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Abstract

A novel baseline-free method for damage detection of vehicle-bridge interaction (VBI) systems

is proposed. The proposed method is physics-based, in contrast to many prevailing approaches,

which are purely data-based techniques. It uses incomplete measurement data by incorporating

the static condensation transformation matrix into the equations to obtain the final formulas.

However, the static condensation of the damaged beam is not known a priori. Therefore, it is

shown analytically that the static condensation transformation matrix of the undamaged beam

can be used instead of the one corresponding to the damaged beam. This has been confirmed

through numerical simulations for different boundary conditions of the beam. Various factors are

studied numerically in order to demonstrate the robustness of the proposed method, including

road roughness, boundary conditions, variable moving mass velocity and measurement noise.

The results demonstrate the capability of the proposed method in damage detection of beam-

type structures subjected to a moving mass in the presence of 5% noise. It has also been shown

that averaging the results obtained from noisy data collected through several repetitions of the

experiment can improve the final prediction of the location and severity of damage.

Keywords: Vehicle-Bridge Interaction, Vibration, Damage Detection, Static

Condensation, Incomplete Measurement
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Nomenclature2

[C] Beam global Damping matrix3

[I] Identity matrix4

[K] Beam global stiffness matrix5

[ki] ith beam local stiffness matrix6
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[M ] Beam global mass matrix7

[T ] Static condensation transformation matrix of healthy structure8

[Td] Static condensation transformation matrix of damaged structure9

αi Stiffness reduction factor of the ith element10

βi = 1− αi11

ξb Beam damping ratio12

ξv Damping ratio of the suspension system of the moving mass13

ζ Normalised location on an element14

{F̄} Reduced static equivalent force vector15

{Ū} Reduced static equivalent displacement vector16

{f(t)} Dynamic force vector17

{F} Static equivalent force vector18

{Nc} Contact point beam element shape vector19

{u(t)} Dynamic displacement vector20

{U} Static equivalent displacement vector21

kv Stiffness of the moving mass suspension system22

Le Length of each element23

mv Vehicle mass24

P Applied force magnitude= mv × g25

rc Contact point road roughness26

V Moving mass velocity27
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1. Introduction28

Structural health monitoring (SHM) of beam structures is of great importance as they are29

typical models for structures such as bridges [1]. Several methods have been developed by30

researchers to address the SHM of such structures, which usually exploit information obtained31

from the beam vibration in the frequency-domain or time-domain. As an example of frequency32

domain data used for beam damage detection, structural mode shapes have been widely used [2,33

3]. For instance, Janeliukstis et al. proposed a technique that uses continuous wavelet transform34

to study beam modal curvature for damage detection on beam type structures [4]. Likewise, time35

domain data have also been used for damage detection [5, 6]. Jiang et al. proposed a nonlinearity36

measure-based localisation technique based on a proper orthogonal decomposition technique for37

damage localisation on beam type structures [7]. There are, however, many such techniques that38

can only detect the location of the damage. Therefore, developing a technique to quantify the39

severity of the damage as well as its location is still a developing area in the realm of SHM of40

beam type structures [8].41

Desirable SHM techniques rely on minimal or incomplete information about the structure.42

Hence, recent trends in SHM have been towards identifying a minimum set of data to be obtained43

from structures, and deriving useful information from them [9, 10, 11, 12]. However, this will44

require either new sensing technologies or novel computational and data analysis techniques45

[13, 14].46

Computational sciences provide a wide range of new techniques that can be used to derive47

information from a few measured data points on structures. Many such techniques have been48

introduced in SHM, as reported by different researchers in the literature, some of which are49

(1) data analysis techniques such as Symbolic Dynamic Analysis (SDA) [15, 16, 17, 18, 19, 20],50

or (2) signal processing algorithms such as Wavelet Transform (WT) [21, 22], Empirical Mode51

Decomposition (EMD) [23, 24, 25] or variational mode decomposition (VMD) [26, 27]. Most of52

these techniques are used only to detect the location of damage.53

SHM of bridge structures using a moving load has received a great deal of attention during54

the past decade. The main reason for this is that the required experiment to excite the structure55

is almost the same as its operational condition, making the whole procedure easy to carry out56

[28]. It also requires fewer sensors to be used [29]. Moreover, since the loading condition in such57

an experiment is deterministic, the experimental conditions are under control.58

In such moving load experiments, the dynamic vibration of a beam can generally be divided59

into two stages: the time interval when the load is moving over the beam, and the subsequent60

free vibration of the beam after the load has completely passed over it.61
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Most damage detection procedures use vibration data recorded during the first stage [30, 31].62

It is also known that higher frequency components of a structure’s response are more sensitive63

to the damage [25]. Exploiting this fact, researchers have studied high frequency components for64

any changes that can be referred to damage on the beam. These components may be derived by65

decomposition techniques such as wavelet (WT) [21] or Hilbert-Huang transforms (HHT) [32] of66

the dynamic deflections of the beam. As such, damage can generally be detected as a peak at67

the time when the load moves over a cracked section [33, 34]. Unfortunately, more often than68

not, these peaks are very insignificant when considering noisy measurements or road roughness69

effects. To address this issue, baseline data obtained from the same experiment conducted on the70

undamaged beam is used by some researchers [30, 8, 35, 30]. However, it has been reported in71

the literature that any discrepancies between the velocity of the moving mass in the experiment72

conducted on the damaged and undamaged beam can interfere with the damage detection [36, 37].73

On the other hand, the second stage of the free vibration of the beam after a moving load74

has traversed it seems to be overlooked in the literature. As an alternative to considering these75

two stages separately, therefore, the equivalent static formulation of the dynamic vibration of76

beam structures can be used for damage detection [38, 39]. As such, a continuous monitoring of77

the structure at both stages of the forced and subsequent free vibration of the structure is used78

in this paper.79

This static equivalent equation requires less information about the structure when used for80

damage detection or parameter identification purposes. It is demonstrated in this paper that81

this strategy is a valid way of monitoring a beam type structure for damage when subjected to82

a moving mass.83

To use the proposed method, the information required for conducting damage detection is84

limited only to the stiffness matrix; no information about the mass and damping matrices are85

required. Reducing the required information from the FE model of the intact structure has also86

been addressed by other researchers [40]. Some other researchers propose completely a non-87

model-based damage detection strategy [41]. The other advantage of the proposed technique of88

this paper is that it is baseline-free.89

There are generally two models for the VBI problem, namely moving load or moving mass90

models. Accordingly, the term moving load refers to the case when the inertia forces of the load91

(and therefore, its interaction with the bridge) are neglected, while a moving mass model takes92

this inertia effect into account [42]. Yang and Lin mention that the vehicle mass can be neglected93

compared to the mass of the bridge [43]. It is shown in this paper that this is also true for the94

proposed method as while the proposed method was developed using a moving load model, it95
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has subsequently been fully tested using a moving mass simulation in order to account for road96

roughness.97

The main objective of the present paper, therefore, can be summarised as to propose a98

baseline-free damage detection strategy that can determine both damage location and severity99

with minimum information about the beam mechanical properties and experimental data. One100

of the advantage of using numerical methods in studying damage detection is that Monte Carlo101

simulations can easily be applied for better evaluation of these methods [44]. As such, a VBI102

model is studied and the effect of road roughness and the moving mass inertia are taken into103

account in all simulations.104

The organisation of this paper is as follows:105

In Section 2, the proposed damage detection method is explained, which consists of (1)106

equivalent static formulation of the dynamic vibration (Subsection 2.1), (2) a brief review of107

different methods for simulating damage in structures and choice of a general damage model108

(Subsection 2.2), (3) a formula for calculation of the damage indices (Subsection 2.3), followed109

by (4) some analytical investigation of the proposed formula (Subsection 2.4), and (5) proposal110

of an easy way to obtain the equivalent static force vector corresponding to the moving load111

with a steady velocity, in which a formula is derived to calculate the equivalent force for beams112

with different boundary conditions (Subsection 2.5). In Section 3, a VBI model considering113

road roughness and the interaction between the moving mass and beam is presented, which is114

used for evaluation of the proposed method. Section 4 is dedicated to (1) the numerical study115

of the undamaged and damaged cases with different beam boundary conditions, including and116

excluding the road roughness effect (Subsection 4.1), (2) a Monte Carlo study of the effect of117

noisy measurements on damage detection results (Subsection 4.2), and (3) the effect of substantial118

variations in the velocity of the moving mass used for damage detection (Subsection 4.4). In119

Section 5 some conclusions and possible future work are discussed.120

2. The proposed damage detection technique121

2.1. Equivalent static form of the governing equation122

In this section, the equivalent static formulation of the dynamic vibration of a beam subjected123

to a moving load is discussed, to be used subsequently for damage detection on the beam. The124

derivation is summarised below. The differential equation of the vibration of the beam is well125

known and may be written as126

[M ]{ü(t)}+ [C]{u̇(t)}+ [K]{u(t)} = {f(t)} , (1)

5
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Following the first authors’ previous work [39], to eliminate time dependence, hence obtain a127

static form of the equation, the spatially discretised dynamic equation of motion for the con-128

tinuous beam in FE form can be integrated (Equation 1) with respect to time over the interval129

0 ≤ t ≤ ∞, where for practical purposes infinity may refer to the time when the beam has ef-130

fectively stopped vibrating, some time after the load reaches the other end of the beam. Hence,131

Equation 1 becomes132

[M ] ({u̇(∞)} − {u̇(0)}) + [C] ({u(∞)} − {u(0)}) + [K]{U} = {F} , (2)

where133

{U} =

∫ ∞
0
{u(t)} dt ,

{F} =

∫ ∞
0
{f(t)} dt .

(3)

By applying the initial and final conditions of no displacement or velocity anywhere on the beam,134

i.e. {u̇(0)} = {u̇(∞)} = {u(0)} = {u(∞)} = {0}, this reduces to135

[K]{U} = {F} . (4)

Equation 4, is called the equivalent static formulation of the dynamic vibration of an FE136

model.137

2.2. Simulation of damage in an element138

Damage in this context is any modification to the structure that produces a local reduction139

of stiffness. It could for example include fatigue cracks, local buckling damage, severe local140

corrosion, or structural modifications. Any such localised defect can be modelled as an equivalent141

local reduction of the effective flexural rigidity EI [45].142

In the FE analysis of the global response of damaged beams, it is sufficient to model localised143

damage as a uniform reduction of the stiffness of a single whole element. Accordingly, the144

flexural rigidity EI of the affected element, or equivalently the whole element stiffness matrix145

[ki], is factored.146

In this paper, a stiffness reduction factor α is used, which takes values between 0 and 1,147

representing respectively an undamaged element and full loss of the stiffness of the element.148

Accordingly, the stiffness matrix of each element in global coordinates, [ki], is multiplied by its149

corresponding stiffness reduction factor, αi, to obtain the global stiffness matrix for the damaged150

structure, [Kd], as151

[Kd] = [K]−
ne∑
i=1

αi[ki] . (5)

Alternatively, the above equation can be simplified by introducing βi = 1− αi, hence152

[Kd] =

ne∑
i=1

βi[ki] . (6)

6
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2.3. Solving for the damage indices153

By replacing the stiffness matrix of the pristine structure [K] in Equation 4 with the stiffness154

matrix of the damaged structure [Kd], as defined in Equation 6, and some algebraic simplification155

one can obtain [39],156

{β}ne×1 = [[k1]{U} . . . [kne ]{U}]+ne×nd
× {F}nd×1 , (7)

where157

{β} = {β1 β2 . . . βne}τne×1 ,

and in which + is the Moore-Penrose pseudoinverse, a generalisation of the concept of an inverse158

for a non-square matrix [46], such as above. Also, τ represents the transpose of a matrix or a159

vector.160

In order to obtain the damage indices in Equation 7, information about all DOFs of the161

structure is required. However, generally it is difficult to measure rotational DOFs. In this162

case we choose the translational DOFs to be the master DOFs, and the rotations to be the slave163

DOFs. The transformation matrix of the static condensation scheme [T ] obtained from the global164

stiffness matrix of the structure can be used to remove slave DOFs165

[T ]nd×m =

 [I]m×m

−[K]−1s×s[K]s×m

 . (8)

Here, m and s are the numbers of master and slave DOFs, [K]s×s is the stiffness matrix with166

rows and columns corresponding to master DOFs removed (slave DOFs retained), while [K]s×m167

had master rows and slave columns removed. However, since the beam is damaged, the static168

transformation matrix [Td] must be used. Using this transformation one can then write169

{β}ne×1 = [Λ]+ne×m{F}m×1 , (9)

where170

[Λ] = [[Td]
τ [k1][Td]{U} . . . [Td]

τ [kne ][Td]{U}]m×ne (10)

and {U} is the integrated displacement vector at only the master DOFs. Note that each of the171

components [Td]
τ [ki][Td]{U}, i = 1, 2, . . . , ne, is an m × 1 column vector, hence [Λ] is m × ne.172

Also, in Equation 9, {F} is the static condensation force vector obtained from the following173

formula,174

{F} = {Fm} − [Kd]m×s[Kd]
−1
s×s{Fs} . (11)

Note that in the above equation, {Fm} and {Fs} are the force vectors applied to the master175

and slave DOFs, respectively.176
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As can be seen from Equation 8, the transformation matrix of the static condensation scheme177

depends only on the system stiffness matrix. However, since [Td] is obtained based on [Kd], it is178

also a function of {β}.179

Notwithstanding this, it is next demonstrated that using [T ] instead of [Td] provides a good180

approximation. Similarly, it may also be concluded that constructing [K]m×s[K]−1s×s using [K]181

produces a good approximation.182

2.4. A rationale for using [T ] instead of [Td]183

It can be seen from Equation 10 that matrix [Λ]+ne×nd
is a function of {β} as it includes the184

transformation matrix [Td]. Hence, in this section we aim at showing that using [T ] instead of185

[Td] is a good approximation. As such, the transformation matrix of the static condensation of186

a damaged structure [Td] from Equation 8 can be written in the form187

[Td]nd×m =

 [I]m×m∑ne
i=1− (βi[ki]s×s)

−1 ×
∑ne

i=1 βi[ki]s×m

 , (12)

or equivalently,188

[Td]nd×m =

 [I]m×m

− ([A] [B])−1 × ([A] [C])

 (13)

in which189

[A] =
[

[β1]s×s [β2]s×s · · · [βne ]s×s

]
s×(ne×s)

(14)

[B] =
[

[k1]s×s [k2]s×s · · · [kne ]s×s

]τ
(ne×s)×s

(15)

[C] =
[

[k1]s×m [k2]s×m · · · [kne ]s×m

]τ
(ne×s)×m

(16)

and [αi]ss = αiIss.190

In Equation 13, [A] and [B] are not square matrices. However [A] and [B] are full row and191

column ranked matrices, and thus have right and left Moore-Penrose inverses respectively, namely192

[A]+ = [A]τ ([A][A]τ )−1 and [B]+ = ([B][B]τ )−1[B]τ . Because [A] has linearly independent rows,193

but not columns, it does not have a left inverse. However, although [A]+[A] is not equal to194

the general identity matrix [I](ne×s)(ne×s), it is the closest that one can achieve [47]. We can195

therefore approximate ([A][B])−1 ≈ [B]+[A]+, and write196

[T ]nd×m ≈

 [I]m×m

−[B]+ [A]+ [A] [C]

 ≈
 [I]m×m

−[B]+ [C]

 . (17)

Since damage affects only matrix [A], which is not present in Equation 17, this shows that using197

[T ] instead of [Td] brings about a good approximation.198

8
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Similarly, it can be shown that constructing [K]m×s[K]−1s×s using the stiffness matrix of the199

intact beam [K] is a good assumption.200

Therefore [Λ] and {F} in Equations 10 and 11 can be obtained respectively as201

[Λ] = [[T ]τ [k1][T ]{U} . . . [T ]τ [kne ][T ]{U}]m×ne (18)

and202

{F} = {Fm} − [K]m×s[K]−1s×s{Fs} . (19)

Finally the unknown damage indices {β} can be found by substituing Equations 18 and 19 into203

the Equation 9. However, the derivation of {Fm} and {Fs} in Equation 19 is still unknown. The204

procedure of obtaining these vectors is discussed in the following section.205

2.5. Calculation of the equivalent static force vector206

The beam can be discretised into a number ne of beam elements, each with four degrees of207

freedom, as shown in Figure 1. In order to construct the FE model, the deflection within an208

element can be written in terms of shape functions Nk as u(x) =
∑4

k=1 ujNk(ζ) = {N}τ{u},209

where x = ζLe (0 ≤ ζ ≤ 1) is the distance along the element from left to right, k = 1 . . . 4 are210

the indices of the elemental degrees of freedom, and j = 2(i−1)+k are the corresponding global211

degrees of freedom for element i. Here k = 1 and k = 3 correspond to the element’s left and212

right end vertical displacements, while k = 2 and k = 4 are the left and right end rotations. The213

Hermite cubic Shape functions are used [48], which are

Figure 1: An example of a simply supported beam discretised into ten beam elements with translational and

rotational DOFs at each node. Note that DOFs 1 and 21 are restrained in this example, hence are not shown.

214

N1 = 1− 3ζ2 + 2ζ3

N2 = Le
(
ζ − 2ζ2 + ζ3

)
N3 = 3ζ2 − 2ζ3

N4 = Le
(
−ζ2 + ζ3

)
(20)

where in above equations, Le is the element length and ζ is the normalised element-wise local215

coordinate taking values between 0 and 1.216

In order to find the force vector corresponding to the moving load on each translational DOF,217

the following procedure is followed:218

9
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Without loss of the generality it is assumed that the velocity of the moving mass is constant.219

Therefore, for a moving load P with constant velocity V , the time taken for the load to pass220

over the element is equal to Le/V and the load’s relative position is ζ = V (t− ti−1)/Le, where221

ti−1 ≤ t ≤ ti, and ti−1 and ti are the times at which the load passes the (i − 1)th and ith222

nodes, respectively, which define the ith element. The applied load on the element can then be223

distributed to the DOFs of that element by multiplying the force P by the corresponding shape224

functions evaluated at the load’s relative position ζ. The component of the load applied to all225

DOFs not associated with the loaded element is equal to zero. Hence, the force vector when the226

mass moves over the ith element is227

{f(t)} =



0
...

0

PN i
1(ζ)

PN i
2(ζ)

PN i
3(ζ)

PN i
4(ζ)

0
...

0



(21)

where the superscript i on function Nk indicates these are applied to the DOFs applicable to228

element i. Accordingly, the force vector should be updated as the load reaches the next element.229

Equation 21 can be also presented in a more compacted form as,230

fj(t) =

 0 if j ≤ 2(i− 1) or j > 2(i+ 1)

PN i
k(ζ) j = 2(i− 1) + k , k = 1 . . . 4

(22)

where j = 1 . . . nd (nd = 2(ne + 1)) represents the DOF; i = 1 . . . ne represents the element231

on which the load currently acts (i.e. ti ≤ t ≤ ti+1); k = 1 . . . 4 represent respectively the left232

deflection, left rotation, right deflection and right rotation of the end nodes of element i; and Le233

in Equation 20 is taken to be the length of element i, which in this implementation is assumed234

to be the same for all elements.235

Substituting Equation 21 into Equation 3 gives us the equivalent static force acting on the236

beam due to the moving load in terms of the shape functions Nk defined in Equation 20. It is237

apparent from Equation 21 that fj(t) is nonzero only during the time that the moving load is238

on one of the two elements that share the node corresponding to DOF j. Hence for the general239

10
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case, using Equation 4 and before imposing boundary conditions one may obtain F as240

{F} =



∫ t1
t0
PN1

1 dt∫ t1
t0
PN1

2 dt∫ t1
t0
PN1

3 dt+
∫ t2
t1
PN2

1 dt∫ t1
t0
PN1

4 dt+
∫ t2
t1
PN2

2 dt
...∫ ti−1

ti−2
PN i−1

3 dt+
∫ ti
ti−1

PN i
1 dt∫ ti−1

ti−2
PN i−1

4 dt+
∫ ti
ti−1

PN i
2 dt

...∫ tne
tne−1

PNne
3 dt∫ tne

tne−1
PNne

4 dt



. (23)

In Equation 23, as stated above, t0 = 0, ti is the time when the load arrives at the first node of241

the (i+ 1)th element, and tne is the time when the load reaches the far end of the beam. For a242

simply supported beam, the first and penultimate degrees of freedom are deleted.243

If the velocity V of the moving force is constant and the beam is divided into equal-length244

elements, then we note that on element i, t = ti−1 + Le
V ζ, hence

∫ ti
ti−1

PN i
k dt = PLe

V

∫ 1
0 Nk dζ.245

For k = 1, 2, 3, 4 respectively, this evaluates to PLe
2V , PL

2
e

12V ,
PLe
2V , −PL

2
e

12V , so we can write246 ∫ ti−1

ti−2

PN i−1
3 dt+

∫ ti

ti−1

PN i
1 dt =

PLe
V

and
∫ ti−1

ti−2

PN i−1
4 dt+

∫ ti

ti−1

PN i
2 dt = 0 . (24)

Finally, noting that the translational DOFs are the master and the rotational DOFs are the slave247

DOFs, the reduced force vector F is obtained as,248

{F} =


PLe
V
...

γ PLe
V


m×1

− [Kms][Kss]
−1



η PL2
e

12V

0
...

λ −PL
2
e

12V


s×1

(25)

where γ, η, and λ are constants characterising the beam boundary conditions. For each studied249

combination of boundary conditions (see Figure 2) with a constant moving mass velocity these250

are:251

1. Simple-Simple (SS): γ = 1, η = 1, and λ = 1;252

2. Clamped-Simple (CS): γ = 1, η = 0, and λ = 1;253

3. Clamped-Clamped (CC): γ = 1, η = 0, and λ = 0;254
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4. Clamped-Free (CF ): γ = 1
2 , η = 0, and λ = 1 (included here for completeness, though it255

would not exist for a bridge in practice).256

Note that the numbers of master (m) and slave (s) DOFs vary from one boundary condition257

to another.258

(a) Simple-Simple

(b) Clamped-Simple

(c) Clamped-Clamped

Figure 2: Different boundary conditions of the studied beam.

Finally, the procedure of the proposed method can be summarised as follows,259

1. Measure displacement time history of the beam u(t) subjected to a moving mass at some260

points on the beam for the time duration when the experiment begins to when the vibration261

of the beam is fully damped out.262

2. Use Equation 3 to compute the static equivalent deflection of the beam {U} for each263

measured point at only translational DOFs.264
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3. Use Equation 25 to obtain the condensed static equivalent force vector {F} applied to the265

measured DOFs.266

4. Compute the vector [Λ] from the Equation 18.267

5. Finally, use Equation 9 to compute unknown damage indices {β} by inserting [Λ] and {F}268

obtained from the previous stages.269

2.6. Overview of the proposed method270

In this section, an overview of the proposed method is provided for the convenience of the271

reader, and is illustrated in Figure 3.272

 

where

Show that  can be used
instead of 

Obtain  for different
boundary conditions of the

beam regarding moving mass
problem

Static equivalence Reduced static equivalence

Damage detection formula

Figure 3: An overview of the scheme of the paper.

As depicted in the figure, the first step is to obtain the static equivalent formulation of the273

beam vibration, as discussed in Section 2.1. Next, a reduced form of the equations is obtained274

using the static condensation transformation matrix (see Section 2.3). These first two steps275

(in darker color) were developed and discussed in the authors’ previous work [39]. However,276

in the previous work, an iterative method was proposed for damage detection as the static277

condensation transformation matrix [Td], itself is a function of the damage indices (matrix [β]).278

In order to propose a direct formula for damage detection, we demonstrated in Section 2.4 that279

the static condensation transformation matrix of the intact beam [T ] can be used instead of the280

one corresponding to the defective beam, i.e. [Td]. Finally, the equation for [F̄ ] for the moving281

mass experiment is required, which is derived and discussed in Section 2.5 for various boundary282

conditions.283

In the next section, we use numerical simulation to demonstrate the capability of the proposed284

method in damage detection of a beam with different boundary conditions using a driveby sprung285

mass. The so called VBI model includes the effect of the road roughness as well as the moving286

13
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mass inertia, and is used later for all simulations to examine the capability of the proposed287

method.288

3. Vehicle Bridge Interaction (VBI) simulation considering road roughness289

Figure 4 shows a FE model of the VBI model which is used for evaluation of the proposed290

method (see [31]). According to the model, a sprung mass mv with the stiffness kv and damping

Figure 4: Moving mass with suspension system over a bridge with rough surface.

291

ratio ξv is supposed to traverse the beam at constant velocity. To simulate the beam vibration,292

Hermite cubic shape functions of Equation 20 are used.293

The cubic Hermitian interpolation vector {Nc} is then evaluated at the contact point and294

used in the following FE model,295  mv 0

0 [M ]

{ ÿv

{ü}

}
+

 cv −cv{Nc}τ

−cv{Nc} [C] + cv{Nc}{Nc}τ

{ ẏv

{u̇}

}

+

 kv −cvV {N
′
c}τ − kv{Nc}τ

−kv{Nc} [K] + cvV {Nc}{N
′
c}τ + kv{Nc}{Nc}τ

{ yv

{u}

}

=

{
cvV r

′
c + kvrc

−cvV r
′
c{Nc} − kvrc{Nc} −mvg{Nc}

} (26)

where, reiterated, [M ], [C], and [K] are the mass, damping and stiffness matrices of the beam296

FE model, respectively. The superscript ′ represents the derivative of a matrix with respect to its297

location on the beam. The terms yv and {u} correspond respectively to the vertical displacements298

of the moving mass and the nodal degrees of freedom of the beam elements. cv is the suspension299

system damping coefficient which is obtained from 2mvξv
√
kv/mv (See Table 1). A Rayleigh300

damping model, i.e. of the form [C] = a[M ] + b[K] is considered for the beam. Note though that301

the vehicle suspension characteristics and bridge mass and damping matrices are used only for302
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the simulation, and are not required for the proposed damage detection procedure. Finally, rc is303

an artificial road roughness generated by the following equation based on ISO 8608 [49],304

rc(x) =
N∑
i=0

2k × 10−3 ×
√

∆n
( n0
i∆n

)
cos (2πi∆nx+ φi) , (27)

where the constant (2k × 10−3) has units m3/2 and ∆n has units m−1, hence rc has units m.305

The constant scalar k is the ISO road profile quality measure and can take an integers from 3306

to 9 reflecting the profiles from class cl1 to class cl8. Note that in this paper, a road profile307

of class cl1 is considered for simulations, i.e. k = 3). Moreover, it is assumed n0 = 0.1 m−1.308

Abscissa x denotes the location on the road with respect to the reference point. The random309

phase angle φi has a uniform probabilistic distribution and takes a value within the range of 0 to310

2π. Also N = L/B and ∆n = 1/L in which L and B are the length of the road profile and the311

wavelength of the shortest spatial component of the roughness profile, respectively. This form of312

road roughness has been considered by other researchers [31].313

A Matlab program has been developed based on the Newmark constant average acceleration314

method in order to numerically simulate the vibration time history of beams with different315

boundary conditions. Then, the deflection of the beam at translational DOFs are used to calculate316

the static equivalent response of the beam using Equation 4.317

4. Numerical results and discussions318

In this section numerical simulations of a beam with the properties presented in Table 1 are319

used for damage detection using the VBI model presented in Section 3. It is assumed that 10320

sensors are available. Therefore, the beam is divided into 10 beam elements with rotational and321

translational degrees of freedom at each node (see Figure 1). It is obvious that the beam can322

be divided into fewer or more elements based on the number of available sensors. Also in the323

case of having a limited number of sensors, one can repeat the experiment to refine the possible324

region of damage.325

In order to achieve a reasonable initial condition at the start of traverse of the mass across326

the beam, it is assumed that the mass has been moving over the rough road with a length equal327

to the length of the beam L before it arrives at the left hand side of the beam, and continues328

moving over the beam until it reaches the other side. Therefore, a road profile for a length of 2L329

is generated and used in simulations as presented in Figure 5.330

The effects on results of the following aspects are investigated:331

1. boundary conditions;332

2. noisy measurements;333
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Figure 5: Road roughness profile used in simulations, starting one beam length (L = 10 m) before the left end of

the beam and ending at the right end of the beam. The beam spans from 10 m to 20 m.

3. variable moving mass velocity.334

In the first two cases the velocity of the moving load was fixed at 2 m/s. Therefore, it takes 5335

seconds for the load to cross the beam. The beam is monitored until the vibration decays to336

an acceptable rate close to zero for each simulation. Two cases are considered for each scenario:337

the undamaged and damaged beams. For the damaged case, in order to consider different338

simultaneous damage positions on the beam and different damage indices, it is assumed that339

damage is present in elements 5 and 9, with severity α5 = 0.2 and α9 = 0.25.340

4.1. Effect of different boundary conditions on results341

In order to investigate how boundary conditions can affect the results, three different sce-342

narios are studied in this section: Simple–Simple (SS), Clamped–Simple (CS), and Clamped–343

Clamped (CC), shown in Figure 2.344

Table 2 shows the three first natural frequencies of the undamaged beam with these different345

boundary conditions.346

The Rayleigh damping constants a and b were set to achieve the target damping ratio as347

specified in Table 1 which is assumed to be equal to 5% at the first two natural frequencies348

of the beam. The Rayleigh damping coefficients are calculated for each boundary condition349

combination, and are shown in Table 3.350
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Quantity Symbol Value

Beam modulus of elasticity E 200 GPa

Beam density ρ 7800 kg/m3

Beam damping ratio ξb 5%

Beam length L 10 m

Beam cross-section height h 0.5 m

Beam cross-section width w 0.5 m

Moving mass magnitude mv 200 kg

Moving mass velocity V 2 m/s

Suspension stiffness kv 20 kN

Suspension damping ξv 10%

Sampling frequency Sf 1 KHz

Table 1: VBI simulation model constants.

SS CS CC

1st 4.59 7.17 10.41

2nd 18.37 23.25 28.70

3rd 41.35 48.54 56.31

Table 2: Natural frequencies (Hz) for different boundary conditions of the undamaged beam.

Using the presented VBI model in Section 3, the vibration time history of the beam at all351

DOFs is simulated. The beam is monitored at least for 10 seconds in all cases until the vibration352

of the beam is fully damped.353

The damage scenario mentioned earlier is considered and Figure 6 shows the simulated de-354

flection time history of the intact and damaged beam with the different boundary conditions at355

its midspan (node 5), with and without road roughness included.356

We now consider the values of the damage indices predicted for both undamaged and damaged357

scenarios—Figures 7 and 8 respectively show these for the different boundary conditions.358

It is noted that αi values for the undamaged scenario should ideally all be zero (Figure 7),359

while in the damaged scenario the ideal αi values should also be zero except for α5 and α9. As360

mentioned above, the assumed damage is that elements 5 and 9 lose respectively 20% and 25%361

of their stiffness, shown in yellow in Figure 8 for comparison.362

Perfect results are not expected due to the fact that using incomplete data will not result363

in an exact solution. In particular, the existence of negative damage indices is not physically364
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(b) Clamped-Simple
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(c) Clamped-Clamped

Figure 6: Deflection time history at beam mid-span (node 5) subjected to a mass moving at 2 m/s, for different

boundary conditions, with and without road roughness, for the intact and damaged beams, when elements 5 and

9 are damaged respectively with 20% and 25% loss of stiffness.
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SS CS CC

a 2.3084 3.4448 4.8001

b 0.0007 0.0005 0.0004

Table 3: Calculated Rayleigh damping coefficients for different boundary conditions of the undamaged beam.

meaningful. Therefore, it is suggested that these negative values are ignored and considered as365

zero damage, as suggested in [50]. Considering this we see excellent qualitative agreement.366

While Figures 7 and 8 give a good qualitative overview, in order to compare the accuracy of367

each method quantitatively an accuracy index AI is used, based on the Euclidean norm of the368

difference between calculated and real damage indices. This can be written as369

AI = 1−

√√√√ 1

ne

ne∑
i=1

(αsi − αci )2 (28)

where αsi and αci are respectively the simulated and calculated ith damage index. A value of370

AI = 1 indicates a perfect prediction. Note that in Equation 28 the negative damage indices are371

also taken into account.372

Boundary condition HS HRR DS DRR

SS 0.9796 0.9794 0.9768 0.9768

CS 0.9688 0.9682 0.9811 0.9809

CC 0.9796 0.9787 0.9773 0.9765

Table 4: Accuracy indices (AI) calculated for different boundary conditions for healthy smooth (HS), healthy

with road roughness (HRR), damaged smooth (DS), and damaged with road roughness (DRR) beams.

The calculated values of AI corresponding to the 16 different scenarios are presented in373

Table 4. Accordingly, the following observations may be made:374

1. In all cases the accuracy for the damaged scenarios is less than for the healthy scenarios375

except for the CS case, but only very slightly.376

2. The accuracy corresponding to SS and CC in all cases are very similar. One reason might377

be due to the symmetry of the boundary conditions.378

3. In all cases the accuracy of the results obtained for all scenarios without road roughness379

(RR) is at least equal (damaged SS) or better than the ones with road roughness. However,380

there is only ever a very small difference between the two cases, so it appears that road381

roughness has an almost negligible detrimental effect on results.382
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Figure 7: Calculated damage for the undamaged scenario of the beam with different boundary conditions.
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Figure 8: Calculated damage for the damaged beam scenario with different boundary conditions (actual damage

indices are shown for comparison).
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4.2. Effect of measurement noise on results383

In order to simulate noisy measured data, 2% noise is added to all simulated data as outlined384

in [8],385

δ̂ = δ +
κ

100
nnoise σ(δ) (29)

where δ̂ is the vector of noisy measured DOF data, and δ is the corresponding noise-free vector,386

which has standard deviation σ(δ). κ is the noise level in percent and nnoise is a vector with the387

same length as δ of random independent variables following a standard normal distribution.388

Figures 9 and 10, show box-and-whisker plots of results obtained from 100 simulations with389

noise for the undamaged and damaged beam respectively. In these plots, the ‘box’ indicates the390

interquartile range and the median, while the ‘whiskers’ show extreme values, excluding outliers.391

Outliers, indicated (if they exist) by +, are defined as points outside approximately 2.7 standard392

deviations (99.3% coverage) for normally distributed data [51].393

The results show that the statistics obtained for all cases with and without road roughness394

are very similar to each other. Moreover, as can be seen from these figures, the medians are very395

close to the exact values for both the undamaged and damaged cases, however in both cases396

the standard deviation of calculated damage indices is large for elements that coincide with397

the points of inflection in the fundamental vibration mode shape. These are the elements that398

will have maximum rotations, which may account for the higher uncertainty since the rotations399

were not assumed to be measured. On the other hand these elements are less likely to become400

damaged since they will tend to have close to zero curvature for more time. Importantly though,401

the distributions for the damaged and adjacent undamaged elements in Figure 10 do not overlap,402

so the detection of damage is significant.403

It is also observed from the plots that, in most cases, the calculated results for damage indices404

are evenly distributed on both sides of the calculated medians, suggesting that the medians are405

almost the same as the mean values. For instance, for the damaged CC beam without road406

roughness the calculated median and mean values for α5 are 0.2009 and 0.2005, respectively, a407

difference of 0.2%. The corresponding median and mean values of α5 for the damaged CC beam408

with road roughness are calculated respectively 0.1945 and 0.1956 with slightly bigger difference409

of about 0.6%.410

Figure 11 shows the the normal distribution curve fitted to the actual histograms for the411

damaged elements using the Matlab function histfit.412

It is seen that the averages obtained after a few simulations are close to the exact solution.413

This suggests that relatively precise results may be obtained by conducting the experiments a414

few times. Moreover, the fact that the proposed algorithm uses the integral of the vibration time415
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Figure 9: Box plot for the calculated damage for the undamaged scenario of the beam with different boundary

conditions using noisy measurements after 100 simulations.
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Figure 10: Box plot for the calculated damage for the damaged scenario of the beam with different boundary

conditions using noisy measurements after 100 simulations.
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Figure 11: Fitted histogram to the obtained results after 100 times of simulation.
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history of the beam can account for the reduction in the effect of the noise in calculated damage416

indices.417

4.3. Further investigations of noise effects418

In this part we consider the general damaged scenario when the road roughness effects are419

taken into account. Two different noise percentage are used for simulations, namely 2% and 5%.420

Figure 12 shows the obtained mean values of the damage indices. As it is apparent from the421

figure, the mean value of the calculated damage indices converges to a reasonable value fairly422

quickly when having 2% noise in measurements.423

It is noted from the Figure 12a, that more experiments are required for the SS case than the424

other cases (CS and CC) to converge to a solution. As expected, more experiments are required425

with 5% noise in measurements to achieve the same convergence for the mean damage indices.426

As before, it can be seen in Figure 12b that a few more experiments are needed to achieve the427

average value of the calculated damage indices converged for the SS beam.428

4.4. Variation of velocity of the moving mass429

In this section, the capability of the proposed method is evaluated when the velocity of the430

mass varies along the beam. To that end, without loss of generality, it is assumed that the431

velocity of the mass is constant along each element while varying from one element to another,432

only for the sake of simplifying the simulation process. A general case is considered when the433

road roughness (RR) is present and all measurements are contaminated by 2% or 5% noise.434

Figure 13 shows the profile of the moving mass velocity, varying within a range 1.0–2.5 (m/s).435

Note that Equation 25 was derived for the case of a constant moving mass velocity and there-436

fore cannot be used in this case. As such, the more general case for {F} given in Equation 23437

must be evaluated, separated into vectors corresponding to slave and master DOFs, and substi-438

tuted into Equation 11 to obtain {F̄}, which is then substituted into Equation 9 to calculate the439

damage indices.440

Accordingly, based on the results of Section 4.2 and 4.3, the mean values of the obtained441

damage indices from three experiments with a 2% and 5% measurement noise levels are presented442

in Figure 14 for the SS, CS, and CC beams.443

The metric AI calculated for the SS, CS, and CC cases with 2% noise are 0.9626, 0.9624, and444

0.9690 respectively, suggesting that results for the CC beam are most accurate, while results for445

the SS and CS beams are of almost equally accuracy. However, these results hardly differ from446

the constant velocity case (Table 4). If we further assume that the negative α values represent447
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(e) Clamped-Clamped, 2% noise
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Figure 12: Mean value of the damage indices per the number of simulations using 2% and 5% of noise in

measurements.
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Figure 13: The mass is passing across the beam with varying velocity.

undamaged elements, as argued in Section, 4.1 the AI obtained for the CC beam in particular448

suggests very good accuracy.449

The corresponding values for the case of 5% noise are 0.9560, 0.9552 and 0.9738 for SS, CS,450

and CC cases, respectively. Again better accuracy is obtained for the CC beam while the AI451

remains almost the same for SS and CS beams.452

5. Conclusions and future work453

In this paper a novel method is proposed to detect damage in beam type structures with454

different boundary conditions by using data from moving mass experiments and an equivalent455

static formulation of the dynamic vibration of the beam. The basic characteristic of the proposed456

method is that it uses a direct equation to obtain damage indices. Also the proposed method457

does not require any baseline information. We showed, analytically and numerically, that the458

proposed method yields good results in terms of damage detection in beam structure subjected459

to a moving mass considering road roughness effects and measurement noise.460

Numerical examples of beams with different boundary conditions subjected to moving mass461

were studied in this paper. For this, scenarios of undamaged and damaged beams were inves-462

tigated. It was shown that by introducing 2% and 5% noise to simulated data, the results are463

still within an acceptable range. It was also observed that the calculated damage indices for464

elements in the vicinity of nodes with maximum rotation (i.e. those near points of inflection465
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Figure 14: Calculated damage for the damaged scenario applied to the SS, CS, and CC beams when using

variable moving mass velocity with 2% and 5% noise in measurements after three times experiments.
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in the fundamental vibration mode shape) are more prone to error. In all cases similar results466

are obtained for beams with and without road roughness effect. This proves that the proposed467

damage detection method is relatively insensitive to road profile effects. It has been also demon-468

strated that the proposed technique can be used with substantial variation of the moving mass469

velocity and the results are hardly affected.470

The authors however, are aware that the further investigation of the applicability of the471

proposed method to real problems is a challenge and should be considered as a topic of future472

work.473
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