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ABSTRACT Imbalanced data problem is widely present in network intrusion detection, spam filtering,
biomedical engineering, finance, science, being a challenge in many real-life data-intensive applications.
Classifier bias occurs when traditional classification algorithms are used to deal with imbalanced data.
As already known, the General Vector Machine (GVM) algorithm has good generalization ability, though
it does not work well for the imbalanced classification. Additionally, the state-of-the-art Binary Ant Lion
Optimizer (BALO) algorithm has high exploitability and fast convergence rate. Based on these facts,
we have proposed in this paper a Cost-sensitive Feature selection General Vector Machine (CFGVM)
algorithm based on GVM and BALO algorithms to tackle the imbalanced classification problem, delivering
different cost weights to different classes of samples. In our method, the BALO algorithm determines the
cost weights and extract more significant features to improve the classification performance. Experiments
conducted on eleven imbalanced data sets have shown that the CFGVM algorithm significantly improves
the classification performance of minority class samples. By comparing with similar algorithms and state-
of-the-art algorithms, the proposed algorithm significantly outperforms in performance and produces better

classification results.

INDEX TERMS Imbalanced data, cost-sensitive, general vector machine, binary ant lion optimizer.

I. INTRODUCTION

In traditional classification research, there are some basic
assumptions: (1) The numbers of samples approximately
equal across different classes; (2) The misclassification cost
in different classes is also roughly the same. However, in prac-
tical applications, the above two assumptions are difficult to
hold. The distribution of raw data in many applications is
imbalanced, as they focus on minority categories of related
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information, such as detecting illegal transactions in credit
cards, mining coding information in gene sequences, and
detecting oil pollution on the sea surface. In the detection
of illegal credit card transactions, most of these credit card
transactions are standard transactions, and only a small num-
ber of credit card transactions are unlawful, which is due to
the probability of events leading to data imbalance.

Data collection of some application-specific classes is
delicate due to price and privacy issues. If the traditional
classification algorithm is applied to classify the data of
the imbalance problem, the overall recognition rate can be
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excellent, though the recognition rate of the minority classes
that we focus on may not be reasonable, which is due to the
conventional classification algorithm treating all categories
of data equally, ignoring the relative distribution of different
groups, resulting in biased towards the majority class.

For imbalance classification problems, we aim at improv-
ing the recognition rate of minority classes as much as
possible, while not reducing the recognition rate of major-
ity classes. The main reason is that the recognition rate of
minority classes is often more important than that of major-
ity classes. For instance, in a network intrusion problem,
if the intrusion behavior is misclassified into normal behavior,
it will lead to incalculable losses, and the normal behavior
being misclassified into intrusion behavior will not cause
significant impact [1]. In cancer detection, if cancer patients
are misclassified as normal patients, they miss the best treat-
ment time and eventually lead to death. The misclassification
of normal patients into cancer patients may lead to mental
tension, which will not cause fatal harm to the former [2],
though. The inefficiency of traditional classification algo-
rithms and the importance of the recognition rate of minority
classes inspire us to find new ways to solve the class imbal-
ance problem.

This paper proposes a hybrid algorithm CFGVM based on
a cost-sensitive learning algorithm and feature selection algo-
rithm to solve the class imbalance problem. The contributions
are listed below:

1) A CFGVM algorithm is proposed based on the GVM
algorithm and the BALO algorithm. The GVM algorithm is
a new classification algorithm proposed by Zhao in 2016
[3]. The BALO algorithm is a new nature-inspired algorithm
proposed by E. Emary in 2016 [4]. To the best of our knowl-
edge, our proposed method is the first research work aiming
at utilizing the GVM algorithm and the BALO algorithm
to solve the imbalanced classification problem. Firstly, The
BALO algorithm is used to improve the GVM algorithm to
a Cost-sensitive General Vector Machine (CGVM) algorithm
by assigning differential misclassification costs to different
classes, and then the BALO algorithm is used to search the
optimal feature subset to further improve the classification
performance to a CFGVM algorithm.

2) Experiments are carried out on on eleven datasets.
In comparison with state-of-the-art algorithms, the effec-
tiveness of the proposed algorithm has been verified. In all
the comparison algorithms, Six evaluation indicators of
CFGVMI1 algorithm can obtain the best results on eight
datasets, Six evaluation indicators of CFGVM?2 algorithm
can obtain the best results on nine datasets, while six eval-
uation indicators of CFGVM3 algorithm can obtain the best
results on all the eleven datasets. It illustrates that G-mean
can slightly better evaluate the classification performance
of imbalanced classifications compared to F-measure and
Accuracy in this paper.

The rest of this paper is organized as follows: Section 2 out-
lined the related work of cost-sensitive learning, Ant Lion
Optimizer (ALO) and GVM. Section 3 gives the details of the
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TABLE 1. Cost matrix for binary problems.

Project Predicted as cat- | Predicted as cat-
egory 1 egory 2

True for the first category Ci1 Cha

True for the second category | C21 Caa

proposed algorithm. The experimental results are discussed
in Section 4, and finally, conclusion and future work are
summarized in Section 5.

Il. RELATED WORK

A. COST-SENSITIVE LEARNING ALGORITHM

The cost-sensitive learning algorithms improve the classifi-
cation performance of imbalanced classification by assign-
ing different misclassification costs to the minority and the
majority class samples. The key to the cost-sensitive learning
algorithm is to determine the optimal value of the costs by
minimizing the total misclassification cost in the training
samples [5]. The cost matrix of the binary classification is
shown in Table 1. C;; represents the cost of predicting a
sample of class i as class j. When i = j, which means the cost
for correct classification is 0. In the cost-sensitive algorithm,
Cij # Cji. Generally speaking, minority classes are more
important than majority classes [6], so in practice, we should
give greater punishment to minority classes. The design of
the cost matrix is related to the final classification. Suppose
category i is a minority class. For simplicity, we can set Cj; to
a constant 1 and then find the optimal value of Cj;. The binary
imbalanced classification problem is of particular interest in
this paper.

In the past decades, many cost-sensitive learning algo-
rithms have been proposed to deal with the class imbal-
ance problem, which could be divided into six categorites
depending on different strategies. The first category is to
modify the objective function using a weighting strategy.
Cheng et al. [7] proposed a cost-sensitive large margin distri-
bution machine to obtain a balanced classifier, which intro-
duced the cost-sensitive margin mean and minimizes the
cost-sensitive penalty. Wu et al. [8] proposed a mixed-kernel
based weighted extreme learning machine considering the
influence of kernel function on human activity recognition,
which results showed that the proposed algorithm outper-
forms extreme learning machine (ELM) and weighted ELM
algorithm on Accuracy, G-mean metrics in the UCI dataset.
Phoungphol et al. [9] proposed a new multiclass Support Vec-
tor Machine (SVM) algorithm for imbalance learning. The
algorithm formalized a new objective function to maximize
G-mean, which results showed that the proposed algorithm
could be effectively applied in multiclass imbalance problem.
Maldonado and Weber [6] proposed a family of embed-
ded algorithms for backward feature selection using a cost-
sensitive metric that becomes flexible. Compared with the
well-known feature selection algorithm, the proposed algo-
rithm could acquire better classification performance with
fewer features on the six imbalanced data sets.
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The second class of algorithms involves tree-building
strategies. Del Rio et al. [10] proposed a new ensemble
creation algorithm that incorporates Random Balance to
AdaBoost.M2. The novelty of the algorithm is that the pro-
portions of each member in the ensemble algorithm are ran-
domly selected. A cost-sensitive ensemble was proposed by
Krawczyk et al. [11], in which authors combined random
subspace based feature space with cost-sensitive decision
trees. Sahin ef al. [12] developed a new algorithm to select the
splitting attribute at each non-terminal node by minimizing
the total misclassification costs.

The third class of algorithms is to introduce a cost fac-
tor into the fuzzy rule-based classification systems. Lopez
etal. [13] presented a new algorithm Chi-FRBCS-BigDataCS
based on a linguistic cost-sensitive fuzzzy rule-based
algorithm for imbalanced learning. Vluymans et al. [14]
developed a framework to solve the multi-instance class
imbalance problem based on the fuzzy rough set theory,
which was composed of the proposed two types of the classi-
fier. The class-dependent weight vectors were used in ordered
weighted aggregation.

The fourth class of algorithms is to use a cost-sensitive
error function on the neural network. Oh et al. [15] proposed
a new scheme based on Active Example Selection (AES).
Different from most traditional machine learning algorithms,
AES started learning with a small subset of size and increased
gradually. Therefore, the objective functions of AES are also
different from the conventional activation function. A new
algorithm cost-sensitive multilayer perceptron based on a
joint objective function is proposed for imbalanced classifi-
cation [16]. The importance of class errors is distinguished by
using a single cost parameter. Ghazikhani ez al. [17] presented
two online classifiers to solve the problem of concept drift and
class imbalance that incorporated two different cost-sensitive
strategies to the objective function of the online one-layer
Neural Network.

The fifth class of algorithms is cost-sensitive boosting
algorithms. Sun et al. [18] studied cost-sensitive boosting
algorithms to cope with the class imbalance problem. The
proposed algorithm included a new weight updating strategy
by weighing each sample based on its associated cost item.
Wang et al. [19] proposed a new boosting-SVMs to deal with
the class imbalance problem. The proposed algorithm com-
bined the resampling algorithm with a cost-sensitive learning
algorithm.

The sixth class of algorithms is based on Bayes decision
theory. Ali et al. [20] developed an efficient ensemble sys-
tem Cost-Sensitive Classifier with GentleBoost Ensemble,
which integrated cost sensitive learning into GentleBoost,
AdaBoostM1, and Bagging. GentleBoost used Decision Tree
as base learners. Datta and Das [21] proposed an improved
support vector machine algorithm by minimizing the overall
Bayes error with equal misclassification costs and target class
misclassification with unequal costs. Bahnsen et al. [22]
proposed a cost measure to evaluate a cost-sensitive learning
algorithm based on Bayes minimum risk.
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In addition to cost-sensitive learning algorithms, some
researchers present other algorithms to deal with the class
imbalanced problem. This paper is highly related to cost-
sensitive learning algorithms, so other algorithms are only
briefly introduced. Kang et al. [23] proposed a Noise-filtered
Under-sampling Scheme based on under-sampling and noise
filtering for imbalanced learning. Compared with the orig-
inal undersampling-based algorithms, the proposed scheme
could acquire better classification performance in terms of
F-measure, G-mean and the area under the curve. Kang
et al. [24] presented a weighted undersampling scheme for
SVM based on space geometry distance to cope with the
class imbalanced problem. Compared with the state-of-the-
art algorithms, the proposed algorithm could acquire bet-
ter classification performance on the 27 imbalanced data
sets. Liu et al. [25] developed an embedded feature selec-
tion algorithm named weighted Gini index by adding an
index-weighting method to classification and regression tree
to deal with the class imbalanced problem. Experiments
shown that WGI could achieve the better performance only
if 20% or more of features are chosen compared to Chi2,
F-statistic and Gini index. Tang et al. [26] construct a com-
prehensive feature vector and develop an ensemble identifica-
tion algorithm to deal with real-word Weibo datasets, which
results showed that the recall rate of the proposed algorithm
increased by 6.5% compared with the existing state-of-the-art
algorithms.

B. ALO AND GVYM

ALO is a new metaheuristic optimization algorithm, which
has the advantage of high development and convergence [27].
Mirjalili has successfully resolved the three typical engineer-
ing problems by using the ALO [27]. After that, E. Emary
proposed the BALO based on the ALO for feature selection
[4]. Experiments have shown that the proposed BALO is bet-
ter than particle swarm optimizer (PSO), genetic algorithms
(GAs), binary bat algorithm (BBA), and the ALO on 21 data
sets. Seyedali Mirjalili proposed a Multi-Objective Ant Lion
Optimizer to solve the multi-objective optimization problem,
which results showed that this algorithm outperformed Non-
dominated Sorting Genetic Algorithm II on the majority of
the test functions [28].

The GVM algorithm is a new classification algorithm pro-
posed by Zhao in 2016 [3]. Since it contains the design risk
minimization and Monte Carlo (MC) algorithm, it has strong
generalization ability and has been successfully applied in
phishing detection [29], Android malware detection [30],
groundwater status forecasting [31], electricity demand pre-
diction [32]. Yong et al. proposed a derivative-based Monte
Carlo algorithm to accelerate the training of GVM based on
the GVM [33]. Yong et al. applied the Monte Carlo neural
network (MCNN) based on the GVM to electricity load
forecast. Deep MCNNs with one, two and three hidden layers
were designed at the same time. The results demonstrated
that deeper MCNN performed better than shallow MCNN
[34]. Yang et al. introduced a GVM approximate calculation

69981



IEEE Access

F. Feng et al.: Using Cost-Sensitive Learning and Feature Selection Algorithms

FIGURE 1. The structure of GVM.

system based on field programmable gate array, which can
effectively accelerate the calculation of GVM [35].

lll. OUR PROPOSED ALGORITHM

ALO is a new metaheuristic optimization algorithm proposed
by Mirjalili in 2015 [27]. The high applicability of the ALO
algorithm can be obtained from the experimental results of
multi-modal and composite test functions in literature [27],
which is also attributed to the random walk and roulette
selection mechanism. The BALO algorithm is a binary form
of the ALO algorithm. The position of the antlion is converted
to 0 or 1, which is no longer a continuous value. Also, the ini-
tial position is constructed by a random method. Because of
its novelty and underlying excellent characteristics, the pro-
posed algorithm CFGVM combines cost-sensitive learning
method and feature selection method based on BALO and
GVM. Firstly, The BALO algorithm is used to improve the
GVM algorithm to a cost-sensitive CGVM algorithm, and
then the BALO algorithm is used to search the optimal fea-
ture subset to further improve the classification performance,
as described in subsections 3.1 and 3.2.

A. CGVm

M
kn =Y Vim-Xm+by, h=12,....H (1)
m=1
phzﬁp(ﬁhkh)a h=11277H (2)
H
te =fp(Y_ wen-pr), e=1,2,....E 3)
h=1

The structure of GVM is composed of three layers: input
layer, hidden layer and output layer, as shown in Fig 1.
pn and t, represent the outputs of the hidden layer and the
output layer, as deducted by Formula 2 and 3, respectively.
xm (m=1,2,...M) denotes the input layer units. vy, [h][m]
is the weight connecting the A-th hidden node and the m-th
input node. wep[e][h] represents the weight connecting the /-
th hidden layer and the e-th outputlayer. b, (h = 1,2, ..., H)
stands for the bias of the hidden layer. B is the transfer
function coefficient. fy,() denotes the activation function of
the hidden layer. f,;() denotes the activation function of the
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output layer. fj;() is set as a linear activation function. vy, is
initialized as decimals between —1 and +1. For the sake of
simplicity, wey, is set to be a random value 41 or —1 in the
initialization. After that, we will not change we;, and f,,;(). In
the training phase, we only need to adjust the weight matrices
Vim, bp, and Bp. In the GVM algorithm, we adopt the Monte
Carlo training algorithm. In other words, we only randomly
change one weight of one parameter matrix (vp,, by or fp)
in a relatively small range every time, and GVM will accept
the weight change while the overall cost is reduced. In this
case, the output is insensitive to the small change of the
input. On the other hand, the GVM algorithm introduces the
design risk to improve the generalization ability. The second
derivative can be used to express the smoothness of the model.
GVM algorithm uses the second derivative to control the
smoothness of the model [3]. Considering the response of
the & node in the hidden layer to the change of the /-th and
m-th dimension in the input layer, the corresponding second

derivative is:
0 2p h
0x10X;,

= Bivivimf;y (Bukn) 4

the corresponding second derivative of the e-th dimension
in the output layer to the change of the /-th and m-th dimen-
sion in the input layer,

92t il 92
T 5)

The smoothness (SR) of the whole network is a linear super-
position of the smoothness of all nodes.

SR (3w P 6
= {2 weng o ©)
Hence, we can control the smoothness of the network by
controlling the amplitude of B, by, Viun. f;, - brs Vi, f;, are all
limited in a small range in the initialization phase. We only
need to adjust the range of f;. In this way, we can control the
smoothness of the whole network to reduce the design risk
by controlling the range of fj. B is the control parameter
in the GVM algorithm. In the initialization phase, vy, is set
to be a random decimal between +1 and —1. by, is set to
be a random decimal between +1 and —1. f;() is set to be
tanh. Pragmatically, the number of hidden layer nodes is set
to 10 times the number of samples [3]. In the classification
problem of the original GVM algorithm, the penalty factor

of the loss function is the same for the majority class and
minority class. The loss function formula is as follows:

1 &
M=o} Y Geto—g? ()

qg=1e=1t,-t,0<g

E represents the number of neurons in the output layer. g
denotes the separating margin, which mainly separates the
two types of samples, somewhat like the hyperplane of SVM.
In the classification problem, we mainly control the output in
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the output layer by adjusting the value of g. Therefore, g is
also the control parameter in the GVM algorithm.

For the two-class problem, E is set as 2. Q denotes the
number of samples. The 7, represents the actual output of
the neural network. The 7, represents the label of the neural
network. Suppose there are two categories: Category 1 and
Category 2. If the true value of the category is 1, then #1¢
and 1y are set to {1, —1}, otherwise {—1, 1}. More details of
GVM can refer to [3].

ALO is a new metaheuristic optimization algorithm that
simulates the biological behavior of antlions hunting ants.
When hunting, the antlion digs a trap in the sand and hides
at the bottom of the cave to wait for its prey. Once the ant
enters the trap, to prevent it from escaping, the antlion will
immediately dig out the sand and slide it into the bottom of
the cave to hunt. The above process can be summarized into
five steps: the movement of ants, the construction of traps,
the trapping of ants in traps, the capture of prey, and the
reconstruction of traps. The standard ALO algorithm follows
the following principles: (1) Each ant searches around the
selected antlion by random walk; (2) The range boundary of
random walk is affected by the shrinkage of the antlion trap;
(3) The antlion builds pits of different sizes according to their
adaptability, and more ants enter the trap in larger pits; (4)
Each ant is affected by both the selected antlion and the elite
antlion in each iteration; (5) If the ant is more adaptable than
the selected antlion, it means that it is captured by the antlion;
(6) The antlion repositioned the captured prey and built pits
to increase the probability of capturing another prey.

The process of ALO algorithm is as follows:

(1) To determine the initial population of ants and antlions.
m is population number, dim represents variable dimension, ¢
is current iteration number, Maxiter stands for maximum iter-
ation number, antposition is the ant position, antlionposition
is the antlion position, Elite is the position of the elite antlion,
Antlionfitness is the antlion’s fitness value, Elitefitness is the
fitness value of the elite antlion;

(2) The positions of ants and antlions are randomly initial-
ized within the boundary of the solution space, and the fitness
values of all the populations are calculated according to the
objective function sorted in descending order. We define the
antlion with the best fitness value in the antlion population as
the elite antlion;

(3) Each ant is randomly matched with an antlion by
roulette. The upper and lower bounds ¢', d', ¢}, d} of the
range are updated according to the matched position Formula
10 and 11. The ants are randomly walked around the selected
antlion and the elite antlion according to Formula 8, 12 and
13. Then the average value is obtained by Formula 14 and
used as the initial position of the next generation of the ant.

C (antpositiond) = [0, cumsum2r(t;) — 1)
s oo ., cumsum2r(Maxiter) — 1)] (8)
r) = :1 if rand > 0.5 ©)

0 otherwise
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= antlionposition]t- +c (10)
dl = antlionpositionjt- +d (11)
s
=< (12)
1
dt
d = — 13
; (13)
Rl‘ +Rt
antposition®(t) = A——E 5 E (14)

The ant’s random walk around the antlion can be regarded
as the search process for feasible regions by search agents
by Formula 8. C(antposition®) represents the set of steps of
ant random walk, cumsum is the cumulative sum of ant’s
wandering position, ¢ is the number of iterations. Maxiter is
the maximum number of iterations. r(¢) is a custom random
function, rand is a random number uniformly distributed on
[0,1]. The position of the antlion affects the boundary range
of the area where the ant travels by Formula 10 and 11. ¢’
represents the minimum of all variables at t-th iteration, d’
denotes the vector including the maximum of all variables at
t-th iteration, c? represents the minimum of all variables for
i-th ant, di[ is the maximum of all variables for i-th ant, 7 is
a constant that increases with the number of iterations. When
an ant falls into a trap, the antlion will raise sand, sharply
reducing the range of the ant’s movement to prevent the ant
from escaping, that is, with the increase of iteration times,
the upper and lower bounds decrease by Formula 12 and
13. antposition® (t) denotes the position of the i-th ant at the
(t+1)-th iteration. Rix is the random walk around the antlion
selected by the roulette wheel at t-th iteration, R%, represents
the random walk around the elite at t-th iteration.

(4) For each iteration, the initial values of ant and antlion
populations are reassigned and their fitness values are recal-
culated. The position of the best fitness value is taken as the
position of the new generation of elite antlion.

(5) Determine whether the maximum number of iterations
is reached, if it is reached, the iteration ends, and the final
result is output; if each maximum number of iterations is not
reached, repeat step (3).

More details of ALO can refer to [27].

d -
o xb if (ram‘i) > 0.5 (15)
x5 otherwise
d .
d x5, if (randl) >r
= 16
Fout {randZ otherwise (16)
—09x@G—1)
=09+ ——— 17
" + IterMax — 1 (17

BALO is a binary variant of the ALO. In the BALO algo-
rithm, each dimension of the search space is limited to O or
1. In the ALO algorithm, each ant updates its position by
averaging the selected antlion by the roulette wheel and the
elite antlion. While the average operator is replaced by the
crossover operation in the BALO algorithm. The crossover
operation here refers to simple random crossover, switching
between two input vectors with different probabilities by
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Formula 15. CW1 represents the attraction of an ant by the
elite antlion. It can also stochastic mutation around a selected
antlion with a suitable mutation rate by Formula 16. CW2
represents the attraction of an ant by the selected antlion by
the roulette wheel selection method. x¢,, is the d dimension
value for the output vector from mutation, xi‘,ﬂ is the input
vector to be mutated, rand1l and rand?2 are two random
numbers in the range [0,1]. r is the mutation rate at the i-th
iteration.

Here we propose a cost-sensitive algorithm CGVM by
setting different cost weight-based loss functions based on
GVM. The new loss function formula is as follows:

1 & &
AF = ——.

X Cij(te - 1e0 — 8)*+Cjilte - too — 8)°  (18)

It is assumed here that i represents the minority class, j
represents the majority class, then Cj; represents the cost
weight of misclassification of minority class samples, and the
cost weight of misclassification of majority class samples is
represented by Cj;. Since we assume that the value of Cj; is
1, it is clear that the value of Cij should be greater than 1,
and we use the BALO algorithm to choose the optimal C;;
value. In the CGVM algorithm, the position of the antlion
in the BALO algorithm represents the value of Cj;. That is,
when using BALO to select the cost weights of the minority
class, the position of antlion represents the cost weights to be
optimized. The number of integer bits is set to 4 digits, and
the decimal digit is set to 7 digits. The CGVM is described in
Algorithm 1. In the selection of the optimal value, we adopt
(1—G-mean) as the fitness function. The comparison algo-
rithm also uses (1 —Accuracy) and (1—F-mean) as the fitness
function, which we will discuss in detail in Section III.C.

B. SELECT THE OPTIMAL FEATURE SUBSET

We can get the optimal value using the CGVM algo-
rithm. After that, we obtain the optimal feature by adopting
the BALO as the feature selection algorithm. Specifically,
the position of the antlion in the BALO algorithm represents
the number of features in Algorithm 2. When the value of the
antlion position is 1, it means that the feature is selected; but,
when the value of the antlion position is 0, it means that the
feature is not selected. The specific process is described in
Algorithm 2.

C. EVALUATION CRITERIA AND FUNCTION

As in [36]-[39], Accuracy, True-positive rate (TPR), False-
positive rate (FPR), AUC, F-measure, G-mean are the most
commonly used evaluation metrics. We also adopt these
evaluation metrics to evaluate the performance of different
algorithms, as shown in equations 19, 20, 21, 24 and 25,
respectively. In this paper, the minority class represents the
positive class, the majority class represents the negative class.
Accuracy is the proportion of all samples correctly classified.
True Positive (TP) and True negative (TN) are the correctly
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Algorithm 1 CGVM
Input: m; number of ants, my number of antlions, dim
dimension of antlions, dim dimension of ants, t number
of iterations, Maxiter maximum number of iterations,
fitness fitness function
Output: Cp, best cost weight of minority class
1: Dividing training sets and test sets by stratified random
sampling
2: Randomly initialize the position of the antlions and ants
on the training set
3: if random() > 0.5 then
4 antposition; = 1
5: else
6: antposition; =0,i = 1...dim
7
8
9

: end if

. if random() > 0.5 then

: antlionposition; = 1

10: else

11: antlionposition; = 0,i = 1...dim

12: end if

13: Using the formula 18 as the loss function, (1—G-mean)
as the fitness, and the GVM algorithm as the classifier,
calculate the fitness values of all the antlions and ants.

14: Sort all the antlions to get the best antlion position

15: while 1 < Maxiter do

16: Calculate the mutation rate t by Formula 17

17: for each ant do

18: Choose an antlion by Roulette

19: Mutation operation of the selected antlion by For-
mula 16 becomes CW 1

20: Mutant operation of the ant lion with the best
fitness value by Formula 16 becomes CW?2

21: Cross the operation of CW1 and CW2 by For-
mula 15 to get the position of the new ant

22: end for

23: Calculate the fitness value of all ants

24: If the fitness value of the corresponding ant is better

than the fitness value of the antlion, the position of the
antlion is replaced with the current ant.

25: If the fitness value of the antlion is better than the
fitness value of the current elite, adjust the elite to the
current antlion

26: end while

27: Get the best antlion’ position pp.s and its fitness value
fbest

28: Convert to the best minority class cost Cpes; based on the
best antlion’ position ppes

classified samples belonging to the positive and the negative
class respectively. Whereas, False positive (FP) and False
negative (FN) is the mistakenly classified samples belong-
ing to the negative and the positive class respectively. TPR
represents the value of predicted positive classified correctly.
FPR represents the value negative class samples mistakenly
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Algorithm 2 Feature Selection Using the BALO Method

Based on the Algorithm CGVM (CFGVM)

Input: m; number of ants, my number of antlions, dim
dimension of antlions, dim dimension of ants, t number
of iterations, Maxiter maximum number of iterations,
fitness fitness function

Output: featuresub Optimal feature subset

1: Randomly initialize the position of all antlions and ants
for the training set divided by CGVM algorithm

2: if random() > 0.5 then

3: antposition; = 1

4: else

5: antposition; = 0,i = 1...dim

6: end if

7: if random() > 0.5 then

8: antlionposition; = 1

9: else

10: antlionposition; = 0,i = 1...dim
11: end if

12: The current feature subset featuresub is obtained accord-

ing to the position of the antlion, and a new training set
is obtained by feature selection of the training set.

13: Formula 18 as loss function, fitness 3 as fitness and
CGVM algorithm as classifier to calculate the fitness
values of all antlions and ants.

14: Sort the fitness values of all antlions to get the best
antlion’ position

15: while t < Maxiter do

16: Calculate the mutation rate mt by Formula 17

17: for each ant do

18: Choose an antlion by Roulette

19: Mutation operation of the selected antlion by For-
mula 16 becomes CW 1

20: Mutant operation of the ant lion with the best
fitness value by Formula 16 becomes CW?2

21: Cross the operation of CW1 and CW2 by For-
mula 15 to get the position of the new ant

22: end for

23: Calculate the fitness value of all ants

24: If the fitness value of the corresponding ant is better

than the fitness value of the antlion, the position of the
antlion is replaced with the current ant.

25: If the fitness value of the antlion is better than the
fitness value of the current elite, adjust the elite to the
current antlion

26: end while

27: Get the best antlion’ position ppes; and its fitness value
f best

28: Convert to the best feature subset featuresub based on the
best antlion’ position ppeg;

predicted as positive. Precision is the ratio of TP to all the
positive results, Recall is the proportion of TP in all the
positive class samples. F-measure is the weighted harmonic
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TABLE 2. Data descriptions used in the experiment.

Name Minority ~ Majority Nf Ss MiSs MaSsIR  Source
breast_tissue "car" and All 9 106 36 70 1.94 UCI
"fad" other
bupa " "2" 6 345 145 200 1.38 UCI
cleveland positive negative 12 303 35 268 7.66 Keel
ecoli01VS235positive negative 7 244 24 220 9.17 Keel
glass4 containers ALL 9 244 13 201 1547U0CI
other
Wisconsin ~ Malignant Benign 9 683 239 444 1.86 UCI
glass6 headlamps ALL 9 244 29 185 6.38 Keel
other
glass016vsS positive negative 9 184 9 175 19.44Keel
newthyroidl "1" "2 5 215 35 180 5.14 Keel
shuttlec2vsc4 "1" "2" 9 129 6 123 20.5 Keel
ecoli034vs5 "1" "2" 7 200 20 180 9 Keel

Nf represents the number of feature; Ss stands for the sample
size; MiSs is the minority sample size; MaSs represents the
majority sample size; IR stands for the imbalance rate.

mean of Precision and Recall. G-mean is also a comprehen-
sive indicator. The closer to 1, the better. AUC stands for the
area under the ROC curve, the bigger, the better. fitness3 is
used as the fitness function in the feature selection process
in this paper, as shown in Formula 28. At the same time,
fitness1 and fitness2 are also used as the fitness function in
the comparative algorithms, as shown in Formula 26 and 27,
respectively. The len (featuresub) represents the number of
selected features, the len (feature) represents the total number
of features, and the o parameter is used to adjust the weight
relationship between the number of features and the error rate.
In this paper, « is set to 0.01, the same defined in [4].

TP + TN
Accuracy = (19)
TP+ FP+ TN + FN
TP
TPR = —— (20)
TP + FN
FP
FPR = ———— 21
TN + FP
. P
Precision = —— (22)
TP + FP
TP
Recall = TPR = ———— (23)
TP + FN
2 x Recall * Precision
F-measure = — (24)
Recall + Precision
TP TN
G-mean = * (25)
TP +TN TN + FP

fitness1 = (1 — a)(1 — Accuracy)
+a(len(featuresub)/len(feature)) (26)

fitmess2 = (1 — a)(1 — F-measure)
+a(len(featuresub)/len(feature)) (27)

fitness3 = (1 — a)(1 — G-mean)
+a(len(featuresub)/len(feature)) (28)

IV. EXPERIMENTAL RESULTS AND ANALYSIS

A. DATASETS AND EXPERIMENTAL ENVIRONMENT

To evaluate the CFGVM algorithm, we conducted exper-
iments on eleven datasets, where four of them were
from UCI repository [40] (bupa, breast_tissue, glass4,
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FIGURE 2. Display of Accuracy value for nine algorithms on eleven
datasets.
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FIGURE 3. Display of TPR value for nine algorithms on eleven datasets.
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FIGURE 4. Display of FPR value for nine algorithms on eleven datasets.

and Wisconsin datasets), and seven from Keel [41]
(cleveland, ecoli01VS235, glass6, glass016vsS, newthyroid,
shuttlec2vsc4, and ecoli034vs5 datasets). The experimental
environment is a PC configured with Intel Core i5 7500
3.4 GHz CPU, 8GB SmartCache, and MS Windows10 64-bit
OS. All algorithms are executed in the same experimental
environment, and the final results are the averages of 20 exe-
cutions. Experiments are implemented using Matlab pro-
gramming language in Matlab R2017a environment. Details
of the datasets are shown in Table 2.

B. COMPARISON OF CFGVM ALGORITHM AND ITS
SIMILAR ALGORITHM

To verify the performance and effectiveness of the pro-
posed algorithm, comparison to similar algorithms are shown
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FIGURE 7. Display of F-measure value for nine algorithms on eleven
datasets.

in Table 3. In all the oversampling algorithms, we stop sam-
pling as the number of minority class samples is the same
as the majority class samples by the oversampling algorithm.
The complete dataset is split as: 80% for training and 20%
for testing by random stratified sampling. The parameters of
the BALO algorithm and the GVM algorithm are the same
in different comparison algorithms in the same dataset. In the
selection of the optimal weight using BALO, the number of
iterations, and the scale of the population is set to 10. In the
selection of the significant feature by BALO, the number
of iterations, and the scale of the population is set to 15.
In the BBMCA algorithm, the number of iterations and the
scale of the population is set to 10 in the selection of the
optimal weight using BPSO. In the selection of the significant
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TABLE 3. Description of contrast algorithms.

Algorithm

Detailed description

GVM

GVM classification algorithm

RBGVM

The imbalance rate is used as the cost weight of minority classes, BALO is used as feature
selection algorithm and GVM is used as a classification algorithm, the fitness function of
the selected feature is the formula 28

BBGVM

BPSO is used to improve the GVM algorithm to obtain the cost weights of minority classes,
then BPSO is used as the feature selection algorithm to select the features, GVM is used as
the classification algorithm. The fitness function of the cost of selection is (1—G-mean),
and the fitness function of feature selection is the formula 28

CGVM1

BALO is used to improve the GVM algorithm to obtain the cost weight of minority classes.
(1 — Accuracy) is adopted as the formula of fitness function

CGVM2

BALO is used to improve the GVM algorithm to obtain the cost weight of minority classes.
(1—F-measure) is adopted as the formula of fitness function

CGVM3

BALO is used to improve the GVM algorithm to obtain the cost weight of minority classes.
(1—G-mean) is adopted as the formula of fitness function

CFGVM1

BALO is used to improve the GVM algorithm to obtain the cost weight of minority classes,
Then BALO is used as feature selection algorithm to select features. GVM is used as
classification algorithm. (1 — Accuracy) is adopted as the fitness function of the cost
of selection, The formula 26 is adopted as the fitness function of feature selection

CFGVM2

BALO is used to improve the GVM algorithm to obtain the cost weight of minority classes,
Then BALO is used as a feature selection algorithm to select features. GVM is used as
classification algorithm. (1 —F-measure) is adopted as the fitness of the cost of selection,
The formula 27 is adopted as the fitness function of feature selection

CFGVM3

BALO is used to improve the GVM algorithm to obtain the cost weight of minority classes,
Then BALO is used as a feature selection algorithm to select features. GVM is used as
classification algorithm. (1—G-mean) is adopted as the fitness function of the cost of
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selection, The formula 28 is adopted as the fitness function of feature selection

feature by BPSO, the number of iterations and the scale of
the population is set to 15, c1 and c2 are both set to 1.49445,
the maximum speed and minimum speed are both set to 1. g,
issetto 1.

The comparison of experimental results between the pro-
posed algorithm CFGVM and similar algorithms are shown
in Table 4 and 5. We can observe that the CFGVM algorithm
outperforms other similar algorithms in the classification
performance of imbalanced datasets. Specific analysis is dis-
cussed below:

(1) The performance of the CFGVMI1, CFGVM2 and
CFGVM3 algorithm are the same in dataset glasso6,
ecoli01VS235, Breast_tissue, glass016vsS, newthyroidl,
shuttlec2vsc4 and ecoli034vs5. In particular, the classifi-
cation indicators Accuracy, TPR, FPR, AUC, G-mean, F-
measure of the three algorithms are all 1, 1, 0, 1, 1, 1 in
dataset ecoliO1VS235, glass6, glass016vsS, newthyroidl,
shuttlec2vsc4 and ecoli034vs5. Six evaluation indicators of
CFGVM3 algorithm are better than those of CFGVMI1 and
CFGVM2 on all datasets, indicating that the G-mean can
be used to obtain better classification performance than the
Accuracy and F-measure in the fitness function.

(2) It can be seen from Tables 4 and 5 that the performances
of CFGVM series (CFGVM1, CFGVM2, CFGVM3) have
improved compared with CGVM series (CGVM1, CGVM2,
CGVM3) on ten datasets, except CGVM1 and CFGVMI1 on
the bupa data set. It shows that the feature selection algorithm
is helpful to improve the classification performance of imbal-
anced classification.

(3) Comparing the results of the RBGVM and CFGVM3,
except that Accuracy, TPR, FPR, AUC, G-Mean and F-
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measure areall 1, 1,0, 1, 1, 1 on glass6, shuttlec2vsc4 dataset,
the Accuracy, TPR, FPR, AUC, G-mean and F-measure val-
ues of CFGVM3 are all better than those of RBGVM on
other nine data sets, which shows that CFGVM3 is better
than using imbalanced rate as cost weight in the classification
performance of imbalanced datasets.

(4) Based on the comparison between the BBGVM
and CFGVM3, except that the TPR value in dataset
Breast_tissue, bupa, cleveland, ecoli01VS235, glass,
glass016vsS, newthyroid, shuttlec2vsc4 and ecoli034vs5 are
the same, other five evaluations of CFGVM3 are superior to
BBGVM on all data sets, which shows that BALO algorithm
has better classification performance than BPSO algorithm in
choosing the optimal weight and feature.

(5) Compared with all other algorithms, we can see that the
performances of other algorithms are significantly improved
compared with that of single classification algorithm GVM.
It demonstrates that feature selection and cost-sensitive learn-
ing algorithms can effectively improve the classification per-
formance of imbalanced classification.

Fig.2-Fig.7 have shown the Accuracy, TPR, FPR, AUC,
G-mean and F-measure for nine algorithms on eleven test-
ing datasets, respectively. It can be seen that the proposed
CFGVM3 obtains the best Accuracy, TPR, AUC, G-mean, F -
measure results among other algorithms on all datasets. From
Fig.4 we can observe that the CFGVM3 achieves the lowest
FPR in 10 out of 11 datasets.

The above experiment shows that the result of CFGVM3 is
better than that of CFGVM1 and CFGVM2, so this subsection
only compares CFGVM3 with other algorithms. Tables 6, 7,
8 and 9 show the comparisons between the CFGVM3 and
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TABLE 4. Experimental results of CFGVM and similar algorithms on the test data sets.

Dataset Method Accuracy TPR FPR AUC G-mean F-measure
Breast_tissue GVM 0.7273 0.375 0.0714 0.6518 0.59 0.5
RBGVM 0.9091 1 0.1429 0.9286 0.9258 0.8889
BBGVM 0.9091 1 0.1429 0.9286 0.9258 0.8889
CGVM1 0.9091 0.875 0.0714 0.9018 0.9014 0.875
CGVM2 0.9091 1 0.1429 0.9286 0.9258 0.8889
CGVM3 0.9091 1 0.1429 0.9286 0.9258 0.8889
CFGVM1 0.9545 1 0.0714 0.9643 0.9636 0.9412
CFGVM2 0.9545 1 0.0714 0.9643 0.9636 0.9412
CFGVM3 0.9545 1 0.0714 0.9643 0.9636 0.9412
bupa GVM 0.6812 0.5862 0.25 0.6681 0.6631 0.6071
RBGVM 0.7246 0.6207 0.2 0.7103 0.7047 0.6545
BBGVM 0.6522 0.7586 0.425 0.6668 0.6605 0.6471
CGVM1 0.7391 0.6897 0.225 0.7323 0.7311 0.6897
CGVM2 0.7391 0.7241 0.25 0.7371 0.737 0.7
CGVM3 0.7246 0.6897 0.25 0.7198 0.7192 0.678
CFGVM1 0.6812 0.7586 0.375 0.6918 0.6886 0.6667
CFGVM2 0.7391 0.7586 0.275 0.7418 0.7416 0.7097
CFGVM3 0.7391 0.7586 0.275 0.7418 0.7416 0.7097
cleveland GVM 0.9143 0.3333 0.0313 0.651 0.5683 0.4
RBGVM 0.9429 1 0.0625 0.9688 0.9682 0.75
BBGVM 0.8571 1 0.1563 0.9219 0.9186 0.5455
CGVM1 0.9429 0.6667 0.0313 0.8177 0.8036 0.6667
CGVM2 0.9143 0.6667 0.0625 0.8021 0.7906 0.5714
CGVM3 0.9429 0.6667 0.0313 0.8177 0.8036 0.6667
CFGVM1 0.9714 1 0.0313 0.9844 0.9843 0.8571
CFGVM2 0.9714 1 0.0313 0.9844 0.9843 0.8571
CFGVM3 1 1 0 1 1 1
ecoli01VS235 GVM 0.9714 0.72 0 0.86 0.8465 0.8333
RBGVM 0.9796 1 0.0227 0.9886 0.9886 0.9091
BBGVM 0.9184 1 0.0909 0.9545 0.9535 0.7143
CGVM1 0.9796 0.8 0 0.9 0.8944 0.8889
CGVM2 0.9796 0.8 0 0.9 0.8944 0.8889
CGVM3 1 1 0 1 1 1
CFMCAL1 1 1 0 1 1 1
CFMCA2 1 1 0 1 1 1
CFMCA3 1 1 0 1 1 1
glass4 GVM 0.9545 0.667 0.0244 0.8211 0.8065 0.6667
RBGVM 0.9545 1 0.0488 0.9756 0.9753 0.75
BBGVM 0.9773 0.667 0 0.8333 0.8165 0.8
CGVM1 0.9773 1 0.0244 0.9878 0.9877 0.8571
CGVM2 0.9773 1 0.0244 0.9878 0.9877 0.8571
CGVM3 1 1 0 1 1 1
CFGVM1 0.9773 1 0.0244 0.9878 0.9877 0.8571
CFGVM2 0.9773 1 0.0244 0.9878 0.9877 0.8571
CFGVM3 1 1 0 1 1 1
Wisconsin GVM 0.9562 0.9583 0.0449 0.9567 0.9567 0.9388
RBGVM 0.9708 1 0.0449 0.9775 0.9773 0.96
BBGVM 0.9635 0.9792 0.0449 0.9671 0.967 0.9495
CGVM1 0.9781 0.9792 0.0225 0.9783 0.9783 0.9691
CGVM2 0.9781 1 0.0337 0.9831 0.983 0.9697
CGVM3 0.9781 1 0.0337 0.9831 0.983 0.9697
CFGVM1 0.9781 1 0.0337 0.9831 0.983 0.9697
CFGVM2 0.9854 1 0.0225 0.9888 0.9887 0.9796
CFGVM3 0.9854 1 0.0225 0.9888 0.9887 0.9796
glass6 GVM 0.9535 0.6667 0 0.8333 0.8165 0.8
RBGVM 1 1 0 1 1 1
BBGVM 0.9535 1 0.0541 0.973 0.9726 0.8571
CGVM1 1 1 0 1 1 1
CGVM2 1 1 0 1 1 1
CGVM3 1 1 0 1 1 1
CFGVM1 1 1 0 1 1 1
CFGVM2 1 1 0 1 1 1
CFGVM3 1 1 0 1 1 1
previous algorithms, mainly including A-SUWO [42], IMC- [47]. “—" means that information is unavailable. The data

Stacking [43], SMOTE-IPF [44], FRB4+CHC+SVM [45], sets are divided in the same way as those in the comparative
LCMine+CAEP [46], C O*RBFN-LMS, CO?RBFN-SVD literature. Except for that, the dataset Breast _tissue is a 4-fold
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TABLE 5. Experimental results of CFGVM and similar algorithms on the test data sets.

Dataset Method Accuracy TPR FPR AUC G-mean F-measure
glass016vs5 GVM 0.8108 1 0.2 0.9 0.8944 0.3636
RBGVM 0.9796 1 0.0227 0.9886 0.9886 0.9091
BBGVM 0.8649 1 0.1429 0.9286 0.9258 0.4444
CGVM1 1 1 0 1 1 1
CGVM2 0.9796 1 0.0227 0.9886 0.9886 0.9091
CGVM3 1 1 0 1 1 1
CFGVM1 1 1 0 1 1 1
CFGVM2 1 1 0 1 1 1
CFGVM3 1 1 0 1 1 1
newthyroidl GVM 0.9767 0.8571 0 0.9286 0.9258 0.9231
RBGVM 0.9767 1 0.0278 0.9861 0.986 0.9333
BBGVM 0.9302 1 0.0833 0.9583 0.9574 0.8235
CGVM1 0.9767 0.8571 0 0.9286 0.9258 0.9231
CGVM2 1 1 0 1 1 1
CGVM3 1 1 0 1 1 1
CFGVM1 1 1 0 1 1 1
CFGVM2 1 1 0 1 1 1
CFGVM3 1 1 0 1 1 1
shuttlec2vsc4 GVM 0.963 0.5 0 0.75 0.7071 0.6667
RBGVM 1 1 0 1 1 1
BBGVM 1 1 0 1 1 1
CGVM1 1 1 0 1 1 1
CGVM2 1 1 0 1 1 1
CGVM3 1 1 0 1 1 1
CFGVM1 1 1 0 1 1 1
CFGVM2 1 1 0 1 1 1
CFGVM3 1 1 0 1 1 1
ecoli034vs5 GVM 0.975 0.75 0 0.875 0.866 0.8571
RBGVM 0.975 1 0.0278 0.9861 0.986 0.8889
BBGVM 0.8649 1 0.1429 0.9286 0.9258 0.4444
CGVM1 0.975 1 0.0278 0.9861 0.986 0.8889
CGVM2 1 1 0 1 1 1
CGVM3 1 1 0 1 1 1
CFGVM1 1 1 0 1 1 1
CFGVM2 1 1 0 1 1 1
CFGVM3 1 1 0 1 1 1

cross-validation, the other ten datasets are all 5-fold cross-
validation. The best results of each index are expressed in
black bold. Detailed analysis is given as follows:

(1) In dataset Breast_tissue, the CFGVM3 is rel-
atively better than A-SUWO4SVM, A-SUWO4KNN,
A-SUWO+LR, A-SUWO+LDA [42], in terms of AUC
improves 4.76%, 6.26%, 1.76%, and 1.72%, respectively,
improves 15.89%, 12.79%, 8.29%, and 13.39% in terms of G-
mean. improves 19.35%, 16.85%, 11.45%, 15.95% in terms
of F-measure. Therefore, the CFGVM3 algorithm outper-
forms the A-SUWO algorithm in the performance of imbal-
anced classification.

(2) When considering the bupa and cleveland datasets,
it is observed that the CFGVM3 outperforms all algorithms
in [44]. In particular, compared with the SMOTE-IPF [44],
the CFGVM3 has a performance improvement of more than
35% in dataset cleveland in terms of AUC, which shows that
the overall performance of CFGVM3 is better than SMOTE-
IPF.

(3) Through analyzing the results in the dataset
ecoli01VS§235, we can conclude that the CFGVM3 outper-
forms all algorithms in [43]. Comparing the optimal values
of several indicators in [43], the result of CFGVM3 is 9.08%
higher than that of FCStacking algorithm [43] in terms of
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Accuracy, CFGVM3 is 4% higher than that of RUSBagging-
RF algorithm [43] in terms of TPR, and CFGVM3 is 4.09%
lower than that of LCStacking algorithm [43] in terms of
FPR.

(4) According to glass4 dataset, the CFGVM3 is better than
the results of all the algorithms in literature [43] in terms of
TPR and FPR, but only slightly lower than the FCSStacking
in terms of Accuracy.

(5) Focusing on Wisconsin dataset, the CFGVM3 algo-
rithm is better than all the algorithms in the litera-
ture [43] in terms of AUC, G-mean and F-measure,
except for the index of FPR that is slightly higher than
EasyEnsemble. The CFGVM3 is better than the pro-
posed algorithm in literature [43] in terms of TPR and
Accuracy.

(6) Regarding glass6 dataset, the CFGVM3 algorithm is
better than all the algorithms in literature [43] in terms of
Accuracy, TPR, and FPR.

(7) In dataset glass016vs5, newthyroid 1 and shuttlec2vsc4,
the classification indicators Accuracy, TPR, FPR, AUC,
G-mean, F-measure of the CFGVM3 algorithms are all 1, 1,
0, 1, 1, 1. We find that the CFGVM3 algorithm is distinctly
better than other comparison algorithms in the six classifica-
tion indicators.
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TABLE 6. Experimental results of CFGVM and other existing algorithms on the Breast _tissue, bupa, cleveland dataset.

Dataset Method Accuracy TPR FPR AUC G-mean F-measure
Breast_tissue  Random+SVM - - - 0.815 0.704 0.634
SMOTE+SVM - - - 0.829 0.722 0.654
Borderline SMOTE+SVM - - - 0.834 0.741 0.677
safe-level SMOTE+SVM - - - 0.833 0.729 0.663
SBC+SVM - - - 0.806 0.749 0.695
Cluster SMOTE+SVM - - - 0.834 0.718 0.679
CBOS+SVM - - - 0.86 0.734 0.664
MWMOTE+SVM - - - 0.849 0.739 0.672
A-SUWO+SVM - - - 0.86 0.748 0.685
Random+KNN - - - 0.845 0.752 0.682
SMOTE+KNN - - - 0.849 0.763 0.697
Borderline SMOTE+KNN - - - 0.851 0.763 0.7
safe-level SMOTE+KNN - - - 0.846 0.771 0.706
SBC+KNN - - - 0.825 0.734 0.689
Cluster SMOTE+KNN - - - 0.859 0.795 0.738
CBOS+KNN - - - 0.844 0.76 0.698
MWMOTE+KNN - - - 0.856 0.766 0.7
A-SUWO+KNN - - - 0.845 0.779 0.71
Random+LR - - - 0.88 0.792 0.724
SMOTE+LR - - - 0.882 0.796 0.733
Borderline SMOTE+LR - - - 0.896 0.77 0.696
safe-level SMOTE+LR - - - 0.883 0.803 0.738
SBC+LR - - - 0.854 0.763 0.697
Cluster SMOTE+LR - - - 0.88 0.821 0.759
CBOS+LR - - - 0.892 0.806 0.739
MWMOTE+LR - - - 0.885 0.794 0.725
A-SUWO+LR - - - 0.89 0.824 0.764
Random+LDA - - - 0.899 0.762 0.707
SMOTE+LDA - - - 0.897 0.754 0.696
Borderline SMOTE+LDA - - - 0.882 0.752 0.698
safe-level SMOTE+LDA - - - 0.891 0.765 0.706
SBC+LDA - - - 0.873 0.72 0.677
Cluster SMOTE+LDA - - - 0.887 0.76 0.704
CBOS+LDA - - - 0.887 0.763 0.703
MWMOTE+LDA - - - 0.892 0.769 0.719
A-SUWO+LDA - - - 0.897 0.773 0.719
CFGVM3 0.9134 0.9166 0.0882 0.9142 0.914 0.8815
bupa C4.5 - - - 0.644 - -
SMOTE+C4.5 - - - 0.6688 - -
SMOTE-ENN+C4.5 - - - 0.6146 - -
SMOTE-TL+C4.5 - - - 0.6018 - -
SL-SMOTE+C4.5 - - - 0.6684 - -
B1-SMOTE+C4.5 - - - 0.686 - -
B2-SMOTE+C4.5 - - - 0.6361 - -
SMOTE-IPF+C4.5 - - - 0.6753 - -
CFGVM3 0.7913 0.8 0.215 0.7351 0.7896 0.7619
cleveland C4.5 - - - 0.5258 - -
SMOTE+C4.5 - - - 0.5485 - -
SMOTE-ENN+C4.5 - - - 0.5722 - -
SMOTE-TL+C4.5 - - - 0.6433 - -
SL-SMOTE+C4.5 - - - 0.6007 - -
B1-SMOTE+C4.5 - - - 0.5475 - -
B2-SMOTE+C4.5 - - - 0.5666 - -
SMOTE-IPF+C4.5 - - - 0.6282 - -
CFGVM3 0.9941 1 0.00625 0.9968 0.9968 0.96

(8) Through analyzing the results in the dataset
ecoli034VSS5, we can conclude that the CFGVM3 outper-
forms all algorithms in [46] and [45].

With the observations above, we drew the follow-
ing conclusion: 1) The cost-sensitive CGVMI1, CGVM2,
CGVM3 algorithms outperform the single classification
algorithm GVM; 2) Compare with CGVMI1, CGVM2,
CGVM3 and CFGVM1, CFGVM2, CFGVM3, it indicates
that the feature selection algorithm BALO can further
improve the classification performance based on the cost-
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sensitive algorithms CGVM1, CGVM2, CGVM3; 3) By
comparing CFGVM1, CFGVM2, CFGVM3, it can be found
that G-mean can better evaluate the classification perfor-
mance of imbalanced classification compared to F-measure
and Accuracy; 4) Comparing the results of the BBGVM
and CFGVM3, it shows that BALO is better than BPSO
used for feature selection and cost weight selection in the
imbalance classification; 5) Comparing the results between
RBGVM and CFGVM 3, it is obvious that the cost
weight selected by BALO is better than the imbalance rate;
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TABLE 7. Experimental results of CFGVM and other existing algorithms on the ecoli01VS235, glass4, Wisconsin, glass6, glass016vs5 dataset .

Dataset Method Accuracy TPR FPR AUC G-mean F-measure
ecoli0IVS235 IMCStacking 0.8873 0.82 0.0455 - - -
FLCStacking 0.8873 0.82 0.0455 - - -
FCStacking 0.905 0.86 0.5 - - -
LCStacking 0.8845 0.81 0.0409 - - -
CLR 0.8914 0.86 0.0773 - - -
RUSBagging-RF 0.8645 0.91 0.1809 - - -
RUSBoosting-RF 0.8736 0.82 0.0727 - - -
EasyEnsemble 0.8959 0.9091 0.1173 - - -
CFGVM3 0.9958 0.95 0 0.975 0.9732 0.9714
glass4 IMCStacking 0.9225 0.9 0.055 - - -
FLCStacking 0.9925 0.9 0.055 - - -
FCStacking 0.8775 0.8 0.045 - - -
LCStacking 0.7776 0.6 0.0449 - - -
CLR 0.9201 0.9 0.0598 - - -
RUSBagging-RF 0.9027 0.9 0.0946 - - -
RUSBoosting-RF 0.8744 0.8334 0.0847 - - -
EasyEnsemble 0.8826 0.8902 0.1251 - - -
CFGVM3 0.9857 1 0.015 0.9925 0.9924 0.8933
‘Wisconsin IMCStacking 0.9717 0.9749 0.0315 - - -
FLCStacking 0.9696 0.9707 0.0315 - - -
FCStacking 0.9696 0.9707 0.0315 - - -
LCStacking 0.9555 0.929 0.018 - - -
CLR 0.9719 0.9708 0.027 - - -
RUSBagging-RF 0.978 0.9917 0.0357 - - -
RUSBoosting-RF 0.978 0.9874 0.0314 - - -
EasyEnsemble 0.9748 0.9662 0.0167 - - -
CFGVM3 0.9837 1 0.025 0.9875 0.9873 0.9775
glass6 IMCStacking 0.9419 0.9 0.0162 - - -
FLCStacking 0.9419 0.9 0.0162 - - -
FCStacking 0.9392 0.9 0.0216 - - -
LCStacking 0.9225 0.8667 0.0216 - - -
CLR 0.9203 0.9 0.0594 - - -
RUSBagging-RF 0.9284 0.9333 0.0766 - - -
RUSBoosting-RF 0.9477 0.9332 0.0377 - - -
EasyEnsemble 0.9095 0.9459 0.127 - - -
CFGVM3 0.9904 1 0.01 0.9945 0.9945 0.9636
glass016vsS SVM - - - 0.8443 - 0.665
SMOTE+SVM - - - 0.8856 - 0.5674
ADASYN+SVM - - - 0.9186 - 0.6592
sTL+SVM - - - 0.8791 - 0.5601
sSafe+SVM - - - 0.8853 - 0.5668
sRST+SVM - - - 0.9221 - 0.6551
sCHC+SVM - - - 0.8979 - 0.7548
EUSCHC+SVM - - - 0.8071 - 0.4688
AHC+SVM - - - 0.8943 - 0.7273
FRB+CHC+SVM - - - 0.9186 - 0.7692
FRB+SVM - - - 0.8886 - 0.6857
Base+LCMine+CAEP - - - 09714 - -
SMOTE+LCMine+CAEP - - - 0.96 - -
SMOTE- - - - 0.9014 - -
ENN+LCMine+CAEP
SMOTE- - - - 0.96 - -
TL+LCMine+CAEP
ADASYN+LCMine+CAEP - - - 0.9429 - -
Borderline- - - - 0.9771 - -
SMOTE+LCMine+CAEP
SafeaAALeveliAASMOTE+LCMine+CAER - 0.91 - -
ROS+LCMine+CAEP - - - 0.9714 - -
ADOMS+LCMine+CAEP - - - 0.8657 - -
SPIDER+LCMine+CAEP - - - 0.9686 - -
AHC+LCMine+CAEP - - - 0.9686 - -
SPIDER2+LCMine+CAEP - - - 0.9743 - -
SMOTE- - - - 0.9571 - -
RSB+LCMine+CAEP
TL+LCMine+CAEP - - - 0.9657 - -
CNN+LCMine+CAEP - - - 0.9086 - -
RUS+LCMine+CAEP - - - 09114 - -
OSS+LCMine+CAEP - - - 0.9286 - -
CNNTL+LCMine+CAEP - - - 0.8443 - -
NCL+LCMine+CAEP - - - 0.9657 - -
SBC+LCMine+CAEP - - - 0.5 - -
CPM+LCMine+CAEP - - - 0.7843 - -
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TABLE 8. Experimental results of CFGVM and other existing algorithms on the newthyroid 1, shuttlec2vsc4 dataset.

Dataset Method Accuracy TPR FPR AUC G-mean F-measure
Clustering-LMS - - - - 0.8629 -
Clustering-SVD - - - - 0.8662 -
CO?RBFN-LMS - - - - 0.8471 -
CO?RBFN-SVD - - - - 0.8076 -
Genetic-LMS - - - - 0.7652 -
Genetic-SVD - - - - 0.7359 -
Incremetal-LMS - - - - 0.7562 -
Incremetal-SVD - - - - 0.7674 -
CFGVM3 1 1 0 1 1 1

newthyroidl IMCStacking 0.9972 1 0.56 - -
FLCStacking 0.9972 1 0.56 - - -
FCStacking 0.9944 1 1.11 - - -
LCStacking 0.9972 1 0.56 - - -
CLR 0.9944 1 1.11 - - -
RUSBagging-RF 0.9833 1 3.33 - - -
RUSBoosting-RF 0.9972 1 0.56 - - -
EasyEnsemble 0.9548 0.9833 7.38 - - -
Base+LCMine+CAEP - - - 0.9687 - -
SMOTE+LCMine+CAEP - - - 0.9833 - -
SMOTE- - - - 0.9663 - -
ENN+LCMine+CAEP
SMOTE- - - - 0.9722 - -
TL+LCMine+CAEP
ADASYN+LCMine+CAEP - - - 0.9861 - -
Borderline- - - - 0.9631 - -
SMOTE+LCMine+CAEP
SafeLevelSMOTE+LCMine+CAEP - - 0.9639 - -
ROS+LCMine+CAEP - - - 0.9746 - -
ADOMS+LCMine+CAEP - - - 0.9746 - -
SPIDER+LCMine+CAEP - - - 0.9659 - -
AHC+LCMine+CAEP - - - 0.9774 - -
SPIDER2+LCMine+CAEP - - - 0.9631 - -
SMOTE- - - - 0.9663 - -
RSB+LCMine+CAEP
TL+LCMine+CAEP - - - 0.9857 - -
CNN+LCMine+CAEP - - - 0.9802 - -
RUS+LCMine+CAEP - - - 0.9889 - -
OSS+LCMine+CAEP - - - 0.9774 - -
CNNTL+LCMine+CAEP - - - 0.9667 - -
NCL+LCMine+CAEP - - - 0.9687 - -
SBC+LCMine+CAEP - - - 0.5 - -
CPM+LCMine+CAEP - - - 0.8893 - -
Clustering-LMS - - - - 0.9756 -
Clustering-SVD - - - - 0.9696 -
CO?RBFN-LMS - - - - 0.9754 -
CO?RBFN-SVD - - - - 0.9841 -
Genetic-LMS - - - - 0.9804 -
Genetic-SVD - - - - 0.9769 -
Incremetal-LMS - - - - 0.9179 -
Incremetal-SVD - - - - 0.9615 -
CFGVM3 1 1 0 1 1 1

shuttlec2vsc4 ~ SVM - - - 0.7 - 0.4
SMOTE+SVM - - - 0.9548 - 0.7152
ADASYN+SVM - - - 0.9548 - 0.7152
sTL+SVM - - - 0.9548 - 0.7152
sSafe+SVM - - - 0.9548 - 0.7152
sRST+SVM - - - 0.959 - 0.7288
sCHC+SVM - - - 0.944 - 0.6103
EUSCHC+SVM - - - 0.6957 - 0.1593
AHC+SVM - - - 0.7 - 0.4
FRB+CHC+SVM - - - 0.9493 - 0.6126
FRB+SVM - - - 0.9632 - 0.7395
Clustering-LMS - - - - 0.9025 -
Clustering-SVD - - - - 0.9007 -
CO?RBFN-LMS - - - - 0.9951 -
CO?RBFN-SVD - - - - 0.995 -
Genetic-LMS - - - - 0.9551 -
Genetic-SVD - - - - 0.9551 -
Incremetal-LMS - - - - 0.9406 -
Incremetal-SVD - - - - 0.9575 -
CFGVM3 1 1 0 1 1
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TABLE 9. Experimental results of CFGVM and other existing algorithms on the ecoil034vs5 dataset.

Dataset Method Accuracy TPR FPR AUC G-mean F-measure

ecoil034vs5 SVM - - - 0.4972 - 0
SMOTE+SVM - - - 0.7069 - 0.5629
ADASYN+SVM - - - 0.5889 - 0.2667
sTL+SVM - - - 0.7236 - 0.5901
sSafe+SVM - - - 0.7047 - 0.5578
sRST+SVM - - - 0.6799 - 0.5007
sCHC+SVM - - - 0.6747 - 0.5054
EUSCHC+SVM - - - 0.8111 - 0.6591
AHC+SVM - - - 0.5972 - 0.3111
FRB+CHC+SVM - - - 0.8217 - 0.5829
FRB+SVM - - - 0.8472 - 0.6337
Base+LCMine+CAEP - - - 09111 - -
SMOTE+LCMine+CAEP - - - 0.9194 - -
SMOTE- - - - 0.8889 - -
ENN+LCMine+CAEP
SMOTE- - - - 0.9667 - -
TL+LCMine+CAEP
ADASYN+LCMine+CAEP - - - 0.8806 - -
Borderline- - - - 0.8694 - -
SMOTE+LCMine+CAEP
SafeaAALeveliAASMOTE+LCMine+CAER - 0.9139 - -
ROS+LCMine+CAEP - - - 0.9167 - -
ADOMS+LCMine+CAEP - - - 0.9222 - -
SPIDER+LCMine+CAEP - - - 0.8667 - -
AHC+LCMine+CAEP - - - 0.9 - -
SPIDER2+LCMine+CAEP - - - 0.8833 - -
SMOTE- - - - 0.8917 - -
RSB+LCMine+CAEP
TL+LCMine+CAEP - - - 0.9333 - -
CNN+LCMine+CAEP - - - 0.9028 - -
RUS+LCMine+CAEP - - - 0.9556 - -
OSS+LCMine+CAEP - - - 0.95 - -
CNNTL+LCMine+CAEP - - - 0.9139 - -
NCL+LCMine+CAEP - - - 09111 - -
SBC+LCMine+CAEP - - - 0.5 - -
CPM+LCMine+CAEP - - - 0.9333 - -
CFGVM3 0.96 1 0.0444 0.9778 0.9773 0.8444

6) The proposed algorithm CFGVM3 is more advanced than
GVM, RBGVM, BBGVM, CGVM1, CGVM 2, CGVM3,
CFGVMI1, CFGVM2, A-SUWO, IMCStacking, SMOTE-
IPF, FRB+CHC+SVM, LCMine+CAEP, CO2RBFN-LMS
and CO2RBEFN-SVD.

V. DISCUSSION

Cost-sensitive learning algorithms and feature selection algo-
rithms can improve the class imbalance problem [48].The
cost-sensitive learning algorithms improve the classification
performance of imbalanced classification by assigning differ-
ent misclassification costs to the minority and the majority
class samples. The feature selection algorithms improve the
classification performance of imbalanced classification by
selecting some of the most representative features from the
original features [48].

The GVM algorithm is a new classification algorithm pro-
posed by Hong Zhao in 2016 [3]. Since it contains the design
risk minimization and Monte Carlo algorithm, it has strong
generalization ability and has been successfully applied in
phishing detection [29], Android malware detection [30],
groundwater status forecasting [31], electricity demand pre-
diction [32]. However, it does not work well for the imbal-
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anced classification. The BALO algorithm is a new nature-
inspired algorithm proposed by E. Emary in 2016 [4]. Exper-
iments have shown that the proposed BALO is better than
particle swarm optimizer (PSO), genetic algorithms (GAs),
binary bat algorithm (BBA), and the ALO for feature selec-
tion on 21 data sets.

To the best of our knowledge, our proposed method is the
first research work aiming at utilizing the GVM and BALO
algorithm to solve the imbalanced classification problem. The
proposed algorithm CFGVM (CFGVM3) combines a cost-
sensitive learning method and feature selection method based
on BALO and GVM. Firstly, The BALO algorithm is used to
improve the GVM algorithm to a cost-sensitive CGVM algo-
rithm (Algorithm 1), and then the BALO algorithm is used to
search the optimal feature subset to further improve the clas-
sification performance (Algorithm 2). In the GVM algorithm,
we adopt the Monte Carlo training algorithm. In other words,
we only randomly change one weight of one parameter matrix
(the weight matrix between the hidden node and the input
node, the bias of the hidden layer or the transfer function
coefficient) in a small range every time, and GVM will accept
the weight change while the overall cost is reduced. In this
case, the output is insensitive to the small change of the input.
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On the other hand, the GVM algorithm introduces the design
risk to improve the generalization ability. The cost matrix is
difficult to ascertain in the cost-sensitive learning algorithm.
The BALO is a new metaheuristic optimization algorithm,
which has advantages over other heuristic algorithms due to
its adaptive boundary convergence and elitism mechanism.
Therefore, the BALO algorithm is used to select the optimal
cost matrix and the optimal feature in this paper. BALO is
a binary variant of the ALO. In the BALO algorithm, each
dimension of the search space is limited to O or 1. We propose
a cost-sensitive algorithm CGVM (Algorithm 1) by setting
different cost weight-based loss functions based on GVM. i
represents the minority class, j represents the majority class,
then Cj; represents the cost weight of misclassification of
minority class samples, and the cost weight of misclassifi-
cation of majority class samples represented by Cj;. Since we
assume that the value of Cj; is 1, it is clear that the value of
C;j should be greater than 1, and we use the BALO algorithm
to choose the optimal Cj; value. The position of the antlion
in the BALO algorithm represents the value of Cj;. That is,
when using BALO to select the cost weights of the minority
class, the position of antlion represents the cost weights to
be optimized. In Algorithm 2, the position of the antlion in
the BALO algorithm represents the number of features. When
the value of the antlion position is 1, it means that the feature
is selected; but, when the value of the antlion position is 0,
it means that the feature is not selected. The more significant
feature can be achieved through the BALO algorithm.

Extensive experiments are carried out using eleven
benchmark imbalanced datasets, which demonstrate that the
proposed CFGVM algorithm can significantly improve the
classification of imbalanced data sets compared to eight
existing and seven recently published algorithms. Nine simi-
lar comparison algorithm contain GVM classification algo-
rithm, the hybrid algorithm RBGVM with imbalance rate
as cost weight, the hybrid algorithm BBGVM of choos-
ing cost weight and feature with BPSO, the cost-sensitive
algorithm CGVM1, CGVM2, CGVM3, the hybrid algorithm
CFGVM1, CFGVM2, CFGVM3 of choosing cost weight and
feature with BALO. From the experiment results, we can
conclude the following: 1) The cost-sensitive CGVMI,
CGVM2, CGVM3 algorithms outperform the single classi-
fication algorithm GVM; 2) The feature selection algorithm
can further improve the classification performance based on
the cost-sensitive algorithm; 3) G-mean can better evaluate
the classification performance of imbalanced classifications
compared to F-measure and Accuracy; 4) BALO is bet-
ter than BPSO used for feature selection and cost weight
selection in the imbalance classification; 5) The cost weight
selected by BALO is better than the imbalance rate. Further-
more, compared with other hybrid algorithms in other refer-
ences, the results show that the algorithm CFGVM3 proposed
in this paper is better, which shows that the hybrid algorithm
proposed in this paper is more advanced.

69994

VI. CONCLUSION

Imbalanced classification problems are widely existing in
medical diagnosis, network intrusion detection, credit card
illegal transaction detection and software defect detec-
tion. However, traditional classification algorithms are often
unable to effectively deal with this kind of problem. This is
because they are biased toward the majority class and leaving
aside the minority class.

In this paper, a CFGVM (CFGVM3) is proposed for an
imbalanced classification problem. The proposed algorithm
CFGVM combines cost-sensitive learning method and fea-
ture selection method based on BALO and GVM. The GVM
algorithm has the advantage of strong generalization ability.
However, it does not work well for the imbalanced classifica-
tion. The BALO algorithm has advantages over other heuris-
tic algorithms due to its adaptive boundary convergence and
elitism mechanism. Firstly, The BALO algorithm is used to
improve the GVM algorithm to a cost-sensitive CGVM algo-
rithm, Specifically, the BALO algorithm is used to select the
optimal cost matrix based on GVM in the CGVM algorithm.
Secondly, the BALO algorithm is used to search the optimal
feature subset based on CGVM. Furthermore, We present G-
mean that can be used to measure the performance of cost-
sensitive learning algorithm and feature selection algorithm
in the imbalanced classification. Compared with the previous
existing algorithms, the algorithm CFGVM3 is more capable
of improving the classification performance of imbalanced
data sets.

When the number of samples is less than 700 and the
dimension of samples is less than 20, the proposed algorithm
can achieve convergence when the number of iterations is set
to 15. However, when the number of samples is large and
the dimension is high, the number of iterations should be
increased according to the characteristics and the number of
samples.

The proposed algorithm is significant to solve the class
imbalance problem. For example, in cancer diagnosis,
the whole dataset with minority and majority class represent-
ing having cancer or not. if cancer patients are misclassified
as normal patients, they will miss the best treatment time
and eventually lead to death. The proposed algorithm can
improve the classification performance of minority class. It is
important to detect early-stage cancer.

As for future work, we can further investigate from four
aspects as follows: 1) To establish an ensemble algorithm
based on GVM algorithm and BALO algorithm; 2) To con-
struct a hybrid algorithm based on the undersampling algo-
rithm and feature selection algorithm. The proposed hybrid
algorithm combines the advantage of undersampling algo-
rithm and feature selection algorithm, and may achieve a
better performance; 3) Online learning often suffers from
concept drift, we can further develop a new algorithm
based on the CFGVM to deal with this problem; 4) For
high-dimensional imbalanced small-sample datasets, we can
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propose a new algorithm based on the CFGVM to solve this
problem.
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