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Abstract—Frequency-hopping (FH) MIMO radar-based dual-
function radar communication (FH-MIMO DFRC) enables com-
munication symbol rate to exceed radar pulse repetition fre-
quency, which requires accurate estimations of timing offset
and channel parameters. The estimations, however, are chal-
lenging due to unknown, fast-changing hopping frequencies and
the multiplicative coupling between timing offset and channel
parameters. In this paper, we develop accurate methods for a
single-antenna communication receiver to estimate timing offset
and channel for FH-MIMO DFRC. First, we design a novel FH-
MIMO radar waveform, which enables a communication receiver
to estimate the hopping frequency sequence (HFS) used by
radar, instead of acquiring it from radar. Importantly, the novel
waveform incurs no degradation to radar ranging performance.
Then, via capturing distinct HFS features, we develop two
estimators for timing offset and derive mean squared error lower
bound of each estimator. Using the bounds, we design an HFS
that renders both estimators applicable. Furthermore, we develop
an accurate channel estimation method, reusing the single hop for
timing offset estimation. Validated by simulations, the accurate
channel estimates attained by the proposed methods enable the
communication performance of DFRC to approach that achieved
based on perfect timing and ideal knowledge of channel.

Index Terms—Joint communication and sensing (JCAS), dual-
function radar communication (DFRC), frequency hopping (FH)
MIMO radar, timing offset, channel estimation and AoD.

I. INTRODUCTION

There have been increasing demands for systems with both
communications and radar sensing capabilities on emerging
platforms such as unmanned aerial vehicles and smart cars
[1]. Instead of having two separate systems, it is possible
to develop techniques to integrate the two functions into
one by sharing hardware and signal processing modules, and
achieve immediate benefits of reduced cost, size, weight,
and better spectrum efficiency [2]. The design of joint radar
and communication systems can be categorized into three
groups: coexistence, cooperation and co-design [3]. In the
first two groups, the joint design, though improves the spec-
tral efficiency, has an inevitable issue of mutual interference
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between radar and communications [4]. In co-design, dual-
function waveform can be optimized by jointly considering
radar and communication performance metrics (e.g., mutual
information and achievable rate) [5]–[7], which, however, can
have constrained radar sensing ability, as compared with using
dedicated radar waveform.

Conducting data communications based on radar platforms,
referred to as dual-function radar communication (DFRC),
has been studied for decades [8]. Given the popularity of
the frequency modulated continuous wave (FMCW) radars
particularly in automotive applications, early DFRC tends to
consider FMCW radars [9]. The advancement of MIMO radars
has made the recent DFRC designs in favor of considering this
modern radar system [10]–[13]. Some researchers optimize
the beam pattern of a MIMO radar to perform conventional
modulations, such as phase shift keying (PSK) and amplitude
shift keying, using sidelobes in the MIMO radiation patterns
[10], [11]. Others optimize radar waveform to perform non-
traditional modulations, such as waveform shuffling [12] and
code shift keying [13]. These works [10]–[13] embed one sym-
bol per one or multiple radar pulses; hence the communication
symbol rate is limited by radar pulse repetition frequency
(PRF).

Employing frequency-hopping (FH) based MIMO (FH-
MIMO) radar can increase the symbol rate to much larger
than radar PRF, since each radar pulse is divided into mul-
tiple sub-pulses (also referred to as hops) and information
embedding can be performed on a sub-pulse basis [14]–
[16]. For brevity, we refer to FH-MIMO radar-based DFRC
as FH-MIMO DFRC. There are two schemes of FH-MIMO
DFRC that embed one communication symbol per hop. The
first scheme embeds a PSK symbol into radar signal per
antenna and hop [14], [15]. To demodulate PSK symbols,
a communication receiver needs an accurate estimate of the
channel response. The second realization exploits different
combinations of hopping frequencies as constellation symbols,
referred to as FH code selection (FHCS) [16], but does not
necessarily require channel estimation. The achievable rate of
FHCS can be limited by the number of different combinations
of hopping frequencies, which, nevertheless, can be improved
by combining PSK. The combination, as with sole PSK,
requires an accurate channel estimate for decoding.

An accurate channel estimation plays an important role
in the FH-MIMO DFRC. Channel estimation, however, is
challenging for various reasons. First, training signals for
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channel estimation can incur changes to existing radar wave-
forms, which, possibly, results in undesirable performance
degradation to radar detection. Second, the pairing between
hopping frequencies and antennas is a critical information
in channel estimation (as will be clear in Section II-D) and
information decoding [15], [16]; however, the acquisition of
the pairing information at a communication receiver is non-
trivial and depends on how much information radar shares.
Third, fine timing, which finds a precise timing offset value,
is not easy to realize in FH-MIMO DFRC (although a coarse
timing can be achieved at a communication receiver by
performing conventional energy-based/auto-correlation packet
detection [17]).

A. Main Contributions of Our Work

Aiming to tackle the above challenges, we discover and
exploit the unique waveform structure of FH-MIMO radar to
develop low-complexity and high-accuracy estimation meth-
ods for timing offset and channel parameters. The main
contributions are summarized as follows.

1) We design a novel FH-MIMO radar waveform by intro-
ducing a simple re-ordering processing per hop. Enabled
by the novel waveform, we propose to estimate, instead
of acquiring from radar, the hopping frequency used by
each radar transmitter antenna per hop. Importantly, we
also prove that the novel waveform incurs no degrada-
tion to the radar ranging performance;

2) For line-of-sight (LoS) channels, we develop two timing
offset estimators which are suitable for distinct hop-
ping frequency sequences and levels of communica-
tion signal-to-noise ratio (SNR). We also derive mean
squared error (MSE) lower bound (MSELB) of each
estimator. Using the bounds, we further design a sub-
optimal hopping frequency sequence which renders both
estimators applicable. With the timing offset estimated,
we develop methods to accurately estimate the remain-
ing channel parameters, applying our recent work [18];

3) For multi-path channels, we develop a method to esti-
mate the composite of multiple paths using incomplete
sampled hops, where we propose to combat inter-hop
and inter-antenna interference by judiciously configur-
ing hopping frequency. Then, we extend the methods
developed for LoS channel to multi-path channels af-
ter recovering the pivotal phase information using the
estimated multi-path composite.

To improve the communication data rate in FH-MIMO
DFRCs, we propose to combine PSK [15] and FHCS [16],
referred to as PFHCS. We also provide a PFHCS demodulation
scheme applying the estimated timing offset and channel
parameters. Simulations are provided to validate the high
accuracy of the proposed methods and the improved commu-
nication performance of PFHCS compared with PSK [15] and
FHCS [16]. In particular, the timing offset estimation is able
to approach the derived MSELB across a wide SNR region. At
a moderate SNR of 15 dB, our schemes enable data rate and
symbol error rate (SER) to approach those based on perfect
timing offset and ideal knowledge of channel parameters.

B. Literature Review

1) Channel Estimation Methods for DFRC: To the best of
our knowledge, there has been no published work on channel
estimation methods for FH-MIMO DFRC. As a matter of
fact, only a few works [19], [20] develop channel estimation
methods for radar-based communications. Specifically, sparse
recovery-based channel estimation methods are developed in
[19], [20] which coordinate radar and communication receiver
using probing beams. In a different yet relevant context
(spectrum sharing), interference channel between radar and
communication is estimated to achieve co-existence [17], [21],
[22]. In [21], communication users are coordinated to send
training symbols and radar performs the maximum-likelihood
(ML) estimation on communication channels. In [22], radar
and communication are scheduled by a control center. Dif-
ferent from the above works, uncoordinated radar and com-
munication base station (BS) are considered in [17], where
several hypothesis testing and ML estimators are developed
for channel estimation.

In some recent DFRC works [2], [23], channel estimation
methods are developed, which, however, are based on new
(future) DFRC waveforms/platforms [24]. These new designs
are specifically tailored for dual functions and are non-trivial to
be applied in FH-MIMO DFRC. A common feature captured
by most of the above methods is the full cooperation between
radar and communication. An exception is found in [17]
which, as in the present work, considers an uncooperative
scenario where no communication-specific training signal is
available from radar. Unlike [17] which is based on a conven-
tional MIMO radar and a BS potentially with strong computing
power, we consider an FH-MIMO radar and a low-profile
communication receiver with low computing power and few
(or a single) antennas.

2) Information Embedding Schemes for FH-MIMO DFRC:
Aimed at improving radar spectral efficiency and reducing
range sidelobe levels, the differential PSK (DPSK) [25] and
continuous phase modulation (CPM) [26] have also been
considered in FH-MIMO DFRC. In [27], a comprehensive
analysis is provided to compare PSK, DPSK and CPM in
terms of their impact on radar ranging and their data rate.
From the communication perspective, it is known that the
asymptotic SER performance of DPSK is generally worse than
PSK, particularly when the modulation order is high; and the
optimal receiver of CPM can be complicated to implement
[28]. Most of the above FH-MIMO DFRC schemes require
channel information for communication decoding. Although
the information is not necessarily required by FHCS and
DPSK, the timing offset has to be estimated and compensated
to avoid inter-hop interference. Neither channel nor timing
offset estimation is considered in these works. For ease of
exposition, we employ PSK and FHCS to develop timing offset
and channel estimation methods, since they have simpler sig-
nal models than the other modulations. The proposed methods
can be readily applied for other modulations by using similar
signal frame structure, as to be designed in Section II-C.
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TABLE I
NOTATIONS AND DEFINITIONS

H number of hops per radar pulse
K number of radar sub-bands in frequency band B
L(= T/Ts) number of samples per radar hop
Lη(= η/Ts) number of samples corresponds to η
M number of antennas of radar transmitter array
T hop duration
Ts sampling interval
Yh(l) L-point DFT of yh(i)
Ym Yh(l∗M−1−m), solely related to antenna m; see (29)
fL lower limit of radar RF
fhm hopping frequency used by antenna m at hop h
fk frequency of sub-band k
khm index of the sub-band used by antenna m at hop h
l∗m index of the discrete frequency of peak m of |Yh(l)|
yh(t)

/
yh(i) continuous

/
digital signal received at hop h

η timing offset
φ AoD from radar to communication end
β channel gain
ξ(t)

/
ξ(i) continuous

/
digital AWGN in the time domain

Ξ(l) L-point DFT of ξ(i)
ωη , u, β̃ intermediate variables related to η, φ and β, respec-

tively; see (10)
$hm PSK modulation phase for antenna m at hop h
κm second-order difference of k̂m; see (12)
M;M̄;M̆ set of antenna indices satisfying κm 6= 0; |κm| = 1;

|κm| > 1

M̄ ; M̆ cardinality of M̄; M̆

C. Paper Structure and Notations

The remainder of the paper is organized as follows. In
Section II, the FH-MIMO radar is described first, then PSK
[15] and FHCS [16] are briefly reviewed, and the problems
of estimating timing offset and channel parameters are also
formulated. In Section III, a novel FH-MIMO radar waveform
is designed, and accordingly the overall channel estimation
scheme is developed. Section IV first develops two estimators
for timing offset and then analyzes their performance, leading
to the design of a sub-optimal hopping frequency sequence.
The remaining channel parameters are estimated in Section
V, followed by the design of PFHCS and its demodulation
in Section VI. Extension of the proposed methods to multi-
path and multi-antenna scenarios is elaborated on in Section
VII. Simulation results are provided in Section VIII with
conclusions provided in Section IX.

Notations: The following notations/rules are followed. CKM
denotes binomial coefficient. b·e rounds towards nearest inte-
ger. <{x} takes the real part of x and ={} the imaginary part.
| · | can take amplitude, absolute and cardinality, depending on
context. G{} denotes the greatest common divisor (GCD). ∠x
takes the angle of x. x̂ denotes the estimate of x and ]x
the angle estimate. I+ denotes the set of positive integers,
N the set of nature numbers and C the set of complex
numbers. Variables with subscripts ()h and ()m indicate their
associations with hop h and antenna m, respectively. Table I
summarizes the notations used in this paper.

II. SIGNAL MODEL AND PROBLEM FORMULATION

Consider the FH-MIMO DFRC illustrated in Fig. 1(a).
There are an FH-MIMO radar and a single-antenna user

M

N

Downlink Comm.
(AoD)

L samples

Channel
gain

M
IM

O
T
X

M
IM

O
R
X

a radar pulse repetition interval (PRI)

hop 0

channel
estimation

T

sampled
hop 0

hop 1 hop 2 H 1

L

samples

data communication

(a) (b)

Comm.
RX

hop 3

sampled hop 2

Radar
target

Fig. 1. (a) Illustration on the system diagram of an FH-MIMO DFRC; (b)
The signal frame structure for the downlink communication in Fig. 1(a).
The aircraft symbol is downloaded from https://www.clipartkey.com/view/
ThboRm airplane-aircraft-vector-illustrator-flying-clipart-airplane-gif/

terminal. In addition to target illumination, the radar also
performs downlink communication with a communication user
through an LoS channel1. In this section, we describe the
signal model of the FH-MIMO radar, based on which PSK
[14] and FHCS [16] are reviewed.

A. FH-MIMO Radar

The FH-MIMO radar of interest is based on fast frequency
hopping. Each pulse is divided into H sub-pulses, i.e., hops
[16]. The centroid frequency of the transmitted signal changes
randomly across hops and antennas. Denote the starting radio
frequency (RF) of the radar as fL and the bandwidth as B.
By dividing the frequency band evenly into K sub-bands,
the centroid frequency of the k-th sub-band is given by
fk = fL + kB

K (k = 0, 1, · · · ,K − 1). Let M denote
the number of antennas in the radar transmitter array. Out
of the K centroid frequencies, M(< K) frequencies are
selected to be the hopping frequencies at a hop, one per
antenna. Denote the hopping frequency at hop h and antenna
m as fhm that satisfies fhm ∈ {fk ∀k}. To ensure the
waveform orthogonality of the FH-MIMO radar, the following
are required [14], [30]

fhm 6= fhm′ (∀m 6= m′, ∀h); BT/K ∈ I+, (1)

where T is hop duration. At hop h the m-th antenna of the
radar transmitter transmits

shm(t) = e−j2πfhmt, 0 ≤ t− hT ≤ T. (2)

Throughout the paper, we consider that the radar transmitter
is equipped with a uniform linear array with the antenna
spacing of half a wavelength. Refer to Appendix X-A for an
elaboration on FH-MIMO radar signal processing.

B. Information Embedding for Communications

Let φ denote the angle-of-departure (AoD) of the LoS path
with respect to (w.r.t.) the radar transmitter array. The multiple-
input-single-output channel response vector is βa(φ), where
β is the LoS path gain and a(φ) is the steering vector in the
direction of φ. (By assuming the pseudo-static channel, we
have suppressed the dependence of channel parameters, i.e., β

1Note that LoS channel is generally considered in ground-to-air commu-
nications [29]. Therefore, our proposed methods are promising to be applied
in an air-surveillance radar-based communications with aircrafts, where the
radar is typically located in high altitudes [17] and aircrafts can be hundreds
to thousands of meters above the sea level [29].

https://www.clipartkey.com/view/ThboRm_airplane-aircraft-vector-illustrator-flying-clipart-airplane-gif/
https://www.clipartkey.com/view/ThboRm_airplane-aircraft-vector-illustrator-flying-clipart-airplane-gif/
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Fig. 2. The impact of using two identical hops on the range ambiguity function
(RAF) of an FH-MIMO radar, where, with reference to [16], the radar is
configured as M = 10, K = 20, H = 15, T = 0.2 µs, fL = 8 GHz and
B = 100 MHz. For the original RAF, the hopping frequencies, fhm ∀h,m,
are randomly selected from {fk(= kB/K) ∀k}.

and φ, on time.) Assuming perfect timing, the signal received
by the communication receiver at hop h is [16]

yh(t) = β

M−1∑
m=0

e−jπm sinφFhme
−j2πfhmt + ξ(t), (3)

where Fhm denotes an information modulation term multiplied
to the radar signal at hop h and antenna m and ξ(t) is an
additive white Gaussian noise (AWGN).

In PSK, Fhm(t) = ej$hm ∀t is taken at hop h and
antenna m, where $hm ∈ ΩJ (J ≥ 1) with ΩJ ={

0, 2π
2J
, · · · , 2π(2J−1)

2J

}
denoting the J-bit PSK constellation.

Besides a perfect synchronization, PSK decoding also requires
[14], [15]: 1) the pairing between hopping frequencies and
radar transmitter antennas; and 2) β and φ. FHCS exploits
the different combinations of hopping frequencies to convey
information bits [16]. Since M(< K) out of K frequencies
are selected per hop, there are CMK different combinations of
hopping frequencies. These combinations are used as constel-
lation symbols. At a communication receiver, only a Fourier
transform is performed on the received signal to identify the
hopping frequencies and then demodulate an FHCS symbol
[16]. However, to ensure the waveform orthogonality given in
(1), a perfect synchronization is required in [16].

C. Proposed Frame Structure

We consider that radar varies hopping frequencies without
notifying the communication receiver. To fulfill data commu-
nications and reduce overhead, we assume packet communi-
cations and propose the signal frame structure as shown in
Fig. 1(b). In each frame, the first two hops are set identical to
enable effective estimation of timing offset, carrier frequency
offset (CFO) and channel; and the remaining hops are used
for data transmission.

Using two identical hops at a radar pulse can affect the
range ambiguity function but only slightly. Fig. 2 compares
the range ambiguity function of an FH-MIMO radar having
two identical hops at the beginning or not, where the sub-
optimal hopping frequency sequence, denoted by the M × 1
vector f∗, are used. (f∗ will be designed in Section IV-C). We
see from Fig. 2 that only slight changes are incurred to the
sidelobes of the range ambiguity function with the mainlobe
unaffected by using f∗ at the the first two hops.

The use of two identical hops enables simple and effective
coarse timing and CFO estimation by performing the conven-
tional energy-based or autocorrelation packet detection [17].
A coarse timing offset, denoted by η(> 0), can be readily
estimated at each frame. When the CFO is not very large, a
high-accuracy CFO estimation can be readily achieved based
on the well-developed methods in the literature; refer to [31,
Chapter 5.4] for a review. (Details of the coarse timing and
CFO estimation are out of the scope of this paper.) To this end,
we take a zero CFO and a non-zero timing offset of η(> 0).

D. Problem Formulation

At the communication receiver, the RF signal is down
converted to the baseband using a local oscillator signal with
the frequency fL. Then, the signal is sampled at a sampling
interval of Ts. Each hop has L(= T

Ts
) samples. Affected by

the timing offset η, the initial sampling point of each hop is
delayed by Lη(= b ηTs e) samples, where bxe rounds x to the
nearest integers. Based on (3), the i-th (i = 0, 1, · · · , L − 1)
digitized communication signal at hop h, denoted by yh(i),
is given by (4), where (fhm − fL) is replaced with khmB

K ,
khm(∈ {0, 1, · · · ,K − 1}) denotes the selected sub-band for
antenna m at hop h, and (f(h+1)m−fL) is replaced similarly.

We see from (4) that extracting Fhm for communication
decoding can be non-trivial due to the disturbing phases caused
by khm, η, φ and β. Although the M hopping frequencies at
hop h can be estimated from the discrete Fourier transform
(DFT) of yh(i), determining khm requires the pairing between
the hopping frequencies and antennas. Acquiring the pairing
information and updating the information as frequently as
the primary radar does (i.e., H times per radar PRI) can be
challenging.

We also see from (4) that the phases incurred by φ and η are
coupled in a multiplicative manner for each antenna m. This
is drastically different from the conventional communications
with a constant η across antennas and hence invalidates
conventional methods for estimating η and φ, e.g., in [31].
The coupling destroys the linear phase relation in e−jπm sinφ

(across m), as required for φ estimation [32]. On the other
hand, due to the random, independent frequency hopping
across hops, the exponential term e−j2π

khmBη

K is also random
across hops. These factors make the joint estimation of η, φ
and β challenging.

III. NOVEL FH-MIMO WAVEFORM FOR CHANNEL
ESTIMATION IN DFRC

In this section, we first design a novel FH-MIMO radar
waveform and then depict the proposed channel estimation
scheme in overall.

A. Novel FH-MIMO Radar Waveform

Due to the waveform orthogonality given in (1), the M
signals transmitted from the M radar antennas have different
centroid frequencies. This indicates that the M signals can
be differentiated in the frequency domain. Thanks to the two
identical hops at the beginning of each PRI (see Fig. 1(b)), the
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yh(i) = β ×

{ ∑M−1
m=0 Fhme

−jπm sinφe−j2π
khmB

K
(iTs+η) + ξ(i), for i = 0, 1, · · · , L− Lη − 1,∑M−1

m=0 F(h+1)me
−jπm sinφe−j2π

k(h+1)mB

K
((i−L)Ts+η) + ξ(i), for i = L− Lη, · · · , L− 1,

(4)

waveform orthogonality condition given in (1) can be ensured,
as analyzed below. Taking the L-point DFT of the digitized
samples of hop h, i.e., yh(i) (i = 0, 1, · · · , L − 1) given in
(4), the frequency-domain received signal at the l-th discrete
frequency l

LTs
, denoted by Yh(l), is

Yh(l) =

L−1∑
i=0

yh(i)e−j
2πil
L = Lβ

M−1∑
m=0

e−jπm sinφe−j2π
khmBη

K ×

e−j
π(L−1)l

L δ
(
l −
(
L− khmBT/K

))
e−j

π(L−1)khmBT

KL + Ξ(l),

(5)

where δ(l) denotes the Dirac delta function and Ξ(l) is the
DFT of the AWGN ξ(i). Note that the summation term in (5),
as indexed by m, is solely related to the signal transmitted by
radar antenna m. These terms will be separated and used for
the estimation methods to be developed in Sections IV and V.

Due to the delta function in (5), M peaks of |Yh(l)| can
be detected at L − khmBT/K (m = 0, 1, · · · ,M − 1).
By identifying the M largest peaks of |Yh(l)|, the set of
{khm ∀m} can be obtained. However, we cannot determine
the pairing between the hopping frequencies and the radar
transmitter antennas, as khm ∀m can take ∀k(∈ [0,K − 1])
in conventional FH-MIMO radars [14], [30]. To solve this
problem, we design a novel waveform by introducing a re-
ordering of hopping frequencies at any hop in an ascending
order2, as given by

s̃hm(t) = ej2π(fL+k̃hmB/K)t ∀h, 0 ≤ t− hT ≤ T
s.t. k̃h0 < k̃h1 < · · · < k̃h(M−1), (6a){

k̃hm ∀m
}

= {khm ∀m} . (6b)

where both k̃hm and khm denote the sub-band index of the
radar-transmitted signal from antenna m at hop h, and the
former is for the new waveform while the later is for the
conventional waveform. An illustration of the new waveform
is provided in Fig. 3(b), where the hopping frequencies across
antennas and hops are displayed in scaled gray colors, and the
hopping frequencies of a conventional FH-MIMO waveform
are given in Fig. 3(a) for reference.

Enabled by the new waveform, we can now determine the
pairing between the hopping frequencies and radar transmitter
antennas. Let l∗m denote the index of the m-th peak of |Yh(l)|,
satisfying

0 ≤ l∗0 < l∗1 < · · · < l∗M−1 ≤ L− 1. (7)

From the parameter of the delta function in (5), we see that a
smaller khm corresponds to a larger index of the peak. Based

2It can also be a descending order, which does not affect the property of
the new waveform to be unveiled in Proposition 1 and the estimation methods
to be proposed in Sections IV and V-A.
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Fig. 3. (a) The hopping frequencies of a conventional FH-MIMO radar
waveform given in (2); (b) The hopping frequencies of the new waveform
given by (6); (c) Comparison of the range ambiguity function (RAF) of the
FH-MIMO radar using the conventional, new waveforms and PSK-embedded
new waveform; and (d) Difference between the first two RAFs from Fig. 3(c).
The same radar configuration as in Fig. 2 is used here.

on this observation, (6a) and (7), we can estimate k̃hm as

k̂hm =

(
L− l∗M−1−m

LTs

)/(B
K

)
=
K(L− l∗M−1−m)

BT
. (8)

The above estimation is achieved without degrading radar
ranging due to the following property.

Proposition 1: The novel FH-MIMO radar waveform,
s̃hm(t), has the same range ambiguity function as the original
FH-MIMO radar based on shm(t) given in (2).

Refer to Appendix X-B for the proof of Proposition 1.
Fig. 3(c) compares the range ambiguity functions of an FH-
MIMO radar, where the conventional range ambiguity function
is calculated by substituting the hopping frequencies shown in
Fig. 3(a) into (34) (given in Appendix X-B), and the new
range ambiguity function is calculated based on the hopping
frequencies shown in 3(b). We see from Fig. 3(c) that the
new range ambiguity function overlaps with the conventional
one. This is further validated by Fig. 3(d). Fig. 3(c) also plots
the range ambiguity function using the PSK-embedded new
waveform, where (M × H) number of randomly generated
BPSK symbols are multiplied onto s̃hm ∀h,m, one for each.
Same as the conventional FH-MIMO waveform [14], the new
waveform, when combined with PSK, can have range sidelobe
spikes suppressed. This is because incoherent PSK phases
can prevent periodic energy accumulations in range sidelobes;
refer to [14] for an in-depth analysis of the spike suppression.

B. Overall Channel Estimation Scheme

Using the new FH-MIMO radar waveform, we develop a
channel estimation scheme by first focusing on LoS channels
and a single-antenna communication receiver. Then, the pro-
posed scheme is extended to multi-path channels in Section
VII. The scheme includes two steps, which will be detailed in
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Sections IV and V-A, respectively. The estimation methods to
be proposed can be performed based on a single hop, i.e., the
sampled hop 0 as highlighted in Fig. 1. Hence, we drop the
subscript “(·)h”, unless otherwise specified.

1) Estimate ωη , a function of the timing offset η: Substi-
tuting (7) and (8) into (5), the signal from the m-th radar
transmitter antenna can be extracted, as given by

Ym = Y (l∗M−1−m) = β̃e−j
2πmu
M ωk̂mη + Ξ(l∗M−1−m) (9)

where the intermediate variables, β̃, u and ωη , are defined as

β̃ , Lβe−jπ(L−1), u ,M sinφ/2, ωη , e−j2π
Bη
K . (10)

The way we define u is to enable accurate estimation of φ, as
will be designed in Section V-A. Note that Y (l∗M−1−m) takes
the DFT output at the l∗M−1−m-th discrete frequency, while the
DFT output given in (5) is calculated based on the L signal
samples in the first single hop received by the communication
receiver.

From (9), we see that ωk̂mη ∀m is multiplied to e−j
2πmu
M

∀m pointwise. Due to the phase disturbance caused by ωk̂mη ,
the linear phase relation in e−j

2πmu
M , which is the key for

angle estimation [32], is scrambled. Nevertheless, we notice
that the linear phase relation in e−j

2πmu
M can be exploited to

suppress the impact of u on η estimation. This enables us to
estimate ωη unambiguously, as to be designed in Section IV.
We propose to estimate ωη rather than η due to the non-trivial
phase ambiguity issue in η estimation. This will be clear in
Section IV. It is noteworthy that using the estimate of ωη is
sufficient to suppress the impact of η on φ estimation and
communication decoding.

2) Estimate channel parameters φ and β: Given the esti-
mate of ωη , we can remove ωk̂mη ∀m in (9) to further estimate
φ and β. It is non-trivial to estimate φ based on the single-hop
signals Ym ∀m. The spatial searching methods developed in
[33], [34] can be performed using a single-snapshot. However,
these methods [33], [34] can be time-consuming in achieving
a satisfactory estimation accuracy, since more searching grids
are required for a better angle resolution. In a different yet
related context, we developed in [18] a method to estimate
the frequency of a single-tone exponential signal having the
similar expression to the u-related term in (9). The method
is low in computational complexity and efficient in the sense
of approaching the Cramér-Rao lower bound (CRLB). Thus,
we apply the method [18] to develop an accurate estimation
method for φ and β, as will be elaborated on in Section V-A.

IV. PROPOSED METHOD FOR ωη ESTIMATION

As illustrated in Section III-B, the estimation of ωη is key
to the overall channel estimation. In this section, we first
develop two estimators for ωη , then derive their MSELBs, and
moreover design a sub-optimal hopping frequency sequence.

A. Estimation of ωη

To estimate ωη based on Ym given in (9), we need to
suppress the impact of β̃ and u. Since β̃ is independent of

m, we can suppress β̃ by taking the ratio of adjacent Ym,

Y̆m =
Ym
Ym+1

= ej
2πu
M ω

k̂m−k̂(m+1)
η , m = 0, 1, · · · ,M − 2.

(11)

We see from (11) that the u-related term is now independent of
m, and hence, by taking the ratio of adjacent Y̆m, the impact
of u can be suppressed, i.e.,

Ȳm =
Y̆m

Y̆m+1

= ωκmη = ejκm∠ωη , m = 0, · · · ,M − 3

s.t. κm , k̂m − 2k̂(m+1) + k̂(m+2), (12)

where ∠ωη takes the phase of ωη in the interval of [−π, π].
By estimating ∠ωη , ωη can be determined.

We see from (12) that ∠ωη can be estimated by taking the
phase of Ȳm, which, however, requires κm 6= 0. Based on (8),
we can identify the set of antenna indexes satisfying

M = {∀m̃}, s.t. κm̃ 6= 0. (13)

We also see from (12) that directly taking the angle of Ȳm can
lead to phase ambiguity due to potential cases of |κm∠ωη| >
π. Hence, we have two possible estimates of ∠ωη , i.e.,

]ωη(dm̃) =

{
κm̃]Ȳm̃ (dm̃ = 0), if |κm̃| = 1

]Ȳm̃+2dm̃π
κm̃

(dm̃ = 0,±1, · · · ), otherwise

(14)

where dm̃ is the ambiguity degree.

From (14), we see that, if |κm̃| = 1 holds for some m̃, we
obtain the unambiguous estimate of ∠ωη directly. Let M̄ ⊆
M denote the set of m̄ such that |κm̄| = 1, i.e.,

M̄ = {∀m̄} ⊆ M s.t. |κm̄| = 1 ∀m̄ ∈M. (15)

Substituting (15) into (14), we can accumulate Ȳm̄ coherently
across m̄ and then take the angle for ∠ωη estimation. This
leads to the first estimator of ∠ωη , referred to as the coherent
accumulation estimator (CAE):

CAE: ]ω̄η = ∠
( 1

M̄

∑
m̄∈M̄

(
<{Ȳm̄}+ jκm̄={Ȳm̄}

) )
, (16)

where M̄ is the dimension of the set M̄. Note that κm̄ is
multiplied to ={Ȳm̄}, as κm̄ = −1 can happen for some m̄.

Depending on the hopping frequencies, we can have M̄ =
∅, which clearly invalidates CAE given in (16). In this case, we
can still estimate ∠ωη by removing the estimation ambiguity
in (14). Specifically, we can exploit the Chinese remainder
theorem [35] to suppress the ambiguity in (14). To do this,
we need to identify the set M̆ rendering

{
|κm̆| ∀m̆ ∈ M̆

}
co-prime with at least two elements, i.e.,

M̆ = {∀m̆} s.t. G {|κm̆|( 6= 1) ∀m̆ ∈M} = 1, M̆ ≥ 2,
(17)

where G{·} takes GCD, and M̆ denotes the dimension of the
set M̆. By identifying the ambiguity degree d∗m̆ ∀m̆ such
that the estimates ]ωη(d∗m̆) ∀m̆ ∈ M̆ are identical, the
second estimator for ∠ωη , referred to as the Chinese remainder
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theorem estimator (CRE), is achieved:

CRE: ]ω̆η =
1

M̆

∑
m̆∈M̆

]ωη(d∗m̆). (18)

Note that CAE and CRE have their own favorable working
conditions and correspondingly different estimation accuracy,
as analyzed below.

B. Performance Analysis and Comparison of the Estimators

To compare the two estimators, we first derive the MSELBs
of them. In the following, the SNR, denoted by γ, refers to the
ratio between the received signal power and the communica-
tion receiver noise power. Based on (4), we have γ = |β|2/σ2

n,
where σ2

n = E{|ξ(i)|2} is the noise variance of the AWGN
ξ(i). The high-SNR MSELBs of CAE and CRE are derived
as follows3.

Proposition 2: At high SNR, the MSELBs of CAE and CRE
are (19) and (20), respectively.

σ̄2
η = 3/(M̄Lγ) (19)

σ̆2
η =

1

M̆2

∑
m̆∈M̆

3/(κ2
m̆Lγ) (20)

Refer to Appendix X-C for the proof of Proposition 2. We
see from (19) and (20) that the accuracy of both estimators are
dependent on hopping frequencies. Specifically, σ̄2

η decreases
when the number of ones in M̄ (i.e., M̄ ) increases. Thus, the
MSELB for CAE has a lower limit, i.e., σ̄2

η = 3
(M−2)Lγ ≤ σ̄

2
η,

where (M − 2) is the maximum value that M̄ can take. In
contrast, the accuracy of CRE depends on the number and
the values of the co-prime elements in M̆. Given (17), M̆ =
{2, 3} with M̆ = 2 is the smallest set with the minimum
co-prime numbers. Substituting M̆ = {2, 3} into (20), we
obtain the upper limit of σ̆2

η , as given by σ̆2
η = 2

Lγ ×
1
4 + 1

9

4 =
3
Lγ ×

13
144 ≥ σ̆

2
η. Note that if σ̄2

η > σ̆2
η then σ̄2

η > σ̆2
η is assured.

Moreover, σ̄2
η > σ̆2

η leads to 1
M−2 >

13
144 , and further M ≤ 13.

Thus, we have the following corollary,
Corollary 1: For a uniform linear array with the antenna

spacing of half a wavelength, provided the number of antennas
at the radar transmitter satisfies M ≤ 13, CRE always has a
better asymptotic performance than CAE, i.e., σ̄2

η > σ̆2
η .

Remark 1: Corollary 1 compares the asymptotic perfor-
mance of the two estimates in high SNR regions, where
the ambiguity degree d∗m̆ required for CRE can be reliably
identified; see (18). In low SNR regions, however, the correct
identification of d∗m̆ cannot be ensured, which degrades the
estimation accuracy of CRE. This issue does not exist for
CAE which does not have estimation ambiguity. Moreover,
when M̄ is large, the coherent accumulation in (16) can help
improve the estimation SNR of CAE. In this sense, CAE is
more suited for low SNR regions, compared with CRE. As to
be observed from simulation in Section VIII, there is an SNR

3Note that CRLB is the lower limit of the MSELB derived here; while,
according to [36], CRLB is not applicable to estimators, like the proposed
CAE and CRE, which estimate a random phase with a finite support [−π, π).

threshold of γ, denoted by γT, satisfying: if γ > γT, CRE is
more accurate than CAE; otherwise, CAE is better.

C. Design of a Sub-optimal Hopping Frequency Sequence

At the communication receiver, γ can be estimated. By
comparing γ and γT, the receiver can choose which estimator
to use between CAE and CRE. However, this does not apply to
the radar transmitter with no a-priori information on γ. To this
end, it is necessary to design a hopping frequency sequence
which renders both estimators applicable at the communication
receiver. Such a sequence is optimal when the MSELB of
CAE, σ̄2

η , and that of CRE, σ̆2
η , are minimized simultane-

ously. The optimality, however, cannot be achieved, since
M̄ = (M − 2) is required to minimize σ̄2

η; whereas M̄
can take no greater than (M − 4) to ensure at least two
elements in M̆ for CRE. Next, we propose a sub-optimal
design of hopping frequency sequence that ensures the largest
coherent accumulation gain of (M − 4) in low SNR regions
and accordingly minimizes the MSELB of CRE. Let f∗ denote
the sub-optimal hopping frequency sequence to be designed.
Since f∗ = fL + Bk∗/K, where k∗ = [k∗0 , k

∗
1 , · · · , k∗M−1]T,

we can design k∗ equivalently.
1) Minimizing σ̄2

η: The minimization of the MSELB of
CAE, σ̄2

η , can be achieved at M̄ = (M − 4), i.e., having
(M − 4) elements in M̄. This requires at least (M − 2)
hopping frequencies, since according to (12), one element of
M̄ is calculated using three hopping frequencies. Based on
(12), we design the following recursive calculation of k∗m to
ensure M̄ = M − 4,

k∗m+2 = 2k∗m+1 − k∗m ± 1 (21a)
s.t. k∗m+2 > k∗m+1, m = 0, 1, · · · ,M − 5 (21b)

k∗0 = 0, k∗1 = 1, (21c)

where the constraint (21b) complies with the constraint (6a)
of the new FH-MIMO radar waveform; and (21c) initializes
the first two hopping frequencies associated with antennas
m = 0 and 1. Given the recursive calculation in (21a), taking
the minimum values for k∗0 and k∗1 also minimizes k∗M−3.
The minimization of k∗M−3 is important for the design of the
remaining two elements to minimize the MSELB of CRE, σ̆2

η ,
as elaborated on below.

2) Minimizing σ̆2
η: By solving (21), the first (M − 2)

elements in k∗ are determined, which leaves k∗M−2 and k∗M−1

to be designed for minimizing σ̆2
η . Moreover, k∗M−2 and k∗M−1

can only be selected from K = {k∗M−3+1, k∗M−3+2 · · · ,K−
1}. According to (20), the problem of minimizing σ̆2

η is turned
into: the selection of two elements from K as the last two
elements of k∗, so that the last four elements of k∗ can produce
two co-prime numbers to minimize ρ = 1

(M̆)2

∑
m̆∈M̆

1
κ2
m̆

and
hence σ̆2

η . Let {kb, b = 0, 1, · · · , C2
|K|− 1} denote the set for

the combinations of selecting two elements from K, where |K|
is the cardinality of K. By substituting [k∗M−4, k

∗
M−3,k

T
b ]T

into (12) and (17), the obtained set of co-prime numbers
is denoted by M̆b. Its dimension is M̆b. Thus, σ̆2

η can be
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minimized via solving

{kb∗ , ρb∗} : min
b∈{0,1,··· ,C2

|K|−1}
ρb =

1

M̆2
b

∑
m̆∈M̆b

1

κ2
m̆

. (22)

Based on (21) and (22), the proposed sub-optimal hopping
frequency sequence is obtained as f∗ = fL +Bk∗/K, where

k∗ =


(21): minimizing σ̄2

η︷ ︸︸ ︷
k∗0 , k

∗
1 , · · · , ︸ ︷︷ ︸

(22): minimizing σ̆2
η

k∗M−4, k
∗
M−3, k

T
b∗


T

. (23)

V. ESTIMATION OF φ AND β̃

With ωη estimated, we proceed to develop the method for
estimating φ and β̃. Then, a complexity analysis is provided
for the proposed channel estimation scheme.

A. Estimation of φ and β̃

Based on the estimation obtained in (16) or (18), we obtain
the estimate of ωη as ω̂η = ej]ω̄η or ej]ω̆η . Dividing both
sides of (9) by ω̂k̂mη leads to

Zm = Ym

/
ω̂k̂mη = β̃e−j

2πmu
M , (24)

where β̃ and the φ-related variable, u, are defined in (10) and
the noise term is dropped to focus on algorithm illustration.
Note in (24) that ωk̂mη is assumed to be fully suppressed so that
we can focus on formulating the estimation method for u and
β̃. (The impact of the ωη estimation error on the estimations
of u and β̃ will be illustrated in Section VIII.)

We see from (24) that u can be regarded as a discrete
frequency, and hence u estimation is turned into the frequency
estimation of a sinusoidal signal Zm (m = 0, 1, · · · ,M − 1).
The frequency estimator that we developed recently in [18]
can be applied here for u estimation. In overall, the estimator
first searches for the DFT peak of the sinusoidal signal Zm to
obtain a coarse estimation of u, and then interpolates the DFT
coefficients around the peak to refine the estimation. Taking
the DFT of Zm w.r.t. m leads to zm′ =

∑M−1
m=0 Zme

−j 2πmm′M .
By identifying the peak of |zm′ |, a coarse estimation of u can
be obtained as m̃

M , where m̃ is the index of the peak. The true
value of u can be written as m̃+δ

M with δ(∈ [−0.5, 0.5]) being
a fractional frequency residual. By estimating δ, the coarse u
estimate can be refined, as developed below.

We can estimate δ recursively from the interpolated DFT
coefficients around m̃. Initially, we set δ = 0, and calculate
the interpolated DFT at the discrete frequency m̃ ± ε + δ,
where ε = min{M− 1

3 , 0.32} [18, Eq. (23)] is an auxiliary
variable of the u estimation algorithm. It has been proved in
[37] that the above value of ε lead to an efficient estimator
in the sense of approaching CRLB. The interpolated DFT
coefficients, denoted by z±, can be calculated as z± =∑M−1
m=0 Zme

−j 2πm(m̃+δ±ε)
M . An update of δ can be obtained

using z±, i.e.,

δ =
ε cos2(πε)

1− πε cot(πε)
×<{ζ}+ δ, (25)

where δ on the right-hand side (RHS) is the old value and
ζ = z+−z−

z++z−
. Use the new value of δ to update z± which is

then used, as above, for δ update. By updating δ three times in
overall, the algorithm can generally converge [37]. The final
estimate of u is obtained as û = (m̃+ δ)/M. Substituting û
into (10) and (24), the φ and β̃ estimations are

φ̂ = arcsin ûλ/(Md),
ˆ̃
β =

1

M

M−1∑
m=0

Zme
j 2πmûM . (26)

B. Complexity Analysis
In overall, the proposed channel estimation scheme has

a low computational complexity, since no computationally
intensive operations (e.g., matrix inversion/decomposition) are
required. As a matter of fact, the major computations involved
in the proposed scheme are an L-dimensional DFT, an M -
dimensional DFT and Niter numbers of M -dimensional com-
plex vector operations. The first DFT is used for identifying
hopping frequencies and extracting the M peaks that are used
for channel estimation; see Sections III-B and IV-A. The
second DFT is used for obtaining the coarse estimation of u;
see Section V-A. The third vector operation is used for refining
u estimation through Niter iterations. Thus, the computational
complexity of the proposed scheme is given by

O (L′ logL′ +M ′ logM ′ +M ′Niter)
L�M
≈ O (L′ logL′) ,

where the fast Fourier transform is used for calculating the
two DFTs; L′ = 2dlog2 Le and M ′ = 2dlog2 Me; and the last
approximation is established as Niter is small. As illustrated
in Section V-A, Niter = 3 is generally sufficient for the
convergence of the u estimation method.

VI. APPLYING CHANNEL ESTIMATIONS TO DATA
COMMUNICATION

In this section, we illustrate how to apply the estimations
of ωη , φ and β to perform data communication. To improve
the data rate, we propose to combine PSK and FHCS into a
new constellation, referred to as PFHCS. To perform PFHCS
modulation at the radar transmitter, we only need to multiply
the modulation term Fhm(t) = ej$hm onto radar waveform,
as with the sole PSK; refer to Section II-B. Due to the use
of PSK, PFHCS can also suppress the sidelobe spikes in
the range ambiguity function of an FH-MIMO radar [14], as
illustrated in Fig. 3(c). At the communication receiver, the
PFHCS demodulation can be performed by first demodulating
the FHCS sub-symbol and then the PSK sub-symbol.

To demodulate an FHCS symbol, we need to extract the
hopping frequencies, i.e., khm. The subscript (·)h is re-
added here to differentiate the (H − 2) hops used for data
communication. Referring to Fig. 1, we see that the sample
shift Lη caused by the timing offset η needs to be compensated
to recover a complete data hop. The value of Lη can be
extracted from the estimation of ∠ωη obtained in Section IV.
Let ]ωη denote the ∠ωη estimation which can be either (16)
or (18). Based on the definition of ωη given in (10), the η
estimation can be extracted from ]ωη as

η̂d = (K]ωη + 2dπ)/(2πB), s.t. 0 < η̂d < T,
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where d(= 0,±1, · · · ) is the ambiguity degree. Note that
the constraint can make the number of η estimates limited.
Using η̂d, the sample shift Lη can be estimated as L̂(d)

η =
bη̂d/Tse, d = 0,±1, · · · . Given the waveform orthogonality;
see (1), we can remove the estimation ambiguity in L̂(d)

η .
Re-construct the h-th (h = 1, · · · , H − 1) sampled hop as

y
(d)
h =

[
yh−1(L− L̂(d)

η ), · · · , yh−1(L− 1),

yh(0), · · · , yh(L− L̂(d)
η − 1)

]T
. (27)

By calculating the L-point DFT of y
(d)
h and searching for

the spectrum peaks as done in (5) and (9), the m-th peak is
denoted by Y (d)

hm . Similarly, we can calculate the DFT of y(d)
h

at the l∗h-th discrete frequency, leading to Ỹ
(d)
hm . Here, l∗h is

taken such that l∗h /∈ {l∗h(M−1−m) ∀m}, where l∗h(M−1−m) is

defined similar to l∗M−1−m given in (7). Provided that y(d)
h is

correctly re-constructed at d = d∗, we have
∑M−1
m=0 |Y

(d∗)
hm | =

ML and
∑M−1
m=0 |Ỹ

(d∗)
hm | = 0 in the absence of noises. The

two equations are due to the waveform orthogonality given in
(1). Considering inevitable noises, we can identify d∗ robustly
via

d∗ : max{
d=0,
±1,···

}
H−1∑
h=2

(
M−1∑
m=0

∣∣∣Y (d)
hm

∣∣∣/M−1∑
m=0

∣∣∣Ỹ (d)
hm

∣∣∣) . (28)

The PFHCS demodulation is summarized below.
a) FHCS sub-symbol: After identifying d∗, substitute the

indexes of the M DFT peaks into (8), producing k̂hm and the
estimate of hopping frequency f̂hm(= k̂hmB/K). Comparing
{f̂hm ∀m} with the FHCS constellations, the FHCS sub-
symbol is demodulated.

b) PSK sub-symbol: Using the identified khm and the
estimations of channel parameters, we can estimate $hm based
on (9), as given by $̂hm = ∠

(
Y

(d∗)
hm

ˆ̃
β†ej

2πmû
M e−j]ωη k̂hm

)
,

where ()† takes conjugate. Comparing $̂hm with the PSK
constellation, the PSK sub-symbol is demodulated.

VII. EXTENSIONS OF PROPOSED METHODS

In this section, we first extend the proposed methods to
multi-path scenarios. We then discuss the potential exten-
sions to multi-antenna receivers and the scenarios in the
presence of interference. The two estimators, CAE and CRE,
can be extended to flat Rician fading channels, where the
radar-transmitted signal arrives at the communication receiver
through several non-LoS (NLoS) paths in addition to the
LoS. By considering a quasi-static flat-fading channel, the
delay spread can be confined within a radar snapshot [17].
Thus, the waveform orthogonality defined in (1) is preserved,
and the method developed in Section III-A can still be used
to estimate the hopping frequencies at the communication
receiver, leading to the same result in (8). As in the LoS case,
we use the frequency-domain signals, i.e., Ym(l∗M−1−m) in
(9), to estimate communication channel.

Let p ∈ [0, P−1] denote path index. The multi-path version
of (9) can be given by

Ym = Y (l∗M−1−m) = ρmω
k̂m
η + Ξm, ρm =

P−1∑
p=0

β̃pe
−j 2πmupM

(29)

where variables are defined in the same way as in (9) and
Ξ(l∗M−1−m) therein is shortened into Ξm. Compared with
(9), the linear phase relation of the coefficients of ωk̂mη has
been destroyed in (29) by NLoS components. To apply the
estimators CAE and CRE developed in Section IV, we propose
to estimate and suppress ρm first.

From (29), we observe that if the hopping frequency at-
tached to the m-th antenna is zero, i.e., k̂m = 0, then
Ym = ρm + Ξm becomes an estimate of ρm. Thus, ρ0 can
be estimated as Y0, since k0 = 0 is ensured in the sub-
optimal hop sequence designed in Section IV-C. To estimate
ρm (m > 0), we resort to the hops originally assigned for data
communication; see Fig. 1(b). In specific, we require that, for
antenna m at hop (m+ 2), the hopping frequency is zero and
no information bit is embedded, i.e.,

khm = 0, Fhm = 1, h = m+ 2,m = 0, 1, · · · ,M − 1, (30)

where Fhm = 1 denotes no information modulation; see (3).
Referring to Fig. 1(b), the sampled hop (m+2) spans across

hops (m + 2) and (m + 3). To avoid inter-hop interference,
we propose to take an L-dimensional yet L2 -point DFT on the
sampled hop (m+ 2). This leads to

Yh(l) =

L/2−1∑
i=0

yh(i)e−j
2πil
L =

M−1∑
m=0

ρme
jπ(L−1)ωkhmη ×

sin π
2

(
khmBT
K + l

)
sin π

L

(
khmBT
K + l

)e−jπ(L−2)

(
khmBT

K
+l

)
2L + Ξ(l), (31)

where ρm is given in (29), u and ωη are defined in (10), and
Ξ(l) denotes the DFT of the AWGN ξ(i). Based on (30) and
(31), we have

Ym+2(0) =
L

2
ρme

jπ(L−1) +

M−1∑
m′=0
m′=6=m

ρm′e
jπ(L−1)ωkhm′η ×

sin khm′BTπ
2K

sin khm′BTπ
LK

e−j
π(L−2)

k
hm′BT
K

2L + Ξ(0). (32)

We see from (32) that taking khm′BT
2K as an integer makes

the sine function in the numerator become zero, hence avoid-
ing inter-antenna interference. This can be achieved by con-
figuring the hopping frequencies as

khm′ =

{
∀k ∈ [1,K − 1] if BT/K is even
∀k ∈ {2, 4, 6, · · · } otherwise . (33)

Based on the above analyses and derivations, estimating ωη in
Rician channels is summarized in the following proposition.

Proposition 3: Provided that (30) and (33) are satisfied,
CAE given in (16) and CRE given in (18) are capable of
estimating ωη in Rician channels, by replacing Ym ∀m in
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(11) with Ym/ρ̂m, where

ρ̂m =

{
Y0 based on (29) at m = 0
2
LYm+2(0)e−jπ(L−1) based on (32) elsewhere

.

With ωη estimated, two options are available for the re-
maining processing: (I) We can proceed to estimate u0 and β0

using the method developed in Section V-A, and then perform
data communication as illustrated in Section VI; (II) We can
suppress timing offset using the method provided in Section
VI, and then divide Ym by ρ̂m ∀m to remove the impact
of other channel parameters. The benefit of the first option
is that, with the path AoD estimated, beamforming can be
performed to enhance LoS and suppress NLoS paths, provided
that multiple antennas are equipped. In contrast, when a single
antenna is available, the second option can be more efficient
in NLoS scenarios.

Note that the proposed channel estimation methods can
be extended to multi-antenna communication receivers. The
signals received by different antennas only have phase dif-
ferences that are caused by propagation delays and are con-
stant over time. To this end, the proposed methods can be
directly performed based on the signal received at any antenna.
Moreover, accumulations across antennas can be carried out to
improve estimation performance. For example, the signals can
be coherently accumulated over antennas before performing
CAE or CRE; see (12).

Also note that the proposed channel estimation methods can
work in the presence of interference, provided that there are
enough clean sub-bands without being interfered. From (16)
and (18), we notice that the proposed CAE and CRE can work
on a subset of M̄ and M̆, respectively. To this end, we can
identify the clean sub-bands and use them to perform CAE or
CRE, as will be validated in simulations. In the case that there
are not sufficient clean sub-bands, array-based interference
nullifying can be resorted to. This is left for future work.

VIII. SIMULATION RESULTS

In this section, simulations are provided to validate the
high accuracy of the proposed channel estimation methods.
Unless otherwise specified, the FH-MIMO radar is configured
as: M = 10, K = 20, B = 100 MHz, fL = 8 GHz,
fs = 2B, T = 0.8 µs and d = λ

2 . Both LoS and Rician
channels are simulated, where η ∼ U[0.05µs,0.35µs], φ0 = 20◦,
φp ∼ U[−90◦,90◦] (∀p > 0), β0 = ej∠β0 with ∠β0 ∼ U[0◦,360◦],
βp (∀p > 0) ∼ CN (0,−5 dB) (the Rician factor is 5 dB),
and P = 4 NLoS paths are added for Rician channels.
By taking p = 0, LoS channels are obtained. Here, U[·,·]
stands for the uniform distribution in the subscript region.
Based on the above parameters, the sub-optimal hopping
frequency sequence can be calculated as in Section IV-C,
leading to

sub-optimal: f∗ = fL + [0, 1, 3, 4, 6, 7, 9, 10, 17, 19]T ×B/K.

In addition, exploiting (12) and (15), we can identify the
hopping frequency sequence satisfying M̄ = (M − 2),
i.e., CAE: f̄ = fL + [0, 1, 3, 4, 6, 7, 9, 10, 12, 13]T × B/K.
When applying f̄ , only CAE is applicable with its MSELB
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Fig. 4. (a) MSE of ∠ωη estimation against γ(= |β|2/σ2
n), where “intf.” is

short for interference, and σ2
n is the power of ξ(i); see (4) for β and ξ(i);

(b) and (c) are obtained at γ = 30 dB, where ε2LoS and ε2NLoS denote the
squared estimation errors for LoS and NLoS scenarios, respectively; (d) MSE
of ∠ωη estimation in NLoS scenarios with abnormal trials removed, where
an abnormal trial has ε2NLoS > 100 max{ε2LoS}.

minimized. Similarly, substituting the above parameters into
(12) and (17), the hopping frequency sequence leading to
the minimum σ̆2

η can be obtained, as give by CRE: f̆ =

fL + [0, 1, 2, 3, 4, 5, 6, 7, 17, 19]T×B/K. Note that f̆ leads to
M̄ = ∅, and hence only CRE is applicable. The above three
sequences of hopping frequencies are adopted and compared
in the following simulations.

Fig. 4(a) plots the MSE of ∠ωη estimation against the
received SNR γ at the communication receiver in LoS and
Rician channels. We first analyze the estimation results for
LoS channels. We see from the figure that CRE has a much
better high-SNR performance than CAE and whereas CAE
outperforms CRE in low SNR regions. This validates the
analysis in Remark 1. We also see that CRE and CAE are
able to asymptotically approach their MSELBs derived in
Proposition 2. This validates the analysis in Appendix X-C.
By comparing CRE and CAE, the SNR threshold γT = 18
dB can be obtained from the zoomed-in turning point. As
analyzed in Remark 1, we perform CAE and CRE below and
above γT, respectively, meanwhile exploiting the sub-optimal
f∗. We see from Fig. 4 that the sub-optimal f∗ provides the
sub-optimal estimation accuracy in the whole SNR regions.
Nevertheless, we see that the sub-optimal f∗ improves the
estimation accuracy obviously over CRE in low SNR regions
(γ ≤ γT), and substantially outperforms CAE in high SNR
regions (γ > γT). It is noteworthy that the improvement
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0 5 10 15 20 25 30 35 40
9e-7

1

Fig. 5. MSE of u estimation against γ, where the ∠ωη estimations from Fig.
4 are used to calculate Zm in (24) (as required for u estimation). The worst
case adds the mean and standard deviation of squared estimation errors.

achieved by the sub-optimal f∗ across the whole SNR region
is based on a single hop.

For Rician channels, we see from Fig. 4(a) that the estima-
tion performance improves with γ in overall. This validates
the effective extension of the proposed methods to multi-
path channels, as elaborated on in Section VII. We also see
oscillations in the MSE results, particularly in high SNR
regions. The oscillations are caused by few trials whose
estimation errors are abnormally larger than the overall MSE.
(Note that the few abnormal estimations are caused by signal
canceling among multiple paths in Rician channels.) This
can be validated by jointly observing Figs. 4(b) and 4(c).
By removing the abnormal trials, the estimation performance
under Rician channels approach that under LoS channels, as
demonstrated in Fig. 4(d).

Fig. 4(a) also shows the robustness of the proposed CAE
against interference, where we consider a −5 dB interference
signal from another non-synchronized FH-MIMO radar. The
interference radar is configured the same as the target radar ex-
cept that its hopping frequencies are randomly taken (leaving
the first three sub-bands used by CAE uninterfered). We see
from Fig. 4(a) that CAE is robust to interference particularly
in low SNR regions. This validates the conditional robustness
of the proposed method to interference, as discussed in Section
VII. We also see that, unlike in interference-free scenarios, the
MSE of CAE converges to about 9× 10−4 as SNR increases.
As expected, interference, rather than AWGN, dominates the
estimation performance at high SNRs.

Fig. 5 observes the u estimation accuracy against γ, where
the ∠ωη estimations obtained from Fig. 4 are used for calcu-
lating Zm in (24). We see that the u estimation accuracy is
closely dependent on the ∠ωη estimations. In particular, we
see a fast decay from 22 dB to 23 dB, when the ∠ωη estimates
obtained by CRE are used for suppressing the timing offset.
This is because the performance of CRE improves by an order
of magnitude over the same SNR region; see Fig. 4(a). We also
see that the sub-optimal f∗ enables the MSE of u estimation
to outperform those achieved by CRE and CAE in low and
high SNR regions, respectively. On one hand, this validates
the superiority of the proposed sub-optimal f∗ over f̄ and f̆ , as
consistent with Fig. 4; and on the other hand, this demonstrates
the robustness of the proposed u estimation to the estimation
error of CAE and CRE, even in low SNR regions.

Fig. 6 plots the MSE of ˆ̃
β × β̃∗ against γ, where the u

estimations obtained in Fig. 5 are used in (26). We see that,
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Fig. 6. MSE of ˆ̃
β× β̃∗ against γ, where the u estimations in Fig. 5 are used

to estimate ˆ̃
β as given in (26) and β̃∗ is the conjugate of β̃. The best case

subtracts the standard deviation of squared estimation errors from the MSE.
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owing to the high accuracy of ∠ωη and u, the estimate ˆ̃
β is

very close to the true value. From the zoomed-in sub-figure,
we see that at γ = 20 dB the MSE of ˆ̃

β× β̃∗ approaches to 1
with an error of less than 0.001. We also see that, due to the
different performance index from that used in Figs. 4 and 5, the
MSEs achieved by the three estimators are not as differentiable
as they are in the previous two figures. Nevertheless, from the
deviations of their squared errors, we see that CAE and the
sub-optimal f∗ can produce better β̃ estimations compared
with CRE (particularly in low SNR regions).

We proceed to demonstrate the efficacy of applying the
channel estimations for data communications in FH-MIMO
DFRC. Two existing constellations BPSK [15] and FHCS
[16], and the new constellation PFHCS are evaluated based
on the ideal and estimated channels. For fair comparison with
BPSK [15] and FHCS [16], channel coding is not considered
here. Fig. 7 illustrates the achievable data rate against the
communication SNR. The estimations obtained at γ = 15 dB
from Figs. 4, 5 and 6 are used to perform data communica-
tions. We see that the new constellation PFHCS improves the
data rate substantially over BPSK and FHCS. In particular,
the converging data rate of PFHCS is 170%(= 33.75−12.5

12.5 )
and 58.82%(= 33.75−21.25

21.25 ) higher than that of BPSK and
FHCS, respectively. We also see that the estimated parameters
enable the data rate to tightly approach that corresponds to
the ideally known parameters. From the right y-axis, we see
that the sub-optimal estimator and CAE produce much smaller
achievable rate difference across the whole communication
SNR region, compared with CRE. This is consistent with the
channel estimation accuracy shown in Figs. 4, 5 and 6.

Fig. 8 compares the SERs achieved based on the ideal
timing offset and channel parameters and the estimated ones,



12

5 10 15 20 25 30 35 40

Eb/N0, dB

10-4

10-3

10-2

10-1

100

S
E

R B, CRE

B, CAE

B, sub-opt

B, ideal

P, CRE

P, CAE

P, sub-opt

P, ideal

FHCS

B, Rician, CRE

B, Rician, CAE

B, Rician, sub-opt

B, Rician, ideal

30 35 40

10-2

100

Fig. 8. SER versus Eb/N0, where Eb/N0 is the energy per bit to noise
power density ratio and is calculated as LγcomBT/E, where γcom denotes
communication SNR and E is the number of bits conveyed per radar hop. In
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where the estimations obtained at γ = 15 dB from Figs. 4,
5 and 6 are used. We see that due to the larger number of
symbol bits of the new constellation PFHCS, its SER versus
Eb/N0 is improved substantially, compared with that achieved
by BPSK and FHCS. We also see that the channel estimation
error incurred by CRE makes the SERs of BPSK and PFHCS
converge to 10−2, whereas the smaller estimation error of
the sub-optimal estimator and CAE produces the continuously
decreasing SERs against Eb/N0. Interestingly, we see from
Fig. 8 that using channel estimations obtained under Rician
channels can achieve better SER performance, compared with
using the estimations under LoS channels. The main reason
is that multiple paths can constructively enhance LoS signals
and improve the detecting probability of identifying hopping
frequencies; c.f., the destructive signal canceling leading to the
abnormal ωη estimations in Fig. 4(c).

Last but not least, we illustrate the impact of the proposed
re-ordering of hopping frequencies per hop, referred to as
waveform ordering below for brevity, on radar detection. Three
targets are simulated. Their ranges are 1 km, 1.5 km and
3 km, and their directions are 30◦, 60◦ and −60◦. Since
Doppler estimation is not affected by waveform ordering [30],
we take a zero Doppler. The signal processing steps provided
in Appendix X-A are used for target detection. Note that, for
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Fig. 10. Target detection results from 10 independent runs, where circle and
cross markers denote results obtained using the (conventional) non-ordered
and (proposed) ordered hopping frequencies, respectively.

communication purpose, the first two hops per pulse are mod-
erately adjusted to use the same hopping frequency sequence,
i.e., the sub-optimal f∗; see the signal frame structure given in
Fig. 1(b). The proposed waveform ordering is performed each
hop. Moreover, BPSK phases are embedded for all antennas
in the (H − 2) hops assigned for data communications. The
information bits are randomly generated per run.

Fig. 9 plots the range cuts |Xp(τ, ur)| (r = 1, 2, 3) and
the angle cuts |Xp(τr, u)| (r = 1, 2, 3) of |Xp(τ, u)| which
is obtained in Step 3, Appendix X-A. We see that the pro-
posed waveform ordering does not affect the mainlobes of
range and angle cuts and only incurs negligible changes to
sidelobes. This is consistent with Proposition 1. The range
and angle detecting results are further provided in Fig. 10.
We see again that the proposed waveform ordering produces
similar detecting results to the conventional radar waveform.
Confirmed by Figs. 9 and 10 and the previous results, we
can conclude that our proposed scheme provides a promising
solution to practical applications of FH-MIMO DFRC.

IX. CONCLUSION AND FUTURE WORK

This paper develops accurate methods to estimate timing
offset and channel for FH-MIMO DFRC. This is achieved by
a novel FH-MIMO radar waveform which enables a commu-
nication receiver to estimate, rather than acquiring from radar,
the hopping frequency associated with each radar transmitter
antenna. This is also accomplished by two new estimators for
timing offset suited for different hopping frequency sequences
and an accurate channel estimation method. This is further
fulfilled by an effective extension of the proposed methods
to multi-path scenarios. Simulation results validate the high
accuracy of the proposed estimation methods and the high
communication performance attained using estimated chan-
nels. As a future work, interference suppression based on
antenna arrays will be studied for FH-MIMO DFRC.

X. APPENDIX

A. FH-MIMO Radar Signal Processing

Based on (2), the m-th radar antenna transmits sm(t) =∑H−1
h=0 shm(t)gT (t − hT ), where gT (t) is the step function

taking unit one for 0 ≤ t ≤ T and 0 elsewhere. Assume
that there are NRT radar targets. In a co-located MIMO
radar, the transmitter and receiver arrays see the r-th target
from the same direction, denoted by θr. Let a(θr) and b(θr)
denote the array steering vectors of the radar transmitter and
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receiver arrays, respectively. Assuming uniform linear array,
the antenna spacing is λ

2 and Mλ
2 for transmitter and receiver,

respectively, where λ is radar wavelength. The m-th element
of a(θr) is e−jmπ sin θr , and the n-th element of b(θr) is
e−jnMπ sin θr . Given the round-trip propagation delay of the
r-th radar target, τr, and the target reflection coefficient, αr,
the signals received by antenna n at PRI q is

xqn(t) =

NRT−1∑
r=0

M−1∑
m=0

αrsm(t− τr)ej2πfDrqTpe−j(m+nM)ur ,

where ur = π sin θr, fDr is the Doppler frequency of target
r and Tp denotes the PRI. Due to the short length of radar
pulse, fDr is approximately constant within a pulse [30]. For
notational simplicity, the noise term is dropped here. Following
[30], [38], the receiving processing of an FH-MIMO radar can
be carried out as follows.

Step 1, use matched filters to process the
received signals, where the filter coefficients are the
conjugate of transmitted signals. Employing the m′-th
(m′ ∈ [0,M − 1]) transmitted signal sm′(t) as the
matched filter coefficient, filtering xqn(t) yields x̃qnm′(τ) =∑NRT−1
r=0

∑M−1
m=0 αrgmm′(τ − τr)e

j2πfDrqTpe−j(m+nM)ur ,
where gmm′(τ) =

∫∞
∞ sm(t)s∗m′(t− τ)dτ [30].

Step 2, take the discrete time Fourier transform (DTFT) of
x̃qñ(τ) in terms of ñ = (m′ + nM) = 0, 1, · · · , NM − 1,
leading to Xq(τ, u) =

∑NM−1
ñ=0 x̃qñ(τ)e−jñu.

Step 3, perform the constant false alarm rate (CFAR)
detection on |Xq(τ, u)| to detect targets and estimate their
ranges and directions. Refer to [38, Ch. 9, 10] for details on
CFAR.

Step 4, perform moving target detection [38, Ch. 9] to
estimate Doppler frequencies.

B. Proof of Proposition 1

The proof can be established from analyzing the range
ambiguity function of the FH-MIMO radar. Based on [30, Eq.
(27)], the range ambiguity function of the radar, denoted by
R(τ), can be expressed as

R(τ) =

∣∣∣∣∣∣
M−1∑
m=0

M−1∑
m′=0

H−1∑
h,h′=0

χ(τ̃ , ν)ej2πνhT︸ ︷︷ ︸
B

ej2πfh′m′τ︸ ︷︷ ︸
D

∣∣∣∣∣∣ , (34)

where τ̃ = τ − T (h′ − h), ν = fhm − fh′m′ and χ(x, y) is
the ambiguity function of a standard rectangular pulse with
x and y spanning range and Doppler domains, respectively.
According to [30, Eq. (26)], we have χ(x, y) =

(
T −

|x|
)
S
(
y
(
T − |x|

))
ejπy(x+T ), if |x| < T ; and otherwise

χ(x, y) = 0, where S(α) = sin(πα)
πα is the sinc function.

As hopping frequencies are independently selected across
hops, any change of fhm at hop h has no impact on fh′m′

at hop h′, and vice versa. Therefore, we can claim that the
set of combinations of

(
ν, fh′m′

)
remain the same given any

ordering of hopping frequencies at hops h and h′. The under-
lying principle is that the overall combinations of

(
ν, fh′m′

)
are independent of element orderings [39].

Moreover, we see from (34) that the combinations of
(B,D) are uniquely determined by the combinations of(
ν, fh′m′

)
, since the other two parameters, τ̃ and τ , are

independent of m or m′. Given the independence of the
set, {

(
ν, fh′m′

)
∀h, h′,m,m′}, on the ordering of hopping

frequencies, we conclude that the range ambiguity function,
R(τ), is unaffected by the reordering introduced in (6).

C. Proof of Proposition 2

The proof is established by first proving that the estimators
proposed in (16) and (18) are MLEs, and then evaluating
the estimation SNRs for the two estimators to derive their
MSELBs. Let Ξm denote the noise term Ξ(l∗M−1−m) in (9).
Here, Ξm, as the DFT of the AWGN ξ(i), is still an AWGN;
refer to (5). (The underlying principle is that linear calculations
involved in DFT do not change the statistic distribution of
AWGNs [40].) Substituting (9) into (11), the noise term added
to Y̆m can be given by

Ξ̆m =
Ym + Ξm

Ym+1 + Ξm+1
− Y̆m =

Y̆m + Ξm
Ym+1

1 + Ξm+1

Ym+1

− Y̆m

≈ Y̆m
(

1− Ξm+1

Ym+1

)
+

Ξm
Ym+1

(
1− Ξm+1

Ym+1

)
− Y̆m,

= − Y̆mΞm+1

Ym+1
+

Ξm
Ym+1

− Ξm
Ym+1

Ξm+1

Ym+1
(35)

where the approximation is based on the Taylor series of
1

1+x = 1− x ∀x� 1 [37].
Similarly, by substituting (11) and (35) into (12), the noise

term added to Ȳm becomes

Ξ̄m =
Y̆m + Ξ̆m

Y̆m+1 + Ξ̆m+1

− Ȳm =
Ȳm + Ξ̆m

Y̆m+1

1 + Ξ̆m+1

Y̆m+1

− Ȳm

≈ ȲmΞm+2

Ym+2
− ȲmΞm+1

Y̆m+1Ym+2

− Y̆mΞm+1

Y̆m+1Ym+1

+
Ξm

Y̆m+1Ym+1

+
ȲmΞm+1Ξm+2

Y̆m+1Y 2
m+2

− Ξm+1Ξm

Y̆m+1Y 2
m+1

− Ξ̆m

Y̆m+1

Ξ̆m+1

Y̆m+1

(36)

where we have used the same mathematical manipulations as
those applied in (35). From the most RHS of (36), we see that
only the first four terms dominate the statistical distribution
of Ξ̄m, since the other terms have the products of at least two
independent AWGNs. Thus, we obtain that the additive noise
to Ȳm approaches to an AWGN in high SNR regions.

In the background of Ξ̄m̃ (∀m̃ ∈ M ⊆ {Ȳm∀m}), ]Ȳm̃
is an MLE of the phase of Ȳm̃, since the angle estimate
of a complex number corrupted by AWGN is an unbiased
MLE [38]. Accordingly, ]ωη(dm̃) obtained in (14) is an MLE
due to the linear relation between ]ωη(dm̃) and ]Ȳm̃. By
comparing (14) and (16), we also see that ]ω̄η is an MLE,
since the summation does not change the AWGN distribution.
Moreover, by substituting (14) into (18), we further see that
]ω̆η is an MLE, since ]ω̆η is a constant-scaled sum of the
MLEs ]ωη(dm̆). Being MLEs, the high-SNR MSELB of
]Ȳm̃, ]ω̄η and ]ω̆η can be approximated as the reciprocal
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of the doubled estimation SNRs [36]. The estimation SNRs of
]ω̄η and ]ω̆η are calculated below.

We start by deriving the estimation SNR of ]Ȳm̃, denoted
by Υ, since Υ is the basis of the estimation SNRs of ]ω̄η
and ]ω̆η; see (16) and (18). Seen from (12), the signal power
of Ȳm̃ is unit one; hence we have Υ = 1

σ̄2
n

, where σ̄2
n is the

noise variance of Ξ̄m. Based on (11) and (12), we notice that
the second and third terms in (36) are identical. Therefore,
we have σ̄2

n =
6σ̃2
n

|β̃|2 , where σ̃2
n denotes the noise variance of

Ξm ∀m and |β̃|2 is the power of the signal component in (9).
Based on (10), we have |β̃|2 = L2|β|2. Based on (5) and (9),
we obtain σ̃2

n = Lσ2
n, where L is the number of DFT points,

and σ2
n denotes the noise variance of the time-domain AWGN

ξ(i); see (4). The above calculations lead to Υ = L|β|2
6σ2
n

.
As the summation in (16) is a coherent accumulation, we

have Ῡ = M̄Υ = M̄L|β|2
6σ2
n

with Ῡ denoting the estimation
SNR for ]ω̄η . By calculating 1

2Ῡ
, the MSELB of ]ω̄η is

achieved in (19). Based on (18), the variance of ]ω̆η can be

approximated as E
{(

1
M̆

∑
m̆∈M̆]ωη(d∗m̆)− ∠ωη

)2
}

. Here,

∠ωη is used as the mean of ]ω̆η , since ]ωη(d∗m̆) is unbiased
in the sense of E{]ωη(d∗m̆)} = ∠ωη [36]. By suppress-
ing the cross-terms, the above variance is lower bounded
by 1

M̆2

∑
m̆∈M̆ E

{
(]ωη(d∗m̆)− ∠ωη)

2
}

= 1
M̆2

∑
m̆∈M̆ σ2

m̆,

where σ2
m̆ denotes the MSELB of ]ωη(d∗m̆). From (18), we

obtain σ2
m̆ = 1

2Υκ2
m̆

, which gives (20).
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