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Fiber-optic radiancemicroprobes, increasingly applied for measurements of internal light fields in living
tissues, provide three-dimensional radiance distribution solids and radiant energy fluence rates at
different depths of turbid samples. These data are, however, distorted because of an inherent feature of
optical fibers: nonuniform angular sensitivity. Because of this property a radiancemicroprobe during
a single measurement partly underestimates light from the envisaged direction and partly senses light
from other directions. A theory of three-dimensional equidistant radiance measurements has been
developed that provides correction for this instrumental error using the independently obtained function
of the angular sensitivity of the microprobe. For the first time, as far as we know, the measurements
performedwith different radiancemicroprobes are comparable. An example of application is presented.
The limitations of this theory and the prospects for this approach are discussed.
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1. Introduction

Direct measurements of radiation fields in absorbing
turbid media with optical fibers 1microprobes2 have
been increasingly employed in the past few years,
especially to study the optics of living tissues,1–4
aquatic sediments, and microbial mats 1ecosystems
located on sediments in shallow water and consist-
ing of dense populations of microalgae and bacte-
ria2.5–8 The purposes of these measurements are:

112 To find the spectral light fluxes and the angu-
lar distributions of radiance at different depths of a
sample for a given light source and experimental
setup 1evaluation of light field parameters2.

122 To calculate the optical properties of the tissue
or sediment 1optical cross sections and phase func-
tions2 on the basis of a sufficient set of measured light
field parameters 1elucidation of the inherent optical
properties2.
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The first step reveals the light microenvironment
at any point on an individual sample and permits a
comparison between the spatial pattern of light and
those of the light-driven processes, e.g., photosynthe-
sis and changes in the structure of a microbial
ecosystem. The second step opens the way for mod-
eling and general analysis of the light-driven pro-
cesses without limitations imposed by the specific
features of individual samples.

A. Optical Microprobes and Geometry of Measurements

Three basic types of optical fiber probe exist. The
radiance microprobes with a tip diameter as small as
10 µm sense the incoming radiation within the solid
angle of approximately 10–20° around their axis.
The fluence rate optical probes, also called scalar
irradiance probes, with a tip diameter as small as 40
µm sense the total radiant flux from all directions
and thus provide the fluence rate. The irradiance
probes measure the hemispheric radiant flux inci-
dent from the hemisphere, which is oriented normal
to the axis of the probe; these probes have the same
size as the fluence rate probes and are in fact small
cosine collectors. Among these types the radiance
microprobe is the only tool that provides the angular
distribution of radiance. Furthermore, owing to its
size, it is most appropriate for studies on a small
geometric scale, in particular within thin samples.
1 January 1996 @ Vol. 35, No. 1 @ APPLIED OPTICS 65



It is this type of optical microprobe that we address
in this paper.
Radiance microprobes have well-defined light-

collecting properties and ensure radiance measure-
ments with high spatial resolution at different depths
and in different directions. The directional sensitiv-
ity of a radiance microprobe 1Fig. 12 is specified by a
numerical aperture of n0 sin1ua2, where n0 is the
refractive index of the medium and ua is the accep-
tance half-angle of the optical fiber.9 Radiance fiber
probes thus have a larger acceptance half-angle in
air 1n0 5 12 than in water 1n0 5 1.332. For technical
details, preparation, and tests see Refs. 2, 5, and 6.
The following experimental setup is generally used.

The input end of a microprobe can be advanced to
any required depth and in any required direction
into a plane-parallel sample 1leaf, sediment2 bymeans
of a micromanipulator. The output end is con-
nected to the spectral detector system based on a
sensitive diode array 1for more details refer to Ref. 62.
The light field in a sample is assumed to exhibit axial
symmetry around the vertical incident, collimated
light. Each radiance measurement at zenith angle
ui 1i 5 0, 1, . . .2 relative to the light source covers an
angular interval of 2a around the direction of mea-
surement 1Fig. 22. Such a measurement is assumed
to be representative for the ith spherical band hav-
ing a width of 2a. The entire unit sphere of radi-
ance directions appears subdivided into K nonover-
lapping spherical bands with a zenithal size of 2a;
the radiance within a band is assumed to have a
constant value Li. Throughout this paper we use
the designation spherical band instead of the rigor-
ous but somewhat lengthy surface of the spherical
layer. The notion is, however, transparent and
clearly specified in Fig. 2. As seen in Fig. 2 each
measurement at ui 1i 5 1, 2 . . .2 covers a zenith angle
of 2a, the measurement at u0 covers zenith angle a,
the measurement in the opposite u0 direction 1which

Fig. 1. Fiber-optic radiance microprobe: 1, fiber cable; 2, sy-
ringe; 3, hypodermic needle; 4, optical fiber. ua is the apex angle
of the circular cone of collection also known as the acceptance
angle of the probe.
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would cover zenith angle a2 is omitted since it
interferes with the incident light. Therefore, the
number of bands is related to angle a as

K 5
p

2a
1 1, 112

with the number of measurements being K 2 1.
Thus we have K 2 1 measured quantities Mi 1i 5 0,
. . . , K 2 22 and K unknown quantities Li 1i 5 0, . . . ,
K 2 12 to be derived from the Mi’s. To have a de-
termined solvable problem the quantityMk21, which
is not observable for technical reasons 1see above2,
should be extrapolated on the basis of other Mi’s.
Figure 2 represents the case of a 5 10°; K 5 10.
The experimental setup described above corre-

sponds to the theoretical model of light propagation
known as multiflux approximation of the equation of
radiative transfer.10 A measurement in direction ui
is assumed to give radiance Li in any direction u
within the solid angle that corresponds to band i, the
value Li being constant for all directions u within
band i. In addition, any flux at this point can be
calculated on the basis of Li values and the known
relationship between the surfaces of spherical bands.
The radiant energy fluence rate is simply the sum of
Li’s weighted with the fractional areas of the corre-
sponding spherical bands on the unit sphere.

B. Instrumental Error and the Problem of Its Correction

However, the basic assumption of this measurement
scheme, i.e., that each individualmeasurement yields
the true value ofLi, is not fulfilled. For amicroprobe

Fig. 2. Spatial design of three-dimensional radiance measure-
ments: u0 5 0, u1, . . . ui, . . . uk21 5 p represents the direction of
measurements. Each measurement represents the radiance
within the corresponding spherical band. The radiance value
within a band is assumed to be constant.



to perceive the real Li value, it should have an
acceptance half-angle ua equal to a, the half-angle of
the spherical band chosen. It is not warranted that
a microprobe with ua 5 a, where a obeys Eq. 112 for
integer K, will always be disposable. Even more
important is that an ideal microprobe should have a
uniform angular sensitivity within the angular area
restricted to the measured band 1i.e., within ua 5 a2
and zero sensitivity outside this area. Such ideal
sensitivity is presented as the dashed line in Fig. 3
and is never the case. The real angular sensitivity
is a continuous bell-shaped surface h1q2, where q is
the angular deviation from the axis of the micro-
probe in the local coordinate system associated with
the microprobe. The continuous curve h1q2 in Fig. 3
is a projection of this surface onto a vertical plane
that contains the incident light direction. Obvi-
ously, the real, measured quantity Mi will deviate
from Li since it underestimates the radiance within
band i and includes superfluous contributions at
least from the neighboring bands i 2 1 and i 1 1
1shaded area in Fig. 32.
The prerequisite for proper use of the radiance

microprobe measurements, especially for estimation
of the inherent optical parameters, is a theory which,
for a given angular sensitivity of probe h1q2 and
spherical bandwidth 2a, can be used to obtain the
true values of radiance Li on the basis of a set of the
measured quantitiesMi. The aim of our paper is to
develop such a theory. We present a general ap-
proach and correcting formulas for the case in which
only the effects of the neighboring bands are ac-
counted for. In Subsection 2.A we formulate the
problem in mathematical terms and derive a general
relationship between the measured quantities and
radiances. This relationship contains complicated

Fig. 3. Angular sensitivity distribution of a microprobe oriented
in the u direction: q is the internal angular coordinate, q 5 0
coincides with u, h1q2 is the relative sensitivity, h1q2 is maximal in
the direction of the microprobe axis 1q 5 02 whereas light that
deviates from q 5 0 is captured with lower sensitivity. Moreover,
the probe senses light from neighboring spheric bands 1at q . 1ua
and q , 2ua2. The dashed line shows the ideal angular sensitiv-
ity that is required to ensure that each measurement provides an
undistorted value of the constant radiance within the correspond-
ing spherical band.
surface integrals. We develop an auxiliary construc-
tion that facilitates the solution of these integrals in
Subsection 2.B. The final solution of the problem is
presented in Subsection 2.C. An example of real
data processing based on this theory is given in
Subsection 2.D. Section 3 contains a short discus-
sion.

2. Results

A. Mathematical Formulation of the Problem

We consider radiation that propagates in a plane-
parallel horizontal sample, in which the collimated
incident light is directed vertically downward. The
angular distribution of radiance at some point P
depends only on its depth. Introducing spherical
coordinates u 1zenith angle2 and w 1azimuth angle2
associated with a unit sphere circumscribing point P,
we assume that the radiance at any point 1u, w2
depends only on u, but not on w 1azimuthal symmetry2.
To estimate the angular radiance distribution at
point P, we applied the optical microprobe shown in
Fig. 2. The measurements begin with u0 5 0, i.e., in
the direction of the source, and proceed with step 2a

until point u 5 p. The results of these measure-
ments are designated Mi 1i 5 0, 1, . . . , K 2 12. The
zenithal distribution of radiance f 1u2 is assumed to
be a stepwise constant function with constant values
Li within spherical bands 1ui 2 a # u # ui 1 a,
0 # w # 2p2.
The problem is to estimate Li on the basis of the

measured quantities Mi 1i 5 0, 1, . . . , K 2 12. We
consider an individual measurement under zenith
angle u 5 ui and introduce local Cartesian coordi-
nates x, y, z as well as corresponding spherical
coordinates q, c associated with point P and direc-
tion ui, so that q 5 0 when u 5 ui 1see Fig. 42. If the
probe captures only the radiation that is incident on
the spherical surface, S0: 10 # q # a, 0 # c # 2p2,
and this radiation is sensed without loss 1i.e., with
100% sensitivity2, then the connection between Mi
and Li appears trivial:

Mi5 ee
S0

f 1q2h1q2dS 5 LiS0, 122

where h1q2 5 1 is the constant ideal angular sensitiv-
ity of the microprobe and f 1q2 5 Li is the constant
radiance within band i.
However, as described in Section 1, the bell-shaped

function h1q2 5 1 only for q 5 0 and is a decreasing
function for q . 0. Furthermore, radiation that
enters two neighboring spherical bands also contrib-
utes to the value of Mi. In fact, the measured
radiation is spread over the spherical surface S:
10 # q # 3a, 0 # c # 2p2, which consists of three
parts, Sii21, Sii, Sii11, belonging to three different
spherical bands with constant radiance values of
1 January 1996 @ Vol. 35, No. 1 @ APPLIED OPTICS 67



Fig. 4. Spatial and sensitivity relations between different compo-
nents of radiation sensed in the course of a single measurement at
point P under zenith angle u 5 ui. x, y, and z are local Cartesian
coordinates and q is the local spherical coordinate associated with
this measurement. q is zero in the ui direction. h1q2 is the
angular sensitivity of the microprobe. Li21, Li, and Li11 are the
unknown radiances within spherical bands i 2 1, i, i 1 1,
respectively. a is the half-angle of the zenithal angular interval
that corresponds to a single measurement; thus a is the apex
angle of the circular cone whose cross section with the unit
sphere—spherical surface S0—matches the zenithal angular inter-
val of the measured spherical band 1in this case band number
i2. The entire radiation sensed in the course of this measurement
is spread over spherical surface S, which includes parts of
spherical bands i 2 1, i, i 1 1 and is the cross section of the unit
sphere with a circular cone having apex angle 3a. Circle C is a
mapping of spherical surface S onto the xPy plane.

Fig. 5. Structure of sphercial surface S, which perceives the
entire radiation sensed in measurement number i. Sii21, Sii, and
Sii11 are parts of S that belong to sphercial bands i 2 1, i, i 1 1
and, therefore, perceive radiancesLi21,L1,Li11, respectively. S0 ,
Sii is the spherical surface that would perceive the entire radia-
tion sensed in measurement number i if the angular sensitivity of
the microprobe had an ideal rectangular shape with acceptance
angle a as presented by the dashed line in Fig. 3. For the
position of surface S on the unit sphere see Fig. 4.
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Li21, Li, Li11, respectively 1Fig. 52. Thus

Mi 5 ee
S

f 1q2h1q2dS

5 Li21 ee
Sii21

h1q2dS 1 Li ee
Sii

h1q2dS

1 Li11 ee
Sii11

h1q2dS

5 Li21Jii21 1 LiJii 1 Li11Jii11. 132

An integral of type Ji j over the curvilinear surface
can be expressed by an integral over a plane area
and then by a standard repeated integral. Because
of the complex geometry, the calculation of integrals
Ji j requires a major effort. In Subsection 2.B we
provide an auxiliary construction to facilitate this
calculation.

B. Facilitating the Calculation of Integrals Jij
Let S be an area on a curvilinear surface, s its
projection on a plane, and 1n, n12 the angle between
the normal to S at point M and the normal to the
plane 1Fig. 62. Then

ee
S

f 1M2dS 5 ee
s

f 1N2

cos1n, n12
ds, 142

where N is the projection of point M onto the plane
and f 1M2 5 f 1N2. To calculate the integrals in Eq. 132
we map spherical surface S onto the xPy plane 1see
Fig. 42. In this case

1n, n12 5 q;
the circle surrounding area S is transformed with-

out any distortion in circleC, with the center at point
P and radius R 5 sin13a2;
the circles delimiting the areas Sii21, Sii, Sii11 1refer

to Fig. 52 are transformed into ellipses designated as
Cii21 and Cii11 in Fig. 7.

Fig. 6. Illustration of the transition from the integral over a
curvilinear surfaceS to the integral over a plane surface s. n and
n1 are the normals to surfaces S and s, respectively. M andN are
the current points on surfaces S and s, respectively.



Let us designate the half-axes of ellipses Cii61 along
the x and y axes as aii61 and bii61, respectively, and
the distance of the centers of ellipses from point P as
qii61. One can see that

aii61 5 sin1ui 6 a2cos1ui2,

bii61 5 sin1ui 6 a2,

qii61 5 cos1ui 6 a2sin1ui2,

a0,21 5 b0,21 5 ak21,k 5 bk21,k 5 0. 152

Nowwe introduce on the xPy plane polar coordinates
r, w. For these coordinates the equations for the
projections of spherical surfaces on the xPy plane are

for C, r 5 R 3R 5 sin13a2 as described above4;
for Cii61, r 5 fii611w2.

We designate the values of coordinate w at which
ellipses Cii61 cross circle C as wii61 1refer to Fig. 72.
Since in our set of measurements ui is symmetrical
with respect to point u 5 p@2, we can confine our
consideration to the subset u , p@2 1in the case of
u 5 p@2 both ellipses Cii61 degenerate into straight
lines2. Note that point P is always located inside
ellipse Cii11 and outside ellipse Cii21. This means
that one can always draw a tangent to ellipse Cii21
from point P; coordinates of the point of contact are
designated 1Ri0, wi02. Equation r 5 fii211w2 assigns to

Fig. 7. Mapping of the surface of a unit sphere onto the xPy plane
that is normal to the ui direction of measurement number i 1see
Fig. 42. Circle C with diameter R 5 sin13a2 is the mapping of
spherical surface S. Ellipses Cii21 and Cii11 are mappings of
circles that delimit the spherical bands i 2 1, i, i 1 1 and, in
particular, areas Sii21, Si, and Sii11 inside surface S, respectively
1see Fig. 52. Areas sii21, si, and sii11 are mappings of spherical
surfaces Sii21, Si, and Sii11, respectively. wii61 and R are polar
coordinates of points of intersection of ellipses Cii61 with circle
C. wi0 and Ri0 are polar coordinates of the point of contact of the
tangent to ellipse Cii21 from point P.
each value 0 # w # wi0 two values of r, i.e., fii211w2 is a
two-digit function.
We now show the functions fii611w2 and other param-

eters defined above as being expressed through the
parameters of ellipses listed in Eqs. 152 1for the
derivation see Fig. 8 andAppendixA2. We designate

fi j61w2 5
bi j

ai j2 1 ci j2 cos21w2
5qi jbi j cos1w2

6 ai j3ai j2 2 qi j2 1 1qi j2 1 ci j22cos21w241@26,

gi j 5
1

Rci j2
5qi j2bi j2 2 ai j2

3 3qi j2bi j2 2 ci j21R2 2 bi j2241@26, 162

where ci j2 5 bi j2 2 ai j2. Then for Cii21,

r 5 fii21
61w2,

cos1wii212 5 gii21,

cos1wi02 5 1 qii21
2 2 aii21

2

qii21
2 1 cii21

2 2
1@2

,

Ri0 5
1

qii21
31qii21

2 2 aii21
221qii21

2 2 cii21
2241@2,

172

and for Cii11,

r 5 fii11
11w2,

cos1wii112 5 gii11. 182

C. Calculating Integrals Jij
Now we can calculate the integrals given in Eq. 132.
When we calculate the integral

Jii215 ee
sii21

h1q2

cos1q2
ds,

three cases can occur:

Fig. 8. Derivation of the parametric description of ellipses Cii61

presented in Fig. 7 and given in Appendix A. x and y are
Cartesian coordinates, and w and r are polar coordinates on the
xPy plane. a and b are the axes of the ellipse with center P1. M
is the point of contact of the tangent to the ellipse from point P,
which is outside the ellipse because P1P 5 q . a.
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112 Ri0 $ R, i.e., the point of contact of ellipse Cii21
with the tangent drawn through point P is not inside
circle C. Then

Jii21 5 2 e
0

wii21

dw e
fii21

21w2

R h1q2

cos1q2
rdr.

122 Ri0 , R and R , qii21 1 aii11, i.e., the point of
contact is inside circle C, and circle C and ellipse
Cii21 intersect. Then

Jii21 5 2 e
0

wii21

dw e
fii21

21w2

R h1q2

cos1q2
rdr

1 2 e
wii21

wi0

dw e
fii21

21w2

fii21
11w2 h1q2

cos1q2
rdr.

132 Ri0 ,R andR$ qii21 1 aii21, i.e., ellipseCii21 is
located inside circle C. Then

Jii21 5 2 e
0

wi0

dw e
fii11

21w2

fii21
11w2 h1q2

cos1q2
rdr.

Integral Jii11 is calculated as

Jii11 5 2 e
0

wii11

dw e
fii11

21w2

R h1q2

cos1q2
rdr,

and finally integral Jii is calculated as

Jii 5 2 e
0

p

dw e
0

R h1q2

cos1q2
rdr 2 Jii21 2 Jii11.

The sensitivity distribution h1q2 can be well approxi-
mated by a slightly modified Gaussian function

h1q2 5 exp32m sin21q24cos1q2,

where the fitting coefficientm adjusts the function to
the individual curve of the microprobe under consid-
eration.
From the relationship between the Cartesian and

spherical coordinates for a unit sphere, x5 sin1q2cos1c2
and y 5 sin1q2sin1c2, one can derive sin21q2 5 x2 1 y2 5

r2, which provides the following solution for the
internal integral:

e
f11w2

f21w2

exp12mr22rdr

5
1

2m
5exp32mf121w24 2 exp32mf221w246.

Thus all the integrals Ji j can be solved. On the
70 APPLIED OPTICS @ Vol. 35, No. 1 @ 1 January 1996
grounds of symmetry,

Jii 5 JK212i,K212 i,

Jii21 5 JK212i,K2 i,

Jii11 5 JK212i,K2 i22.

After determination of all the integrals Ji j, the K
unknown quantities Li 1i 5 0, 1, . . . , K 2 12 can be
found from K equations

Li21Jii21 1 LiJii 1 Li11Jii115 Mi,

J0,21 5 JK21,K 5 0.

D. Example of Application

In this subsection we apply the procedure described
above to account for the nonuniform angular sensitiv-
ity of amicroprobe that is used for three-dimensional
equidistant radiance measurements in a coastal
sediment with diatoms. A set of ten measurements
as described in Fig. 2 has been carried out at each of
four depths, d 5 0, 0.5, 1.5, 2 mm, of a sediment
sample immersed in water and irradiated with colli-
mated light 1l 5 650 nm2. Of course, the measure-
ments assigned to depth d 5 0 are performed not on
the external surface of the sample, where only the
collimated component at u0 would be measurable,
but at a small distance below the surface. There is
some uncertainty in determining this distance, first
because of finite step size of the probe advancement
and, second, because of the roughness of the surface,
which in turn is caused by the finite size of the
particles that constitute the sample. For samples
such as those used in this example the uncertainty
amounts to a few micrometers 1see Ref. 7 for experi-
mental details2. The best fit of the measured 1in
water2 bell-shaped angular sensitivity of the used
microprobe with the function h1q2 5 cos1q2exp12m
sin2 q2 was achieved for m 5 78.29. In terms of
standard nomenclature 1see Section 12 this corre-
sponds to an acceptance half-angle of ua < 8°.
For each of the four data sets Table 1 shows the

measured quantities Mi and uncorrected radiance
Li* 5 Mi@S0, calculated under the assumption that
Eq. 122 is valid, i.e., the angular sensitivity of the
microprobe is presented by the dashed line in Fig. 3.
These values are compared with the corrected radi-
ance Li calculated from Eq. 132 using m 5 78.29 for
h1q2. Table 1 also contains the weighting factorsWi
that are needed to calculate fluxes over the spherical
bands and, finally, the fluence rate. The corrected
and uncorrected values of fluence rates as well as the
discrepancy between them are given for each depth.
Also corrected versus uncorrected radiant fluxes
over single spherical bands can be easily calculated.
These data for depth d 5 0.5 mm are shown in Fig. 9.
The data presented in Table 1 and Fig. 9 show that

in this case, by neglecting the nonuniformity of the



Table 1. Comparison of Corrected and Uncorrected Radiance Values
Obtained from Measurements at Different Depths of a Coastal Sediment

with Diatoms 1l 5 650 nm 2a

i ui Wi Mi Li Li*

d 5 0 mm
0 0 0.095 1000.136 27548.478 10477.490
1 20 0.746 0.489 2268.932 5.124
2 40 1.403 0.071 5.185 0.742
3 60 1.890 0.569 14.249 5.958
4 80 2.149 0.700 17.434 7.330
5 100 2.149 0.831 20.705 8.704
6 120 1.890 0.962 24.051 10.076
7 140 1.403 0.883 21.924 9.248
8 160 0.746 1.000 24.997 10.477
9 180 0.095 0.941 23.303 9.863

E0 5 2642.19 E0* 5 1091.49 DE 5 258.69%

d 5 0.5 mm
0 0 0.095 51.266 1397.259 537.064
1 20 0.746 5.620 128.690 58.877
2 40 1.403 2.578 63.474 27.004
3 60 1.890 2.333 58.299 24.442
4 80 2.149 1.754 43.714 18.374
5 100 2.149 1.175 29.272 12.307
6 120 1.890 0.596 14.623 6.240
7 140 1.403 0.559 13.851 5.857
8 160 0.746 0.764 19.160 8.001
9 180 0.095 0.661 16.203 6.929

E0 5 648.38 E0* 5 271.85 DE 5 258.07%

d 5 1.5 mm
0 0 0.095 1.058 28.909 11.084
1 20 0.746 0.091 1.958 0.953
2 40 1.403 0.170 4.245 1.778
3 60 1.890 0.203 5.085 2.123
4 80 2.149 0.148 3.688 1.550
5 100 2.149 0.093 2.326 0.977
6 120 1.890 0.039 0.833 0.404
7 140 1.403 0.328 8.403 3.436
8 160 0.746 0.027 0.520 0.282
9 180 0.095 0.030 0.766 0.312

E0 5 46.53 E0* 5 19.53 DE 5 258.02%
d 5 2 mm

0 0 0.095 0.126 3.437 1.323
1 20 0.746 0.016 0.370 0.172
2 40 1.403 0.031 0.790 0.330
3 60 1.890 0.034 0.841 0.352
4 80 2.149 0.025 0.628 0.264
5 100 2.149 0.017 0.419 0.176
6 120 1.890 0.008 0.207 0.088
7 140 1.403 0.006 0.154 0.065
8 160 0.746 0.004 0.103 0.044
9 180 0.095 0.005 0.132 0.054

E0 5 6.25 E0* 5 2.62 DE 5 258.01%

aData are from Ref. 7. d 1mm2 represents the depth of a set of
measurements; i is the number of a measurement within a set; ui
1degrees2 is the direction of the ith measurement;Wi is the area of
the ith spherical band, Wi 5 2p3cos1ui 2 a2 2 cos1ui 1 a24, 0 , ui ,
p1SWi 5 4p2;Mi 1relative units normalized against direct illumina-
tion of the microprobe with the same light source2 is the measured
quantity; Li* 5 Mi@S0 is the uncorrected radiance; Li is the
corrected radiance calculated according to the above procedure.
E0 5 SLiWi and E0* 5 SLi*Wi represent the corrected and
uncorrected fluence rates, respectively; DE 5 1001E0* 2 E02@E0%
represents the relative discrepancy between E0* and E0.
probe angular sensitivity, we strongly underestimate
the fluence rate. For the probe used in this example
the relative discrepancy DE between the corrected
1E02 and uncorrected 1E0*2 values of the fluence rate is
approximately 60%. If the same measured quanti-
ties Mi are provided by a probe with larger accep-
tance angle u 5 11° 3which corresponds to m 5 45 in
h1q24, the relative error in the scalar irradiance would
be only approximately 25% 1intermediate results of
these calculations are not presented2. A distin-
guished feature of the data in Table 1 is the negative
value of corrected radiance at depth d 5 0. This
phenomenon is expected under the given conditions
of illumination and the geometry of the measure-
ments. It is discussed in the next section.

3. Discussion

Generally there are three factors that affect the
accuracy of the three-dimensional radiancemeasure-
ments with radiance microprobes:

1i2 The nonuniform angular sensitivity of the
microprobe described above as function h1q2.

1ii2 The zenithal spacing of single measurements
specified above by angular interval a linked to the
number of equidistant measurements K through Eq.
112.
1iii2 The angular radiance distribution solid of the

incident radiation.

The effect of the microprobe sensitivity is qualita-
tively obvious. Large acceptance angles 3i.e., broad
distributions h1q24 average too much information,
especially in the direction of the maximum of the
field radiance. They tend to broaden the shape of
the distribution and at the same time tend to lower
the apparent value of the peak radiance. Small

Fig. 9. Diagram of the corrected 1dashed line2 and uncorrected
1solid line2 radiant fluxes over single spherical bands. The bands
are specified according to the directions of microprobe ui at
successive measurements as presented in Fig. 2. The diagram
presents measurements at depth d 5 0.5 mm. The correspond-
ing radiances are also shown in Table 1. The flux values are
normalized against the incident flux.
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acceptance angles 3i.e., narrow distributions h1q24
give more details about the radiance distribution but
underestimate the fluence rate. In order to reduce
these drawbacks the angular sensitivity of themicro-
probe was linked to the angular step between the
measurements: ua 5 a. But even in this case the
experimental data must be expected to contain an
error of indefinite sign and magnitude.
The theory we present in this paper applies the

independently obtained information about the angu-
lar sensitivity of the used microprobe to correct for
this error that can be significant as shown in Section
2. The correction procedure performed in our ex-
ample for depth d 5 0.5 mm 1see Table 1 and Fig. 92
reveals rather moderate distortion of the radiance
solid distribution. In contrast, the error in the
value of the fluence rate is approximately 60%.
Similar conclusions can be drawn from the correc-
tions at depths d 5 1.5 mm and d 5 2 mm 1Table 12.
In all these cases the lowered sensitivity of the probe
toward the inclined components of radiation within
the targeted band produces the dominating contribu-
tion to the instrumental error. The angular distri-
bution of the radiation is in all these cases rather
smooth 1see Fig. 92. Therefore, the field radiance
can be nicely recovered from the equidistantmeasure-
ments because the angular size of the spherical
bands, 2a, is small enough to assume the constancy
of the radiance over a spherical band. This assump-
tion is not valid when the third factor that affects the
accuracy of measurements, the angular distribution
of radiation, has unfavorable properties. This is
exactly the case in our example when the calcula-
tions for d 5 0 are performed. Here we have not
only a strong underestimate of the fluence rate but
also a significant distortion of the radiance solid
distribution. The theory yields a negative value for
L1. This does notmean that the treatment is wrong.
Moreover, the negative value of L1 is to be expected
for the following reasons. The collimated incident
radiation is not spread uniformly over band number
zero but concentrated in an extremely narrow solid
angle. It does not affect the measured value M1 in
band number one. However, the theory treats the
magnitude M0 as being uniformly spread over band
zero and accordingly accounts for the enormous 1note
thatM0 exceedsM1 by 3 orders of magnitude!2 but, in
fact, nonexistent contribution of light from band
number zero toM1. This results in a large negative
value for L1.
Obviously, to account for strong peaks of the field

radiance distribution, smaller zenithal steps be-
tween themeasurements are required, at least in the
neighborhood of such peaks. This means that an
extension of the theory to nonequidistant measure-
ments is desirable. Even more important is an-
other consequence of introducing smaller zenithal
steps. The angular size of spherical bands that
correspond to single measurements may be in this
case much smaller than the acceptance angle of the
microprobe. Consequently a quantity Mi will con-
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tain contributions not only from bands i2 1 and i1 1
but also from the more distant bands.
We can now summarize the discussion. The

theory of equidistant three-dimensional measure-
ments with the band size linked to the acceptance
angle of themicroprobe provides, for the first time, to
our knowledge the quantitative processing of mea-
sured data. The errors that are due to the nonuni-
form angular sensitivity of a microprobe can now be
estimated and, in general, a comparison of measure-
ments performed with different microprobes is now
possible. This theory is sufficient for smooth angu-
lar radiance distribution solids, for which the radi-
ance can be considered constant within a spherical
band linked to the acceptance angle of themicroprobe.
For the extreme cases of strongly peaked radiance
distributions an extension of the theory to nonequi-
distant measurements, in which the band size is not
linked to the acceptance angle of the microprobe, is
desirable.

Appendix A.

We consider a Cartesian coordinate system xPy.
An ellipse with the center at point P11q, 02 and the
half-axes a, bwith 1b $ a2 1Fig. 82 is described as

1q 2 x22

a2
1
y2

b2
5 1,

which yields

y2 5 b2 2
b2

a2
1q 2 x22.

To obtain the ellipse equation in polar coordinates r
5 f 1w2, first we express r through x:

r2 5 x2 1 y2 5 x2 1 b2 2
b2

a2
1q 2 x22.

Since x 5 r cos1w2 we obtain the relation between r
and w:

r231 1
c2

a2
cos21w24 2 2q

b2

a2
cos1w2 1 q2

b2

a2
2 b2 5 0,

1A12

with c2 5 b2 2 a2, which results in

r 5
qb2 cos1w2 6 ab3a2 2 q2 1 1q2 1 c22cos21w241@2

a2 1 c2 cos21w2
.

1A22

When a $ q, i.e., when point P is inside the ellipse,
Eq. 1A22 should be taken with the plus sign since, in
this case,

ab3a2 2 q2 1 1q2 1 c22cos21w241@2 $ 0qb2 cos1w2 0 .



When a, q, i.e., when point P is outside the ellipse, a
tangent to the ellipse drawn from point P always
exists. The coordinates of the point of contact are
designated as R0, w0. Two values of r correspond to
one value of the coordinate w, 0cos1w2 0 . 0cos1w02 0 ,
which is in accordance with the two signs in Eq. 1A22.
Point w0 is found when the discriminant in Eq. 1A22
vanishes:

cos1w02 5 61 q
2 2 a2

q2 1 c2 2
1@2

,

whereas the sign of this expression is always the
same as the sign of q:

R0 5 r1w02 5
31q2 2 a221q2 1 c2241@2

0q 0
.

The intersection point between the ellipse and circle
r 5 R has coordinates 1R, w12. The value of w1 is
determined from Eq. 1A12:

cos1w12 5
1

Rc2
5qb2 6 a3q2b2 2 c21R2 2 b2241@26.
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