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Abstract: Additive haze model (AHM), due to its high simplicity, has a potential to in-
crease the efficiency of the restoration procedure of images degraded by scattering media.
However, AHM is designed for hazy remote sensing data and is not suitable to be used
on outdoor images. In this paper, according to the low-frequency feature (LFC) of haze,
AHM is modified via gamma correction technique to make it suitable for modeling outdoor
images. Benefitting from the modified AHM (MAHM), a simple yet effective method called
VROHI is proposed to enhance the visibility of an outdoor hazy image. In specific, a low
complexity LFC extraction method is designed by utilizing characteristic of the discrete
cosine transform. Subsequently, by constructing the linear function of unknown parameters
and imposing the saturation prior on MAHM, the image dehazing problem can be derived
into a global optimization function. Experiments reveal that the proposed VROHI is superior
to the other state-of-the-art techniques in terms of both the processing efficiency and
recovery quality.

Index Terms: Additive haze model, global optimization dehazing, haze thickness map, low-
frequency component, propagation and scattering.

1. Introduction

Images captured under hazy weather conditions may suffer from contrast reduction and incon-
sistent colors. This is due to the reflected light from objects can be scattered, refracted, and
absorbed by the particles suspended in atmosphere, e.g., water vapor, fog, sand, dust, or smoke.
This interference not only reduces visual quality of observed images, but also affects the accuracy
of image feature extraction, thereby leading to some errors in computer vision systems. Therefore,
image haze removal is crucial for many applications that need high-quality inputs.

Early works [1], [2] directly employed the traditional image enhancement techniques to stretch
the contrast of hazy images, but the visual quality of recovered results is limited. The main reason
is that traditional methods only focus on increasing the contrast in degraded scenes rather than
removing the haze theoretically. Another kind of solutions advocated in [3]-[6] is able to generate
a better result by introducing additional information. For example, Kopf et al. [3] utilized the given
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geo-referenced digital terrain to remove the haze cover in images. Li et al. [4] developed a simple
pseudo-polarimetric dehazing method for dense haze removal using polarization property. Accord-
ing to different atmospheric properties, Narasimhan et al. [5] used two given images to derive the
scene depth and other parameters that are required to recover the image. Although high-quality
dehazing results can be obtained by these methods, they require high cost prerequisites and thus
limiting their practicability for many applications.

Compared to the aforementioned two kinds of image dehazing methods, recently published
works [7]-25] have achieved more promising performances. In these technologies, the haze-
relevant information is extracted from only one input image and processed by complex mathemati-
cal tools to obtain a recovery result. In general, they can be further divided into three categories:

1) The first category is atmosphere scattering model (ASM) based methods [7]-[16]. These
methods are based on ASM [5], but they also utilize latent prior knowledge to constrain ASM. In
general, these methods are capable of producing reliable results for most cases. However, they
are not able to handle all practical situations and exhibit some limitations when dealing with certain
kinds of images. For example, He et al. [7] proposed to use dark channel prior (DCP) to estimate
the transmission of input image before haze-free result can be restored via ASM. The performance
of this method is mostly promising, but it cannot well handle the regions where scene objects
are inherently similar to the atmospheric light. In [8], Bi et al. introduced a brightness map to
improve the recovery quality of DCP method. Ref. [9] proposed a quadtree theory to locate the
atmospheric light, and estimated the transmission by combining coefficient modification and DCP.
In [10], before applying ASM, the optimal transmission was obtained by assuming that each local
patch can be linearly represented by a dictionary. This prior is very reliable and can lead to good
recovered results, whereas the white regions containing texture details always have slight color
errors. In [11], Wang et al. achieved haze removal using a linear transformation that exists in the
minimum channel between hazy input and haze-free image. The main advantage of this method is
its low complexity, yet the fixed control factor involved in this method leads to the dim scene content.
Based on a key assumption that an outdoor image contains approximated colors or repeated
patches, non-local strategies [12]-[14] were developed to exclude the haze shroud in images.
Unfortunately, as the hazy level increases, these methods may reduce their dehazing performance
since the classification accuracy of colors or patches would be degraded.

2) The second category is multi-scale-fusion-based methods [17]-[19]. The strategy of these
methods is to generate two or more images by processing an input image with traditional en-
hancement techniques, then to merge these processed images to get a better restoration result.
Typically, Ancuti and Ancuti [17] developed a visibility recovery method based on Laplacian pyramid
representation. In this work, an input image was firstly preprocessed by white balance and contrast
enhancement, leading to two images with different properties. Then the two images were blended to
a haze-free result by using a Laplacian pyramid representation. To achieve a better recovery quality,
Choi et al. [18] introduced more image features to participate the fusion process. Later in [19],
another fusion-based dehazing technique was designed by simply finding contrasted/saturated
regions from some artificially under-exposed versions of hazy input. The main advantage of multi-
fusion-based methods is the high implementation efficiency, but their performance is deteriorated
when dealing with the dark regions in hazy image. This is due to the fact that the severe dark parts
of the preprocessed images are usually misjudged as the haze-free scenes.

3) The third category is deep-learning-based methods [20]-[25]. Benefitting from the develop-
ment of deep learning (DL) theory, haze removal can be realized by merging or learning several
haze-relevant features with the DL framework. For instance, a convolutional neural network (CNN)
based dehazing system, called DehazeNet, was proposed in [20] by fully utilizing the existing image
priors. In subsequence, a multi-scale CNN (MSCNN) was proposed in [21] to achieve a better
recovery quality by learning more useful features. However, these approaches need to introduce
guided filter or fine-scale net to repair the artifacts in the estimated rough transmission. To remedy
this, Li et al. [22] built a dehazing model called All-in-One Dehazing Network (AoD-Net) to directly
restore the haze-free result without the needs of estimating the transmission. In [23], a gated
fusion network was proposed by learning confidence maps for three inputs processed from the
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Fig. 1. Comparison between the image dehazing methods using LT [11] and VROHI proposed in this
paper (The experiments were all conducted in Matlab2016b with the same configuration environment).

original input. Similar to the second category of dehazing method, this fusion network also lacks
the ability to recover the scenes misjudged as the haze-free. Moreover, most deep-learning-based
techniques are only trained by synthetic hazy datasets (e.g., NYU Depth dataset [26] and Make
3D dataset [27]), thus they may not uncover the latent contents for the real-world images well,
especially for images with heavy haze [15]. Although a semi-supervised learning network [24] has
been provided by training both synthetic and real-world hazy images, this method still performs
less effective when processing the image suffers from severe haze, as discussed in [24].

In summary, there exist many image dehazing methods in the literature, but most of them are
focusing on achieving a high restoration quality and ignoring the processing efficiency, which makes
them unsuitable for vision systems that require real-time performance. Therefore, this work aims
to develop a highly efficient image dehazing approach while maintaining a good restoration quality.
In [28], [29], fast and high-quality hazy remote sensing (RS) data restoration has been made by
employing additive haze model (AHM). The key advantage of using AHM to dehaze the high-
resolution RS data is due to its simplicity, which leads to significantly reduced computation cost.
We assume that AHM may also have the potential to be used to efficiently and effectively restore the
outdoor hazy images. However, due to the difference in spectral information between RS data and
outdoor images, AHM is not suitable to model the outdoor hazy image and thus current AHM-based
methods cannot be directly used on outdoor hazy image restoration.

In this paper, to make use of the simplicity of AHM, AHM is modified into MAHM to make it
suitable for outdoor images. Then a highly efficient visibility recovery method for outdoor hazy
images, i.e., VROHI, is developed. The core idea of VROHI is to excavate the low-frequency
component (LFC) of hazy image, and restore the haze-free result by fully utilizing the latent image
feature to constrain the MAHM. In contrast to other dehazing techniques, the proposed VROHI only
needs to determine one unknown parameter rather than estimating the transmission to achieve a
haze-free result, thereby significantly improving the execution efficiency of haze removal. Fig. 1
illustrates the results comparison between the proposed VROHI and the state-of-the-art dehazing
technique LT [11] as an example. As shown in the figure, using VROHI, significant reduction in time
consuming is achieved while the quality of the recovered image is also enhanced.

The main contributions of this paper are as follows: The first contribution is the proposed MAHM.
In MAHM, the haze thickness map (HTM) is modeled by introducing LFC and two unknown
parameters. By accurately extracting the LFC and properly setting these two parameters, one is
able to get accurate HTM from the LFC of hazy image, which guarantees subsequent high-quality
haze removal. The second one is LFC extraction, which is based on the simple discrete cosine
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transform. Its main advantage is that it is able to achieve a similar blur effect in less time compared
to traditional filters. The last contribution is global optimization function (GOF), which is modeled by
creating a linear function between parameters and imposing saturation prior on MAHM. It enables
us to find the only one parameter by making use of whole image rather than local patch, thereby
leading to a high-quality restoration.

2. Modified Additive Haze Model

Additive haze model (AHM) proposed in [28] is used to describe remote sensing (RS) images in
machine vision and computer graphics. This model is expressed as

DNébserved(X’ Y) = DNI(X, y)‘}‘HRf(Xa }/)» (1)

where (x, y) is image coordinate, i is band index, DNgpserved iS Multi-spectral RS data captured
by satellite, DN is expected surface radiance, and HR is haze contribution. Unlike the RS data
containing both visible bands and additional infrared bands, only three visible RGB bands are
included in outdoor images, which means AHM can be further optimized to reduce its complexity.

According to Rayleigh’s law [30], the interference of haze depends on the wavelength of light.
Since the wavelength variation between the RGB bands for outdoor images is much smaller than
that in the multi-bands for RS images, here we assume that the haze contribution to the RGB bands
of outdoor images is similar. Consequently, when using AHM to represent RGB bands outdoor hazy
images, we propose to use a haze thickness map (HTM) H to replace HR' in Eq. (1). This then leads
to:

I°(x, y) = J°(x. y) + H(x. y), ()

where ¢ € {r, g, b} is color channel index, | is outdoor image contaminated by haze, and J is haze-
free scene radiance.

In [31], Li et al. verified that haze is highly related to the illumination component and is concen-
trated in the low-frequency band of an input image. There exists a quasi-linear relationship between
the HTM and the low-frequency component (LFC) of the input image. In this work, by considering
the quasi-linear relationship and based on an observation of the haze distribution characteristic of
numerous hazy images, gamma correction (GC)' is used to relate the HTM with the LFC, i.e.,

H(x,y) = o - (L(x,y))", (3)

where L is the LFC of the input image, y € [0, 1] is the GC parameter to adjust the haze distribution,
and o € [0, 1] is a constant related to the haze density. By accurately extracting the LFC and
properly setting the values of o and y, one is able to get accurate HTM from the LFC of hazy
image, which is the premise of subsequent high-quality haze removal.

Combining Eqg. (2) and Eq. (3), a modified AHM (MAHM) for outdoor image dehazing can be
obtained as

Sxy) =Fxy)—o-(Lx.y). (4)

According to MAHM, the key of image dehazing is to mine LFC and estimate the two constants o
and y from the input hazy image I, which will be presented in the next section.

T Another reason we chose to use GC is because GC has been successfully used to adjust the transmission in [32] while
the patterns of HTM and transmission of a hazy image have some similarities.
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Outdoor Hazy Image Blue Channel

LFC DCD used for extracting LFC

Fig. 2. The working mechanism of Eq. (5).

3. Proposed Technique

In this section, based on the MAHM described in the previous section, a fast visibility recovery
method called VROHI is developed for outdoor hazy images. The proposed VROHI consists of two
major modules, i.e., extraction of LFC module and global optimization dehazing module.

3.1 Extraction of LFC

According to Rayleighs law [30], the penetration ability of light is proportional to its wavelength.
In RGB space, blue channel I° corresponds to the smallest wavelength compared to the red and
green channels, thus the blue channel is more susceptible to the interference of haze. On this
basis, in this work, we attempt to excavate the LFC from I since it is closer to haze distribution.
Directly employing image blur tools with edge protection, e.g., guided filter (GF) [33], joint bilateral
filter (JBF) [34], and guided total variation (GTV) [35], is the most intuitive way to calculate the LFC.
However, these techniques all need complex convolution operators to get the filter weights for each
pixel in whole image, which is bound to reduce the computational efficiency of haze removal. In
this paper, a low complexity discrete cosine transform based LFC extraction method is proposed.
Specifically, this procedure can be expressed by

F = f(I)

W(x,y) -F(x,y), 0<x<s,0<y<s
FLix,y) = { ( Y)O Go¥) else ’ ©
L=f"1(F),

where f(-) and f~'(.) are the discrete cosine transform (DCT) operator and inverse DCT (IDCT)
operator, F is the discrete cosine domain (DCD) of I° obtained via DCT, F_ is the weighted F, s is
the size of a square patch selected on F for weighting, and W is the introduced weighting factor.

For clarity, the working mechanism of Eq. (5) is illustrated in Fig. 2. The first step is to obtain the
blue channel from input image. Then DCD of I° is obtained using DCT. In subsequence, a square
patch with the size of s at the upper left corner in the DCD is selected. This is due to the fact that
the LFC data are mainly concentrated at the upper left corner in F. Since the data should be more
reliable for extracting LFC if it is more closer to the upper left corner [36], to improve the reliability,
a weighting function is defined as

X+y
2.5’

Wx.y)=1- (6)
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Fig. 3. Comparison of LFC extraction effect between different operators (In this example, the resolution
of blue channel is 400 x 600).
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Fig. 4. (a): Outdoor hazy images. (b): Curves of haze distribution with different values of y. (c): HTMs
(0 - LY). (d): Recovery Results.

Finally, the LFC is extracted from the weighted F through IDCT. To demonstrate the superiority
of the proposed LFC extracting method, Fig. 3 illustrates the LFCs extracted by GF, JBF, GTV, and
the proposed method. As observed in the figure, the obtained results are similar but the proposed
method consumes much less time.

3.2 Global Optimization Dehazing

In general, mist images usually have sharper haze distribution than images with heavy haze, as
shown in Fig. 4(a). In other words, images with high haze density (large o value) tends to have
flatter haze distribution; images with low haze density (small o value) tends to have sharper haze
distribution. Meanwhile, recall the characteristic of GC as shown in Fig. 4(b), i.e., given the input (L
in Eq. (3)), the smaller the y, the flatter the output (H). This leads to a conclusion that there exists
an inverse proportional relationship between o and y (the larger the o, the smaller the y), when
using Eq. (3) to model the HTM of a hazy image. There is no doubt that the HTM estimation can
be significantly simplified if the relationship between o and y can be fitted with a linear equation.
Considering that y € [0, 1] and o € [0, 1], a following linear function is proposed as

y=1—«x-o0, (7)

where « is a parameter introduced to adjust this linear expression to achieve higher accuracy.
Substituting Eq. (5) and Eq. (7) into Eq. (4), the recovery formula can be expressed as

S =1°— o (F(F))*". (8)
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Algorithm 1: The Proposed VROHI.
Input: Hazy Input |
Pre-set parameters:
$§ =100, =0.4,6 = 0.103,
Begin:
1. Calculate weight W via Eq. (6).
2. Extract LFC via Eq. (5) using the W.
3. Determine constant o via Eq. (10) with GSM.
4. Restore haze-free result J via Eq. (9).
5. Obtain J. by implementing linear stretch on J.
Output: Recovery result Je.

To avoid pixel overflow, the scene radiance J° is constrained at the interval [0,1]. Therefore, the
expression used for restoring the scene radiance can be rewritten as

J° = VR(k, 0,1, 1 (F))
= min(max(I° — o - (" (FL))'=7, 0), 1),

where VR(-) is the abbreviation of scene radiance restoring function. Note that VR(-) is a function
of four parameters, where 1 is the input, ~'(F_) can be calculated via Eq. (5), « is the empirical
parameter (which will be studied in Section 4), and o is the only unknown constant related to haze
density. To estimate the value of o accurately, a saturation prior [37] based global optimization
function (GOF) is designed as

©)

o = argmin{||6 — ¢(I) — #(VR(k, o, 1, f1 (FUNI [ (10)

where ¢(-) is saturation operator, 6 is average saturation of high-quality image. Once o is de-
termined via the GOF with golden section method (GSM), the scene radiance can be directly
recovered by Eq. (9). However, as previously noted by [7], the dehazed image might look dim,
since the radiance is usually not as bright as the atmospheric light. For display, the recovery result
is enhanced to be a high dynamic image J. by performing a linear contrast stretch [13] on it.

Taking the hazy images in Fig. 4(a) as examples, the HTMs and recovery results using the
proposed method are shown in Figs. 4(c) and 4(d), respectively. It can be observed from these
results that the estimated HTMs are in line with intuition, and the haze cover in images can be
thoroughly removed.

For clarity, the step-by-step procedure of VROHI is outlined in Algorithm 1. Note that the
values of the pre-set parameters given in Algorithm 1 are optimized results considering different
scenarios. One does not need to re-estimate these parameters when using the VROHI for image
dehazing. Also, it is noted that, the steps in this dehazing procedure are all simple operations,
which guarantees a high efficiency of the proposed VROHI.

4. Experiments

To evaluate VROHI, each module of VROHI is further assessed by experiments. Then, qualitative
and quantitative comparisons are made between the proposed VROHI and other state-of-the-art
technologies to demonstrate its superiority. In specific, we tested VROHI on various challenging
hazy images and compared the results with those obtained from some well-known algorithms
including DCP [7], MSF [18], DehazeNet [20], BCCR [38], NLD [12], CAP [39], DEFADE [18],
MSCNN [21], and AoD-Net [22]. Among these methods, DCP, MSF, and DehazeNet are included
in the comparison to validate the performance of the proposed global-optimization-based strategy,
and the rest algorithms are tested for qualitative and quantitative comparisons of the image
dehazing capability.
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Fig. 5. Image dehazing using VROHI with different combinations of s and « while 6 is fixed at 0.103.

In this work, experiments were conducted by MATLAB2016b on a PC with Intel(R) Core (Tm)
i7-8700 CPU@ 3.20 GHz 16.00 GB RAM. Note that the codes of DehazeNet, BCCR, NLD, CAP,
DEFADE, and MSCNN are downloaded from the authors’ websites. The codes of MSF and DCP
are not publicly available, but they are easy to implement.

4.1 Initial Parameter Setup

There are three parameters that need to be initialized in the proposed VROH]I, i.e., 9, s, and «. In
this work, the value of 0 is selected to be 0.103 according to saturation prior [37]. Only s and « are
new parameters introduced in this work. To find appropriate values for them, the performance test
of VROHI on two examples with different combinations of s and « was conducted, as illustrated
in Fig. 5. It can be concluded from this figure that smaller value of s can produce more realistic
colors, and the smaller value of « is able to lead to stronger haze removal ability. However, too
small value of s may introduce halo artifact and black effect in the depth jumps (see the zoom-in
red patches), and too small value of « also introduce over-saturation problem in close-range scene
(see the blue patches). As a tradeoff, we chose s = 100 and « = 0.4 in this work since they can
achieve the best visual quality. Once the parameters in VROHI are determined, it can be used on
all types of images straightforwardly. In following experiments, the recovered results of VROHI are
all based on the combination of the determined parameters, as listed in Algorithm 1.

4.2 VROHI Performance Demonstration

4.2.1 Evaluation of Global-Optimization-Based Dehazing: As aforementioned, there are mainly
three categories of image algorithms that are proposed to enhance the visibility of images captured
in hazy weather. They are the ASM-based, multi-scale-fusion-based, and deep-learning-based
methods. Fig. 6 illustrates the processing procedure and the associated running time of the
proposed VROHI (global-optimization-based) and three representative techniques, including DCP
(ASM-based) [7], MSF (multi-scale-fusion-based) [17], and DehazeNet (deep-learning-based) [20].
As illustrated in Fig. 6, the proposed VROHI only needs to determine one unknown constant while
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Fig. 6. Overview of image dehazing procedures using DCP, MSF, DehazeNet, and the proposed VROHI.

the other methods need to employ complex tools (such as guided filter and Laplacian-pyramid
operator) to realize the haze removal. As a consequence, the proposed global-optimization-based
VROHI takes a much shorter time to recover the hazy input.

4.2.2 Evaluation of VROHI on Different Sample Images: After evaluating the global-optimization
strategy, the proposed VROHI was then tested on various types of outdoor hazy images obtained
from well-known references [7], [15], [40]. Fig. 7 shows the original hazy images, the calculated
HTMs, and the corresponding dehazed results to intuitively demonstrate the robustness of VROHI.
It can be observed from this figure that VROHI can accurately estimate the HTM and thoroughly
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Fig. 7. Visibility recovery result of VROHI on different types of outdoor hazy images. Top: Hazy images.
Middle: Calculated HTMs. Bottom: Results recovered via VROHI.

remove the haze from the input image, no matter whether the atmospheric particle distribution is
homogeneous or inhomogeneous. Moreover, without introducing any additional post-processing,
VROMHI still successfully avoids the over-enhancement in the sky regions and the over-saturated in
the mist regions.

4.3 Qualitative Comparisons With State-of-The-Art Technologies

4.3.1 Comparison on Challenging Real-World Images: Being able to handle hazy images with
complex environment, for example, mist, heavy haze, non-uniform haze, and white-gray scene, is a
significant but challenging task for dehazing techniques. Fig. 8 compares the processing results of
BCCR (ASM-based) [38], NLD (ASM-based) [12], CAP (ASM-based) [39], DEFADE (multi-scale-
fusion-based) [18], MSCNN (deep-learning-based) [21], AoD-Net (deep-learning-based) [22], and
the proposed VROHI (global-optimization-based) on six challenging outdoor images.

As shown in Figs. 8(b) and 8(c), both BCCR and NLD can uncover the texture details for all the
given images. However, they cannot well handle the regions where the brightness of scene targets
is inherently similar to the atmospheric light. In particular, the colors in the recovered rocky areas
are completely deviated from the real situation that expected (see the fifth example). For CAP as
shown in Fig. 8(d), although it can avoid the above negative problems, its dehazing strength is very
weak. This is due to the fact that scattering coefficient used in CAP is simply set as a fixed constant.
In Fig. 8(e), DEFADE is able to thoroughly exclude the haze for most given images, but its recovery
scenes appear to be darker than they should be. Besides, in the dark regions, the dehazed results
using DEFADE suffers from information loss (see the fourth example). As seen in Fig. 8(f) and 8(g),
the results obtained via MSCNN and AoD-Net are very visual compelling for mist scenes, whereas
they lack the ability to restore to hidden textures for the scenes with heavy haze (see the second
example). Moreover, all these comparable methods are not suitable to deal with the image with
non-uniform haze (see the third example). The scenes with thick haze in the original picture are still
surrounded by some mist in the dehazed results. In comparison, VROHI is able to achieve more
realistic haze-free results without these negative visual effects, as shown in Fig. 8(h).

4.3.2 Comparisons on Synthetic Images: Despite the fact that the proposed VROHI is capable
of achieving the best recovery results on real-world images, the comparison shown in Fig. 8
might be unfair since it is hard to capture haze-free scenes as the corresponding references of
the real-world hazy images. Therefore, we further conducted a comparison between VROHI and
state-of-the-art techniques on some sample images from the Realistic Single Image Dehazing (RE-
SIDE) dataset [41], which includes both the hazy images and the corresponding haze-free images.
Figs. 9(a)—9(h) show the hazy images and the recovered results based on the synthesized images
using BCCR, NLD, CAP, DEFADE, MSCNN, AoD-Net, and the proposed VROHI, respectively. The
corresponding ground truth references are given in Fig. 9(i) to facilitate this comparison.
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Fig. 8. Qualitative comparison between some state-of-the-art techniques and the proposed VROHI
on different kinds of challenging hazy images. (a): Hazy images. (b): BCCR. (c): NLD. (d): CAP.
(e): DEFADE. (f): MSCNN. (g): AoD-Net. (h): VROHI.
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Fig. 9. Qualitative comparison between the proposed VROHI and other state-of-the-art techniques
on synthetic images. (a): Hazy Images. (b): BCCR. (c): NLD. (d): CAP. (e): DEFADE. (f): MSCNN.
(9): AoD-Net. (h): VROHI. (i): Ground Truth Images.
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TABLE 1
Quantitative Comparison of Recovery Images Shown in Fig. 9 Using 7, e, FADE, and PSNR

Metrics Examples BCCR NLD CAP DEFADE MSCNN AoD-Net VROHI

FE1 3.7767 2.3792 1.8308 1.5697 1.5930 1.5257 2.3813

E2 1.9603 2.0151 1.6435 1.8490 1.3445 1.2234 2.4114

I3 E3 1.7352 1.5047 1.4140 1.8790 0.9982 1.2079 1.9321
F4 1.6842 1.5410 1.4206 1.6492 1.0953 1.2081 2.0003

E5 2.5712 3.5672 1.6997 1.6405 1.5819 1.4241 3.2416

7 mean value 2.3455 2.2015 1.6017 1.7175 1.3226 1.3178 2.3933
E1l 0.9554  0.4320 0.3840 0.3511 0.3576 0.3350 0.3978

E2 1.5276 1.8290 1.4496 1.0190 0.6038 1.4896 1.8510

e E3 0.6079 0.4665 0.4532 0.5688 0.1534 0.5342 0.6501
FE4 0.2185 0.1471 0.1209 0.0721 0.0697 0.0994 0.1414

E5 3.5516 3.6450 3.1755 2.7531 2.2544 3.0072 3.8907

e mean value 1.3722 1.3039 1.1166 0.9528 0.6878 1.0931 1.3862
E1l 0.3683 0.5816 0.9374 1.2254 1.1191 1.1733 0.5063

E2 0.6667 0.7886 1.4090 1.1286 1.2724 1.0986 0.4314

FADE E3 0.5877  0.5972 0.6752 0.6278 0.8071 1.0885 0.4755
E4 0.2732  0.2562  0.3568 0.2580 0.5099 0.4158 0.2793

E5 0.5695 0.6592 1.3986 1.3055 1.5745 1.6388 0.5028

FADE mean value 0.4931 0.5766 0.9554 0.9091 1.0566 1.0830 0.4391
E1l 13.1496 14.9327 24.0319 19.3581 23.7121 25.6268  26.5301

E2 13.5973 13.8677 15.5965 15.3929  14.3240 13.9022 15.5571

PSNR E3 15.1527 18.0433 19.6957 18.7315 22.0421 18.5164 24.7497
FE4 15.7689 15.3214 22.0249 18.6887 21.0771 21.9374 22.3663

E5 13.9008 14.7321 23.0843 19.9370  20.5149 19.6696 23.7995

MSE mean value 14.3138 15.3794 20.8794 18.4216  20.3340 19.9304 23.6005

As observed in Figs. 9(b) and 9(c), the restored results using BCCR and NLD can clearly indicate
the target contour for all the given examples, but the restored colors are generally over-saturated
(see the first and fourth examples). In addition, there is also an over-enhancement problem in the
sky region (see the third example). As shown in Fig. 9(d), the haze still remains in the second
and last examples after the dehazing process of CAP. According to Fig. 9(e), DEFADE achieves a
visually pleasing result for most examples, but cannot deal with the fourth example well. As seen in
Figs. 9(f) and 9(g), MSCNN and AoD-Net are capable of attaining the haze-free results with vivid
color and necessary details for mist scenes. However, haze residue can be found in the second
and last examples. Compared to these methods, VROHI is able to moderately uncover the contents
and contours from vague scenes. More importantly, VROHI’s results do not lead into any negative
effects and can maintain the tones of ground truth images, as demonstrated in Fig. 9(h). The
success of VROHI lies in the following two aspects. The first one is the effectiveness of MAHM. The
most visible manifestation is the estimated HTMs are very consistent with the real haze distributions
(see Fig. 7). The second is that the designed GOF is capable of making up the limitation of prior
knowledge, thus global optimum results instead of local ones can be obtained.

4.4 Quantitative Comparisons With State-of-The-Art Technologies

Qualitative comparison depends on individual’s subjective judgment, which may cause differences
in judgment among different viewers. Therefore, widely-recognized metrics including the fog aware
density evaluator (FADE) [18], the mean ratio of the gradients at visible edge (F) [42], the ratio of new
visible edges (¢e) [42], and peak signal-to-noise ratio (PSNR) are used to quantitatively evaluate the
proposed VROHI and aforementioned techniques. In general, a smaller FADE indicates a stronger
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Fig. 10. Comparison of the running time of the states-of-the-art techniques and the proposed VROHI.

restoration ability, larger 7 and e stand for a richer information contained in the recovery results, and
a greater PSNR means that the dehazed result is closer to the corresponding real scene.

The values of the assessment metrics on the dehazed results shown in Fig. 9 are summarized
in Table 1. It can be concluded from the figure that VROHI achieves the best scores of 7, e, and
FADE for the examples E2, E3, and E5. This indicates that VROHI has the ability to restore richer
information and remove more haze from single input image. Despite the fact that BCCR and NLD
have the better scores of 7, e, and FADE than VROHI for the remaining examples, the images
dehazed via these methods appear to be over-enhanced. This might leads to some unreasonable
edges, e.g., in the sky regions of the first example. For PSNR, the scores of VROHI are the best
compared with other techniques, which means VROHI is able to produce a desirable result similar
to ground truth image.

4.5 Efficiency Comparisons

Apart from the restoration quality, the computational complexity is another critical metric for image
dehazing technique. Taking the first two hazy images in Fig. 9 as test examples, we further give
a comparison of the running time between aforementioned methods and VROHI with different
resolutions, as shown in Fig. 10. Please note that AoD-Net is implemented in Pycaffe and the
remaining techniques are carried out in Matlab, thus we did not show the running time of AoD-Net
for fairness. Due to the employed global-optimization-based strategy, it is not surprising that the
proposed VROHI exhibits significantly shorter processing times compared to other techniques. It is
more appealing that the time cost curve of VROHI has the smallest slope among those of different
algorithms. This illustrates that, as the image resolution increases, the superiority of the proposed
VROHI over other techniques, i.e., faster processing, becomes more significant.

5. Conclusion

In this paper, a modified additive haze model (MAHM) is introduced for fast hazy image restoration.
Based on this MAHM, a visibility recovery technique for single hazy images called VROHI is
further developed. By combining the low-frequency component of hazy image and the saturation
prior, VROHI only needs to determine one unknown constant to achieve visibility recovery, and
can work well on both mist, heavy haze, inhomogeneous haze, and gray white scene images.
In addition, all the operators used in VROHI have lower computational complexity than the tools
employed in the state-of-the-art approaches, which makes it a superior candidate for real-time
systems. Experiments demonstrate that VROHI achieves an outstanding restoration quality and
higher efficiency compared to the state-of-the-art techniques.
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