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Abstract—Network slicing is a key enabler to successfully
support 5G services with specific requirements and priorities.
Due to the diversity of these services, slice deployment and
orchestration are essential to guarantee service performance in
a cost-effective way. In this paper, we propose an Artificial
Intelligence framework for cross-slice admission and congestion
control that simultaneously considers communication, computing,
and storage resources with the aims of maximizing resources
utilization and operator revenue. First, we propose a smart
feature extraction solution to analyze the characteristics of
incoming requests together with the already deployed slices, and
then automatically evaluates the request requirements to make
appropriate decisions. Second, we design an online algorithm
that controls the slice admission based on their priorities, the
arrival and departure characteristics, and the available resources.
To mitigate system overloading, our framework dynamically
adjusts resources allocated to low priority slices, thereby reducing
the dropping probability of new slice requests. The proposed
algorithm offers outstanding advantages over traditional static
approaches by automatically adapting the controller decisions to
the system changes. Simulation results show that our framework
significantly improves the resource utilization and reduces the
slice request dropping probabilities up to 44% as compared to
the baseline schemes.

I. INTRODUCTION

The technological revolution for the last decade has been
changing the way we communicate by introducing emerging
applications and services. Massive machine type communi-
cations (mMTC), autonomous vehicles, smart factories, and
virtual reality are changing the network requirements in terms
of number of connections per user, traffic volume, and end-
to-end latency [1]. To efficiently support use cases and appli-
cations with heterogeneous requirements, the fifth generation
(5G) communication systems will deploy a novel and flexible
architecture where the network infrastructure is logically split
into different instances, i.e., network slices, each designed for
a specific service and running in the cloud environment [2].
A network slice is composed of physical and virtual network
functions (NFs), where a virtual NF represents the software
implementation of the traditional functions, such as routing or
packet scheduling.

In this context, depending on the network load and service
requirements, the 5G systems will need to manage network
resources smartly according to different radio, transport, and
cloud domains. Moreover, it is necessary to take into account
that different slice requests may have diverse priorities and
constraints, and the network resources have to be managed

accordingly. Therefore, 3GPP has been developing network
slice management and orchestration solutions based on the Eu-
ropean Telecommunications Standards Institute (ETSI) Man-
agement and Orchestration and Network Function Virtual-
ization frameworks [3]. In addition, the ETSI Experiential
Network Intelligence (ENI) group has been investigating Ar-
tificial Intelligence (AI) to achieve autonomous, and thus
cost-effective, slice management and orchestration in future
communication networks [4]. However, these frameworks de-
fine only brief guidelines on architectural aspects (interfaces
and requirements) and design principles without providing
specific solutions. Accordingly, there is an urgent need for new
schemes and frameworks able to provide cross-slice resource
orchestration and management. In this paper, we focus on AI-
based cross-slice admission and congestion control with the
goal of maximizing the operator revenue by improving the
network resource utilization.

A. Related Work

In the literature, the admission control problem for 5G net-
work slicing has been investigated under two main directions:
by using Markov Decision Process (MDP) and game theory.
Specifically, Hoang et al. characterized the slice admission
control problem as an MDP problem that can be solved by
using the value iteration algorithm, which is based on dynamic
programming [5]. However, this approach requires a minimum
knowledge of service model characteristics (e.g., the slice
request arrival and departure rates) and can only find the
optimal solution for problems with a limited number of states.
Bega et al. [6] introduced the concepts of elastic and inelas-
tic slices, modeled the slice admission control as an MDP,
and implemented the Q-learning algorithm to maximize the
operator revenue. However, the Q-learning algorithm suffers
from the so-called “curse of dimensionality” [7], meaning
that its computational requirements grow exponentially with
the number of state variables in the problem. Accordingly,
this approach cannot be efficiently implemented in realistic
scenarios.

Caballero et al. [8] proposed a game theoretic approach for
the slice admission control problem to enable fair resource
partitioning between deployed slices. However, this study only
focuses on radio resources and does not consider priorities
among different slice requests. Jiang et al. [9] investigated
the virtual resource allocation for network slicing by using
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auction mechanisms in order to maximize the network revenue
under different slice priorities. However, this study does not
consider admission control and is unable to limit the slice
request dropping probability. Leconte et al. [10] proposed
an elastic framework for cross-slice resource allocation that
achieves a Pareto-efficient solution ensuring fair radio and
computing resource allocation. However, the obtained solution
considers only instantaneous optimization and does not take
into account the priorities between slices. Delgado et al. [11]
studied a greedy algorithm for slice resource allocation in
wireless sensor networks. Four resource types are considered,
i.e., radio, storage, computing and energy, with the energy
resources being the most important one. Nevertheless, the
work in [11] did not consider priorities among different slices.
In addition, game theory-based solutions cannot deal with
system dynamics, and thus their outcome strategies are not
able to provide long-term optimization. Moreover, none of the
above works propose a solution for resource shortage problem
in the context of slice deployment and orchestration.

Early works on AI for mobile networks highlighted the
importance of introducing intelligence and automation in
admission control function [12]. Chen et al. [13] studied
admission control using fuzzy Q-learning to achieve a lower
blockage rate in WCDMA/WLAN heterogeneous networks.
Al-Maitah et al. [14] employed a genetic neurofuzzy controller
to improve the quality of call admission in mobile networks.
Although these methods proposed AI solutions, to the best of
our knowledge, there is a lack of AI-based framework that can
simultaneously address the admission and congestion control
problems for 5G slice management and orchestration.

B. Contributions and Organization

The key contributions of this paper can be summarized as
follows:

1) We propose a new architecture for joint cross-slice ad-
mission control and congestion control to maximize the
operator revenue while considering different slice types
and resource requirements. Accordingly, we introduce
three new functions: Slice Analytics (SA), Admission
Control (AC), and Congestion Control (CC). This novel
architecture is fully compatible with the Network Slice
Management layer proposed by 3GPP [3]. By adopting
it, we jointly improve the usage of communication, com-
puting, and cloud storage resources while guaranteeing
the slice priorities.

2) The proposed SA function attempts to assign a new
slice request to an existing Network Slice Instance (NSI)
based on the common NFs to maximize the resource
sharing across slices and accelerate the slice deploy-
ment process. In particular, we propose two different
algorithms that can implement this functionality: Jac-
card similarity-based assignment and spectral clustering-
based assignment. The first scheme assigns each new
slice request to the NSI that maximizes the Jaccard
similarity. Alternatively, the spectral clustering approach
tries to iteratively optimize the resource sharing by clus-
tering all slices into new NSIs at each slice arrival. Our

simulation results show that the proposed SA function
can significantly reduce the resource footprint for each
accepted slice.

3) The proposed cross-slice AC aims to optimize the trade-
off between resource utilization and dropping probability
of slice with high priorities. We then introduce the
concept of cross-slice AC based on AI, where the
controller is able to deal with system dynamics and its
decision enables a long-term optimal solution in terms
of the slice resource management. To achieve this goal,
we design an AI scheme based on the State-Action-
Reward-State-Action (SARSA) scheme [15] with linear
function approximation (LFA), which is a model-free
reinforcement learning approach that can deal with high
dimensional and complex problems.

4) We also introduce a CC function that limits the dropping
of slice requests, especially when the system becomes
overloaded. The CC can scale down resources allocated
to slices with low priorities, so that slices with high pri-
orities can be admitted. This function is tightly coupled
with the AC, as it determines the resources available
for accepting new slice requests, while the amount of
resources that can be scaled down is the results of the
AC action. Therefore, we develop a joint implementation
of both controllers using SARSA with LFA, which we
denote as cross-slice admission and congestion control
(CSACC).

The rest of the paper is organized as follows. The proposed
architecture and the associated system model is presented
in Section II. In Section III, we define the SA function
and the proposed algorithms. In Section IV, we introduce
the mathematical model of the designed CSACC, and then
we present the SARSA algorithm with LFA in Section V.
Simulation results are provided in Section VI. Finally, the
conclusions and future directions are discussed in Section VII.

II. SYSTEM MODEL

We consider a system supporting network slicing to satisfy
the diverse 5G service requirements of the services related to
the 5G ecosystem. In this network, a slice management frame-
work (described in Fig. 1) is used to instantiate network slices
and orchestrate the network resources across the accepted
slices by exploiting the so called resource elasticity paradigm
[16]. To design an efficient, multi-service, multi-slice, and
multi-tenant architecture, we take advantage of the so called
resource elasticity paradigm. In a nutshell, with resource elas-
ticity, the network is able to the proposed slice management
framework gracefully adapts the network its configuration to
system changes in an automatic manner through AI, such
that at each point in time the available resources match the
service demand as closely and efficiently as possible. Although
elasticity in mobile networks has traditionally been exploited
in the context of communications resources (e.g., when a base
station gracefully downgrades the spectral efficiency of a given
communication link), here Here, we apply this concept to
communication, computational, and storage resources jointly.
More specifically, we focus on elastic slices that enable a
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Figure 1: The proposed framework for network slice deployment and orchestration.

certain level of flexibility in the resource orchestration: we
consider guaranteed quality-of-service (GS) slices that do
not require fully dedicated network resources (i.e., resource
isolation) and best effort (BE) slices that, in addition, allow
the system to temporarily reduce their resources in order to
deal with GS slices, which have higher priorities and tighter
requirements.

In the 3GPP specification [3], the Communication Service
Management Function (CSMF) receives requests for new ser-
vices and transforms the consumer-facing service descriptions
into slice-related network requirements such as connection
density, end-to-end latency, and coverage. Then, the CSMF
sends the network slice requests together with the associated
requirements this information to the Network Slice Manage-
ment Function (NSMF), which derives accordingly the so-
called network slice blueprint [3]. The network slice blueprint
is a description of the network slice in terms of required
NFs, their interconnection and configuration according to the
specific service request. The main role of the NSMF is to
manage and orchestrate the overall network slice life-cycle.

More specifically, in In this work, we study how, based
on the slice blueprint, the NSMF identifies the resource
requirements for each slice and decides whether and when to
instantiate the slice request. Then, the NSMF will distribute
the available resources across the activated slices and try to
maximize the resource utilization, i.e., the number of slices
that can be handled at the same time. However, maximizing
the resource utilization may prevent the system from accepting
new slice requests with high priorities, which provide high
revenue for the operator, due to the potential scarcity of avail-
able resources. Hence, this procedure needs to be carefully
managed to optimize the trade-off between resource utilization
and operator revenue.

To optimize such trade-off, we investigate two main func-
tionalities represented by the grey blocks in Fig. 1:

• The SA block receives the slice blueprint and resource
requirements related to the accepted and queued slice
requests. It refines the amount of resources to be allotted
to each network slice by analyzing the similarities in the
slice requirements. Additionally, this block it classifies
the slice requests into two types, GS and BE slices,
according to the associated requirements1.

• The CSACC is a resource orchestrator that performs
jointly cross-slice AC and CC functions. This block
It monitors the requests of the queued slices and the
available resources, and manages the slice deployment
and the resource allocation accordingly.

Finally, in the proposed framework, the role of the virtual
infrastructure manager is to execute the instructions received
from the CSACC.

Figure 2: Decision making cycle for network slice deployment and orchestra-
tion.

According to the above system operations, we consider a
decision-making cycle that can be divided into four phases

1This model can be straightforwardly extended to a more general classifi-
cation that may include classical 5G use cases such as eMBB, URLLC, and
mMTC.
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as illustrated in Fig. 2. At the beginning of each time slot,
the SA phase evaluates the effective resource requests based
on the similarities between the queued network slices and
the active network slices. Then, in the CSACC phase, based
on the current states of the GS and BE queues, and the
momentary available resources of the system, the CSACC
first decides whether to scale down the resources allocated
to the BE slices, and then selects the slice requests to admit.
Then, in the third phase, i.e., the slice deployment phase, the
virtual infrastructure manager allocates the network resources
according to the CSACC decisions, and the accepted slices
are instantiated. Finally, in the last phase, i.e., the information
updating phase, new requests arrive, and they are processed
by the CSMF, and the input of the SA is updated accordingly.
The duration of the above discussed cycle should be short
enough to monitor the variation in the slice resource requests
and enable the NSMF functions to react accordingly. For the
slice admission control period, a duration in the order of one
second was considered in [17]. The main notations used in
this paper are described in Table I.

A. Blueprint and Slice Resource Requirements

The NGMN Alliance defines the slice blueprint as a com-
plete description of the structure, configuration, and the work
flows to instantiate and control a network slice during its life-
cycle [18]. In this work, we characterize a slice blueprint as
follows:
• A list of NFs that the slice requires and the description

of the interactions among the NFs.
• The parameters that describe the configuration of each

NF.
Depending on the type of service, the system will deploy
a specific version of each NF, which enables to satisfy the
service requirements. For example, in the case of eMBB
service, the NF providing 5G PHY layer is characterized by
precise configuration parameters as large bandwidth, modula-
tion and coding schemes with high spectral efficiency, etc. The
configuration of a NF, in turn, defines the amount of resources
that it requires to be deployed in the 5G system. We consider
that a 5G network slice can be composed by three sets of
NFs: radio KR, transport KT, and cloud KC (see Fig. 3), each
consisting of a finite number of NFs requiring three types
of resources: communication (in terms of bandwidth [MHz]),
computing (in [GFLOPS/s]), and cloud storage (in [GB]). For
example, typical NFs in the radio, transport, and cloud sets are
the physical layer, routing, and caching functions, respectively.
We use K = KR∪KT∪KC = {NF1, . . . , NFK} to denote the
set of all K = (KR + KT + KC) NFs that can be deployed
in the 5G system. Let N ≥ 0 be the number of slice requests
at the NSMF. We suppose that the slice blueprint of the nth

slice request includes a set of NFs, denoted by Dn ⊆ K, and a
set of configuration parameters for each NFk ∈ Dn, indicated
by Ln,k. Then, to indicate which NFs compose a request Dn,
we use the vector λn ∈ {0, 1}K , whose kth entry is defined
as:

λn,k =

{
1 if NFk ∈ Dn,
0 otherwise.

(1)

Figure 3: Mapping of network slices to the required network functions.

For each NF NFk ∈ Dn, we represent the associated config-
uration parameters as a set of J binary vectors2 as follows:

Ln,k = {ln,k,1, ln,k,2, . . . , ln,k,J}. (2)

Then, we map the configuration parameters with the amount of
communication (dn,k,r), computing (dn,k,c), and cloud storage
(dn,k,m) resources required by the NF NFk of the nth slice
request using a model composed of a static part and a dynamic
part:

dn,k,r =ρk + fk,r(Ln,k),

dn,k,c =χk + fk,c(Ln,k), (3)
dn,k,m =µk + fk,m(Ln,k),

where ρk, χk, and µk are the minimum amount of required re-
sources for activating a given NF, NFk ∈ Dn, and fk,r(Ln,k),
fk,c(Ln,k), and fk,m(Ln,k) are the additional amount of
required resources that can be defined as a function of the
configuration parameters Ln,k characterized for the NFk.
In summary, the total communication, computing, and cloud
storage resource demand of the nth slice request can be
computed as follows:

Tn = (dn,r, dn,c, dn,m) , (4)

where dn,j =
∑

NFk∈Dn

dn,k,j , j ∈ {r, c,m}.

B. State Space of the Proposed Slice Deployment and Orches-
tration Framework

Here we describe the state space of the proposed framework
for the network slice deployment and orchestration. In the
following sections, we describe the proposed functions to
optimize the network resource utilization, while considering
the priorities of the different service requests. The state space
of the system, denoted by S, includes the sets that describe the
states of the GS queue, the BE queue, the available network
resources, the number of deployed GS slices, the number of

2For the ease of presentation, we consider that all NFs have the same
number of configuration parameters.
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Table I: Main Notations and System Parameters.

Notation Parameter
S , Sg × Sb × Sp × Ug × Ub ×Xp State space

s(t) ∈ S System state
sg(t) ∈ Sg, sb(t) ∈ Sb Slice requests in GS and BE queues
sp(t) = (r, c,m) ∈ Sp Communication [MHz], computing [GFLOPS/s], and storage [GB] resources
ug(t) ∈ Ug, ub(t) ∈ Ub Deployed GS and BE slices

xp(t) = (xr, xc, xm) ∈ Xp Allocated resources for deployed BE slices
a(t) = (ag, ab) ∈ A Admission and Congestion Control action and action space

ag(t), ab(t) Number of accepted GS and BE requests
Λn,n′ Jaccard similarity between slices n and n′

B Deployed Network Slice Instances
dn,k,j Resources of type j required by the kth NF in the nth request

dn,j , d′n,j Resources of type j required by nth slice before, after slice analytics
wg , wb Rewards for each accepted GS and BE slices
nd(t), ld Instantaneous dropped GS slices and dropping loss

nb(t), ng(t) New BE and GS requests
R(s(t),a(t)) Instantaneous reward
Q(s,a) Q-value of a state-action pair
α, γ Learning rate and discount factor
φ(s,a) Feature vector
θi Weight of the ith feature

deployed BE slices, and the resources allocated to the BE
slices. Accordingly, S is defined as follows:

S , Sg × Sb × Sp × Ug × Ub ×Xp. (5)

At each time slot of the proposed cycle for slice deployment
and orchestration (see Fig. 2), the numbers of slice requests
in the GS and BE queues are denoted respectively by sg ∈
Sg = {0, 1, . . . , Qg} and sb ∈ Sb = {0, 1, . . . , Qb}, where Qg
and Qb are the maximum length of the GS and BE queues,
respectively. As for the network resource state, let sp =
(r, c,m) ∈ Sp, where r ∈ {0, 1, . . . , R}, c ∈ {0, 1, . . . , C},
and m ∈ {0, 1, . . . ,M}, denote the available communication,
computing, and cloud storage network resources, respectively.
We also indicate the number of deployed GS slices, deployed
BE slices, and the network resources associated to the run-
ning BE slices respectively as ug ∈ Ug = {0, 1, . . . , Ug},
ub ∈ Ub = {0, 1, . . . , Ub} and xp = (xr, xc, xm) ∈ Xp ⊆ Sp,
respectively, where Ug and Ub are the maximum numbers of
GS and BE slices, which can be simultaneously accepted by
the system. Note that, in our optimization framework, we scale
down only the resources allocated to BE slices, in order to
increase the number of accepted slices. Therefore, we do not
need to define a set related to the resources allocated to the
GS slices.

Then, we use ng ∈ Ng = {0, 1, . . . , Ng} and nb ∈ Nb =
{0, 1, . . . , Nb} to denote the number of new GS and BE slice
requests at each time slot, where Ng and Nb are the maximum
numbers of arriving requests for the GS and BE services,
respectively. Let pgn and pbn be the probabilities of arriving
ng and nb slice requests at a given time slot; accordingly, we
have:

Ng∑
n=0

pgn = 1 and
Nb∑
n=0

pbn = 1. (6)

It is important to note that, a slice request is dropped when it
arrives in a queue that is full3. Finally, we denote fg and f b

as the departure probabilities of an accepted GS slice and an
accepted BE slice at a given time slot, respectively. In addition,
when a given slice leaves the system, all its allocated resources
are immediately released.

III. SLICE ANALYTICS PROCEDURE

As mentioned in Section II, one of the role of the NSMF
is to elaborate and update the slice blueprint, which clearly
identifies the NFs required by each network slice in the 5G
system (see Fig. 3). In the proposed framework, we classify
each required NF either as a dedicated NF or as a shared
NF with respect to the other NFs required by the other
(queued or actively deployed) network slices. Accordingly, the
resource usage of the 5G system can be optimized if multiple
NFs shared across different slices can (even partially) share
common network resources at the same time. For instance,
two slices deployed in the same geographical area can share
the same base stations if the available capacity is large enough
to satisfy the overall demands. Moreover, during a sport event,
a single operator can use network slicing to accommodate
the wireless services required by different broadcasters. In
this case, a large part of the communication resources can
be shared by these slices to broadcast the common content
(e.g., the video) to different users, while specific content (e.g.,
the speaker’s voice) can use dedicated resources. From the
operator’s point of view, this approach enables to increase the
number of accepted slice requests (generating higher revenue),
decrease the slice deployment cost, and limit the service
creation time.

Using the 3GPP terminology, we denote the set of NF
instances and the associated network resources deployed to

3The queues capacity is limited to avoid long delay for the slice requests
waiting in the queues.
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Figure 4: An illustration of shared and dedicated NFs in a
network slice instance. A slice is composed of dedicated NFs
and shared NFs with other slices.

satisfy one or multiple slice requests as a Network Slice
Instance (NSI). An NSI is composed of NFs shared between
two or more slices, as well as dedicated NFs, as shown in Fig.
4. To efficiently map a network slice request to an NSI, we
propose a procedure, namely SA, that analyzes the network
slice blueprints, in order to evaluate the similarities among
network slices and identify the NSI that can serve the new
slice request with a minimum amount of additional network
resources (see Algorithm 1).

In SA, we use NSqueue(n) and B to denote the nth slice
request and the set of deployed NSIs. First, SA compares the
NFs required by the nth slice request λn with those associated
with each running NSI, by calculating the Jaccard similarity
as follows [19]:

Λi,n =
λiλn

‖λi‖+ ‖λn‖ − λiλn
, i ∈ B, (7)

where λi and λn are defined in (1). Based on the computed
similarities, SA chooses an NSI i∗ ∈ B according to one of
the association algorithms presented in Section III-A. If the
selected NSI can integrate the slice request, e.g., there are no
resource isolation constraints, the slice analytics computes the
degree of similarity for each NF required by the NSqueue(n)
and shared with the other slices associated to the selected NSI
i∗ (see (13)), and accordingly evaluates the additional amount
of resources required by the NSI to accommodate the slice
request n, T ′

n (15). If the slice request cannot be assigned to
any of the existing NSIs, a new NSI will be prepared. If the
request is accepted by the CSACC, presented in Section IV,
either the new NSI is instantiated or the NSI i∗ is updated.
Finally, the virtual infrastructure manager (see Fig. 1) executes
the resource allocation procedure.

A. Similarity-Based Slice Association

The first step in SA is to assign a new slice request to
an existing NSI. This assignment is based on one of the two
proposed strategies:
• The SA assigns a new slice demand to the existing NSI

which maximizes the Jaccard similarity. The advantage
of this solution is the low complexity, and may be
implemented in a fast time-scale, in the order of one
second.

• The SA uses spectral clustering to create new NSIs which
maximize the resource sharing in the 5G system. This is
an iterative solution, and thus more complex than the fast

Algorithm 1 Slice Analytics

Input: NSI = {NSI id,λ,T } ← deployed NSIs;
NSqueue = {NSI id,λ,T } ← queued NSs;
NSassociated = {NSI id,λ,L,T } ← NSs associated to
deployed NSIs;

Output: Updated NSassociated.
1: for n = 1:Length(NSqueue) do
2: Calculate Jaccard similarity (7) between NSqueue(n) and

each NSI i ∈ B.
3: Use the selected association algorithm to identify the proper

NSI i∗ ∈ B.
4: if NSI i∗ can integrate NSqueue(n) then
5: Calculate cosine similarity (12) between NSqueue(n)

and NSassociated to i∗.
6: Evaluate the new T ′ of NSI(i∗) (15).
7: if T ′ of NSI(i∗) can be satisfied (see CSACC) then
8: Update NSI id of NSqueue(n), T ′ of NSI(i∗),

and NSassociated to i∗.
9: end if

10: if NSI id of NSqueue(n) is empty then
11: if T of NSqueue(n) can be satisfied (see CSACC)

then
12: Create the new NSI n and add n to B.
13: Set T of NSI(n), λ of NSI(n), and NSI id

of NSqueue(n).
14: end if
15: end if
16: end if
17: end for

time-scale approach. Accordingly, it may be implemented
at a slower time-scale, e.g., each 60 seconds.

1) Jaccard similarity-based assignment: With the first pro-
posed strategy, the selected NSI is the one that shares the
highest number of NFs with the slice request. Accordingly,
given a set of deployed NSI B, the SA attempts to assign the
slice request j to the NSI i∗ such that

i∗ = argmax
i∈B

Λji. (8)

2) Spectral clustering-based assignment: To further opti-
mize the resource usage and increase the number of accepted
slice requests, the second proposed strategy periodically re-
clusters the running slices in new NSIs. In order to achieve this
goal, we implement a normalized spectral clustering algorithm
[20] based on the Jaccard similarity among running network
slices. In the spectral clustering, the deployed slices are repre-
sented as nodes of a connected graph and clusters are found by
partitioning this graph based on their spectral decomposition
into subgraphs. This clustering scheme is simple to implement
and typically outperforms other clustering algorithms such as
the K-means algorithm [21].

Let B = {1, . . . , NR} denote the set of running slices with
NF requests {λ1, . . . , λNR

}; we compute the affinity matrix A,
whose elements are the Jaccard similarity between two running
slices as follows:

An,n′ =

{
Λn,n′ if n 6= n′,

0 otherwise,
n, n′ ∈ B, (9)

where Λnn′ is computed as in (7). Then, we derive from A
the corresponding diagonal matrix D, whose (n, n) element is
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the sum of the nth row of A, i.e., dnn =
∑

n′∈B\n
Λn,n′ and the

associated normalized laplacian matrix as:

L = D−1/2AD−1/2. (10)

Afterwards, SA computes the normalized eigenvectors of L
[20] and clusters the first k eigenvectors using K-means [22].
The number of clusters k is obtained such that all eigenvalues
(1, . . . , k) are very small, but the kth + 1 is relatively large
[21].

By deploying new NSIs that maximize the similarity within
their slices, this strategy aims to achieve an improved per-
formance as compared to the previously discussed Jaccard
similarity-based assignment. However, the spectral clustering
increases the complexity of SA to O(N3

R) [23] as compared
to O(NR), which characterizes the Jaccard similarity-based
assignment. When considering the expected number of slices
in the 5G network, the spectral cluster performance is not
limited by its complexity; however, this approach should be
implemented with a limited frequency or only when the system
is overloaded.

B. Intra-NSI Similarity for Resource Mutualization

Both the SA strategies proposed in Section III-A allow
to identify an already existing NSI, which is appropriate to
support a new communication service. However, to satisfy the
specific requirements of the new service request, the deployed
NSI may require additional network resources. Thus, before
finalizing this process, the new NSI network requirements
must be evaluated and the associated resource request must
be accepted by the CSACC (see Section IV). In this work, we
assume that the amount of resources that can be mutualized
by the existing NSI and the new service request depends on
the shared NFs and their associated configuration parameters.
Specifically, we use Bi,k to denote the set of slices included
in NSI i ∈ B and requiring NF k ∈ K; then, for each pair
of slices n, n′ ∈ Bi,k, we define the similarity between the
sets of configuration parameters Ln,k and Ln′,k (see (2)) as
follows:

C(Ln,k,Ln′,k) =
J∑
j=1

h(ln,k,j , ln′,k,j), (11)

where J is the number of parameters of the NF k. Moreover,
h computes the cosine similarity4 between two values of the
jth parameter of NF k, as follows:

h(ln,k,j , ln′,k,j) =
ln,k,jln′,k,j

‖ln,k,j‖‖ln′,k,j‖
, (12)

where ‖ · ‖ is the euclidean norm operator. Considering all
network slices n′ 6= n ∈ Bi,k, we define the largest similarity
for slice request n with respect to NF k as follows:

σ∗n,i,k = max
∀n′ 6=n∈Bi,k

{C(Ln,k,Ln′,k)}, i ∈ B. (13)

4Cosine similarity may not be suitable for all NFs, e.g., for measuring the
similarity among contents cached in mobile edge clouds, other schemes can
be adopted, for example, from [24], [25].

Then, the communication, computing, and cloud storage re-
sources required for NF k when including the slice request n
as part of the NSI i can be computed respectively as follows:

d′n,k,r =ρkβ(σ∗n,i,k) + (1− σ∗n,i,k)fk,r(Ln,k),

d′n,k,c =χkβ(σ∗n,i,k) + (1− σ∗n,i,k)fk,c(Ln,k), (14)

d′n,k,m =µkβ(σ∗n,i,k) + (1− σ∗n,i,k)fk,m(Ln,k).

We recall that ρk, χk, and µk are the minimum amount of
required resources for activating a given NF, and fk,r(Ln,k),
fk,c(Ln,k), and fk,m(Ln,k) denote the amount of resources
required by the NF k as a function of its configuration
parameters Ln,k (see (3)). Moreover, β(·) is a step function
that is equal to one if its argument is positive and zero
otherwise, i.e., the static part of the resource requirements of
NF k is not needed if σ∗n,i,k > 0. To conclude, the refined
resource demands of a network slice request n after the SA
procedure can be computed as follows:

T ′
n =

(
d′n,r, d

′
n,c, d

′
n,m

)
, (15)

where d′n,j =
∑

NFk∈Dn

d′n,k,j , j ∈ {r, c,m}.

IV. CROSS-SLICE ADMISSION AND CONGESTION
CONTROLLER

In this section, we propose a reinforcement learning frame-
work that optimizes the trade-off between the number of
accepted slices and the dropping probability of the network
slice requests with high priorities, which in turns affects the
long-term system revenue. This is a challenging problem as the
slice request arrival and departure probabilities are unknown
and the network resources are limited (see Section II-B). Thus,
minimizing the dropping probability of high-priority slice
requests requires to limit the acceptance of low-priority slice
requests, thereby reducing the operator revenue. To achieve
this goal, we design a functionality named CSACC (shown in
Fig. 1) aiming of maximizing the resource utilization by ac-
cepting new slice requests while taking into account the queue
status, the resource availability, the resource requirements, and
slice priorities at the runtime. The CSACC decides to 1) scale
down the resource allocated to a deployed BE slice and 2)
accept one or multiple requests. More specifically, by scaling
down resources allocated to a BE slice, the CSACC can accept
new GS slice requests or approve the demand for additional
resources from a deployed GS slice.

A. Action and Reward Models

The CSACC monitors the overall system state space, defined
in (5), and uses a reinforcement learning algorithm to learn the
optimal policy that finds the proper admission and congestion
control actions to maximize the long-term system reward. At
each time slot t (see Fig. 2), the CSACC selects an action
a ∈ A that determines the number of accepted GS and BE
requests ag and ab, respectively. Thus, the CSACC action
space is defined as follows:

A , {a = (ag, ab)}. (16)
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It is important to note that the slice requests in each queue
are served in a first-input-first-output fashion, e.g., if ag = 2,
the first two slice requests of the GS queue are served. The
actions chosen at each time slot must ensure that the number
of BE (resp. GS) slice requests accepted does not exceed the
actual number of BE (resp. GS) slice requests in the queue:

ag(t) ≤ sg(t) and ab(t) ≤ sb(t). (17)

In addition, the constraints in (18) guarantee that, for the
accepted BE slices, the sum of allocated resources for each
resource type is less than or equal to the current resource
availability:

ab(t)∑
n=1

d
′b
n,r ≤ r(t),

ab(t)∑
n=1

d
′b
n,c ≤ c(t), (18)

ab(t)∑
n=1

d
′b
n,m ≤ m(t).

Finally, the constraints in (19) ensure that the acceptance
of new GS slices does not excessively degrade the quality
of service of the running BE slices, by guaranteeing that a
minimum amount of resources δj , j ∈ {r, c,m}, is maintained
at each deployed BE slice:

ag(t)∑
n=1

d
′g
n,r +

ab(t)∑
n=1

d
′b
n,r ≤ r(t) + xr(t)− δrub(t),

ag(t)∑
n=1

d
′g
n,c +

ab(t)∑
n=1

d
′b
n,c ≤ c(t) + xc(t)− δcub(t), (19)

ag(t)∑
n=1

d
′g
n,m +

ab(t)∑
n=1

d
′b
n,m ≤ m(t) + xm(t)− δmub(t).

The aim of CSACC is to increase the operator revenue
by maximizing the number of accepted slices, while limiting
the probability that an arriving GS slice request is dropped
because the queue is full, which leads to large revenue losses.
Accordingly, to model the instantaneous reward associated
with a state-action pair, we define a function that takes into
account the numbers of accepted GS and BE slices as well as
the number of dropped GS requests as follows:

R(s(t),a(t)) =ag(t)wg + ab(t)wb − nd(t)ld, (20)

where wg and wb are the rewards for each accepted GS and
BE slice, respectively. In addition, ld is the cost for dropping
a GS slice request, and nd(t) is the number of instantaneous
dropped GS slices, which can be computed as follows:

nd(t) = max{sg(t)− ag(t) + ng(t)−Qg, 0}, (21)

where Qg is the maximum length of the GS queue (see Section
II-B).

B. The SARSA Algorithm

SARSA is an online reinforcement learning algorithm aim-
ing to find a stationary policy that associates a given system
state with a proper action such that the expected total dis-
counted reward is maximized. We define the expected total

Algorithm 2 SARSA
Input: action set A, reward function R, and parameters α, γ ∈

[0, 1), and ε > 0.
1: Randomly initialize Q(s,a), ∀s ∈ S,a ∈ A;
2: for t := 1 to T do
3: Observe the current state s;
4: Select an action a ∈ A, using policy derived from Q (e.g.
ε-greedy), observe the reward R and the new state s′;

5: Take a′ ∈ A from s′, using policy derived from Q;
6: Update Q(s,a) as follows: Q(s,a) ← Q(s,a) +
α [R+ γQ(s′,a′)−Q(s,a))];

7: s← s′, a← a′;
8: end for

discounted reward counting from an initial state-action pair
(s,a) over an infinite time horizon as follows [15]:

Q(s,a) = E

{ ∞∑
t=0

γtR(s(t),a(t)) | s0 = s, a0 = a

}
, (22)

where R(s(t),a(t)) is the instantaneous reward defined in (20)
and γ ∈ [0, 1) is a discount factor that determines the impor-
tance of future rewards. Reinforcement learning algorithms
typically represent Q-function with a tabular format (i.e., a
look-up-table), and the Q-values are arbitrarily initialized.
Then, during the learning phase, the algorithm iteratively
updates the Q-values when moving between state-action pairs
(see the Algorithm 2), until convergence. At the end of the
learning phase, if each state-action pair has been visited
sufficiently often, the Q-values converge to an intermediate
minimum, from which the optimal action can be computed as
follows:

a∗ = argmax
a∈A

Q(s,a),

where A is the set of actions defined in (16). To ensure the
convergence of SARSA to the optimal policy and avoid the
local minimum, it is necessary, during the learning phase, to
randomly switch from one policy to another using e.g., ε-
greedy or Boltzmann exploration schemes [26], while slowly
decaying the exploration rate, e.g., ε for the ε-greedy, to zero.

Although the reinforcement learning model can be success-
fully used to address small-scale MDP problems, it becomes
impractical in realistic cases characterized by large state space
and action set, as computational requirements of reinforcement
learning grow exponentially with the number of state variables,
i.e., the so-called curse of dimensionality.

In this work, when the SA is implemented, the amount of
resources required by a new slice to be deployed depends
on the similarity with the other slices being in the same
NSI (14). Therefore, in (5), the sizes of sets of the available
resources Sp and the resources allocated to the BE slices Xp
become very large, and conventional reinforcement learning
algorithms cannot be used to solve the cross-slice congestion
and admission control. The state space size can be computed
as follows:

|S| = |Sg| · |Sb| · |Sp| · |Ug| · |Ub| · |Xp|.
Let k denote the number of possible similarity values that
can be obtained in (13), when the SA is implemented. In this
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Algorithm 3 SARSA With Linear Function Approximation

Input: action set A, reward function R, feature vector φ(s,a), and
parameters α, γ ∈ [0, 1), and ε > 0.

1: Randomly initialize the feature weights θ(s,a).
2: for t := 1 to T do
3: Select an action a ∈ A, using policy derived from Q (e.g.
ε-greedy), observe the reward R and the new state s′;

4: Take a′ ∈ A from s′, using policy derived from Q;
5: Let et = φ(s,a), and kt = Rt(s,a) + γQθt(s

′,a′) −
Qθt(s,a)

6: Update weights as follows: θt+1 = θt + αtktet
7: Replace s← s′ and a← a′

8: end for

case, the size of Xp is equal to k3(Xr + 1)(Xc+ 1)(Xm+ 1);
thus, |S| increases dramatically and learning the optimal policy
with a standard reinforcement learning algorithm becomes
infeasible. To deal with this issue, in the next section, we
design an approximation function that enables to generalize the
Q-function and accordingly to find the optimal policy in high
complexity systems. Note that, SARSA, being an on-policy
scheme, is characterized by milder convergence conditions
compared to more classical (off-policy) reinforcement learning
schemes (such as Q-Learning) when used with linear function
approximation (LFA) [15]. Both linear and non-linear function
approximation methods can be used to learn a generalized pol-
icy and apply reinforcement learning in realistic and complex
problems. On the one hand, LFA requires skillful design of
the features used as a linear basis to represent the Q-function.
On the other hand, non-linear methods are characterized by
a larger design complexity: for instance, when using artificial
neural networks, it is necessary to select a proper class of
the neural network (such as fully connected, convolution, or
recurrent), the number of layers, the number of weights, and
the activation functions. For this reason, in the next section
we present a scheme based on SARSA with LFA to find
the optimal strategy for cross-slice admission and congestion
control.

V. SARSA WITH LINEAR FUNCTION APPROXIMATION

In this section, we discuss how the LFA can be integrated
into the SARSA to generalize the optimal policy and deal with
the curse of dimensionality for large-scale problems. When
using SARSA with LFA, the Q-function can be represented as
a linear combination of a designed feature vector φ(s,a) =
[φ1(s,a), φ2(s,a), . . . , φF(s,a)]. Accordingly, the Q-function
can be approximated as follows:

Q(s,a) ≈ Qθ(s,a) = θ0 +
F∑
i=1

θiφi(s,a), (23)

where θi is the weight of the ith feature and θ0 is a bias
term. Therefore, instead of explicitly learning the optimal Q-
values for all state-action pairs, it is sufficient to learn the
values of the (F + 1) weights related to the feature functions,
i.e., the complexity of the learning process scale down from
O(|S||A|), with SARSA, to O(F+1) with SARSA with LFA.
To learn the weights, the classical approach is to minimize the

Mean-Squared Error (MSE) over a probability distribution of
the state-action pairs Z , i.e.,

ζ(θ) = EZ [(Q(s,a)−Qθ(s,a))2]. (24)

Stochastic Gradient Descent (SGD) is the most effective and
popular method used in machine learning to find the local
minimum of the MSE in (24) by updating the set of weights
in (23) in the opposite direction of the gradient of the objective
function ∇θζ(θ). Moreover, instead of computing the full
expectations in this gradient, the SGD iteratively updates the
weights after each training sample, as follows:

θ ← θ−α
2
∇θζ(θ) = θ+α[(Q(s,a)−Qθ(s,a))φ(s,a)], (25)

where the learning rate α determines the size of the steps in
the SGD. For reinforcement learning, Q(s,a) is assumed to
be unknown, and therefore, in (25), we use the bootstrapping
technique [27], which consists in replacing the missing obser-
vation with an unbiased estimate R(s,a) +γQθ(s′,a′). Since
each estimate is an unbiased estimate, the SGD converges to
a local minimum of the MSE if the learning rate α decreases
appropriately during the learning phase. The algorithm of
SARSA with LFA is sketched in Algorithm 3. To conclude
this section, we discuss the design of the feature functions
for the proposed CSACC. LFA methods have attracted the
attention of the research community because of not only their
convergence guarantees, but also the possibility to integrate
feature functions that add prior knowledge to reinforcement
learning systems. Intuitively, the features design should take
into account different state and action spaces along which
approximation may be appropriate. Accordingly, we construct
feature functions that consider the actions, the state space
characteristics, and how state and action pairs jointly define
the instantaneous reward in (20). Fig. 5 summarizes all the
feature functions adopted by the CSACC and shows its main
procedures. The CSACC evaluates whether to accept slice
requests based on the queue status. If both queues are empty,
no slice is accepted. If the GS queue is empty, the CSACC
evaluates the required resources to accept BE slices and
decides the number of accepted BE slice requests based on
the available resources. In contrast, when the GS queue has
slice requests awaiting to be accepted, the CSACC checks
the resource availability while prioritizing GS slice requests
over BE slice requests, in particular if the status of the GS
queue is critical, and future GS requests may be dropped.
If the resources are not sufficient, the CSACC evaluates the
amount of resources that can be reduced from running BE
slices, and accepts GS slice requests accordingly. Otherwise,
if the available resources allow to accept both BE and GS
slices, the CSACC accepts slices from both queues. In this
work, we consider that the GS queue is critical if the number
of GS slice requests, sg , is higher than a given threshold q̂g ,
and additional future requests may be dropped.

VI. SIMULATION RESULTS

To evaluate the performance of proposed framework for
slice deployment and orchestration, we consider a 5G system
using network slicing to meet the heterogeneous requirements
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Figure 5: Cross-slice admission and congestion control flowchart.

Table II: Slice templates in terms of required NFs.

NF 1 NF 2 NF 3 NF 4 NF 5 NF 6 NF 7 NF 8 NF 9 NF 10
Slice template 1 x x x x x
Slice template 2 x x x x x
Slice template 3 x x x x x
Slice template 4 x x x x x
Slice template 5 x x x x x
Slice template 6 x x x x x

of future 5G services. We consider that each slice request
arriving in the system is related to one of the 6 slice templates
shown in Table II. Specifically, the request n requires a set Dn
of 5 NFs among the K = 10 NFs available in the 5G system,
and each NF NFk ∈ Dn is characterized by a set of con-
figuration parameters Ln,k represented by one binary vector
J = 1 of length 2. We assume that each NF needs 40 MHz, 40
GFLOPS/s, and 40 GB in terms of communication, computing,
and cloud storage resources, respectively; therefore, the total
communication dn,r, computing dn,c, and cloud storage dn,m
demand for a slice is equal to 200 MHz, 200 GFLOPS/s, and
200 GB (see (4)).

During the congestion control phase (see (19)), the min-
imum amount of resources for running a BE slice i.e., δj ,
j = {r, c,m}, is equal to 100 MHz, 100 GB, and 100
GFLOPS/s. Overall, we assume that the network has 800 MHz,
800 GFLOPS/s, and 800 GB communication, computing,
and cloud storage resources to satisfy the requirements of
the deployed slices. Regarding the learning parameters, we
initially set α = 0.5 and ε = 1; then, during the learning
process, their values are iteratively reduced to strike a balance
between performance and learning speed. We set the discount
factor γ = 0.8 by random search, i.e., by cross-checking the
obtained results for different values of the hyper-parameter.
Finally, Table III describes the main simulation parameters.

A. SARSA with LFA for Cross-Slice Admission Control

In this section, we focus only the slice admission control
function (AC), i.e., we do not allow the controller to reduce the
resources allocated to the BE slices, in order to increase the

Table III: Simulation parameters.
Notation Parameter Value
dn,j nth slice resource request 200

R,C,M Network resources 800

pb BE request arrival probability 0.85

fb, fg Departure probabilities of GS, BE slices 0.35
Nb, Ng Maximum number of arriving BE, GS requests 2
Qb, Qg Maximum length of the slice request queues 4
wb Revenue for accepting a BE request 1
wg Revenue for accepting a GS request 1.7
ld Cost for dropping a GS request 5wg

ρk, χk, µk Resources for activating a NF 0

number of deployed slices. Specifically, we evaluate the results
obtained when using SARSA with LFA for different values
of GS acceptance reward wg and GS arrival probability pg .
We compare the performance of the reinforcement learning
scheme with a greedy scheme that selects the actions that
maximize an immediate reward, i.e., the number of accepted
slices at each time slot.

Fig. 6 shows the average reward obtained by the greedy
scheme and SARSA with LFA as a function of the GS
admission reward wg and arrival probability pg . First, we can
see that, for each value of wg , there is an optimal value of pg

that maximizes the average reward obtained by the SARSA
with LFA. Increasing pg enhances the average reward until
when the slice arrival process can be efficiently managed
by the AC; however, continuing to increase pg beyond this
optimal value decreases the system performance due to the
limited queue size and available resources. In addition, we
observe that for wg = 0.7 and wg = 1, the SARSA with LFA
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Figure 6: Average reward obtained by the greedy scheme and
SARSA with LFA as a function of GS admission reward and
arrival probability.

achieves a much greater average reward than that of the greedy
scheme, especially for higher values of pg . In fact, the greedy
scheme is not able to predict the event of dropping new GS
slice requests. In contrast, for very large value of GS reward,
i.e., wg = 1.7, both the greedy and SARSA with LFA achieve
the same performance, since, in this case, they both prefer to
always accept a GS slice request rather than a BE one.

To better understand this performance, we show in Fig. 7
the probabilities of accepting and dropping a slice request
under different values of pg and wg when using SARSA with
LFA and the greedy scheme. In Fig. 7(a), we observe that, for
wg = 0.7, SARSA with LFA achieves higher slice acceptance
probabilities than those of the greedy scheme. Moreover, Fig.
7(d) shows that SARSA with LFA can reduce the GS dropping
probability at the cost of a higher BE dropping probability.
This is due to the fact that when wg = 0.7, the greedy scheme
prioritizes BE slices, which provides a larger instantaneous
reward. In contrast, SARSA with LFA can learn and balance
the reward perceived for accepting new slices and the cost
for dropping new GS requests, and thus achieving the best
performance in terms of average reward as shown in Fig. 6.

Fig. 7(b) shows that, for wg = 1, the greedy scheme
achieves higher slice acceptance probabilities as compared to
SARSA with LFA when pg is larger than 0.5. Also, we can
see in Fig. 7(e) that SARSA with LFA and the greedy scheme
have similar performance in terms of dropping probabilities
when pg is lower than 0.3. However, for larger values of pg ,
the greedy scheme leads to GS and BE dropping probability
close to 0.5. This performance is not acceptable for GS
slices; in fact, for large values of pg , SARSA with LFA
prioritizes GS slices over the BE requests in order to limit
the associated dropping probability. Finally, as expected, when
wg = 1.7, SARSA with LFA and the greedy scheme achieve
similar performance in terms of slice acceptance and dropping
probabilities (see Fig. 7(c) and 7(f)).

These results confirm the capability of the proposed AI

algorithm to adjust the CSACC strategy to the arrival and
departure statistics of the slice requests accordingly, in order
to maximize the long-term average reward.

B. SARSA with LFA for Cross-Slice Admission and Congestion
Control

To assess the impact of the congestion control function for
slice deployment and orchestration, we compare the system
performance by implementing two strategies, i.e., the strategy
using only admission control (AC) and the strategy using both
cross-slice admission and congestion control (CSACC). Fig.
8(a) shows the average reward achieved by SARSA with LFA
when implementing AC (plus marked line) and CSACC (star
marked line). As expected, the CSACC enhances the average
reward of the system since it enables to increase the number
of the average accepted slices. Specifically, CSACC enables
to improve the average reward up to 23% with respect to
the reward achieved by the simpler AC scheme. However, we
can observe that when the GS arrival probability pg is larger
than 0.7 the two approaches have the same performance. The
system under investigation is not well-dimensioned for this
range of values, where both the controllers stop to accept
BE slices requests to limit the GS slice dropping probabil-
ity. Therefore, here, implementing the CC may not lead to
significant benefits. This finding is verified in the results in
Fig. 8(b), where we can observe the impact of the CSACC
in terms of slice dropping probability. Specifically, for low
and medium values of pg , the CSACC improves the system
performance by reducing the number of dropped BE slice
requests. Without the CSACC, the system has to limit the
acceptance of low-priority BE slices, in order to save resources
for future GS slice requests. In contrast, the proposed scheme
allows to increase the percentage of accepted BE slices since
part of their resources can be opportunistically allocated to
new GS requests when needed.

C. Cross-Slice Admission and Congestion Control with the
Slice Analytics

In this section, we study the impact of the slice analytics
(SA) on the system performance. The SA function optimizes
the assignment of new slice requests to existing NSIs such
that the additional required resources to deploy them are
limited. Here, our goal is to evaluate the performance of two
assignment algorithms presented in Section III-A, i.e., the Jac-
card similarity-based and spectral clustering-based assignment
schemes.

Fig. 9(a) shows the slice dropping probability as a function
of GS arrival rate achieved when using only the cross-slice AC,
the AC in conjunction with the Jaccard similarity scheme, and
the AC in conjunction with the spectral clustering scheme. We
observe that both the proposed strategies enhance the system
performance achieved by the AC by decreasing the dropping
probabilities for both BE and GS slice requests. However, in
this case the two SA algorithms achieve the same performance.
Fig. 9(b) shows the slice dropping probability as a function
of GS arrival rate achieved when using only the CSACC, the
CSACC in conjunction with the Jaccard similarity scheme, and
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Figure 7: Slice acceptance and dropping probabilities obtained by the greedy scheme and SARSA with LFA as a function of
GS admission reward and arrival probability.

the CSACC in conjunction with the spectral clustering scheme.
Simulation results show that in this case, the spectral clustering
outperforms the Jaccard similarity by decreasing the dropping
probabilities for both BE and GS slice requests. When used
with CSACC, the spectral clustering algorithm increases the
number of BE slices that can be deployed thus augmenting the
amount of resources that can be opportunistically subtracted
to the GS slice to the BE slices. This results in reducing the
BE requests dropping probability.

The above discussed results highlight the benefits of SA
used in conjunction with the proposed CSACC. To assess the
feasibility of implementing this framework, we now evaluate
the convergence of SARSA with LFA when used for CSACC
only and when implemented for CSACC in conjunction with
SA. Specifically, simulation results in Fig.10 show the average
values of the feature weights as a function of the iterations
number. We observe that the proposed LFA scheme allows
the feature weights to converge in a reasonable time, for both
the scheme, in the order of 5× 104 iterations.

We now conclude our analysis by summarizing the per-
formance achieved by the pillars of our slice deployment
and orchestration framework. Fig. 11(a) shows the average
reward obtained by our system when using only the cross-
slice AC, CSACC, AC with spectral clustering (AC with SA),
and CSACC with spectral clustering (CSACC with SA). We
can notice that the CSACC leads to a large reward gain as
compared to the AC for low values of GS request arrival
probabilities; in fact, for these values, the number of BE slices
accepted in the system is significant, and a large amount of
their resources can be opportunistically re-used to serve GS

slice requests. In contrast, the gain brought by the SA increases
with the GS request arrival probability, i.e., the larger pg ,
the larger the amount of resources that can be shared among
the deployed slices. Moreover, we observe that with CSACC
with SA, the reward gain with respect to the simple AC is
larger than the sum of the gains lead by each single strategy.
This gain is due to the large reduction in the BE dropping
probability as shown in Fig. 11(b). In fact, the CSACC with
SA enables to reduce the GS dropping probability and the BE
dropping probability up to 28% and 44%, respectively. Overall,
we can conclude that our framework is able, by optimizing the
network resource usage, to increase the operator revenue while
satisfying the priorities among the different services.

VII. CONCLUSION

In this paper, we have designed a novel AI framework
for network slice deployment and orchestration. Specifically,
in the context of the 3GPP NSMF, we have proposed two
novel functions for the resource efficient management of slice
requests in 5G systems: SA and CSACC. SA assigns each
new slice request to an existing NSI, based on the shared
NFs, such that the additional amount of resource required to
deploy the new slice is minimized. CSACC aims to maximize
the system revenue while taking into account slice priorities,
network slice requirements, and resource availability. We have
formulated this problem using reinforcement learning and
designed the on-policy scheme, based on SARSA with LFA,
to find the optimal control strategy that maximizes the long
term expected reward of the system. Our results show that
using SA and CSACC jointly can reduce the GS and BE slice
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Figure 8: (a) Average reward and (b) slice dropping proba-
bility with AC and CSACC as a function of the GS arrival
probability.

request dropping probability up to 28% and 44%, respectively.
In future studies, we will focus on a system dealing with slice
requests characterized by more heterogeneous requirements
and priorities. Moreover, we will investigate how to size the
substrate network and the associated resources, such that the
slice dropping probability is further minimized.
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Figure 11: (a) Average reward and (b) slice dropping prob-
ability for different schemes as a function of the GS arrival
probability.
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Abstract

Network slicing is a key enabler to successfully support 5G services with specific requirements

and priorities. Due to the diversity of these services, slice deployment and orchestration are essential

to guarantee service performance in a cost-effective way. In this paper, we propose an Artificial In-

telligence framework for cross-slice admission and congestion control that simultaneously considers

communication, computing, and storage resources with the aims of maximizing resources utilization

and operator revenue. First, we propose a smart feature extraction solution to analyze the characteristics

of incoming requests together with the already deployed slices, and then automatically evaluates the

request requirements to make appropriate decisions. Second, we design an online algorithm that controls

the slice admission based on their priorities, the arrival and departure characteristics, and the available

resources. To mitigate system overloading, our framework dynamically adjusts resources allocated to low

priority slices, thereby reducing the dropping probability of new slice requests. The proposed algorithm

offers outstanding advantages over traditional static approaches by automatically adapting the controller

decisions to the system changes. Simulation results show that our framework significantly improves the

resource utilization and reduces the slice request dropping probabilities up to 44% as compared to the

baseline schemes.

I. INTRODUCTION

The technological revolution for the last decade has been changing the way we communi-

cate by introducing emerging applications and services. Massive machine type communications

(mMTC), autonomous vehicles, smart factories, and virtual reality are changing the network

requirements in terms of number of connections per user, traffic volume, and end-to-end latency

[1]. To efficiently support use cases and applications with heterogeneous requirements, the fifth
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2

generation (5G) communication systems will deploy a novel and flexible architecture where the

network infrastructure is logically split into different instances, i.e., network slices, each designed

for a specific service and running in the cloud environment [2]. A network slice is composed

of physical and virtual network functions (NFs), where a virtual NF represents the software

implementation of the traditional functions, such as routing or packet scheduling.

In this context, depending on the network load and service requirements, the 5G systems

will need to manage network resources smartly according to different radio, transport, and

cloud domains. Moreover, it is necessary to take into account that different slice requests

may have diverse priorities and constraints, and the network resources have to be managed

accordingly. Therefore, 3GPP has been developing network slice management and orchestration

solutions based on the European Telecommunications Standards Institute (ETSI) Management

and Orchestration and Network Function Virtualization frameworks [3]. In addition, the ETSI

Experiential Network Intelligence (ENI) group has been investigating Artificial Intelligence

(AI) to achieve autonomous, and thus cost-effective, slice management and orchestration in

future communication networks [4]. However, these frameworks define only brief guidelines

on architectural aspects (interfaces and requirements) and design principles without providing

specific solutions. Accordingly, there is an urgent need for new schemes and frameworks able to

provide cross-slice resource orchestration and management. In this paper, we focus on AI-based

cross-slice admission and congestion control with the goal of maximizing the operator revenue

by improving the network resource utilization.

A. Related Work

In the literature, the admission control problem for 5G network slicing has been investigated

under two main directions: by using Markov Decision Process (MDP) and game theory. Specif-

ically, Hoang et al. characterized the slice admission control problem as an MDP problem that

can be solved by using the value iteration algorithm, which is based on dynamic programming

[5]. However, this approach requires a minimum knowledge of service model characteristics

(e.g., the slice request arrival and departure rates) and can only find the optimal solution for

problems with a limited number of states. Bega et al. [6] introduced the concepts of elastic

and inelastic slices, modeled the slice admission control as an MDP, and implemented the Q-

learning algorithm to maximize the operator revenue. However, the Q-learning algorithm suffers

from the so-called “curse of dimensionality” [7], meaning that its computational requirements
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3

grow exponentially with the number of state variables in the problem. Accordingly, this approach

cannot be efficiently implemented in realistic scenarios.

Caballero et al. [8] proposed a game theoretic approach for the slice admission control problem

to enable fair resource partitioning between deployed slices. However, this study only focuses

on radio resources and does not consider priorities among different slice requests. Jiang et al.

[9] investigated the virtual resource allocation for network slicing by using auction mechanisms

in order to maximize the network revenue under different slice priorities. However, this study

does not consider admission control and is unable to limit the slice request dropping probability.

Leconte et al. [10] proposed an elastic framework for cross-slice resource allocation that achieves

a Pareto-efficient solution ensuring fair radio and computing resource allocation. However, the

obtained solution considers only instantaneous optimization and does not take into account

the priorities between slices. Delgado et al. [11] studied a greedy algorithm for slice resource

allocation in wireless sensor networks. Four resource types are considered, i.e., radio, storage,

computing and energy, with the energy resources being the most important one. Nevertheless, the

work in [11] did not consider priorities among different slices. In addition, game theory-based

solutions cannot deal with system dynamics, and thus their outcome strategies are not able

to provide long-term optimization. Moreover, none of the above works propose a solution for

resource shortage problem in the context of slice deployment and orchestration.

Early works on AI for mobile networks highlighted the importance of introducing intelligence

and automation in admission control function [12]. Chen et al. [13] studied admission control

using fuzzy Q-learning to achieve a lower blockage rate in WCDMA/WLAN heterogeneous

networks. Al-Maitah et al. [14] employed a genetic neurofuzzy controller to improve the quality

of call admission in mobile networks. Although these methods proposed AI solutions, to the

best of our knowledge, there is a lack of AI-based framework that can simultaneously address

the admission and congestion control problems for 5G slice management and orchestration.

B. Contributions and Organization

The key contributions of this paper can be summarized as follows:

1) We propose a new architecture for joint cross-slice admission control and congestion

control to maximize the operator revenue while considering different slice types and

resource requirements. Accordingly, we introduce three new functions: Slice Analytics

(SA), Admission Control (AC), and Congestion Control (CC). This novel architecture is
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4

fully compatible with the Network Slice Management layer proposed by 3GPP [3]. By

adopting it, we jointly improve the usage of communication, computing, and cloud storage

resources while guaranteeing the slice priorities.

2) The proposed SA function attempts to assign a new slice request to an existing Network

Slice Instance (NSI) based on the common NFs to maximize the resource sharing across

slices and accelerate the slice deployment process. In particular, we propose two different

algorithms that can implement this functionality: Jaccard similarity-based assignment and

spectral clustering-based assignment. The first scheme assigns each new slice request to the

NSI that maximizes the Jaccard similarity. Alternatively, the spectral clustering approach

tries to iteratively optimize the resource sharing by clustering all slices into new NSIs

at each slice arrival. Our simulation results show that the proposed SA function can

significantly reduce the resource footprint for each accepted slice.

3) The proposed cross-slice AC aims to optimize the trade-off between resource utilization

and dropping probability of slice with high priorities. We then introduce the concept of

cross-slice AC based on AI, where the controller is able to deal with system dynamics and

its decision enables a long-term optimal solution in terms of the slice resource management.

To achieve this goal, we design an AI scheme based on the State-Action-Reward-State-

Action (SARSA) scheme [15] with linear function approximation (LFA), which is a model-

free reinforcement learning approach that can deal with high dimensional and complex

problems.

4) We also introduce a CC function that limits the dropping of slice requests, especially when

the system becomes overloaded. The CC can scale down resources allocated to slices with

low priorities, so that slices with high priorities can be admitted. This function is tightly

coupled with the AC, as it determines the resources available for accepting new slice

requests, while the amount of resources that can be scaled down is the results of the AC

action. Therefore, we develop a joint implementation of both controllers using SARSA

with LFA, which we denote as cross-slice admission and congestion control (CSACC).

The rest of the paper is organized as follows. The proposed architecture and the associated

system model is presented in Section II. In Section III, we define the SA function and the

proposed algorithms. In Section IV, we introduce the mathematical model of the designed

CSACC, and then we present the SARSA algorithm with LFA in Section V. Simulation results
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5

Figure 1: The proposed framework for network slice deployment and orchestration.

are provided in Section VI. Finally, the conclusions and future directions are discussed in Section

VII.

II. SYSTEM MODEL

We consider a system supporting network slicing to satisfy the diverse 5G service requirements

of the services related to the 5G ecosystem. In this network, a slice management framework

(described in Fig. 1) is used to instantiate network slices and orchestrate the network resources

across the accepted slices by exploiting the so called resource elasticity paradigm [16]. To design

an efficient, multi-service, multi-slice, and multi-tenant architecture, we take advantage of the

so called resource elasticity paradigm. In a nutshell, with resource elasticity, the network is able

to the proposed slice management framework gracefully adapts the network its configuration to

system changes in an automatic manner through AI, such that at each point in time the available

resources match the service demand as closely and efficiently as possible. Although elasticity

in mobile networks has traditionally been exploited in the context of communications resources

(e.g., when a base station gracefully downgrades the spectral efficiency of a given communication

link), here Here, we apply this concept to communication, computational, and storage resources

jointly. More specifically, we focus on elastic slices that enable a certain level of flexibility in the

resource orchestration: we consider guaranteed quality-of-service (GS) slices that do not require
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6

fully dedicated network resources (i.e., resource isolation) and best effort (BE) slices that, in

addition, allow the system to temporarily reduce their resources in order to deal with GS slices,

which have higher priorities and tighter requirements.

In the 3GPP specification [3], the Communication Service Management Function (CSMF)

receives requests for new services and transforms the consumer-facing service descriptions into

slice-related network requirements such as connection density, end-to-end latency, and coverage.

Then, the CSMF sends the network slice requests together with the associated requirements this

information to the Network Slice Management Function (NSMF), which derives accordingly the

so-called network slice blueprint [3]. The network slice blueprint is a description of the network

slice in terms of required NFs, their interconnection and configuration according to the specific

service request. The main role of the NSMF is to manage and orchestrate the overall network

slice life-cycle.

More specifically, in In this work, we study how, based on the slice blueprint, the NSMF

identifies the resource requirements for each slice and decides whether and when to instantiate

the slice request. Then, the NSMF will distribute the available resources across the activated

slices and try to maximize the resource utilization, i.e., the number of slices that can be handled

at the same time. However, maximizing the resource utilization may prevent the system from

accepting new slice requests with high priorities, which provide high revenue for the operator,

due to the potential scarcity of available resources. Hence, this procedure needs to be carefully

managed to optimize the trade-off between resource utilization and operator revenue.

To optimize such trade-off, we investigate two main functionalities represented by the grey

blocks in Fig. 1:

• The SA block receives the slice blueprint and resource requirements related to the accepted

and queued slice requests. It refines the amount of resources to be allotted to each network

slice by analyzing the similarities in the slice requirements. Additionally, this block it

classifies the slice requests into two types, GS and BE slices, according to the associated

requirements1.

• The CSACC is a resource orchestrator that performs jointly cross-slice AC and CC functions.

This block It monitors the requests of the queued slices and the available resources, and

1This model can be straightforwardly extended to a more general classification that may include classical 5G use cases such

as eMBB, URLLC, and mMTC.
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7

manages the slice deployment and the resource allocation accordingly.

Finally, in the proposed framework, the role of the virtual infrastructure manager is to execute

the instructions received from the CSACC.

Figure 2: Decision making cycle for network slice deployment and orchestration.

According to the above system operations, we consider a decision-making cycle that can be

divided into four phases as illustrated in Fig. 2. At the beginning of each time slot, the SA phase

evaluates the effective resource requests based on the similarities between the queued network

slices and the active network slices. Then, in the CSACC phase, based on the current states

of the GS and BE queues, and the momentary available resources of the system, the CSACC

first decides whether to scale down the resources allocated to the BE slices, and then selects

the slice requests to admit. Then, in the third phase, i.e., the slice deployment phase, the virtual

infrastructure manager allocates the network resources according to the CSACC decisions, and

the accepted slices are instantiated. Finally, in the last phase, i.e., the information updating phase,

new requests arrive, and they are processed by the CSMF, and the input of the SA is updated

accordingly. The duration of the above discussed cycle should be short enough to monitor the

variation in the slice resource requests and enable the NSMF functions to react accordingly. For

the slice admission control period, a duration in the order of one second was considered in [17].

The main notations used in this paper are described in Table I.

A. Blueprint and Slice Resource Requirements

The NGMN Alliance defines the slice blueprint as a complete description of the structure,

configuration, and the work flows to instantiate and control a network slice during its life-cycle

[18]. In this work, we characterize a slice blueprint as follows:
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8

Table I: Main Notations and System Parameters.

Notation Parameter

S , Sg × Sb × Sp × Ug × Ub ×Xp State space

s(t) ∈ S System state

sg(t) ∈ Sg, sb(t) ∈ Sb Slice requests in GS and BE queues

sp(t) = (r, c,m) ∈ Sp Communication [MHz], computing [GFLOPS/s], and storage [GB] resources

ug(t) ∈ Ug, ub(t) ∈ Ub Deployed GS and BE slices

xp(t) = (xr, xc, xm) ∈ Xp Allocated resources for deployed BE slices

a(t) = (ag, ab) ∈ A Admission and Congestion Control action and action space

ag(t), ab(t) Number of accepted GS and BE requests

Λn,n′ Jaccard similarity between slices n and n′

B Deployed Network Slice Instances

dn,k,j Resources of type j required by the kth NF in the nth request

dn,j , d′n,j Resources of type j required by nth slice before, after slice analytics

wg , wb Rewards for each accepted GS and BE slices

nd(t), ld Instantaneous dropped GS slices and dropping loss

nb(t), ng(t) New BE and GS requests

R(s(t),a(t)) Instantaneous reward

Q(s,a) Q-value of a state-action pair

α, γ Learning rate and discount factor

φ(s,a) Feature vector

θi Weight of the ith feature

• A list of NFs that the slice requires and the description of the interactions among the NFs.

• The parameters that describe the configuration of each NF.

Depending on the type of service, the system will deploy a specific version of each NF, which

enables to satisfy the service requirements. For example, in the case of eMBB service, the NF

providing 5G PHY layer is characterized by precise configuration parameters as large bandwidth,

modulation and coding schemes with high spectral efficiency, etc. The configuration of a NF, in

turn, defines the amount of resources that it requires to be deployed in the 5G system. We consider

that a 5G network slice can be composed by three sets of NFs: radio KR, transport KT, and cloud

KC (see Fig. 3), each consisting of a finite number of NFs requiring three types of resources:
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9

Figure 3: Mapping of network slices to the required network functions.

communication (in terms of bandwidth [MHz]), computing (in [GFLOPS/s]), and cloud storage

(in [GB]). For example, typical NFs in the radio, transport, and cloud sets are the physical layer,

routing, and caching functions, respectively. We use K = KR ∪ KT ∪ KC = {NF1, . . . , NFK}
to denote the set of all K = (KR + KT + KC) NFs that can be deployed in the 5G system.

Let N ≥ 0 be the number of slice requests at the NSMF. We suppose that the slice blueprint

of the nth slice request includes a set of NFs, denoted by Dn ⊆ K, and a set of configuration

parameters for each NFk ∈ Dn, indicated by Ln,k. Then, to indicate which NFs compose a

request Dn, we use the vector λn ∈ {0, 1}K , whose kth entry is defined as:

λn,k =

1 if NFk ∈ Dn,

0 otherwise.
(1)

For each NF NFk ∈ Dn, we represent the associated configuration parameters as a set of J

binary vectors2 as follows:

Ln,k = {ln,k,1, ln,k,2, . . . , ln,k,J}. (2)

Then, we map the configuration parameters with the amount of communication (dn,k,r), com-

puting (dn,k,c), and cloud storage (dn,k,m) resources required by the NF NFk of the nth slice

2For the ease of presentation, we consider that all NFs have the same number of configuration parameters.
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10

request using a model composed of a static part and a dynamic part:

dn,k,r =ρk + fk,r(Ln,k),

dn,k,c =χk + fk,c(Ln,k), (3)

dn,k,m =µk + fk,m(Ln,k),

where ρk, χk, and µk are the minimum amount of required resources for activating a given

NF, NFk ∈ Dn, and fk,r(Ln,k), fk,c(Ln,k), and fk,m(Ln,k) are the additional amount of required

resources that can be defined as a function of the configuration parameters Ln,k characterized for

the NFk. In summary, the total communication, computing, and cloud storage resource demand

of the nth slice request can be computed as follows:

Tn = (dn,r, dn,c, dn,m) , (4)

where dn,j =
∑

NFk∈Dn

dn,k,j, j ∈ {r, c,m}.

B. State Space of the Proposed Slice Deployment and Orchestration Framework

Here we describe the state space of the proposed framework for the network slice deployment

and orchestration. In the following sections, we describe the proposed functions to optimize the

network resource utilization, while considering the priorities of the different service requests.

The state space of the system, denoted by S, includes the sets that describe the states of the GS

queue, the BE queue, the available network resources, the number of deployed GS slices, the

number of deployed BE slices, and the resources allocated to the BE slices. Accordingly, S is

defined as follows:

S , Sg × Sb × Sp × Ug × Ub ×Xp. (5)

At each time slot of the proposed cycle for slice deployment and orchestration (see Fig. 2), the

numbers of slice requests in the GS and BE queues are denoted respectively by sg ∈ Sg =

{0, 1, . . . , Qg} and sb ∈ Sb = {0, 1, . . . , Qb}, where Qg and Qb are the maximum length of

the GS and BE queues, respectively. As for the network resource state, let sp = (r, c,m) ∈
Sp, where r ∈ {0, 1, . . . , R}, c ∈ {0, 1, . . . , C}, and m ∈ {0, 1, . . . ,M}, denote the available

communication, computing, and cloud storage network resources, respectively. We also indicate

the number of deployed GS slices, deployed BE slices, and the network resources associated

to the running BE slices respectively as ug ∈ Ug = {0, 1, . . . , Ug}, ub ∈ Ub = {0, 1, . . . , Ub}
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11

and xp = (xr, xc, xm) ∈ Xp ⊆ Sp, respectively, where Ug and Ub are the maximum numbers

of GS and BE slices, which can be simultaneously accepted by the system. Note that, in our

optimization framework, we scale down only the resources allocated to BE slices, in order to

increase the number of accepted slices. Therefore, we do not need to define a set related to the

resources allocated to the GS slices.

Then, we use ng ∈ Ng = {0, 1, . . . , Ng} and nb ∈ Nb = {0, 1, . . . , Nb} to denote the number

of new GS and BE slice requests at each time slot, where Ng and Nb are the maximum numbers

of arriving requests for the GS and BE services, respectively. Let pgn and pbn be the probabilities

of arriving ng and nb slice requests at a given time slot; accordingly, we have:

Ng∑
n=0

pgn = 1 and
Nb∑
n=0

pbn = 1. (6)

It is important to note that, a slice request is dropped when it arrives in a queue that is full3.

Finally, we denote f g and f b as the departure probabilities of an accepted GS slice and an

accepted BE slice at a given time slot, respectively. In addition, when a given slice leaves the

system, all its allocated resources are immediately released.

III. SLICE ANALYTICS PROCEDURE

As mentioned in Section II, one of the role of the NSMF is to elaborate and update the slice

blueprint, which clearly identifies the NFs required by each network slice in the 5G system (see

Fig. 3). In the proposed framework, we classify each required NF either as a dedicated NF or as

a shared NF with respect to the other NFs required by the other (queued or actively deployed)

network slices. Accordingly, the resource usage of the 5G system can be optimized if multiple

NFs shared across different slices can (even partially) share common network resources at the

same time. For instance, two slices deployed in the same geographical area can share the same

base stations if the available capacity is large enough to satisfy the overall demands. Moreover,

during a sport event, a single operator can use network slicing to accommodate the wireless

services required by different broadcasters. In this case, a large part of the communication

resources can be shared by these slices to broadcast the common content (e.g., the video) to

different users, while specific content (e.g., the speaker’s voice) can use dedicated resources.

From the operator’s point of view, this approach enables to increase the number of accepted

3The queues capacity is limited to avoid long delay for the slice requests waiting in the queues.
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12

slice requests (generating higher revenue), decrease the slice deployment cost, and limit the

service creation time.

Using the 3GPP terminology, we denote the set of NF instances and the associated network

resources deployed to satisfy one or multiple slice requests as a Network Slice Instance (NSI).

An NSI is composed of NFs shared between two or more slices, as well as dedicated NFs, as

shown in Fig. 4. To efficiently map a network slice request to an NSI, we propose a procedure,

namely SA, that analyzes the network slice blueprints, in order to evaluate the similarities among

network slices and identify the NSI that can serve the new slice request with a minimum amount

of additional network resources (see Algorithm 1).

In SA, we use NSqueue(n) and B to denote the nth slice request and the set of deployed

NSIs. First, SA compares the NFs required by the nth slice request λn with those associated

with each running NSI, by calculating the Jaccard similarity as follows [19]:

Λi,n =
λiλn

‖λi‖+ ‖λn‖ − λiλn
, i ∈ B, (7)

where λi and λn are defined in (1). Based on the computed similarities, SA chooses an NSI

i∗ ∈ B according to one of the association algorithms presented in Section III-A. If the selected

NSI can integrate the slice request, e.g., there are no resource isolation constraints, the slice

analytics computes the degree of similarity for each NF required by the NSqueue(n) and shared

with the other slices associated to the selected NSI i∗ (see (13)), and accordingly evaluates the

additional amount of resources required by the NSI to accommodate the slice request n, T ′
n

(15). If the slice request cannot be assigned to any of the existing NSIs, a new NSI will be

prepared. If the request is accepted by the CSACC, presented in Section IV, either the new NSI

is instantiated or the NSI i∗ is updated. Finally, the virtual infrastructure manager (see Fig. 1)

executes the resource allocation procedure.

A. Similarity-Based Slice Association

The first step in SA is to assign a new slice request to an existing NSI. This assignment is

based on one of the two proposed strategies:

• The SA assigns a new slice demand to the existing NSI which maximizes the Jaccard

similarity. The advantage of this solution is the low complexity, and may be implemented

in a fast time-scale, in the order of one second.
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13

Figure 4: An illustration of shared and dedicated NFs in a network slice instance. A slice is

composed of dedicated NFs and shared NFs with other slices.

Algorithm 1 Slice Analytics
Input: NSI = {NSI id,λ,T } ← deployed NSIs;

NSqueue = {NSI id,λ,T } ← queued NSs;

NSassociated = {NSI id,λ,L,T } ← NSs associated to deployed NSIs;

Output: Updated NSassociated.

1: for n = 1:Length(NSqueue) do

2: Calculate Jaccard similarity (7) between NSqueue(n) and each NSI i ∈ B.

3: Use the selected association algorithm to identify the proper NSI i∗ ∈ B.

4: if NSI i∗ can integrate NSqueue(n) then

5: Calculate cosine similarity (12) between NSqueue(n) and NSassociated to i∗.

6: Evaluate the new T ′ of NSI(i∗) (15).

7: if T ′ of NSI(i∗) can be satisfied (see CSACC) then

8: Update NSI id of NSqueue(n), T ′ of NSI(i∗), and NSassociated to i∗.

9: end if

10: if NSI id of NSqueue(n) is empty then

11: if T of NSqueue(n) can be satisfied (see CSACC) then

12: Create the new NSI n and add n to B.

13: Set T of NSI(n), λ of NSI(n), and NSI id of NSqueue(n).

14: end if

15: end if

16: end if

17: end for
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• The SA uses spectral clustering to create new NSIs which maximize the resource sharing in

the 5G system. This is an iterative solution, and thus more complex than the fast time-scale

approach. Accordingly, it may be implemented at a slower time-scale, e.g., each 60 seconds.

1) Jaccard similarity-based assignment: With the first proposed strategy, the selected NSI is

the one that shares the highest number of NFs with the slice request. Accordingly, given a set

of deployed NSI B, the SA attempts to assign the slice request j to the NSI i∗ such that

i∗ = argmax
i∈B

Λji. (8)

2) Spectral clustering-based assignment: To further optimize the resource usage and increase

the number of accepted slice requests, the second proposed strategy periodically re-clusters the

running slices in new NSIs. In order to achieve this goal, we implement a normalized spectral

clustering algorithm [20] based on the Jaccard similarity among running network slices. In the

spectral clustering, the deployed slices are represented as nodes of a connected graph and clusters

are found by partitioning this graph based on their spectral decomposition into subgraphs. This

clustering scheme is simple to implement and typically outperforms other clustering algorithms

such as the K-means algorithm [21].

Let B = {1, . . . , NR} denote the set of running slices with NF requests {λ1, . . . , λNR
}; we

compute the affinity matrix A, whose elements are the Jaccard similarity between two running

slices as follows:

An,n′ =

Λn,n′ if n 6= n′,

0 otherwise,
n, n′ ∈ B, (9)

where Λnn′ is computed as in (7). Then, we derive from A the corresponding diagonal matrix D,

whose (n, n) element is the sum of the nth row of A, i.e., dnn =
∑

n′∈B\n
Λn,n′ and the associated

normalized laplacian matrix as:

L = D−1/2AD−1/2. (10)

Afterwards, SA computes the normalized eigenvectors of L [20] and clusters the first k eigen-

vectors using K-means [22]. The number of clusters k is obtained such that all eigenvalues

(1, . . . , k) are very small, but the kth + 1 is relatively large [21].

By deploying new NSIs that maximize the similarity within their slices, this strategy aims to

achieve an improved performance as compared to the previously discussed Jaccard similarity-

based assignment. However, the spectral clustering increases the complexity of SA to O(N3
R)
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[23] as compared to O(NR), which characterizes the Jaccard similarity-based assignment. When

considering the expected number of slices in the 5G network, the spectral cluster performance

is not limited by its complexity; however, this approach should be implemented with a limited

frequency or only when the system is overloaded.

B. Intra-NSI Similarity for Resource Mutualization

Both the SA strategies proposed in Section III-A allow to identify an already existing NSI,

which is appropriate to support a new communication service. However, to satisfy the specific

requirements of the new service request, the deployed NSI may require additional network

resources. Thus, before finalizing this process, the new NSI network requirements must be

evaluated and the associated resource request must be accepted by the CSACC (see Section IV).

In this work, we assume that the amount of resources that can be mutualized by the existing

NSI and the new service request depends on the shared NFs and their associated configuration

parameters. Specifically, we use Bi,k to denote the set of slices included in NSI i ∈ B and

requiring NF k ∈ K; then, for each pair of slices n, n′ ∈ Bi,k, we define the similarity between

the sets of configuration parameters Ln,k and Ln′,k (see (2)) as follows:

C(Ln,k,Ln′,k) =
J∑
j=1

h(ln,k,j, ln′,k,j), (11)

where J is the number of parameters of the NF k. Moreover, h computes the cosine similarity4

between two values of the jth parameter of NF k, as follows:

h(ln,k,j, ln′,k,j) =
ln,k,jln′,k,j

‖ln,k,j‖‖ln′,k,j‖
, (12)

where ‖ · ‖ is the euclidean norm operator. Considering all network slices n′ 6= n ∈ Bi,k, we

define the largest similarity for slice request n with respect to NF k as follows:

σ∗n,i,k = max
∀n′ 6=n∈Bi,k

{C(Ln,k,Ln′,k)}, i ∈ B. (13)

4Cosine similarity may not be suitable for all NFs, e.g., for measuring the similarity among contents cached in mobile edge

clouds, other schemes can be adopted, for example, from [24], [25].
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Then, the communication, computing, and cloud storage resources required for NF k when

including the slice request n as part of the NSI i can be computed respectively as follows:

d′n,k,r =ρkβ(σ∗n,i,k) + (1− σ∗n,i,k)fk,r(Ln,k),

d′n,k,c =χkβ(σ∗n,i,k) + (1− σ∗n,i,k)fk,c(Ln,k), (14)

d′n,k,m =µkβ(σ∗n,i,k) + (1− σ∗n,i,k)fk,m(Ln,k).

We recall that ρk, χk, and µk are the minimum amount of required resources for activating a

given NF, and fk,r(Ln,k), fk,c(Ln,k), and fk,m(Ln,k) denote the amount of resources required by

the NF k as a function of its configuration parameters Ln,k (see (3)). Moreover, β(·) is a step

function that is equal to one if its argument is positive and zero otherwise, i.e., the static part of

the resource requirements of NF k is not needed if σ∗n,i,k > 0. To conclude, the refined resource

demands of a network slice request n after the SA procedure can be computed as follows:

T ′
n =

(
d′n,r, d

′
n,c, d

′
n,m

)
, (15)

where d′n,j =
∑

NFk∈Dn

d′n,k,j, j ∈ {r, c,m}.

IV. CROSS-SLICE ADMISSION AND CONGESTION CONTROLLER

In this section, we propose a reinforcement learning framework that optimizes the trade-off

between the number of accepted slices and the dropping probability of the network slice requests

with high priorities, which in turns affects the long-term system revenue. This is a challenging

problem as the slice request arrival and departure probabilities are unknown and the network

resources are limited (see Section II-B). Thus, minimizing the dropping probability of high-

priority slice requests requires to limit the acceptance of low-priority slice requests, thereby

reducing the operator revenue. To achieve this goal, we design a functionality named CSACC

(shown in Fig. 1) aiming of maximizing the resource utilization by accepting new slice requests

while taking into account the queue status, the resource availability, the resource requirements,

and slice priorities at the runtime. The CSACC decides to 1) scale down the resource allocated to

a deployed BE slice and 2) accept one or multiple requests. More specifically, by scaling down

resources allocated to a BE slice, the CSACC can accept new GS slice requests or approve the

demand for additional resources from a deployed GS slice.
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A. Action and Reward Models

The CSACC monitors the overall system state space, defined in (5), and uses a reinforcement

learning algorithm to learn the optimal policy that finds the proper admission and congestion

control actions to maximize the long-term system reward. At each time slot t (see Fig. 2), the

CSACC selects an action a ∈ A that determines the number of accepted GS and BE requests

ag and ab, respectively. Thus, the CSACC action space is defined as follows:

A , {a = (ag, ab)}. (16)

It is important to note that the slice requests in each queue are served in a first-input-first-output

fashion, e.g., if ag = 2, the first two slice requests of the GS queue are served. The actions

chosen at each time slot must ensure that the number of BE (resp. GS) slice requests accepted

does not exceed the actual number of BE (resp. GS) slice requests in the queue:

ag(t) ≤ sg(t) and ab(t) ≤ sb(t). (17)

In addition, the constraints in (18) guarantee that, for the accepted BE slices, the sum of allocated

resources for each resource type is less than or equal to the current resource availability:
ab(t)∑
n=1

d
′b
n,r ≤ r(t),

ab(t)∑
n=1

d
′b
n,c ≤ c(t), (18)

ab(t)∑
n=1

d
′b
n,m ≤ m(t).

Finally, the constraints in (19) ensure that the acceptance of new GS slices does not excessively

degrade the quality of service of the running BE slices, by guaranteeing that a minimum amount

of resources δj, j ∈ {r, c,m}, is maintained at each deployed BE slice:
ag(t)∑
n=1

d
′g
n,r +

ab(t)∑
n=1

d
′b
n,r ≤ r(t) + xr(t)− δrub(t),

ag(t)∑
n=1

d
′g
n,c +

ab(t)∑
n=1

d
′b
n,c ≤ c(t) + xc(t)− δcub(t), (19)

ag(t)∑
n=1

d
′g
n,m +

ab(t)∑
n=1

d
′b
n,m ≤ m(t) + xm(t)− δmub(t).

The aim of CSACC is to increase the operator revenue by maximizing the number of accepted

slices, while limiting the probability that an arriving GS slice request is dropped because the

queue is full, which leads to large revenue losses. Accordingly, to model the instantaneous reward
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associated with a state-action pair, we define a function that takes into account the numbers of

accepted GS and BE slices as well as the number of dropped GS requests as follows:

R(s(t), a(t)) =ag(t)wg + ab(t)wb − nd(t)ld, (20)

where wg and wb are the rewards for each accepted GS and BE slice, respectively. In addition,

ld is the cost for dropping a GS slice request, and nd(t) is the number of instantaneous dropped

GS slices, which can be computed as follows:

nd(t) = max{sg(t)− ag(t) + ng(t)−Qg, 0}, (21)

where Qg is the maximum length of the GS queue (see Section II-B).

B. The SARSA Algorithm

SARSA is an online reinforcement learning algorithm aiming to find a stationary policy that

associates a given system state with a proper action such that the expected total discounted

reward is maximized. We define the expected total discounted reward counting from an initial

state-action pair (s, a) over an infinite time horizon as follows [15]:

Q(s, a) = E

{
∞∑
t=0

γtR(s(t), a(t)) | s0 = s, a0 = a

}
, (22)

where R(s(t), a(t)) is the instantaneous reward defined in (20) and γ ∈ [0, 1) is a discount factor

that determines the importance of future rewards. Reinforcement learning algorithms typically

represent Q-function with a tabular format (i.e., a look-up-table), and the Q-values are arbitrarily

initialized. Then, during the learning phase, the algorithm iteratively updates the Q-values when

moving between state-action pairs (see the Algorithm 2), until convergence. At the end of the

learning phase, if each state-action pair has been visited sufficiently often, the Q-values converge

to an intermediate minimum, from which the optimal action can be computed as follows:

a∗ = argmax
a∈A

Q(s, a),

where A is the set of actions defined in (16). To ensure the convergence of SARSA to the optimal

policy and avoid the local minimum, it is necessary, during the learning phase, to randomly switch

from one policy to another using e.g., ε-greedy or Boltzmann exploration schemes [26], while

slowly decaying the exploration rate, e.g., ε for the ε-greedy, to zero.

Although the reinforcement learning model can be successfully used to address small-scale

MDP problems, it becomes impractical in realistic cases characterized by large state space and
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Algorithm 2 SARSA
Input: action set A, reward function R, and parameters α, γ ∈ [0, 1), and ε > 0.

1: Randomly initialize Q(s,a),∀s ∈ S,a ∈ A;

2: for t := 1 to T do

3: Observe the current state s;

4: Select an action a ∈ A, using policy derived from Q (e.g. ε-greedy), observe the reward R and the new

state s′;

5: Take a′ ∈ A from s′, using policy derived from Q;

6: Update Q(s,a) as follows: Q(s,a)← Q(s,a) + α [R+ γQ(s′,a′)−Q(s,a))];

7: s← s′, a← a′;

8: end for

action set, as computational requirements of reinforcement learning grow exponentially with the

number of state variables, i.e., the so-called curse of dimensionality.

In this work, when the SA is implemented, the amount of resources required by a new slice

to be deployed depends on the similarity with the other slices being in the same NSI (14).

Therefore, in (5), the sizes of sets of the available resources Sp and the resources allocated to

the BE slices Xp become very large, and conventional reinforcement learning algorithms cannot

be used to solve the cross-slice congestion and admission control. The state space size can be

computed as follows:

|S| = |Sg| · |Sb| · |Sp| · |Ug| · |Ub| · |Xp|.

Let k denote the number of possible similarity values that can be obtained in (13), when the

SA is implemented. In this case, the size of Xp is equal to k3(Xr + 1)(Xc + 1)(Xm + 1);

thus, |S| increases dramatically and learning the optimal policy with a standard reinforcement

learning algorithm becomes infeasible. To deal with this issue, in the next section, we design

an approximation function that enables to generalize the Q-function and accordingly to find the

optimal policy in high complexity systems. Note that, SARSA, being an on-policy scheme, is

characterized by milder convergence conditions compared to more classical (off-policy) rein-

forcement learning schemes (such as Q-Learning) when used with linear function approximation

(LFA) [15]. Both linear and non-linear function approximation methods can be used to learn a

generalized policy and apply reinforcement learning in realistic and complex problems. On the

one hand, LFA requires skillful design of the features used as a linear basis to represent the Q-
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Algorithm 3 SARSA With Linear Function Approximation
Input: action set A, reward function R, feature vector φ(s,a), and parameters α, γ ∈ [0, 1), and ε > 0.

1: Randomly initialize the feature weights θ(s,a).

2: for t := 1 to T do

3: Select an action a ∈ A, using policy derived from Q (e.g. ε-greedy), observe the reward R and the new

state s′;

4: Take a′ ∈ A from s′, using policy derived from Q;

5: Let et = φ(s,a), and kt = Rt(s,a) + γQθt(s
′,a′)−Qθt(s,a)

6: Update weights as follows: θt+1 = θt + αtktet

7: Replace s← s′ and a← a′

8: end for

Figure 5: Cross-slice admission and congestion control flowchart.

function. On the other hand, non-linear methods are characterized by a larger design complexity:

for instance, when using artificial neural networks, it is necessary to select a proper class of the

neural network (such as fully connected, convolution, or recurrent), the number of layers, the

number of weights, and the activation functions. For this reason, in the next section we present

a scheme based on SARSA with LFA to find the optimal strategy for cross-slice admission and

congestion control.
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V. SARSA WITH LINEAR FUNCTION APPROXIMATION

In this section, we discuss how the LFA can be integrated into the SARSA to generalize the

optimal policy and deal with the curse of dimensionality for large-scale problems. When using

SARSA with LFA, the Q-function can be represented as a linear combination of a designed

feature vector φ(s, a) = [φ1(s, a), φ2(s, a), . . . , φF(s, a)]. Accordingly, the Q-function can be

approximated as follows:

Q(s, a) ≈ Qθ(s, a) = θ0 +
F∑
i=1

θiφi(s, a), (23)

where θi is the weight of the ith feature and θ0 is a bias term. Therefore, instead of explicitly

learning the optimal Q-values for all state-action pairs, it is sufficient to learn the values of the

(F + 1) weights related to the feature functions, i.e., the complexity of the learning process

scale down from O(|S||A|), with SARSA, to O(F + 1) with SARSA with LFA. To learn the

weights, the classical approach is to minimize the Mean-Squared Error (MSE) over a probability

distribution of the state-action pairs Z , i.e.,

ζ(θ) = EZ [(Q(s, a)−Qθ(s, a))2]. (24)

Stochastic Gradient Descent (SGD) is the most effective and popular method used in machine

learning to find the local minimum of the MSE in (24) by updating the set of weights in (23)

in the opposite direction of the gradient of the objective function ∇θζ(θ). Moreover, instead of

computing the full expectations in this gradient, the SGD iteratively updates the weights after

each training sample, as follows:

θ ← θ − α

2
∇θζ(θ) = θ + α[(Q(s, a)−Qθ(s, a))φ(s, a)], (25)

where the learning rate α determines the size of the steps in the SGD. For reinforcement

learning, Q(s, a) is assumed to be unknown, and therefore, in (25), we use the bootstrapping

technique [27], which consists in replacing the missing observation with an unbiased estimate

R(s, a) +γQθ(s
′, a′). Since each estimate is an unbiased estimate, the SGD converges to a local

minimum of the MSE if the learning rate α decreases appropriately during the learning phase. The

algorithm of SARSA with LFA is sketched in Algorithm 3. To conclude this section, we discuss

the design of the feature functions for the proposed CSACC. LFA methods have attracted the

attention of the research community because of not only their convergence guarantees, but also

the possibility to integrate feature functions that add prior knowledge to reinforcement learning
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Table II: Slice templates in terms of required NFs.

NF 1 NF 2 NF 3 NF 4 NF 5 NF 6 NF 7 NF 8 NF 9 NF 10

Slice template 1 x x x x x

Slice template 2 x x x x x

Slice template 3 x x x x x

Slice template 4 x x x x x

Slice template 5 x x x x x

Slice template 6 x x x x x

systems. Intuitively, the features design should take into account different state and action spaces

along which approximation may be appropriate. Accordingly, we construct feature functions that

consider the actions, the state space characteristics, and how state and action pairs jointly define

the instantaneous reward in (20). Fig. 5 summarizes all the feature functions adopted by the

CSACC and shows its main procedures. The CSACC evaluates whether to accept slice requests

based on the queue status. If both queues are empty, no slice is accepted. If the GS queue is

empty, the CSACC evaluates the required resources to accept BE slices and decides the number

of accepted BE slice requests based on the available resources. In contrast, when the GS queue

has slice requests awaiting to be accepted, the CSACC checks the resource availability while

prioritizing GS slice requests over BE slice requests, in particular if the status of the GS queue is

critical, and future GS requests may be dropped. If the resources are not sufficient, the CSACC

evaluates the amount of resources that can be reduced from running BE slices, and accepts GS

slice requests accordingly. Otherwise, if the available resources allow to accept both BE and

GS slices, the CSACC accepts slices from both queues. In this work, we consider that the GS

queue is critical if the number of GS slice requests, sg, is higher than a given threshold q̂g, and

additional future requests may be dropped.

VI. SIMULATION RESULTS

To evaluate the performance of proposed framework for slice deployment and orchestration,

we consider a 5G system using network slicing to meet the heterogeneous requirements of future

5G services. We consider that each slice request arriving in the system is related to one of the 6

slice templates shown in Table II. Specifically, the request n requires a set Dn of 5 NFs among

the K = 10 NFs available in the 5G system, and each NF NFk ∈ Dn is characterized by a
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Table III: Simulation parameters.
Notation Parameter Value

dn,j nth slice resource request 200

R,C,M Network resources 800

pb BE request arrival probability 0.85

fb, fg Departure probabilities of GS, BE slices 0.35

Nb, Ng Maximum number of arriving BE, GS requests 2

Qb, Qg Maximum length of the slice request queues 4

wb Revenue for accepting a BE request 1

wg Revenue for accepting a GS request 1.7

ld Cost for dropping a GS request 5wg

ρk, χk, µk Resources for activating a NF 0

set of configuration parameters Ln,k represented by one binary vector J = 1 of length 2. We

assume that each NF needs 40 MHz, 40 GFLOPS/s, and 40 GB in terms of communication,

computing, and cloud storage resources, respectively; therefore, the total communication dn,r,

computing dn,c, and cloud storage dn,m demand for a slice is equal to 200 MHz, 200 GFLOPS/s,

and 200 GB (see (4)).

During the congestion control phase (see (19)), the minimum amount of resources for running

a BE slice i.e., δj , j = {r, c,m}, is equal to 100 MHz, 100 GB, and 100 GFLOPS/s. Overall, we

assume that the network has 800 MHz, 800 GFLOPS/s, and 800 GB communication, computing,

and cloud storage resources to satisfy the requirements of the deployed slices. Regarding the

learning parameters, we initially set α = 0.5 and ε = 1; then, during the learning process, their

values are iteratively reduced to strike a balance between performance and learning speed. We

set the discount factor γ = 0.8 by random search, i.e., by cross-checking the obtained results

for different values of the hyper-parameter. Finally, Table III describes the main simulation

parameters.

A. SARSA with LFA for Cross-Slice Admission Control

In this section, we focus only the slice admission control function (AC), i.e., we do not allow

the controller to reduce the resources allocated to the BE slices, in order to increase the number

of deployed slices. Specifically, we evaluate the results obtained when using SARSA with LFA
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Figure 6: Average reward obtained by the greedy scheme and SARSA with LFA as a function

of GS admission reward and arrival probability.

for different values of GS acceptance reward wg and GS arrival probability pg. We compare the

performance of the reinforcement learning scheme with a greedy scheme that selects the actions

that maximize an immediate reward, i.e., the number of accepted slices at each time slot.

Fig. 6 shows the average reward obtained by the greedy scheme and SARSA with LFA as a

function of the GS admission reward wg and arrival probability pg. First, we can see that, for

each value of wg, there is an optimal value of pg that maximizes the average reward obtained by

the SARSA with LFA. Increasing pg enhances the average reward until when the slice arrival

process can be efficiently managed by the AC; however, continuing to increase pg beyond this

optimal value decreases the system performance due to the limited queue size and available

resources. In addition, we observe that for wg = 0.7 and wg = 1, the SARSA with LFA achieves

a much greater average reward than that of the greedy scheme, especially for higher values of

pg. In fact, the greedy scheme is not able to predict the event of dropping new GS slice requests.

In contrast, for very large value of GS reward, i.e., wg = 1.7, both the greedy and SARSA with

LFA achieve the same performance, since, in this case, they both prefer to always accept a GS

slice request rather than a BE one.

To better understand this performance, we show in Fig. 7 the probabilities of accepting and

dropping a slice request under different values of pg and wg when using SARSA with LFA and

the greedy scheme. In Fig. 7(a), we observe that, for wg = 0.7, SARSA with LFA achieves higher
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Figure 7: Slice acceptance and dropping probabilities obtained by the greedy scheme and SARSA

with LFA as a function of GS admission reward and arrival probability.

slice acceptance probabilities than those of the greedy scheme. Moreover, Fig. 7(d) shows that

SARSA with LFA can reduce the GS dropping probability at the cost of a higher BE dropping

probability. This is due to the fact that when wg = 0.7, the greedy scheme prioritizes BE

slices, which provides a larger instantaneous reward. In contrast, SARSA with LFA can learn

and balance the reward perceived for accepting new slices and the cost for dropping new GS

requests, and thus achieving the best performance in terms of average reward as shown in Fig.

6.

Fig. 7(b) shows that, for wg = 1, the greedy scheme achieves higher slice acceptance prob-

abilities as compared to SARSA with LFA when pg is larger than 0.5. Also, we can see in

Fig. 7(e) that SARSA with LFA and the greedy scheme have similar performance in terms of

dropping probabilities when pg is lower than 0.3. However, for larger values of pg, the greedy

scheme leads to GS and BE dropping probability close to 0.5. This performance is not acceptable

for GS slices; in fact, for large values of pg, SARSA with LFA prioritizes GS slices over the

BE requests in order to limit the associated dropping probability. Finally, as expected, when
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Figure 8: (a) Average reward and (b) slice dropping probability with AC and CSACC as a

function of the GS arrival probability.

wg = 1.7, SARSA with LFA and the greedy scheme achieve similar performance in terms of

slice acceptance and dropping probabilities (see Fig. 7(c) and 7(f)).

These results confirm the capability of the proposed AI algorithm to adjust the CSACC strategy

to the arrival and departure statistics of the slice requests accordingly, in order to maximize the

long-term average reward.

B. SARSA with LFA for Cross-Slice Admission and Congestion Control

To assess the impact of the congestion control function for slice deployment and orchestration,

we compare the system performance by implementing two strategies, i.e., the strategy using only

admission control (AC) and the strategy using both cross-slice admission and congestion control

(CSACC). Fig. 8(a) shows the average reward achieved by SARSA with LFA when implementing

AC (plus marked line) and CSACC (star marked line). As expected, the CSACC enhances the

average reward of the system since it enables to increase the number of the average accepted

slices. Specifically, CSACC enables to improve the average reward up to 23% with respect

to the reward achieved by the simpler AC scheme. However, we can observe that when the

GS arrival probability pg is larger than 0.7 the two approaches have the same performance.

The system under investigation is not well-dimensioned for this range of values, where both the

controllers stop to accept BE slices requests to limit the GS slice dropping probability. Therefore,
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(b) Cross-slice admission and congestion control

Figure 9: Slice dropping probability as a function of the GS request arrival probability with and

without slice analytics.

here, implementing the CC may not lead to significant benefits. This finding is verified in the

results in Fig. 8(b), where we can observe the impact of the CSACC in terms of slice dropping

probability. Specifically, for low and medium values of pg, the CSACC improves the system

performance by reducing the number of dropped BE slice requests. Without the CSACC, the

system has to limit the acceptance of low-priority BE slices, in order to save resources for future

GS slice requests. In contrast, the proposed scheme allows to increase the percentage of accepted

BE slices since part of their resources can be opportunistically allocated to new GS requests

when needed.

C. Cross-Slice Admission and Congestion Control with the Slice Analytics

In this section, we study the impact of the slice analytics (SA) on the system performance.

The SA function optimizes the assignment of new slice requests to existing NSIs such that

the additional required resources to deploy them are limited. Here, our goal is to evaluate the

performance of two assignment algorithms presented in Section III-A, i.e., the Jaccard similarity-

based and spectral clustering-based assignment schemes.

Fig. 9(a) shows the slice dropping probability as a function of GS arrival rate achieved when

using only the cross-slice AC, the AC in conjunction with the Jaccard similarity scheme, and

the AC in conjunction with the spectral clustering scheme. We observe that both the proposed
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Figure 10: Convergence of feature weights in SARSA with LFA.

strategies enhance the system performance achieved by the AC by decreasing the dropping

probabilities for both BE and GS slice requests. However, in this case the two SA algorithms

achieve the same performance. Fig. 9(b) shows the slice dropping probability as a function of

GS arrival rate achieved when using only the CSACC, the CSACC in conjunction with the

Jaccard similarity scheme, and the CSACC in conjunction with the spectral clustering scheme.

Simulation results show that in this case, the spectral clustering outperforms the Jaccard similarity

by decreasing the dropping probabilities for both BE and GS slice requests. When used with

CSACC, the spectral clustering algorithm increases the number of BE slices that can be deployed

thus augmenting the amount of resources that can be opportunistically subtracted to the GS slice

to the BE slices. This results in reducing the BE requests dropping probability.

The above discussed results highlight the benefits of SA used in conjunction with the proposed

CSACC. To assess the feasibility of implementing this framework, we now evaluate the conver-

gence of SARSA with LFA when used for CSACC only and when implemented for CSACC

in conjunction with SA. Specifically, simulation results in Fig.10 show the average values of

the feature weights as a function of the iterations number. We observe that the proposed LFA

scheme allows the feature weights to converge in a reasonable time, for both the scheme, in the

order of 5× 104 iterations.

We now conclude our analysis by summarizing the performance achieved by the pillars of our

slice deployment and orchestration framework. Fig. 11(a) shows the average reward obtained
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Figure 11: (a) Average reward and (b) slice dropping probability for different schemes as a

function of the GS arrival probability.

by our system when using only the cross-slice AC, CSACC, AC with spectral clustering (AC

with SA), and CSACC with spectral clustering (CSACC with SA). We can notice that the

CSACC leads to a large reward gain as compared to the AC for low values of GS request

arrival probabilities; in fact, for these values, the number of BE slices accepted in the system

is significant, and a large amount of their resources can be opportunistically re-used to serve

GS slice requests. In contrast, the gain brought by the SA increases with the GS request arrival

probability, i.e., the larger pg, the larger the amount of resources that can be shared among

the deployed slices. Moreover, we observe that with CSACC with SA, the reward gain with

respect to the simple AC is larger than the sum of the gains lead by each single strategy. This

gain is due to the large reduction in the BE dropping probability as shown in Fig. 11(b). In

fact, the CSACC with SA enables to reduce the GS dropping probability and the BE dropping

probability up to 28% and 44%, respectively. Overall, we can conclude that our framework is

able, by optimizing the network resource usage, to increase the operator revenue while satisfying

the priorities among the different services.

VII. CONCLUSION

In this paper, we have designed a novel AI framework for network slice deployment and

orchestration. Specifically, in the context of the 3GPP NSMF, we have proposed two novel

functions for the resource efficient management of slice requests in 5G systems: SA and CSACC.
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SA assigns each new slice request to an existing NSI, based on the shared NFs, such that

the additional amount of resource required to deploy the new slice is minimized. CSACC

aims to maximize the system revenue while taking into account slice priorities, network slice

requirements, and resource availability. We have formulated this problem using reinforcement

learning and designed the on-policy scheme, based on SARSA with LFA, to find the optimal

control strategy that maximizes the long term expected reward of the system. Our results show

that using SA and CSACC jointly can reduce the GS and BE slice request dropping probability

up to 28% and 44%, respectively. In future studies, we will focus on a system dealing with slice

requests characterized by more heterogeneous requirements and priorities. Moreover, we will

investigate how to size the substrate network and the associated resources, such that the slice

dropping probability is further minimized.
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Response to the Comments of the Reviewers
Ghina Dandachi, Antonio De Domenico, Dinh Thai Hoang, and Dusit Niyato

I. RESPONSE TO COMMENTS OF THE EDITOR

(E1) I have been able to get reviews for your paper ”An Artificial Intelligence Framework for Slice
Deployment and Orchestration in 5G networks,” paper number TCCN-TPS-19-0034, submitted for possible
publication in the IEEE Transactions on Cognitive Communications and Networking. These reviews, along
with the recommendation provided by one of our technical editors, are attached below.

Based on the reviewers’ comments and the editor’s recommendation, I would like you to update your
paper and submit a revised version for further processing. .

(R1) We want to thank the editor for handling the timely review of this paper. We would also like to thank
the editor for allowing us to resubmit a revised version of the manuscript to IEEE Transactions on Cognitive
Communications and Networking. The detailed point-by-point answers to the reviewers’ comments for the previous
version of the manuscript follows below. We hope that the reviewers and the editor would find the modifications
made in the manuscript convincing and up to their expectations.

References numbering in the present document is independent of that adopted in the paper. We invite reviewers
to refer to the bibliography at the end of the document for what concerns the references cited in this response.

The comments of the reviewers are highlighted in bold font, and the response is followed in normal font.
Modifications in the revised version are in blue.

Before we begin our response, we would like to introduce the following abbreviation used to denote the reviewers’
comments and the corresponding responses:

• (CX.Y): Yth comment of the Xth reviewer. For example: (C1.1) means comment 1 of Reviewer 1.
• (RX.Y): Response to the Yth comment of the Xth reviewer. For example: (R1.1) means response to the

comment 1 of Reviewer 1.

II. RESPONSE TO THE COMMENTS OF THE REVIEWER 1

(C1.1) This paper proposed a systematic network slice solution to optimize resource utilization, reduce
slice request dropping rate and increase operator revenue for the 5G system. Specifically, two functions
SA and CSACC are introduced in the 3GPP context. SA performs the evaluation on new slice requests in
terms of slice similarity, then the cross-slice resource management and congestion control (CSACC) makes
the tradeoff between the slice acceptance rate and dropping probability. In addition, linear approximation
functions and stochastic gradient descent is applied to reduce the complexity of calculating optimal Q-values
in the reinforcement learning model. Finally, experiment results are given to verify the effectiveness of the
proposed solution. A well-articulated paper and a powerful framework.

(R1.1) We thank the reviewer for her/his valuable time for reviewing the manuscript and for recognizing the
value of the proposed framework. Also, we would like to thank the reviewer for the remarks that have helped in
improving the quality of the manuscript.

(C1.2) Just some comments in typos: (1) page 9, right column, the 1st paragraph, section VI. “Each of
these NFs” − > “Each of the NF”;

(R1.2) Thanks for this remark; we have rephrased this sentence as suggested by the reviewer.
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2

(C1.3) page 10, right column, the last sentence. “according” − > “accordingly”

(R1.3) Thanks for this remark; we have rephrased this sentence as suggested by the reviewer.

(C1.4) page 11, left column, the last sentence is a little ambiguous. “our proposed scheme enables to increase
the percentage of accepted BE slices as a part of their resources can be opportunistically allocated to new
GS requests when needed.” − > “our proposed scheme enables to increase the percentage of accepted BE
slices as a part of their resources, which can be opportunistically allocated to new GS requests when needed.”

(R1.4) Thanks for this remark; we acknowledge that the original sentence was ambiguous and we have rephrased
it to improve the paper readability. In fact, here, we aim to clarify that, since part of the resources allocated to
the BE slices can be momentarily used to deploy high priority GS slice requests, the system can accept a larger
number of BE requests, even when the amount of available resources is limited. The rephrased sentence is as follows:

Without the CSACC, the system has to limit the acceptance of low-priority BE slices, in order to save
resources for future GS slice requests. In contrast, the proposed scheme allows to increase the percentage of
accepted BE slices since part of their resources can be opportunistically allocated to new GS requests when
needed.

III. RESPONSE TO THE COMMENTS OF THE REVIEWER 2

(C2.1) This paper proposes an Artificial intelligence (AI) based framework slice deployment and orches-
tration in 5G networks. The manuscript proposes an architecture that mainly has three components, namely
slice analytics (SA), admission control (AC), and congestion control (CC). The slice analytics attempts to
find the similarity index between a submitted NF chain and the existing network slices through two different
approaches with different complexities. The admission control and congestion control are considered jointly.
The system model assumes two types of requests, namely a best-effort service and guaranteed service, which
(as I understood) is used as a way to characterize the priority of services, where best-effort services can be
scaled if need be. The joint admission control and congestion control module is implemented using a RL
scheme (using SARSA). The paper in general proposes interesting ideas and results.

(R2.1) We thank the reviewer for her/his valuable time for reviewing the the manuscript and for recognizing the
value of the proposed ideas and results. Also, we would like to thank the reviewer for the comments that have
helped in improving the quality of the manuscript.

(C2.2) In Section I-A, the related works are well-written and organized. However, please focus on
stating/elaborating on the works rather than their shortcomings or what has not been considered there.

(R2.2) Thanks for this remark; we have rephrased and shortened this section, removing the shortcomings of the
related works, as suggested by the reviewer.

(C2.3) In Section II, the system model’s introduction before Sec. II-A is unnecessarily long. Please try to
use more concise sentences and remove unnecessary ones.

(R2.3) Thanks for this remark; we acknowledge that the original system model’s introduction was unnecessarily
long. Accordingly, we have shortened it by rephrasing part of the text and removing unnecessary sentences, as
suggested by the reviewer. We hope that this has improved the paper readability.

(C2.4) For Sec. II-A, please elaborate more on what is the configuration parameters Ln,k. How does it
relate to the required resources?
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3

(R2.4) We thank the reviewer for raising this concern, and we admit that the concept of configuration parameters
in the past version of the document was a bit vague. The network slice blueprint (or template) is a tool to achieve
the flexibility and modularity required by network slicing. Specifically, it provides all the information required by
the 5G system to design, deploy, and manage a network slice and its components.

The final definition of the end-to-end network slice blueprint is currently under investigation in the 5G community;
however, it will be likely be an extension of the ETSI MANO Network Function Virtualization (NFV) descriptor
[1], which only focuses on the virtualized deployment of a network service. A NFV descriptor includes of a set of
attributes, named as flavors, which provide different options to deploy an instance of a network service/function.
In turn, each flavor defines one or more instantiation levels, each specifying a different amount of virtual resources
related to that flavor. In the context of an end-to-end network slice, each NF needs to be configured according to the
type of supported service. For example, if we consider eMBB service, the network function implementing the 5G
PHY layer needs to support a waveform with large bandwidth, modulation and coding schemes with high spectral
efficiency, etc. The specific values of these parameters directly determine the end-to-end resources to be allocated
to a given NF. For instance, the operational band specifies the bandwidth to be allocated to the NF, and the MCS
together with the bandwidth can be used to evaluate the required computational resources [2].

To enhance the paper readability, we have changed the first part of Sec. II-A as follows:

The NGMN Alliance defines the slice blueprint as a complete description of the structure, configuration, and
the work flows to instantiate and control a network slice during its life-cycle [3]. In this work, we characterize
a slice blueprint as follows:

• A list of NFs that the slice requires and the description of the interactions among the NFs.
• The parameters that describe the configuration of each NF.

Depending on the type of service, the system will deploy a specific version of each NF, which enables to
satisfy the service requirements. For example, in the case of eMBB service, the NF providing 5G PHY layer
is characterized by precise configuration parameters as large bandwidth, modulation and coding schemes with
high spectral efficiency, etc. The configuration of a NF, in turn, defines the amount of resources that it requires
to be deployed in the 5G system.

(C2.5) Isn’t there a network substrate? How is it defined, and how a network slice is defined? What are
the nodes of the network. Is routing considered?

(R2.5) Thanks for this remark. In this paper, we mainly focus on the slice admission control problem and not on
resource scheduling and instantiation. Thus, as in [4], [5], we assume that there is a pool of resources connected
together. Therefore, substrate networks issues such as topology, node resource constraints, routing, and latency
within the substrate network are out of our scope. Some of these constraints will be considered in our future work.
Accordingly, we have modified the final sentence of the paper conclusion as follows:

Moreover, we will investigate how to size the substrate network and the associated resources, such that the
slice dropping probability is further minimized.

(C2.6) For Section II-B, first two sentences are repeated.

(R2.6) Thanks for this remark; we have deleted the second sentence.

(C2.7) For the state space of the RL scheme, for the available network resources, how is it defined. Is it
the amount of residual resource for each type of each node in each NSI or each node in the network substrate?

(R2.7) As, mentioned in (R2.5), in this paper, we mainly focus on the slice admission control problem and we
do not consider constraints at the substrate node level. Thus, the set of available resources in the system space Sp
refers to the overall 5G network resources, as there is a pool of resources well connected together.
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Table I: Main Notations and System Parameters

Notation Parameter
S , Sg × Sb × Sp × Ug × Ub ×Xp State space

s(t) ∈ S System state
sg(t) ∈ Sg, sb(t) ∈ Sb Slice requests in GS and BE queues
sp(t) = (r, c,m) ∈ Sp Communication [GHz], computing [GFLOPS/s], and storage [GB] resources
ug(t) ∈ Ug, ub(t) ∈ Ub Deployed GS and BE slices

xp(t) = (xr, xc, xm) ∈ Xp Allocated resources for deployed BE slices
a(t) = (ag, ab) ∈ A Admission and Congestion Control action and action space

ag(t), ab(t) Number of accepted GS and BE requests
Λn,n′ Jaccard similarity between slices n and n′

B Deployed Network Slice Instances
dn,k,j Resources of type j required by the kth NF in the nth request

dn,j , d′n,j Resources of type j required by nth slice before, after slice analytics
wg , wb Rewards for each accepted GS and BE slices
nd(t), ld Instantaneous dropped GS slices and dropping loss

nb(t), ng(t) New BE and GS requests
R(s(t),a(t)) Instantaneous reward
Q(s,a) Q-value of a state-action pair
α, γ Learning rate and discount factor
φ(s,a) Feature vector
θi Weight of the ith feature

Table II: Simulation parameters.

Notation Parameter Value
dn,j nth slice resource request 200

R,C,M Network resources 800

pb BE request arrival probability 0.85

fb, fg Departure probabilities of GS, BE slices 0.35
Nb, Ng Maximum number of arriving BE, GS requests 2
Qb, Qg Maximum length of the slice request queues 4
wb Revenue for accepting a BE request 1
wg Revenue for accepting a GS request 1.7
ld Cost for dropping a GS request 5wg

ρk, χk, µk Resources for activating a NF 0

(C2.8) The equations/symbols are confusing. Try to re-organize symbols. For example, the use of a table
of notations are encouraged for important symbols.

(R2.8) Thanks for this remark. We acknowledge that the paper contains many symbols and that notation in
the previous version of the manuscript could be confusing. We have gone through the document, changing it and
correcting whenever possible. Also, we have introduced a table with the main notations (see Table I) and a table
with the simulation parameters (see Table II).

(C2.9) Section III.B is not very clear. What do you mean by “new NSI network requirements must be
evaluated”, what are the requirements? What do you mean by “resources must be mutualized”.

(R2.9) Thanks for this comment that gives us the opportunity to clarify the objective of the Slice Analytics. For
each new service, the Network Management & Orchestration layer has to provide a Network Slice Instance (NSI)
that fits the requested network requirements. This process can be realized either using an existing NSI or creating
a new NSI [6]. Similarly, two NSIs can share part of the network functions, e.g., the access networks as in the
Figure 1.

Deploying a new service through an existing NSI or creating a new NSI that shares part of its NFs with an
existing NSI (or multiple NSIs) enables to optimize the network resource usage and speed up the service deployment.
However, this process cannot be always be implemented, either because of isolation constraints or other network
requirements, e.g., lack of available resources to deploy an additional service on the same NSI.
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5

Fig. 1. Subnetwork sharing across two or more network slices [6].

In our setting, given a new service request n characterized by requirements T n = (dn,r, dn,c, dn,m) (see eq. (4)
in Section II-A), we first identify (if it exists) the deployed NSI i that could efficiently (in terms of resource usage)
satisfy the new service request n (see Section III-A). Then, we evaluate, based on the NFs shared between n and
i, the resources that can be mutualized between them.

Accordingly, to successfully deploy the service n through the NSI i, this NSI needs additional resources, i.e.,
it has new resource requirements to successfully satisfy also those of the service n. These additional resources
may correspond to the NFs that cannot be shared across the NSI i and the new service n, and are denoted as
T ′

n =
(
d′n,r, d

′
n,c, d

′
n,m

)
(see eq. (15) in Section III-B).

As an example, please consider the case of two different broadcasters covering the same sport event through
one network infrastructure: The Network Management & Orchestration can decide to deploy these services through
the same NSI. In this way, the two services will share the radio resources allocated to transmit common contents
such as the video, and receive specific resources for service-specific content such as the audio part of the show,
advertisements, etc. To clarify this point, we have modified the first part of Section III-B, as follows:

Both the SA strategies proposed in Section III-A allow to identify an already existing NSI, which is
appropriate to support a new communication service. However, to satisfy the specific requirements of the
new service request, the deployed NSI may require additional network resources. Thus, before finalizing this
process, the new NSI network requirements must be evaluated and the associated resource request must be
accepted by the CSACC (see Section IV). In this work, we assume that the amount of resources that can be
mutualized by the existing NSI and the new service request depends on the shared NFs and their associated
configuration parameters.

(C2.10) Section IV-A, please explain and elaborate more on the tradeoff between number of accepted
slices and dropping probability.

(R2.10) Thanks for raising this question as the trade-off between resource utilization and long-term revenue is
one of the main topics of this work. Specifically, maximizing the resource utilization may drive the system to accept
as many slice requests as possible, even if these requests lead to limited revenue. This strategy, however, is myopic
and, due to the limited available resources, may prevent the system from accepting future slice requests with high
priorities, which provide high revenue for the operator. Thus, minimizing the dropping probability of high-priority
slice requests requires to limit the acceptance of low-priority slice requests, thereby reducing the operator revenue.
Overall, finding the strategy that optimizes the long-term revenue is a challenging problem as the slice request
arrival and departure probabilities are unknown and the network resources are limited. When, at the beginning
of Section IV and in Section IV-A, we refer to trade-off between number of accepted slices and GS dropping
probability, we refer to the same trade-off. We acknowledge that this may be not clear for the reader. Accordingly,
we have rephrased the text in these sections as follows:

In this section, we propose a reinforcement learning framework that optimizes the trade-off between the
number of accepted slices and the dropping probability of the network slice requests with high priorities,
which in turns affects the long-term system revenue.
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The aim of CSACC is to increase the operator revenue by maximizing the number of accepted slices, while
limiting the probability that an arriving GS slice request is dropped because the queue is full, which leads to
large revenue losses.

(C2.11) Section IV-B: How to decide the discount factor that determines the importance of future rewards.

(R2.11) The discount factor is a hyper-parameter that determines the present value of future rewards: in rein-
forcement learning, a reward received k time steps in the future is worth only γk−1 times what it would be worth
if it were received immediately [7]. When γ < 1, the infinite sum below (see (22) in the manuscript):

Q(s,a) = E

{ ∞∑
t=0

γtR(s(t),a(t)) | s0 = s, a0 = a

}
has a finite value as long as the reward sequence {R(s(t),a(t))} is bounded.

If γ=0, the agent is myopic in being concerned only with maximizing immediate rewards: its objective in this
case is to learn how to choose a(t) so as to maximize only R(s(t),a(t)). As γ approaches 1, the Q-function takes
future rewards into account more strongly and the agent becomes more farsighted. In our work, we set the value of
γ=0.8 through random search, i.e., cross-checking the obtained results for different values of the hyper-parameter.
To clarify this aspect, we have changed the beginning of Section VI as follows:

Regarding the learning parameters, we initially set α = 0.5 and ε = 1; then, during the learning process,
their values are iteratively reduced to strike a balance between performance and learning speed. We set the
discount factor γ = 0.8 by random search, i.e., by cross-checking the obtained results for different values of
the hyper-parameter.

IV. RESPONSE TO THE COMMENTS OF THE REVIEWER 3

(C3.1) For the network state sp, what are the units for r, c and m. For instance, r=1Hz, MHz or GHz?
and for m=1 is the unit in Byte, MB or GB? in addition, is it possible to have r=m=c=0? is the state sp=
(0,0,0) exist?

(R3.1) Thanks for this remark, which gives us the opportunity to clarify the unity of measure of the available
resource variables. In our work we have considered three type of resources, whose availability is described by
the variable sp(t) = (r, c,m) ∈ Sp. As explained in Section II-A, the unity of measure for the communication
resources is [MHz], computing is [GFLOPS/s], and cloud storage is [GB]. To recall this, we have included the unity
of measure in the new table, which describes the main notations used in the paper (see Table I of this document).

Also, to improve the paper readability and clarify this aspect, we have modified the first part of the simulation
results, as follows:

We assume that each NF needs 40 MHz, 40 GFLOPS/s, and 40 GB in terms of communication, computing,
and cloud storage resources, respectively; therefore, the total communication dn,r, computing dn,c, and cloud
storage dn,m demand for a slice is equal to 200 MHz, 200 GFLOPS/s, and 200 GB (see (4)).

During the congestion control phase (see (19)), the minimum amount of resources for running a BE slice
i.e., δj , j = {r, c,m}, is equal to 100 MHz, 100 GB, and 100 GFLOPS/s. Overall, we assume that the network
has 800 MHz, 800 GFLOPS/s, and 800 GB communication, computing, and cloud storage resources to satisfy
the requirements of the deployed slices.

(C3.2) in addition, is it possible to have r=m=c=0? is the state sp= (0,0,0) exist?

(R3.2) Regarding the second question of the reviewer, it is indeed possible to have “r=m=c=0”. This scenario
occurs when all the resources are allocated to the deployed slices, i.e., temporarily, there are not available resources
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7

in the system.

(C3.3) Why the system state has been classified to requested and deployed states and what is the relation
between them? Furthermore, why the requests have been considered as part of the system state not as a set
of actions?

(R3.3) Thanks for this remark that gives us the opportunity to clarify our problem and the associated system
model. Please recall that we are investigating how to optimize the network resource allocation by iteratively selecting
the service requests that can be accepted in order to maximize the system revenue while taking into account into
account slice priorities, network slice requirements, and resource availability. Therefore, at each time slot, the system
state describes the slice requests in the associated queues (i.e., which wait to be deployed) sg ∈ Sg and sb ∈ Sb and
the available network resources sp ∈ Sp. The system state also indicates the number of deployed slices ug ∈ Ug
and ub ∈ Ub and the resources allocated to the running BE slices xp ∈ Xp. The action variable models the number
of slice requests accepted at each time slot a(t) = (ag(t), ab(t)) ∈ A.

As indicated by the reviewer, these variables are inter-related, i.e., our goal is to find the action to be taken
according to the current system state, in order to optimize the long term revenue. Specifically, the action chosen
at each time slot must ensure that the number of BE (resp. GS) slice requests accepted does not exceed the
actual number of BE (resp. GS) slice requests in the queues (see (17) in the paper). In addition, the constraints
in (18) guarantee that, for the accepted BE slices, the sum of allocated resources for each resource type is less
than or equal to the current resource availability. Finally, the constraints in (19) ensure that, due to the congestion
control, the acceptance of new GS slices does not excessively degrade the quality of service of the running BE slices.

(C3.4) What is the relation between Ng and Sg and also between Nb and Sb? Why different notations
have been used?

(R3.4) At each time slot t, sg(t) ∈ Sg and sb ∈ Sb denote the number of slice requests in the GS and BE
queues, respectively. During the time slot, according to the available resources, ag(t), ab(t) slice requests in the
queues are accepted and deployed. Then, new GS and BE requests ng(t) ∈ Ng = {0, 1, . . . , Ng} and nb(t) ∈ Nb =

{0, 1, . . . , Nb} arrive in the system. Since the queues has finite maximum length, a given number of slice requests
can be dropped. For instance, as indicated in eq. (21) of the manuscript, the number of GS requests dropped at
each time slot can be computed as follows:

nd(t) = max{sg(t)− ag(t) + ng(t)−Qg, 0},

where Qg is the maximum length of the GS queue.
Finally, the relation between the number of new GS slice requests and the GS slice requests in each queue can

be expressed as follows:

sg(t+ 1) = min{sg(t)− ag(t) + ng(t), Qg}.

Note that in the above equation, sg(t+ 1) cannot have a negative value, since ag(t) < sg(t) as indicated in (17).
The same expressions can be easily derived for the BE slice queue.

(C3.5) What is the total number of the system states?

(R3.5) As described in Section IV-B, the state space size can be computed as follows:

|S| = |Sg| · |Sb| · |Sp| · |Ug| · |Ub| · |Xp|.

In our simulations (see Section VI), we have:

• |Sg|=5
• |Sb|=5
• |Ug|=5
• |Ub|=5
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In addition, as explained in Section IV-B, when SA is implemented, the amount of resources required by a new
slice depends on the similarity with the other slices being in the same NSI (see (14) in the manuscript). Therefore,
the sizes of sets of the available resources Sp and the resources allocated to the BE slices Xp become very large.

In our simulations, we have considered that this similarity can assume a value in the set {0, 0.2, 0.4, 0.6, 0.8, 1},
which has length of 6. With these values, the resource requests can assume a value in
{50, 60, 70, 80, 90, 100, 120, 140, 160, 180, 200} (MHz, GFLOPS/s and GB). Then, the state set of the available
resources is {0, 10, 20, 30, ..., 800} and the one of the resources allocated to BE slices is {0, 50, 60, 70, ..., 800},
which have respectively length 81 and 77. Overall, the state space length is 5 ∗ 5 ∗ 81 ∗ 5 ∗ 5 ∗ 77 = 3.898.125.

(C3.6) Is this system state for one user? or multiple users? and what is the mathematical relation between
the system state and the number of users?

(R3.6) Thanks for this question, which enables us to further clarify our problem and the associated system model.
In our problem, we focus on the admission and deployment of a service. In this context, the number of users is
not considered but only the number and the type of services. In the context of network slicing, each user can be
attached to one or multiple slices. However, the resources required by a slice to be deployed are based on the
expected peak load of the slice (i.e., the peak number of user). Then, the allocated resources could be adjusted
during time depending on the load variations. However, this scheduling function is out of scope of this work.

(C3.7) ”It is important to note that, a slice request is dropped when it arrives in a queue that is full”. In
case the queue was not full while the number of requests is higher than the available slices in the queue,
how will the system act in this case?

(R3.7) In this case, the queue will accept as many requests as possible until it is full, following the order of
the received requests. For example, if there are 2 requests arriving at the queue and there is only one available
slot, only the first request will be included in the queue and the other one will be dropped (see (21) in the manuscript).

(C3.8) As nb and ng start with 0 slices, why 0 slices would be requested? How did the author get equation
(6)?

(R3.8) When ng(t) or nb(t) = 0, there are not additional service requests received in the system in the time
slot t. In equation (6) of the manuscript, we consider all the possible number of slice requests to be received in
each time slot. Specifically, in a time slot, for each class of service, there could be no request (i.e., 0 request)
with probability p0, or one request arriving with probability p1, and so on. Note that the total probabilities of all
possibilities must be one, implying that one event (receiving 0, 1, 2, or more slice requests) must happen at each
a time slot. This is the law of the total probability

(C3.9) How did the author get equation (6)?

(R3.9) Please consider the reply to (C3.8); eq. (6) is just the law of the total probability, one event (receiving 0,
1, 2, or more slice requests) must happen at each a time slot.

(C3.10) Why the action set considers g and b only while does not consider the resources p?

(R3.10) The action set A in eq. (16) denotes the number of BE and GS slices that can be admitted in the system.
The amount of resources allocated to these slices is exactly equal to their resource request T ′

n in eq. (15). The
amount of available resource sp(t), however, limits the number of slices that can accepted at each time slot (see
(18) and (19)).

(C3.11) Equs. (20) and (21) are not clear. What does it mean in (21) substracting an action from a state?
Furthermore, in (20), do the weights change for each state?
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(R3.11) First, let us clarify the physical meaning of the notations used in eqs. (20) and (21). ag(t) is the number
of accepted GS slice requests at a time slot t, wg is the gain obtained by accepting one GS slice request, i.e., the
related revenue brought by the slice deployment. Similarly, wb denote the revenue obtained by accepting each of
the ab(t) BE slice requests admitted at time slot t. Finally, we consider that dropping nd(t) GS slice requests leads
to a cost for the service provider, which is equal to nd(t)ld, i.e., ld is the cost for dropping one GS slice request.
Therefore, we assume that the weights wg , wb, and ld are constant in the considered problem. Then, R(s(t),a(t))
in eq. (20) describes an instantaneous revenue perceived by the network when taking action a(t) in the system state
s(t).

Eq. (21) is related to the evolution of the queue state (see the reply to (C3.4)). When we subtract an action to
a system state, we compute the amount of slice requests that remains in the queue before receiving the new slice
requests ng(t) and nb(t).

(C3.12) Present all the values that have been employed to get the results.

(R3.12) Thanks for this remark; all the simulation parameters are presented in Section VI. Also, to improve the
paper readability, we have included Table II in Section VI.

(C3.13) At the end, the reviewer believes that the system state, the set of actions and the reward function
have not been defined correctly which has a significant impact on the results section.

(R3.13) We would like to thank the reviewer for the constructive comments. We have revised the paper very
carefully and we believe that all technical information presented in this paper are described properly. Also, we hope
that based on the replies to the reviewer’s comments, he/she can agree that our paper is technically sound.
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