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We extend the multipole method to allow for rod-type defects in woodpiles composed of infinitely long cylinders.
A coupled-resonator optical waveguide and a linear waveguide are considered, where each waveguide is em-
bedded in a woodpile cladding. For both structures, low-loss waveguiding is observed (@ = 1X 1043104, De-
creasing the radius of the defect rod shifts the transmission resonances to shorter wavelengths. The reflection
and transmission coefficients of the woodpile are derived for the case of normal incidence in the long-
wavelength limit, and it is shown that both the individual layers and the entire assemblage of layers homog-
enize to one-dimensional dielectric slabs, Expressions for the effective permittivities are given. ® 2010 Opti-

cal Society of America
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1. INTRODUCTION

Photonic crystals (PC) are structures whose permeability
and permittivity vary periodically on the wavelength
scale [3,2]. This periodicity causes photonic bandgaps
{PBGs) (i.e., frequencies for which the propagation of light
is totally suppressed within a structure) to appear in the
frequency bands of the modes of a PC, An important fea-
ture of PCs is their ability to localize light to structural
defects by means of the PBG. While great strides have
been made in the fabrication and analysis of PCs that are
periodic in two dimensions (2D PCs), these structures are
somewhat limited in that their PBG is only capable of
confining light propagating in the plane of periodicity, and
thus they must rely on total internal reflection to confine
light propagating out-of-plane. By contrast, the PBGs of
3D PCs can be complete in that confinement is possible
for all directions, thereby providing a means of virtually
eliminating scattering losses. This provides a strong im-
petus to the investigation of 3D structures [3-5]. Unfor-
tunately the development of 3D devices has been ham-
pered by the complexities invelved in accurately
engineering a 31 PC. Further, while there are several in-
valuable numerical methods for modeling the behavior of
PC devices {7,8], their generality prevenis them from tak-
ing full advantage of the geometry of the problem, hence
using them to model truly 3D géometries is often a pro-
hibitively time consuming task.

Photonic woodpiles [3] are layered 3D PCs whose con-
stituent Iayers are gratings and in which the rods of every
second layer are oriented orthogonally to those of the
layer immediately above or below, where it is usual for
the periods in the x and y directions to be the same (see
Fig. 1). It is instructive to regard the woodpile as a stack
of pairs of orthogonal gratings where, so that there is a
full bandgap, each suceessive pair is offset laterally with
respect to the pair below, resulting in an interleaved
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structure. One advantage of the woodpile is that it can be
produced in a layer-by-layer fashion using well-
established techniques for fabricating 2D gratings (see,
e.g., [8,9]). In addition, woodpiles have been made from a
wide range of materials. These include woodpiles made
from GaAs using wafer bonding [10], those made from
metals using deposition methods [11], as well as those
made from direct writing of polymers [12] and chalcogen-
ide glasses [13). The latter are of particular interest due
to their high refractive index and highty nenlinear optical
response. Wafer bonding techniques have also proven to
be amenable fo the incorporation of line defects [10],
while direct writing can conceivably be used to create de-
fects of arbitrary shape.

In this paper we describe how an cxisting multipole
theory for woodpiles [14] can be extended to handle linear
defects as well as disorder by gencralizing the grating
unit cell so that it can accommodate more than one eylin-
der (see Section 2). To demonstrate the method, we have
computed the band structure of a woodpile along with the
transmittance of a 28-layer woodpile containing a single
defect layer. Two defect structures are considered; the
first is a coupled-resonator optical waveguide (CROW)
created by perturbing every second cylinder in the defect
layer (see Section 3.A). It should be noted that a similar
type of defect has been studied in earlier work [15], where
the defect was a conscquence of the fabrication process
and was present in every layer of the woodpile, However,
here we introduce a defect for the express purpose of cre-
ating a device layer. The second device that we consider is
the more computationally demanding case of a linear
waveguide formed by perturbing the central cylinder of
the unit cell, as in Fig. 1, (see Section 3.B). We also illus-
trate the advantage of using a semi-analytic formulation
by deriving expressions that show explicitly the behavior
of the woodpile for normal incidence in the long wave-
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Fig. 1. (Color online) Photonic woodpile. A linear waveguide can
be created by altering the properties of a single cylinder (red/
dark cyfinde;).

length limit (Section 3.C), as has been studied previously
in two-dimensions for finite stacks of cylinder gratings
[16] and for square arrays [17]. We show that under these
conditions the woodpile becomes largely insensitive to the
polarization and behaves as though it were a uniform
slah.

Other approaches that are commonly used in the study
of woodpiles are the finite-difference time domain (FDTD)
[6] and plane-wave expansion (PWE) methods [7]. Obtain-
ing well-converged selutions with these methods, how-
ever, is difficult, even for the relatively simple case of a
planar defect [18). In comparison, the multipole method
exploits the fact that, for stacks of gratings composed of
cylinders, it is more appropriate to express the electro-
magnetic fields in terms of a rapidly converging basis of
cylindrical harmonics. The multipole methed can deal
with planar defects with case and is thus well suited to
problem of modeling structures possessing complete
PEBGs, which, because of the strongly scattering environ-
ment needed to induce a complete gap, requires high-

resolution sampling over the bandgap frequencies.

" The requirement of having only cylindrical elements is
not as limiting as it might seem. For purely theoretical
considerations, the symmetries of the rod are of greatest
significance, for example, in understanding how € factors
depend on defeet position (19] or when analyzing loss
mechanisms. Furthermore, direct writing methods have
generated much interest recently {12,13,20} due to their
ability to precisely inscribe arbitrary geometries into a
wide range of host media. For example, inverse waoodpiles
consisting of a lattice of cylindrical tubes in a Germanium
matrix were recently reported in {21}; the significance of
this is that inverse structures induce much wider band-
gaps. The structure fabricated by [21] theorstically has a
complete PBG as large as 25%. We remark that our treat-
ment can be readily adapted to handle noncylindrical
scatterers by using a more general multipole framework,
as has been done previcusly for conical mountings of fi-
nite 2D arrays [22]. -

In addition to the substantial efficiency gains afforded
by the muitipole method, the formulation presented here
has a number of merits that are worth commenting on.
While ostensibly it is a super-cell approach, it differs from
other super-cell methods in that it requires periodicity
only in the directions of the grating but not in the stack-
ing direction and, thus, is appropriate for modeling struc-
tures that consist of a finite number of layers. This com-
pares favorably with the PWE method, which instead
employs a 3D super-cell. In [18], slight discrepaneies be-
tween FDTD and PWE modeling were attributed to poor
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convergence resulting from using an insufficient number
of layers in the super cell. Modeling waveguides embed-
ded in a truly infinite cladding is also straightforward and
permits the study of structures for which the only loss
mechanism is lateral scattering within the waveguide
layer. Metallic structures can be modeled by simply tak-
ing the refractive index to be complex. Finally, one more
advantage of the multipole method is the possibility for
tailoring the response fields of the rods to model a truly
infinite grating {23,24].

2, THEORY

In this section we outline how to generalize the theoreti-
cal description of [25] to allow for gratings that contain
more than one eylinder per unit cell, as shown in Fig. 2(a).
Qur treatment is analogous fo that of [25]); the key differ-
ence lies in the form of the associated Green'’s function.
When there is only a single eylinder, the polar represen-
tation of the Green's function is expressed in terms of glo-
bal lattice sumis that represent the field contribution due
to the periodic replicates of the cylinder. For N.>1 cylin-
ders per unit cell, the polar representation also involves
local lattice sums that derive from multiple contributions
from all other cylinders in the unit cell and their periodic
replicates. For a 2D treatment of the N, > 1 case, see [26].
We remark that [26] differs from the 3D treatment in that
the electric (E) and magnetic (H} problems completely de-
couple for 2D grating stacks. Furthermore, the treatment
in [26] is restricted to either TE or TA polarized diffrac-
tion, hence the resulting scattering matrices R and 7 are
formulated to act direetly on the longitudinal components
of the electric and magnetic fields. For 3D problems it is
instead necessary to write the fields as a superposition of
TFE and TM components, as in [25], and thus R and T act
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Fig. 2. (a) Up-down symmetric unit cell consisting of multiple
cylinders that are aligned parallel to the x axis and whose cen-
ters lie along the y axis. The surfaces U* and U must be chosen
s0 that the cylinders are completely contained inside region A. (b)
Configuration of the incident field with wave vector k. The polar-
ization angle § is defined as the angle between vector v=k
X /(R sin @) and direction of the electric field, with §=0,+/2 cor-
responding to TE and TAI polarization, respectively.
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Fig. 1. {Color online) Photonic woodpile. A linear waveguide can
oe created by allering the oroperties of a zingle cvlinder (red/
dark cylinder).
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on these components. In crder to apply the multipole
method, a change of coordinate system from TE-TM com-
ponents to Cartesian components is then required. In all
other respects, the derivation of the scattering matrices
presented here parallels that of [26] with the exception
that we do not require the magnetic permeability (i.e., y)
of the cylinders and the background regicn to be unity,
thereby permitting the study of magnetic materials and,
in particular, metamaterials.

The theory in this section is organized as follows. Sec-
tion 2.A describes the procedure for obtaining multipole
expressions for the fields produced by an up-down sym-
metric grating. In Section 2.B it is shown how to obtain
the single layer reflection and transmission matrices by
expressing the fields incident immediately above and be-
low the grating in terms of the outgoing muitipole coeffi-
cients. We briefly explain how the single-layer scattering
matrices can be used to assemble the 7=° and T° matrices
for a woodpile having a finite number of layers (Section
92.C). From these one can readily compute the reflectance
and transmittance of the entire stack. In addition, they
provide an efficient means of solving the fundamental
problem of locating PBGs. An outline of how this can be
achieved is canvassed in Section 2.1, where the propagat-
ing Bloch modes of an infinite woodpile are extracted from
the scattering matrices of the stacking unit. While here
we rely only on the Bloch modes to compute the band
structure, they can also afford explicit equations for R®
and T° from which e¢ne can deduce semi-analytic expres-
sions for asymptotic behavior (long wavelength, increas-
ing stack size, etc.) as well as the reflection matrix of
semi-infinite woodpiles, although we will not say more
about-this here (see, e.g., [14,25]).

A. Grating Field Expressions
Consider an up—down symmetric grating, as in Fig. 2(a),
that is embedded in a background medium of refractive
index nb=\!r@, with permittivity £, and permeability
2y We first specify a plane wave incident from above and
having wave vectar k=(eqg, 8y, ~ v} and polarization angle
§ as defined in Fig. 2(b). The periodicity of the woodpile in
x and y directions gives rise to a family of diffracted plane
waves whose x and y dependencies are given by exp(ia,x)
and exp(ifB,x) respectively, where a,=ap+2wp/D and B,
=fBa+2nq/ I} for p,q e Z (while here we have used 2 com-
mon period D, it is not a limitation of the method). Each
pair {p,q) thus specifies a diffracted plane-wave order
and, for notational convenience, we map each (p,g)} to a
unique integer s and use the subseript s to denote quan-
tities associated with the (p,q)™ order. Note that the st
plane-wave order is propagating if

¥ = (hng)® — (s + 57) (1)
is positive and is evanescent if Ysz is negative, where k
=27/h is the free-space wavenumber. The fields may thus
be expressed as a superposition of these diffracted plane-
wave orders, which in turn are further decomposed into
TE and TAf polarized resolutes. We adopt the notation
used in [25], where any ficld expanded in such a way is
represented using partitioned vectors of the form F=
=[[E2]F [F*TTY, where Ef and F} are the cocfficients of
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the TE and TA components of the s** order and where +
and — denote fields propagating upwards and downmwards
tespectively. In particular, let

(27} [ED,]
Fi= ’ and F5=
! [[F?s] P IF3,]
represent the incoming and diffracted fields incident to
the grating [see Fig. 3(a)]. The transverse components,

i.e., lying in the xy plane, of the electric and magnetic
fields above the grating are then

(2

Et = (#b’cb]luz gU?[E;rse—iygz +Eﬁ,se"”ﬁz]e"“’.v“3v5’]Rf
s

+ & [Fr 7 4 Fp AR, (3)

3 % Hy = (g /pp) >, 8P(E; 7% — B} o7 e PIRE
5

4)

with &=v,/(kny) and where RE=(-g %+ ap}‘f)/(ag-l-ﬁg)“z
and RY' =(a,&+ B, 9}/ (af+ B2 are the TE and T direc-
tions determined by the s diffracted order, respectively.
Analogous expressions, involving 7y and Fp, also hold
for the fields below the grating. In the above, H is the nor-
malized field obtained by multiplying the magnetic field
by the free-space impedance Zy= Viuo/Ep.

If R, and R, are the reflection matrices governing the
fields incident to the top and bottom surfaces of the grat-
ing, respeclively, as in Fig. 3(a), and 7, and 7}, are the
corresponding transmission matrices, then by definitien,
the diffracted fields are related to the incoming fields by

Fo| | T Ref|F1

| 1R w7}
Fixing the value of p and then projecting‘the problem onto
the yz plane allows one to use the multipele methed to

solve for the part of the diffracted field having an x depen-
dence of explia,x). Let ke, =(8,, ¥,) be the projection of the

+ gs-lf2[FI-'se—iy,z - Fé‘seiyg]ei(npnﬁ?y)l{g!,

&)

G

Fig. 3. (a)Incoming and diffracted fields, with phase origin at P,
as well as the reflection and transmission matrices associated
with the fields above and below the unit cell. {b) The unit cell
with phase origins P, and P, adjusted to give the grating a total
thickness of %. -
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wave vector onto the yz plane so that ki =(knb)2—-cr§ is the
wavenumber of the projection. The fields at a point r
=(y,z) inside the region A exterior to the cylinders and
bounded by U* and U~ [see Fig. 2(a)] then satisfy the
Helmholtz equation

[V2+A2IVr) =0 (6)

for V=E, and V=H,. Consequently by Green’s theorem
V(r)= f [V(r')¥2G(r —r') - Glr - v )V2,V(x"Yidr',
A

M

d I}
=3§‘c [V(r )[-?:I—,G(r—r )-Glr-r );;V(r ):’dr ,

&

where aC=U+U U‘Uﬁ“lcj, with C; denoting the boundary
of eylinder j, and where the associated Green’s function G
satisfies

[¥2+ ki]G(r) = Z &r—nD¥explifonD). (9)

n=-x

In the above, the phase factors exp(iBonD) match the
quasi-pertodicity of the fields in the direction of the grat-
ing [the relevant forms of & are given by Egs. (A1) and
(A2)]. The evaluation of Eq. (8} also requires the following
loeal representation of the fields in the vicinity of cylinder
I

Vi) = 2 [ARYT (R 1) + BEVHL (k) leinPaeier®

R=—%

(10)

Here and elsewhere, J,, and H, denote Bessel functions
and Hankel functions of the first kind. Substituting Eqs.

(A1), (A2), and (10} into Eq. (8) we arrive at the Wijngaard -

expansion

Vilry) = E BfthHn{k lrl)einﬂr‘eiapx

A=

« N x®
b S Tk 3 S DSy

A==% J=b m=-=
+ (Jﬁ,-;é;*V+Jf;;5;‘V)], (11)
‘=z
where SY_, [#] are the local lattice sums [26} and, for

simplicity, we define Sm:Sﬁ to be the global lattice sums
Isee Egs. (A3) and {A4)], for which a stable and eflicient
means of evaluation is essential [27]. Here, c‘)'q"'v are the
longitudinal components of the incoming fields, while
Ji;;:(:tl)”exp[iin arg(y,+iB,)]exp(if,c;) change the ba-
sis of the incident field from plane waves to multipoles.

The two representations of the local field, Eqs. (10} and

{11}, allew us to express the incoming multipole coeffi-
cients in terms of the outgoing coefficients so that, using
matrix notation,
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A=8B+ 7D + D (12)
Equation (12} is known as the Rayleigh identity, in which

A [A™] 13

i {A[}q E ( )

AVEH [ ALEHY (13 §g defined analogously to .A), SB rep-

resents the scattered fields sourced by each ¢ylinder, and

TD (FDY) is the multipole representation of the in-

coming field from above (below). See Appendix A for de-
tails.

The fields inside cylinder ! can also be expressed in
terms of eylindrical harmonics; specifically, if n; is the re-
fractive index of cylinder I, then for r; inside C; there exist
coefficients ChY such that

E3

Vile) = 2 CHV Tk ) re™ el (14)

fi=—

with kiJ:(kn;)z-—ag. By using Eqgs. (10} and (14) and also
imposing the condition that the tangential components
E, H, E,., and E, be continuous across the cylinder
boundaries, one finds a second equation relating A to B:

A=—MB. {15)

The matrix M encapsulates the material properties of
the eylinders. It should be noted that in general A is not
diagonal, hence Eq. (15) has the effect of coupling the
electric and magnetic problems (see Appendix B for the
expressions for A4). Combining Eqs. (12) and (15), we
have for the outgoing multipole coefficients

=-{M+8)1 7D, : {(16)

where 7=[7" .7*], and f‘D:[(‘D‘)T (DT, Equation (16)
can be used to calculate the fields incident to the grating
and, hence, the reflection and transmission matrices.

B. Scattering Matrices for a Grating

The diffracted fields appearing in Eqg. (5} can be recovered
by again evaluating Eq. (8), this time taking r to lie above
and below the cylinders in turn; thus, the diffracted fields
will be expressed in terms of the outgoing multipole coef-
ficients B of Eq. (16). The longitudinal components of dif-

fracted fields are found to be [26]

2
_7-_:’D+EQJ‘CB R (17)

where i reverts back to the plane-wave basis from the
multipole basis and is defined analogously to J [see Eq.
(A5)]. Equation (17) includes a prefactor G that serves to
normalize the reflected and transmitted energy (the par-
ticulars are omitted, as G doas not appear in the final ex-
pressions for the scattering matrices). From Egs. (16) and
(17) one can derive

e I—wzi"lz"grc(M+8)-ljzX" !
Fpl D 7
(18)

[Cf. Eq. (5)]. The multipole =scattering operator K{AA
+8)1 7 acts on the longitudinal components of the ficlds;
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however, the scattering matrices defined in Eq. (5) are for-
mulated to act on plane-wave diffraction orders that have
been resolved into TE and TAf components. Therefore a
change of coordinate systems, which is achieved by the

term Z&, is first necessary (see Appendix A).

The single-layer scattering matrices are inferred by
identifying the coefficient matrix in Eq. (18) with that in
Egq. (5); however, in the case of up—down symmetric grat-
ings, the size of the multipole scattering operator can be
halved using a folding procedure. We proceed by rewriting
Eq. (18) in terms of symmetric and antisymmetric quan-
tities (denoted using the superscripts s and e) to give

Fp Fr
)7
kny S KL KELTe v Fr
kD K'LP KL 7|

(19

(Cf. Eq. (62) of [25]) where

11
=i, b @0

£=2(AM+8)"L Tt can be shown that KS£ 7 and K LF°
vanish for up—down symmetric gratings, while for X*£.5°
and K°L.7" the rows that correspond to the negative
multipole orders are redundant, which then allows one to
truncate &%, 7% and £ by only retaining the rows and
columns for the multipole orders n,m=0. Using a tilde to
denote such a truncated matrix, the scattering matrices
for an up—down symmetric grating are then

kl’lb - — — - =
Ry=Ry=—— XZ WIS L5 T — K9P Lo TNZX,
2k2D
(21)
and
kn,, ~ P — o
T,= Ty =T g XE LT + KU L T2X.

(22)

The definitions of the terms an the right-hand sides of
Eqgs. (21) and (22) are provided in Appendix A.

C. Woaodpile Scattering Matrices

Recall that the scattering matrices just derived are 2D in
that p is fixed, i.e,, they act on fields having an assumed x
dependency of exp(ia,x). If each of the fields 7 in Eq. (8)
are ordered so that

F=[- FLFTE - 1T, (23)

with F,=[f, »}, then the reflection matrix for a single
layer of a weodpile at conical ineidence is R=diag{R,],
where R is a 2D reflection matrix (and similarly for 7).
To find the scatiering matrices for a y aligned grating, a
rotated coordinate sysiem (x',y",2") must be used,
namely x’=y, y'=-x, z'=z', and hence a;=5;,, B,=-a_,
and yfp,qu Yqp- ‘e see that in general the channels
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s'=(p,q)" and s={p,q} do not correspond to the same
plane-wave order since {p,q)’ maps to {—g,p), 50, assum-
ing that the channel order is given by Eq. (23}, the entries
of the scattering matrices for the rotated system must be
permuted accordingly.

Recurrence relationships for the scattering matrices for
a stack of (s+1) non-interpenetrating gratings are then
readily found from Egs. (21) and {(22) by expressing the
fields incident to the 5 and (s+ 1) layers in terms of R
and 7 of the (s+1)h layer and R* and T° of the s layer
stack beneath. We merely state the results (a full deriva-
tion may be found in [14]):

R =R, + TyRUT - RyRE T, (24)
T =TT - Ry R, (25)
R =R+ TR T -RERY T, (26)
T =TT - RER) 1T} 27

Here, the change in phase that occurs for fields propagat-
ing between successive layers has been incorporated into
R and T, by applying a padding 7 symmetrically
above and below the layer. This gives the grating an arti-
ficial thickness k equal to the distance between adjacent
layers [see Fig. 3(b)]. In addition, it is usual to interleave
the layers; hence, for a stack consisting of a finite number
of grating pairs, a lateral shift transform Q that effects a
shift of d/2 (with d as in Fig. 1} in both the x and y direc-
tions is applied to the gratings of every second pair:

R. Tp P 0 |[rR. % ][Pe?! o
7 %, L0 P|[T R 0 P
(28)

where P=diag[P P], P=diag[e!*"2], Q=diag{Q Q] and

(29

diag[e@*A)? 2] for a shifted layer,
[, otherwise.

D. Band Structure

The band structure of a woodpile can be readily computed
from knowledge of the Bloch modes. For the Bloch analy-
sis, an orthogonal grating pair is vsed as the stacking
unit, with ']i’.f.})) and 'I{f,]]a for the pair computed from the
recurrences of Eg. (24). Conseqguently, as the Bloch
method is only applicable to infinite stacks, the phase ori-
gins of the fields incident to the pair must be offset in or-
der to effect an interleaving of the structure, as in Fig.
4(a). This is achieved by redefining Q=diag[er*P'"] in
Eq. (29) so that applying the transform @ to the scatter-
ing matrices results in a lateral shear of the lattice:

7_—\’—22, 5-(5’2] Q 0 REZ} 71‘2) Qw! 0
7o Rk |Tlo @)1 =Pl o ef

{30)
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, (b)

Fig. 4. (a) For'the Bloch analysis, a pair of orthogonal rods con-
stitutes a single point of a body-centered tetragonal (BCT) lattice
for which the primitive vectors are a;=d% (net shown), a,=dy,
and aq=(d/2}k+(d/2)y +2h7. Offsetting the phase origins P, and
P, laterally, as indicated above, has the effect of interleaving the
layers of an infinite stack. (b) The boundaries of the first Bril-
louin zone (thin lines) and the SBZ {thick lines) of a prolate BCT
lattice, such as the Iattice shown in part (a),

If Fy=((FDUFDTIT and Fo=[(F)"(F5)7]" are the
Bloch modes at the top and bottom surfaces of a constitu-
ent grating pair, respectively, then Bloch's theorem re-
quires that

Fop=pFy, (31)

where p=exp(-ik-ag), k=(k, k., &,) is the Bloch vector,
and agz Is the lattice replication vector in the stacking di-
rection [ses Fig. 4(a)]. Bloch’s theorem can be recast as an
eigenvalue problem for the inter-layer transfer matrix %,
which propagates the fields across the pair (i.e., TF;
=F,) and is constructed from the reflection and transmis-
sion matrices of a pair of orthogonal gratings:

TFy = pF. (32)

In practice, however, one does not solve the above eigen-
value problem but instead compufes the eigenvalues of a
derived form of Eq. (32) that is moere numericaliy robust
(see, eg., [25,28}). It is clear from Eq. (32) that modes for
which |u|# 1 are evanescent modes, while for propagating
modes bu{=1. Since the transfer matrix is expressed solely

in terms of R3] and 73, Eq. (32) can be regarded as a

function that determines the set of all %,s for which Bloch
states exist for a given k., &y, and wavenumber k. Thus to
compute the band structure, il suffices to use Eg. (32) to
recover the propagating modes for each distinet k,
=(k,,%2,) along the boundary of the surface Brillouin zone
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{SBZ) [29] [shown in Fig. 4(b)]. This procedure was used
to compute the band diagram in Fig. 5.

3. APPLICATIONS

We used the above techniques te model two types of
waveguides based on the woodpile geometry. In keeping
with the notation established in Section 2D, k
=(ky,ky,k;) specifies the wave vector of the incoming field.
In both cases, a waveguide is created by changing the size
of selected cylinders of the 15th layer of a 28 layer chal-
cogenide glass woodpile, where the bottom layer is taken
to be the first layer. The radii and refractive index of the
eylinders are r=0.15d and n;=2.68, respectively (the re-
fractive indices of chalcogenide glass typically lie between
2 and 3}, where d is the pitch of the constituent gratings
(as in Fig. 1). The background refractive index is air (n,
=1}, and thus the inter-layer spacing for the layers com-
prising the bulk must be chosen so that adjacent layers
abut, Here, a spacing of £=0.3002d is used.

Using the method outlined in Section 2.D, the infinite
woodpile was found to have a complete PBG spanning
0.50=kd/(2%)=0.52, i.e., for wavelengths 1.9=)\/d=2.0
{see Fig. 5). About 28 layers are needed in order to ob-
serve a profound drop in the transmittance over these fre-
quencies for k, values along the I'-X path of the recipro-
cal lattice, with %, =0 fixed [recall that k,, or equivalently
¥g, changes implicitly according to Eg. (1)]. The existence
of waveguide modes is inferred frem the transmission
spectra for both TE and TM polarization, i.e., for an inci-
dent field with E,=E,=H,=0 and E,=H,=H,=0, respec-
tively. It should be noted that while the singular behavior
near the contact points of the reds was found te give the
fields a strongly ‘TAf-like’ character at resonant wave-
lengths in that the magnitude of E, was much greater
than these of E,, E,, H,, H,, and H,, the fiekds at these
points are not expected to contribute significantly to the
waveguiding ability of the defect layer.

If s =0 specifies the specular channel, i.e., p=g=0, then
the incoming field D=[[DE-1[DH]TIT incident to the top
surface of the woodpile is determined by the polarization
angle § according to

DE=84c058 €33)
and
(_E‘i o] - -
S 050 -
2
o .
r X M r
&
Fig. 5. Plot of the number of propagating Bloeh modes for each

(normalized)  as the in-plane Bloch vector k=(k,,%,} traverses
the boundary of the SBZ. White indicates the absence of propa-
gating states. The structurzl parameters of the woodpile are
given in Section 3.
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DHr = g4sin g, (34)

where &; is the Kronecker delta

1, fori=j, 435
O = 0, otherwise. (35)

The field transmitted through to.the bottom surface of the
woodpile is then t=[¢]=7.D, where T, is the transmis-
sion matrix associated with the top surface of the wood-
pile. Similarly, the field reflected back by the top surface
is r="R{D. The transmittance is then

0. 02 04 06 08 .
2.02 '
1.99
1d 1.96
1,93 FAEN
1.9 :

<000

Pod 3000 Q
EANH 2000
i 1000

2.05
2.02
1.99
1.96
1.93

1.9

Ald

o
1.99

1.56 N\

Afd 193
1.9

6000
4500
3000
1500

04 06 08 1.0

kdim
{)
Fig. 6. (Color online) Location of transmission maxima {top) for
TA incidence and the corresponding @-factors (bottom) for the
CROW using defect sizes of (a) r,=0, (b} r,=05r, and (&) r,.
=0.8r as k, varies. The transmittance is negligible except for the
resonances. As r, increases, the resonances move to longer wave-
lengths, Fields at the point indicated {arrow} in part {b) are
shown in Fig. 7.

0. 02

Kan et al.

7= |t (36)

where the sum is taken over only the propagating plane-
wave orders, with reflectance R similarly defined. One
test of the correctness of our implementation is that T
+R=1 should hold for lossless materials (recall that the
entries of 77and R were previously normalized).

A. A Coupled-Resonator Optical Waveguide

The first waveguide we consider is one created by chang-
ing the radius r,, of every second cylinder of the defect
layer; thus, for the defect layer we employ a unit cell of
length D=2d containing N.=2 cylinders. Figure 6 shows
how the transmittance varies for TM incidence for r,,=0,
r,=0.5r, and r,=0.8r, respectively, as &, is gradually in-
creased. In each case, one or more strong transmission
peaks sweep through frequencies corresponding to the
PBG of the host woodpile (no such peaks were found for
TE incidence). These arise from defect modes supported
by the waveguide and are not present in the transmission
spectrum of the regular woodpile. As is to be expected, the
quality factors @=T/AT" of the resonances tend to be
higher for wavelengths near the middle of the PBG,
where AT is the F'WHDM., Further, the @ factors also ex-
hibit an oscillatory dependence on k., as Fig. 6 shows. We
expect the turning points of the trajectories of the reso-
nances in Fig. 6 to correspond to ‘slow-light’ modes, ie.,
having low group velocity dw/dk,. The fields at one of the
resonances are shown in Fig. 7. The fields are * TA{-like’
for the reason mentioned above, and are localized to the
waveguide layer, indicative of a defect mode.

B. A Linear Waveguide

Ideally a linear waveguide would be modeled by perturh-
ing a single cylinder in the defect layer. We have approxi-
mated this by using a unit cell of length D'=11d compris-
ing 11 cylinders spaced equally along the axis of the
grating (however, techniques exist [23,24] for overcoming
this restriction) and by changing the radius r,, of the cen-
tral cylinder of the unit cell. The length of the unit cell
and the fineness of the spectral features make this ap-
proach particularly demanding. An alternative is to use
an infinite number of cladding layers, which allows the
defect modes to be found directly. The advantage in doing
this is that it does not require high-resolution sampling of
the bandgap frequencies; however, we do not use this ap-
proach here. Figures 8 and 9 show how the transmittance
varies for TAf incidence zs %, and r, are increased, re-
spectively. As before, the defect causes prominent reso-
nances to appear inside the PBG, while no such rese-
nances are present for TE incidence. Again, the fields
were found to be strongly ‘TM-like’ at the resonances. Fig-
ure 10 shows that for r,=0.5r, the field at the resonance
wavelength Ad=1.935 {as identified from Fig. 9) is con-
centrated around the defect rod. Figure 8 suggests that
the @ factors do not change dramatically for different val-
ues of k, thus from Fig. 9 we posit that smaller structural
perturbations will create defeet modes that occupy
smaller volumes and thus incur fewer scattering losses as
they propagate along the waveguide. )

¥
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lU 200 400 600

Artb. units
Fig. 7. (Color online) Field intensity in the vicinity of the CROW
(only one period in the horizontal direction is shown}: (2 [E,]%, (b)
[E,% (c} |E, 1%, () 1H, %, (e) |H,|% and (f) |H,]% The radius of the
defect rods (dashed circles) is r,,=0.5r, and the parameters of the
incoming field are k,df#=0.59, k=0, and A/d=1.958, i.e., for the
point indicated in Fig. 6(b).

300 =1000°

C. Homogenization

In this section we derive explicit expressions for the scat-
tering matrices [Eqs. {(21) and (22)] in the leng wave-
length limit for normal incidence, ie., k,=k,=0, for a
weakly disordered woodpile. From these, it is demon-
strated that the magnitudes of the response fields are
largely independent of the polarization of the incident

oF ‘ : . i
. ~—Q=1100
= Q=1700
= ™~ .
£ wf | =-Q=2900
= \ 4
20\ }
R AN !
SN !
0 \."._,_.._‘-.:_____1-73‘ - - -
1.92 1.94 196 1.93 200

A/d

Fig. 8. (Color enline) Transmittance and @ factors for a linear
waveguide for TM incidence with r, =0.5r and k=0 fixed and
kd/7=0.86 (red/dotted}, 0.92 (blue/doshed), and 1.0 {(grcen/
sclid). The resonance shifls to shorter wavelengths as A,
increases,
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Fig. 9. {(Celor online) Transmittance and @ factors for a linear
waveguide for TAf incidence with k. d/==1 and k,=0 fixed, The
defect size is r,.=0 (red/dotted), i.e., cylinder completely removed,
r,.=0.5r (blue/dashed), r,,=0.8r (grecn/thin), and r =r, ie., no
defect (black/thick). The resonances shift to longer wavelengths
as r,. increases.

field and that the woodpile behaves as though if were a
uniform medium (details are given in Appendix C},
Initially consider a grating aligned parallel to the x
axis. For normal incidence MEH=MME=(, consequently
the electric and magnetic probilems decouple. Further,

when A D only the specular order s=(0,0} is required so

T b

MO DO I

SOITIIIIIDIITO

R R DU O .

(T
{ 0N 2000 3000 KX 25000
Arh_ units

Fig. 10. (Color online) Field intensity in the vicinity of the lin-
ear waveguide: () |E,J? (Media 13, () |E,?, () |EP, (b) |HL2, (d)
[H,7, and () |H,[%. The radius of the defect rod (dashed circle) is
r.=0.5r, and the parameters of the incident field are k,#/d=1,
k,=0, and */d=1936, i.e, for the resonance indicated ir Fig. 9.
An animatien showing [E,® for the entire unit cell is available
online.
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that R =diag[REERHH] for scalars REE and R and
similarly T=diagl TETH#H]. For REE it suffices to use the
menopole approximation in Eq. (19), i.e., using only the
m=0 multipole order, while for RF¥ the dipole approxi-
mation {using the m=-1,0,1 multipoles) is needed. For
each cylinder ! we specify a permittivity g relative to the
background, with permeabilily p; taken to be 1, and de-
fine the filling fraction f}=r.r,2/(dh), where r; is the radius
and f: is the thickness of the unit cell [see Fig. 3{b)]. One
finds

fkia 1 M
REE~——7% file; - 1), (37
2 Nc!=l
ikh 1 X 2f;
RHH’ o~ _ ______l______) (38)
2 Niao+l wh
8[“' 1 B 3d ¢
TEE ~ 1+ REE, {39)
and
THH =14 RHH ’ (40)

For a grating aligned along the y axis, the expressions
for REE and RHH are simply interchanged. For a pair of
non-interpenetrating orthogonal gratings, the stacking
recurrences [Eqs. (24)] then pive

RE:E}' = RHH L TEET”HREE/(]. —REERHH), (41)
=RMH + RFE 1 O(k%), (42}
~RHE, (43)

and similarly ngrzi‘;ffr. Consequently, the scattering
matrices for a stack of such pairs approach a scalar mul-
tiple of the identity matrix, irrespective of whether suc-
cessive pairs are interleaved. Thus at long wavelengths,
in view of Egs. (33), (34), ana (36), the transmittance and
reflectance of a woodpile do not depend appreciably on the
polarization of the incident ficld.

For sufficiently large A, the Fabry-Pérot reflection co-
efficient for a slab of thickness i and permittivity £ may
be approximated using R~ (ikh/2)(s—1). Comparing this
with the asymptotic expressions of Egs. (37) and (38), we
conclude that each layer becomes indistinguishable from
a rectangular slab having a permittivity of

1 ¥
ere=1=—X file; = 1) (44)

Nc!=1

for TE incidence and
1 X 2/
T 45
i ch’ g+l wh (15)
£ - 1 B 3dﬁ

for T incidence, with the roles of erp and sqyp inter-
changed if the cylinders are instead aligned parallel to
the y axis.

Similarly, a siab of thickness {4, +h3s) and permittivity

Kan ¢t al.

Epatr— 1= [lerg — 1) + holeqy - DYy +hp)  (46)

can be substituted for an orthogonal pair of gratings.
Equation (46) is the linear mixing formula and depends
neither on the polarization of the incident field nor on the
order in which the two gratings are stacked.

When d=# and N,=1, one expects Eq. {45) to reduce to
the Maxwell-Garnett formula [30]:

" 2f
cp=1+ !:_+1_ . (CY)]
1

£;-1 fi
The apparent discrepancy of /3 arises because the
asymptotic form of the grating lattice sum S, is given by
§ == 451 /3(kd)?, which does not take into account the eva-
nescent coupling that occurs between the layers of the
woodpile. This can be rectified for 2D infinite stacks by in-
stead using the array sum [31] §;=385:/#.

Figure 11 compares the transmittance of a 16-layer
woodpile (normal incidence, N,=1, h=d, n;=3) calculated
using Eqgs. (21) and (22), which we take to be exact, with
that of a 16-layer stack of uniform slabs where the thick-

=2/InT

50 100 560 1000 5000

Ald
(a)
160 ]
f—
= ]
~
|
50 160 560 1000 5000
Ald
(b)

Fig. 11. {Color online) Transmittance of a 16-layer woodpile for
(2} TE and (b) TAf incidence. The incident field is perpendicular
to the grating plane. The exact values are shown in red/thick,
while the bluesthin curve corresponds to a 16-layer stack of alter-
nating homogeneous slabs, each with thickness k=d and permit-
tivity given cither by Eq. (44) or Eq. (45). The green/dashed curve
corresponds to a single slab of thickness 8d with permittivity
given by Eq. (46).
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Fig. 12. (Color online} (a} Four-la}er photonic woodplle and suc-
cessive approximations using (b) alternating slabs and (¢) a
single black of dielectrie. For the woodpile parameters given in
Section 3.C, the approximations above can be used in place of a
woodpile when Ad>10.

ness of each slab is k and the permittivity is taken to be
the effective permittivity of the corresponding layer of the
woodpile, i.e., using Eq. (44) or Eq. (45) as depicted in Fig.
12(b). There is excellent agreement for A/d >10; evidently
the ¢ylinders are too fine to be resolved so that each layer
homogenizes to a slab of uniform dielectric having the
same thickness as the layer. In addition, Fig. 11 also in-
cludes the transmittance of a single dielectric slab of
thickness 2=16d and permittivity given hy Eq. (46), as
depicted in Fig. 12(c). Again, good agreement with the ex-
act values is seen, which suggests that the stripe pattern
created by the layers also becomes indistinct.

4. CONCLUSION

It is expected that scattering losses due to extrinsic fac-
tors such as surface roughness will be less deleterious for
woodpiles than for 2D PCs, owing to the omnidirectional
bandgap of the woodpile, particularly in the ‘slow-light’
regime where the amount of parasitic scattering increases
sharply, We have presented extensions to the mulitipole
method that are needed in order to model rod-type defects
in woodpiles. This entails generalizing the grating super
cell to allow for more than one cylinder. To demonstrate
our implementation, a brief characterization of both a
CROW and a linear waveguide has been performed,
where each defect layer was surrounded by a woodpile
cladding. For both types of waveguides, the transmission
spectra over the bandgap frequencies of the host woodpile
revealed the existence of ‘TM-like’ waveguiding modes
that could be excited by a TAf polarized incoming field.
Changing the size of the defeet rod proved to be an effec-
tive way of controlling the @ factors. In particular, the lin-
ear waveguide modeled here supports waveguide modes
that may have sufficiently small volumes to enable low-
loss waveguiding over useful distances. It was observed
that 28 layers were needed for the chalgogenide woodpile
(n=2.64) to behave like a bandgap material, This is remi-
niscent of the work of [10], where it was determined that
for a GaAs woodpile (1 =3.38) about 25 layers are needed
to achieve lossless wavepuiding over a length of 500 pm.

The high @ factors make it ehallenging to locate trans-
mission resonances, particularly for the linear waveguide
as it requires a large unit cell for the defect layer. None-
theless, there are a number of complementary ap-
proaches, such as that outlined in Section 3.B, that may
be better suited to types of waveguides considered in this
paper. In particular, the method of fictitious source super-
position [23,24] may be a more expedient approach to
modeling a linear waveguide as it cbviates the need for a
large unit cell.
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The multipole method not only reduces the computa-
tional burden of modeling these types of structures but
also permits asymptotic analyses. Effective electric per-
mittivities that are applicable for sufficiently long wave-
lengths when the incident field is normal to the grating
plane were derived for the woodpile and for the individual
layers. In the future, we will investigate the long wave-
length behavior of the woodpile for conical incidence.

APPENDIX A: ELABORATION OF THE
RAYLEIGH IDENTITY AND SCATI‘ERING
MATRIX EXPRESSIONS

For a source point r' on the boundary C; [see Fig. 2(a)],
the value of the Green’s function G [defined implicitly by
Eq..{9)] at a point r in the vicinity of cylinder I relative to
the center ¢y, is given by

Glr-r')=—- 2 H_ (k)] ok, rexplimé,)

m__:r.
=

Xexp(—imb.)+ E S,k rexpling,}

n=-%

X > S, J(hr')expl- is0,) {AT)
s=~x
for j=I, and by
i *®
G(I‘i - l‘} —-Cit+ (!_r) = 2 Jm(klr{)exp(ilngrr)

x

X > _sf{;_st(kr;)exp(—iso,;)

(A2)
for j# I, where 8,=arg(n). Also,
= 2 Holk le)e® P explimt, ], (AB)
n#{)
and
SY - 2 H,. (%, |eietfor? explim a.17), {Ad)

where ¢,=nlx and ci{':cj—cﬁcn. The multipole scatter-
ing matrix appearing in the Rayleigh 1dent:ty [Eq.(12)] is
then given by S=diag($,8), S=[SY), SU=(8Y ] In addi-
tion, the multipole change of basis matrices [ses Eq. (12)
and Eq. (17)] are defined as F==diag[[J}*][J=]], Jox
=[],

K= [T (e,

KLt ... Kh}g 0 .. 0
Kr= o - 0 Kl,:- KN,,: r (AS)
Kf'*-[K’;: and Kf?'jz(: 1Y"expl = in arg(y,+i,)]

xexp(-if,e;). Accordingly, the symmetrized versions
of the multipole transformation matrices {see Eq. (19))
are T =diagl T =0 T % 7] and Kesha
=diag[ K-+ K KT K7
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As was discussed in Section 2.B, the above matrices ap-
pear as folded quantities in the final expressions for the
scatiering matrices [i.e. Eqs. (21) and (22)}. Specifically,

B [AEE | Sofagela facH -1
£l = _ - - 1, (AB)
MHE MH”+ Sa!seals
‘gs!a = [§Jj,s.’a], 'é!j,sia - Sf'ti—_m (= )msg“n] g8
=diag[diagle,l11], e?=diag{diagil, £]], e=diag[e,],

1/2, form=0,
Em = 1, form>0

and MEEHH gre the blocks of A (see Appendix B).

In deriving the Rayleigh identity, the longitudinal (i.e.,
x} components 5;"’. of the incoming fields were required
[see Eq. (11)]. These are obtained using D™ =ZX"F; and

x+_7_—1|-, where I)t"[(D E)'I' (D H)T]T pxEH
_[(S'*,.El'fi]’ and where leuzzzmdlag{(#b/sb)” ], 212—22[
=0, Xy {—-x2 =—diag[£ "B, (a5 + 8], and Xi=X3
=diagf[£; "2ap(a +,B')‘”2} Sxmllar expressions exist for the
blocks of X*; however, they are not needed here (consult
[25]). It follows that the change of coordinates matrices in
Eq. (18) are Z=diag(Z,Z]} and X'=diag[X",X*], which, af-
ter the symmetry folding procedure [see Eqs. (19), {21),
and (22)] simplifies to A=diag[X,X], with X=X~

APPENDIX B: EXPRESSIONS FOR THE
BOUNDARY CONDITIONS

The matrix At encapsulating the boundary conditions
[see Eg. (15)] is 2 2 by 2 block matrix, and we use super-
scripts E and H to label the blocks so that

MEE  pEH

M= MFEE i | (B1)
Each block is diagonal with N, partitions, where N, is the
number of eylinders in the grating unit cell. We use ! to
index the cylinders and # to index the elements of the par-
tition. In addition, the label ‘I’ denotes quantities that de-
pend on the material properties of cylinder /, while ‘I’ de-
notes- guantities that depend on the properties of the

backpround region. If the radius of cylinder I is ay, then
the entrics on the diagonal of each block are

a1} s (DD H ey rd T (e )

EE
M(,n - A
y L) = 5 IDP JoH B2)
DD T
L (D DR e (e )
in — A |
y [7:(1) ~ 7, (AN T B3
o B9
ME]{=[W1(T)—Th(H}]T!z(I)Wa(I) y 2’*?#1 B4

&
" A whi

QY
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MEE = (Cllpl)MEf , (B5)

with B =kem-ol,  ml)=-epn/[(k )], m0)

=—ikp;lk 15 p3i)= zkc_,/kw

(1) - P }
R S T B

_ 2
A=l (B (1) X { D7D

J::(kllrl)
o J ol 1)

{0 e 1)
w(I)Jn(k_urf'z) '

(B6)

and
H (k)
 H,(kum)

(I (ke i)
Tk )

APPENDIX C: DERIVATION OF THE
ASYMPTOTIC EXPRESSIONS OF SECTION
3.C

If R =diag{R'EER ] and 77 =diag[T"FET'1H] are the
scattering matrices for a y aligned grating, it follows

readily from Eq. (19) that for normal incidence and
Md>»D,

REE - RrHH =

2kD
X [ICH(MFF + )71 7% — KO(M¥* + §)1 77),
{C1)
J ALl L
~2kD
b4 [}CG(M”H+ S)—l‘j{i - JCE‘(M””+ S)WIJ?],
' (C2)
PEE . HH 1__1__
21D
X [ICE(MFE + Sy 17 + KCO(MEE + 5y 177,
(C3)
and
THH . EE o ] _ T
X [ICEMAH 4 8)71 72 4 ISP 4+ 8) 1 7,
(C4)-

where K¥2=K "2 K* and 7% =7 = J*. In the above we
have used the fact that KL F*=K*L =0 for up-down
symmetric gratings. Evaluation of the matrix inversions
requires the long wavelength approximations for Egs.
(B2} and (B3), and these in turn are deduced from the
Taylor series expansions, which result in
4§
EE _ -
Mo = 2o, S (©5)
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MET =M = 57—, (Ce)
ffat(e-1)

and
M = MEF (e + 1), (o5}

where a=k\dh. Along with the assumption that there is
only weak diserder in the values of g; (hence MEE"HH
-*MEE"HH for any two cylinders ! and j) and in the cylm-
der ofT'sets ¢y, Eqs. (C5)-(CT) enable each matrix inversion
to be carried out analytically. Using the approximations
for the lattice sums given in [16], one finds after simplifi-
cation

N,

c

K:(MAE'EIHH + S) IJ"' . (CS}

I y AIbEIHH

- for both the monopole and dipole approximations. Also,

for the monope]e case
]CB(MEEIHH + S)_lja = 0, (Cg)

while for the dipole case

AT
i
KG(MEE/HH_,_S) 172283 — {C10)
=1 MEEIHH _P'L
3a?

For the monopole approximations we then have

ikh 1 Y
 RFE~ ?JVE file; - 1) = O(a), (€11}
TEEk1+RgE, {C12)
kR { - o
RHH o, if_l( — )Efr (g,- 1 =0(?, (C13)

and
THH = 1 - RUH, (C14)

Note that Eq. (C8) contains enly monopole terms, ie.,
Mfg’mf, while Eq. {C10) contains only dipole terms. Thus
the terms in Eqs. (C1)=(C4) invelving KX° and 7% may be
viewed as the monopole approximations, while those in-
volving X® and 7° are dipole corrections, so that we may
write for the dipole approximation of REE

REE = RGE + AP = REE, (C15)

where RgE is the monopole approximation given by Eq.
{C11) and

tkh [ - 207\ Ne i
ABE o = Ota®
E(Nc )?:‘{ 8w 7:'” . (e
E—E(“ﬁ)
(C16)

is the dipole correction. Similarly,
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RHH -, RHH AH'H, (017}
with
ikhi 2 fi
A =~ | — — = O(a). ci8
2 (Nc)g g+l =wh (@) (C18)
g-1 3d°

Analogous relationships also hold for Tzz and Ty Equa-
tions (C15) and (C17) justify our elaim that only the
monepole approximations are needed to compute REE and
TEE, while for RHH and THH the dipole approximations
must be used instead.
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