
real matrices. P ∈ Rn×n > 0 (< 0) means that matrix P is

symmetric and positive (negative) definite. BT corresponds to
the transpose of vector or matrix B. In denotes the n× n real
identity matrix. The 1-norm and 2-norm of vector or matrix z
are denoted as ‖z‖1 and ‖z‖, respectively.

B. MODEL DESCRIPTION
Consider the following n-array switched neural network with
mixed delays

u̇(t) = −Aku(t)+ Bk f (u(t))+ Ck f (u(t − τ (t)))

+Dk

∫ t

t−σ (t)
f (u(s))ds+ I (1)

where u(t) = [u1(t), u2(t), · · · , un(t)]T ∈ Rn is the
state vector of neurons; Ak = diag{ak1, a

k
2, · · · , a

k
n} >

0 represents the neural self-inhibitions; Bk = [bkij]n×n,
Ck = [ckij]n×n and Dk = [dkij ]n×n are the feedback con-
nection weight matrix, time-varying delay weight matrix
and distributed delay weight matrix, respectively. More-
over, matrices (Ak ,Bk ,Ck ,Dk ) take values in the finite set
{(A1,B1,C1,D1), · · · , (AN ,BN ,CN ,DN )}. τ (t) and σ (t) are
bounded time-varying delays satisfying 0 ≤ τ (t) ≤ τ and
0 ≤ σ (t) ≤ σ where τ and σ are positive real numbers.
f (u(·)) = [f1(u1(·)), f2(u2(·)), · · · , fn(un(·))]T is a vector con-
sisting of neuron activation functions; I ∈ Rn is the external
constant input or bias.

The response system corresponding to drive system (1) is

v̇(t) = −Akv(t)+ Bk f (v(t))+ Ck f (v(t − τ (t)))

+Dk

∫ t

t−σ (t)
f (v(s))ds+ I + w(t) (2)

where w(t) is the external control input. Note that, although
the systems (1) and (2) are switched synchronously, if their
initial values are different, their state trajectories are not nec-
essarily synchronized. Therefore, we need to apply control
input w(t) to the response system.
Remark 1: The switched neural network systems consid-

ered are composed of N continuous-time subsystems with
some specific switching rules. Due to the existence of switch-
ing, switched systemsmay often havemore complex dynamic
behaviors than general dynamic systems [54], [55]. Thus
judging the characteristics of the whole switched system
should not only consider the characteristics of each subsys-
tem, but also consider the switching rules at the same time. As
discussed in [56]–[58], the memristive neural network system
is a special kind of switched neural network system, in which
the weight matrices of the state-dependent switched feedback
connections enable the system to exhibit complex dynamics
including chaos.

To facilitate discussion, we introduce the indicator func-
tions µk (t) (k = 1, 2, · · · ,N ) as

µk (t) =


1, when neural networks is

switched to kth state,

0, otherwise.

(3)
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From which it is easy to get
∑n

k=1 µk (t) = 1. Then, drive
system (1) can be described as

u̇(t) =
n∑

k=1

µk (t)
(
− Aku(t)+ Bk f (u(t))+ Ck f (u(t − τ (t)))

+Dk

∫ t

t−σ (t)
f (u(s))ds+ I

)
= −Au(t)+ Bf (u(t))+ Cf (u(t − τ (t)))

+D
∫ t

t−σ (t)
f (u(s))ds+ I (4)

where A =
∑n

k=1 µk (t)Ak , B =
∑n

k=1 µk (t)Bk , C =∑n
k=1 µk (t)Ck and D =

∑n
k=1 µk (t)Dk .

Similarly, system (2) can be described as

v̇(t) = −Av(t)+ Bf (v(t))+ Cf (v(t − τ (t)))

+D
∫ t

t−σ (t)
f (v(s))ds+ I + w(t). (5)

Define the synchronization error as x(t) = v(t)−u(t), then
the error dynamics system can be described as

ẋ(t) = −Ax(t)+ B8(x(t))+ C8(x(t − τ (t)))

+D
∫ t

t−σ (t)
8(x(s))ds+ w(t) (6)

where 8(x(·)) = f (v(·))− f (u(·)).
Assumption 1: The neuron activation functions fi(·) (i =

1, 2, · · · , n) are globally Lipschitz continuous and bounded.
Namely, there exist positive constants Fi and F̃i such that

|fi(ξ1)− fi(ξ2)| ≤ Fi|ξ1 − ξ2|

and

|fi(ς )| ≤ F̃i

hold for any ξ1, ξ2, ς ∈ R and i = 1, 2, · · · , n.
Assumption 2: The time-varying transmission delays τ (t)

and σ (t) are differentiable functions and satisfy 0 ≤ τ̇ (t) ≤
τ̃ < 1 and 0 ≤ σ̇ (t) ≤ σ̃ < 1, where τ̃ and σ̃ are positive
constants.

C. DEFINITIONS AND LEMMAS
Definition 1: Drive-response systems (1) and (2) are said

to be exponentially synchronizable, if for any initial condi-
tions ψu(s), ψv(s) ∈ R of systems (1) and (2), respectively,
there exist χ ≥ 1 and ε > 0 such that

‖v(t)− u(t)‖ ≤ χ‖ψv(s)− ψu(s)‖e−εt

holds for any t ≥ 0. Positive real number ε is called the
exponential convergence rate of synchronization of systems
(1) and (2).
Lemma 1 [59]: For any matrix W ∈ Rn×n > 0 and

vectors x, y ∈ Rn, the following inequality holds:

2xT y ≤ xTWx + yTW−1y.

Lemma 2 [60]: For any matrix Q ∈ Rn×n > 0, scalar
function 0 < %(t) < %, vector-valued function ϕ : [0, %] →
Rn, the following integral inequality holds:(∫ %(t)

0
ϕ(s)ds

)T
Q
(∫ %(t)

0
ϕ(s)ds

)
≤ %(t)

∫ %(t)

0
ϕ(s)TQϕ(s)ds. (7)

III. MAIN RESULTS
In this section, the exponential synchronization problem of
drive-response switched systems is discussed by two different
event-triggering control schemes.

A. STATIC EVENT-BASED CONTROL
Define the measurement error as

e(t) = x(ti)− x(t), t ∈ [ti, ti+1) (8)

where x(ti) is the state of x(t) at trigger instant ti which is
generated by the following trigger rule

ti+1 = inf{t > ti : ‖e(t)‖ ≥ δα} (9)

where δ ∈ (0, 1) and α is a given positive real number.
To achieve the goal of synchronizing system (1) with

system (2), in any trigger interval [ti, ti+1), we design the
following event-based controller

w(t) = −Gx(ti)− Hsignx(ti) (10)

where gain matrix G = diag{g1, g2, · · · , gn} > 0 is a con-
stant matrix and H = diag{h1, h2, · · · , hn} is an uncertainty
matrix with switching elements. Both matrices P and Q will
be determined later.
Remark 2: As far as the authors know, there are many

achievements on exponential synchronization of switched
neural networks with mixed delays, such as [61]–[63]. Note
that, the state feedback controllers in [61], [62] and the adap-
tive controller in [63] need to be continuously updated, while
the event-triggering controller (10) only needs to be updated
at discrete instants which can effectively reduce the control
cost.

With event-based controller (10) and trigger rule (9), we
can get the following result.
Theorem 1: Suppose that Assumptions 1 and 2 hold. Let

event-based controller (10) with trigger rule (9) be applied
to system (2). Systems (1) and (2) will be exponentially
synchronizable, if there exist a positive real number ε and
positive definite matrices P and Q such that

λmax(In − (1− τ̃ )Pe−ετ ) ≤ 0, (11)

λmax(In − (1− σ̃ )e−εσσ−1Q) ≤ 0, (12)

and the control gain matrices G and H such that

λmax
(
εIn − 2Ak + BkBTk + CkC

T
k + DkD

T
k

− 2G+ F(P+ In + σQ)F
)
≤ 0, (13)
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{
hj > ηj, xj(t)sign(xj(ti)) > 0,
hj ≤ −ηj, otherwise

(14)

and

δα‖G‖ − ηmin ≤ 0, (15)

where F = diag{F1,F2, · · · ,Fn}, ηmin = mini=1,2,··· ,n ηi.
Proof: Consider the Lyapunov functional as follows

V (t) = V1(t)+ V2(t)+ V3(t) (16)

where

V1(t) = x(t)T x(t)eεt

V2(t) =
∫ t

t−τ (t)
8(x(s))TP8(x(s))eεsds

and

V3(t) =
∫ t

t−σ (t)

∫ t

θ

8(x(s))TQ8(x(s))eεsdsdθ.

Then, we have

‖x(t)‖eεt ≤ V (t). (17)

Calculate the derivative of V (t) along the solution to error
system (6), we have

V̇ (t) = εeεtx(t)T x(t)+ 2eεtx(t)T
[
− Ax(t)+ B8(x(t))

+C8(x(t − τ (t)))+ D
∫ t

t−σ (t)
8(x(s))ds

−Gx(ti)− Hsignx(ti)
]
+8(x(t))TP8(x(t))eεt

− (1− τ̇ (t))8(x(t−τ (t)))TP8(x(t − τ (t)))eε(t−τ (t))

+ σ (t)8(x(t))TQ8(x(t))eεt

− (1− σ̇ (t))
∫ t

t−σ (t)
8(x(s))TQ8(x(s))eεsds. (18)

It follows from Lemma 1 that

2x(t)TB8(x(t)) ≤ x(t)TBBT x(t)+8(x(t))T8(x(t)). (19)

Furthermore,

2x(t)TC8(x(t − τ (t)))

≤ x(t)TCCT x(t)+8(x(t − τ (t)))T8(x(t − τ (t))) (20)

and

2x(t)TD
∫ t

t−σ (t)
8(x(s))ds

≤ x(t)TDDT x(t)

+

(∫ t

t−σ (t)
8(x(s))ds

)T (∫ t

t−σ (t)
8(x(s))ds

)
. (21)

According to the definition of measurement error e(t), we
have

−2x(t)TGx(ti) = −2x(t)TG(e(t)+ x(t))

≤ 2‖x(t)‖‖G‖‖e(t)‖ − 2x(t)TGx(t)

≤ 2δα‖G‖‖x(t)‖ − 2x(t)TGx(t). (22)

Combining condition (14) and ‖x(t)‖1 ≥ ‖x(t)‖, one can get

−2x(t)THsignx(ti)

= −2
n∑
j=1

xj(t)hjsignxj(ti)

≤ −2
n∑
j=1

ηj|xj(t)| ≤ −2
n∑
j=1

ηmin|xj(t)|

= −2ηmin‖x(t)‖1 ≤ −2ηmin‖x(t)‖. (23)

Based on Assumption 2, by Lemma 2, we have

−(1− σ̇ (t))
∫ t

t−σ (t)
8(x(s))TQ8(x(s))eεsds

≤ −(1− σ̇ (t))eε(t−σ (t))
∫ t

t−σ (t)
8(x(s))TQ8(x(s))ds

≤ −(1− σ̃ )eε(t−σ )
∫ t

t−σ (t)
8(x(s))TQ8(x(s))ds

≤ −(1− σ̃ )eε(t−σ )σ−1
( ∫ t

t−σ (t)
8(x(s))ds

)T
×Q

( ∫ t

t−σ (t)
8(x(s))ds

)
. (24)

Based the Lipschitz continuity of activation functions in
Assumption 1, we have

8(x(t))T (P+ In + σ (t)Q)8(x(t))

≤ x(t)TF(P+ In + σQ)Fx(t). (25)

Substituting formulas (19)-(25) into (18), we have

V̇ (t)≤ eεtx(t)T
[
εIn − 2A+ BBT + CCT

+ DDT − 2G

+F(P+In+σQ)F
]
x(t)+(2δα‖G‖−2ηmin)‖x(t)‖eεt

+8(x(t−τ (t)))T (In−(1−τ̃ )Pe−ετ )8(x(t−τ (t)))eεt

+

(∫ t

t−σ (t)
8(x(s))ds

)T
(In−(1−σ̃ )e−εσσ−1Q)

×

(∫ t

t−σ (t)
8(x(s))ds

)
eεt

≤ 0. (26)

Then, we have

V (t) ≤ V (0), t ≥ 0. (27)

It follows from (17) that

‖u(t)− v(t)‖ ≤ V (t)e−εt ≤ V (0)e−εt . (28)

The proof is completed.
In the following, we show that the time sequence generated

by trigger rule (9) is Zeno free.
Theorem 2: In case of Theorem 1, there is a consistent

lower bound for the inter event time Ti = ti+1 − ti as

Ti ≥
1
‖A‖

ln(1+
δα‖A‖
β(ti)

) (29)
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where β(ti) = ρ‖x(ti)‖+$ , ρ = ‖A‖+‖G‖,$ = 2(‖B‖+
‖C‖ + σ‖D‖)‖F̃‖ + ‖H‖ and F̃ = [F̃1, F̃n, · · · , F̃1]T .

Proof: Consider the dynamics ofmeasurement error e(t)
on interval [ti, ti+1), we have

d
dt
‖e(t)‖ ≤ ‖

d
dt
e(t)‖ = ‖ẋ(t)‖

= ‖ − Ax(t)+ B8(x(t))+ C8(x(t − τ (t)))

+D
∫ t

t−σ (t)
8(x(s))ds− Gx(ti)− Hsignx(ti)‖

≤ ‖A‖‖x(t)‖ + 2(‖B‖ + ‖C‖ + σ‖D‖)‖F̃‖

+‖G‖‖x(ti)‖ + ‖H‖

≤ ‖A‖‖e(t)‖ + 2(‖B‖ + ‖C‖ + σ‖D‖)‖F̃‖

+ (‖A‖ + ‖G‖)‖x(ti)‖ + ‖H‖. (30)

Solving the above differential inequality with ‖e(ti)‖ = 0 as
the initial condition by using the comparison lemma we can
obtain

‖e(t)‖ ≤
(ρ‖x(ti)‖ +$ )

‖A‖
(e‖A‖(t−ti) − 1) (31)

for all t ∈ [ti, ti+1). At the trigger instant

‖e(ti+1)‖ ≤
β(ti)
‖A‖

(e‖A‖Ti − 1). (32)

On the other hand, for any t ∈ [ti, ti+1), whenever events
occur, we have

‖e(ti+1)‖ = δα. (33)

It follows that

Ti ≥
1
‖A‖

ln(1+
δα‖A‖
β(ti)

). (34)

The proof is completed.
Remark 3: Just like almost all the studies on the perfor-

mance of dynamic systems by using event-based control
schemes, this paper can also ensure that Zeno behavior does
not occur. From Theorem 2, we can see the time interval is
inconsistent between two consecutive trigger events. Similar
problem is encountered in [58] and a unified lower bound
is obtained by using the system initial values. However, the
synchronization discussed in [58] is asymptotic rather than
exponential. In fact, whether the positive lower bound is
consistent or inconsistent, we can ensure that no countless
events are triggered in a limited time.

B. DYNAMIC EVENT-BASED CONTROL
Here, we first introduce a dynamic variable y(t) = y(t, y0)
which is the solution to

ẏ(t)= (−y(t)+ 2δα‖G‖‖x‖ − 2‖G‖‖x(t)‖‖e(t)‖)eεt (35)

where parameters δ, α, ε andmatrixG are defined in Theorem
1. And the initial value of (35) is given as y(0) = y0 ≥ 0.
Next, we design the following dynamic trigger rule

ti+1 = inf{t > ti : ‖e(t)‖ ≥ y(t)+ δα}. (36)

With which the exponential synchronization problem of sys-
tems (1) and (2) is discussed in this subsection.
Theorem 3: Suppose that Assumptions 1 and 2 hold. Let

event-based controller (10) with dynamic trigger rule (36) be
applied to system (2). Systems (1) and (2) will be exponen-
tially synchronizable, if there exist a positive real number ε
and positive definite matrices P and Q which satisfy (11) and
(12), and the control gain matrices G and H satisfy (13), (14)
and (15).

Proof: For any t ∈ [ti, ti+1), it follows from (35) that

ẏ(t) ≥
[
− y(t)+ 2δα‖G‖‖x‖ − 2‖G‖‖x(t)‖(y(t)+ δα)

]
eεt

= −(1+ 2‖G‖‖x(t)‖)y(t)eεt . (37)

Then, the solution to inequality (37) satisfy y(t) ≥ 0.
Consider the following new Lyapunov functional

V (t) = V (t)+ y(t) (38)

Calculate the derivative of Ṽ (t) along the solution to error
system (6), we have

˙V (t) = V̇ (t)+ ẏ(t)

≤ eεtx(t)T
[
εIn − 2A+ BBT + CCT

+ DDT − 2G

+F(P+ In + σQ)F
]
x(t)+ 2‖x(t)‖‖G‖‖e(t)‖eεt

+8(x(t − τ (t)))T (In − (1− τ̃ )Pe−ετ )8(x(t − τ (t)))eεt

+

(∫ t

t−σ (t)
8(x(s))ds

)T
(In − (1− σ̃ )e−εσσ−1Q)

×

(∫ t

t−σ (t)
8(x(s))ds

)
eεt − 2ηmin‖x(t)‖eεt

+ (−y(t)+ 2δα‖G‖‖x‖ − 2‖G‖‖x(t)‖‖e(t)‖)eεt

≤ 0 (39)

The proof is completed.
Similarly, we can also show that the time sequence gener-

ated by trigger rule (36) is Zeno free.
Theorem 4: In case of Theorem 3, there is a consistent

lower bound for the inter event time Ti as

Ti ≥
1
‖A‖

ln(1+
(δα + y(t))‖A‖

β(ti)
). (40)

Proof: Following the same procedure as the proof of
Theorem 2, this conclusion can be proved.
Remark 4: Although the static event-triggering scheme

has the advantages (reducing data transmission and power
consumption) and been recognized as an effective control
scheme in electronic chips with limited capacity and energy
[64]–[66], it can not dynamically adjust the sampling interval
according to the change of error states. This problem is
solved by introducing a positive dynamic variable y(t) into
the trigger rule. As can be seen from (40) that the lower bound
of the inter event time under dynamic event-based control
mechanism is larger than that of static ones which means that
the dynamic event-based control scheme is more economical
and realistic.
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FIGURE 1. Systems (1) and (2) are exponential synchronized under controller (10) with static event-triggering rule (9). (a)
The trajectories of driven system (1) and response system (2); (b) The trajectories of synchronization errors x1(t) and x2(t)
and their sampling states x1(tk ) and x2(tk ); (c) The 2-norm of measurement error; (d) Trigger time and execution interval.

If positive definite matrices P and Q are diagonal matrices
which can be described as P = diag{p1, p2, · · · , pn} > 0 and
Q = diag{q1, q2, · · · , qn} > 0, then we can get the following
corollary.
Corollary 1: Suppose that Assumptions 1 and 2 hold. Let

event-based controller (10) with trigger rule (9) or (36) be
applied to system (2). Systems (1) and (2) will be exponen-
tially synchronizable with exponential convergence rate ε, if
there exist positive definite diagonal matrices P and Q such
that

1− (1− τ̃ )pmine−ετ ≤ 0, (41)

1− (1− σ̃ )e−εσσ−1qmin ≤ 0, (42)

and the control gain matrices G and H satisfy (13), (14)
and (15) in Theorem 1, where pmin = mini=1,2,··· ,n pi and
qmin = mini=1,2,··· ,n qi.

Furthermore, if P = p̃In and Q = q̃In where p̃ and q̃
are positive constants, then the following corollary can be
obtained.
Corollary 2: Suppose that Assumptions 1 and 2 hold.

Let event-based controller (10) with trigger rule (9) or
(36) be applied to system (2). Systems (1) and (2) will be

exponentially synchronizable with exponential convergence
rate ε, if there exist positive constants p̃ and q̃ such that

1− (1− τ̃ )p̃e−ετ ≤ 0, (43)

1− (1− σ̃ )e−εσσ−1q̃ ≤ 0, (44)

and the control gain matrices G and H satisfy (13), (14) and
(15) in Theorem 1.
Remark 5: In this paper, the time-varying delays caused

by limited information processing and transmission speed
of amplifiers [67] are considered. However, the communica-
tion delay is neglected. In fact, the communication delay is
inevitable when employing protocols to set communication
to coordinate system through remote terminals [68]. For com-
plex neural network systems with communication delays and
mixed time-varying delay, how to take control measures to
study their exponential synchronization and finite/fixed-time
synchronization are problems to be solved.

IV. NUMERICAL SIMULATION
Consider systems (1) and (2) with n = 2, N = 2, f1(ξ ) =
f2(ξ ) = tanh(ξ ), τ (t) = 0.01, σ (t) = 0.01, and I =
[0, 0]T . Then, the activation functions fi(i = 1, 2) satisfy
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FIGURE 2. Systems (1) and (2) are exponential synchronized under controller (10) with danamic event-triggering rule (36)
where y (0) = 1. (a) The trajectories of driven system (1) and response system (2); (b) The trajectories of synchronization
errors x1(t) and x2(t) and their sampling states x1(tk ) and x2(tk ); (c) The 2-norm of measurement error; (d) Trigger time
and execution interval.

Assumption 1 with Fi = F̃i = 1, and the time-varying delays
τ (t) and σ (t) satisfy Assumption 2 with τ̇ (t) = τ̃ = 0 and
σ̇ (t) = σ̃ = 0. Systems (1) and (2) switch according to the
following switching rule{

(Ak ,Bk ,Ck ,Dk ) = (A1,B1,C1,D1), ‖u(t)‖ < 1,
(Ak ,Bk ,Ck ,Dk ) = (A2,B2,C2,D2), otherwise

where

A1 =
[
1.0 0
0 0.8

]
, A2 =

[
0.8 0
0 1.0

]
,

B1 =
[

1.6 −0.3
−1.2 1.3

]
, B2 =

[
1.5 −0.2
−1.1 1.2

]
,

C1 =

[
−1.5 0.2
−1.3 0.5

]
, C2 =

[
−1.6 0.4
−1.5 0.8

]
,

D1 =

[
0.8 0.4
−1.1 −1.5

]
, D2 =

[
0.7 0.5
−1.0 −1.6

]
.

Taking

P =
[
1.101 0
0 1.101

]
, Q =

[
0.11 0
0 0.11

]
,

then inequalities (11) and (12) hold. Let controller (10) be
applied to response system (2) with control gain matrices

G =
[
3.9411 0

0 5.5361

]
, H =

[
h1 0
0 h2

]
where η = [η1, η2]T = [2.8403, 2.8403]T and

hi =

{
ηi + 0.2, xj(t)sign(xj(ti)) > 0,
−ηi − 0.2, otherwise.

(45)

Then, according to Theorems 1 and 3, systems (1) and (2)
are exponential synchronization under both the static event-
triggering control and the adaptive dynamic event-triggering
control with trigger parameters δ = 0.99, α = 0.5 and
exponential convergence rate ε = 0.1. The simulation results
are shown in FIGURE 1 and FIGURE 2, respectively. From
which we can see that the trigger time sequences generated
by both trigger rules are Zeno free.
Remark 6: As can be seen from FIGURE 1(c) and

FIGURE 2(c) that, under the dynamic event triggering con-
trol scheme, the fluctuation frequency of measurement error
is lower and the times of updating controllers is less. This
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TABLE 1. The numbers of events occurring under two different
event-based control schemes.

TABLE 2. The time of the last trigger event under two different
event-based control schemes.

implies that the cost of the dynamic event-triggering control
scheme is lower than that of the static ones. This also can be
seen from TABLE 1. In addition, the datum in TABLE 1 also
show that under the same event-triggering control scheme,
the larger the upper bound of the trigger rule is, the more
beneficial it is to reduce the number of controller updates,
which is consistent with the conclusions of most related
studies.

In numerical simulation, we also investigate the difference
of the last trigger event time, which can indirectly reflect the
synchronization time of the drive-response systems, under
different trigger schemes and under the same trigger scheme
with different trigger thresholds as presented in TABLE 2.
We regret to find that the dynamic event-triggering scheme is
not conducive to speeding up the time required for synchro-
nizing the drive-response systems. Then the question arises,
what factors will directly affect the time required for two or
multiple systems to achieve synchronization? This may be a
topic worth exploring.

V. CONCLUSION
This paper investigated the exponential synchronization for
delayed switched neural networks via static/dynamic event-
triggering rules. By using a constant bound event trigger rule
and an adaptive dynamic bound event trigger rule, we obtain
the sufficient conditions for exponential synchronization of
drive-response system combining Jensen’s inequality and
Lyapunov stability theory. Experiments show that the main
results in this paper are economical and feasible.

To further improve the application of adaptive event-
triggering control scheme in neural networks systems, a lot
of research work needs to be explored. Further investigations
may aim at studying the more complex dynamic behav-
iors including passification and chaos of switched neural

networks with mixed time-varying delays and white noise
disturbance, andmore practical finite/fixed time synchroniza-
tion of two ormultiple classical synchronous or asynchronous
switched neural networks by designing appropriate adaptive
event-triggering rules.
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