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Abstract—Device-free WiFi sensing utilizing channel state
information (CSI) is attractive for human activity recognition
(HAR). However, several challenging problems are yet to be
resolved, e.g., difficulty in extracting proper features from input
signals, susceptibility to the phase shift of CSI and difficulty in
identifying similar behaviors (e.g., lying and standing). In this pa-
per, we aim to tackle these problems by proposing a novel scheme
for CSI-based HAR that uses activity filter-based deep learning
network (HAR-AF-DLN) with enhanced correlation features. We
first develop a novel CSI compensation and enhancement (CCE)
method to compensate for the timing offset between the WiFi
transmitter and receiver, enhance activity-related signals and
reduce the dimension of inputs to DLN. Then, we design a novel
activity filter (AF) to differentiate similar activities (e.g., standing
and lying) based on the enhanced CSI correlation features
obtained from CCE. Extensive simulation results demonstrate
that our proposed HAR-AF-DLN scheme outperforms state-of-
the-art methods with significantly improved recognition accuracy
(especially for similar activities) and notably reduced training
time.

Index Terms—Human activity recognition, WiFi, Device free
sensing, Channel state information, Deep learning networks.

I. INTRODUCTION

Recent advances in device-free WiFi sensing demonstrate
its great potential for human activity recognition (HAR) [1].
Different from conventional device-based sensing techniques
that require assisted devices (e.g., wearable devices), WiFi-
based HAR exploits the information in received WiFi signals
modulated by human activities. As a result, WiFi-based HAR
has attractive properties such as low-cost, privacy protection
and convenience. Both received signal strength (RSS) and
channel state information (CSI) can be used for WiFi HAR
[2]. The performance of RSSI-based HAR is readily influ-
enced by noise and shadowing fading [3]. In contrast, CSI
can provide more fine-grained information, e.g., the phase
information and frequency diversity. Hence, CSI-based HAR
can generally lead to higher recognition accuracy [4].

Recently, applying deep learning (DL) to CSI-based HAR
receives strong research interest. Assisted by signal processing
techniques, DL-based HAR methods are able to automatically
extract deep features from input signals, significantly improv-
ing recognition performance [5], [6]. The authors in [7] used
recurrent neural networking (RNN) to extract hidden features
from the raw CSI. To improve the quality of CSI, the authors
in [8] proposed a feature enhancement scheme and employed

RNN for feature extraction. In [9], the authors adopted an
Autoencoder Long-term Recurrent Convolutional Network
framework (AE-LRCN) to extract high-level representative
features in CSI. However, these two methods are susceptible
to the phase shift in CSI caused by timing offset between the
WiFi transmitter and receiver. A small mismatch in the phase
domain of CSI can result in notable performance degradation.
To estimate and compensate for the timing offset, a few
solutions have been proposed. For example, a linear fitting
method is developed in [10] and a phase calibration approach
is proposed in [11], but both schemes have high computational
complexity. In addition, most of the existing algorithms are
not very effective in identifying similar activities, such as
standing and lying.

In this paper, we propose a novel scheme for CSI-based
HAR using activity filter-based deep learning network (HAR-
AF-DLN) with enhanced correlation features. Our scheme
can effectively solve the phase mismatch problem caused by
timing offset and significantly improve the identification ac-
curacy for similar activities. Two major innovations in HAR-
AF-DLN include CSI compensation and enhancement (CCE)
and activity filter (AF). The CCE method is proposed to
compensate for the timing offset between the WiFi transmitter
and receiver, so as to improve the quality of CSI. Besides,
CCE can also enhance activity-related signals and reduce
the dimension of signals input to DLN, thereby increasing
recognition accuracy with less complexity. The AF method
is designed to distinguish similar activities (e.g., lying and s-
tanding) using the enhanced CSI correlation features obtained
from CCE. Extensive experimental results demonstrate that
our proposed HAR-AF-DLN scheme is superior to state-of-art
HAR schemes, with less training time and higher recognition
accuracy (especially for similar activities).

II. THE HAR-AF-DLN SCHEME

We illustrate the diagram of the proposed HAR-AF-DLN
scheme in Fig. 1, including three main modules: CSI Collec-
tion, CSI Preprocessing and Activity Recognition. Next, we
briefly review each module, and detail the last two modules
in Section III and Section IV, respectively.
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Fig. 1. Main processing modules of the HAR-AF-DLN Scheme.

A. CSI Collection

In this module, we apply the WiFi receiver to collect
the CSI reflecting variations that human activities induce on
wireless channels. As shown in Fig. 1, a person performs
different activities in an indoor environment covered by a
WiFi network, causing various changes to wireless channels,
e.g., channel amplitudes, phase shift, and the number of
multiple paths. Note that, these variations can be distinctive
for different human behaviors, which can be utilized to
facilitate activity classification. To do so, the Intel 5300
network interface card (NIC), a widely adopted commercial
off-the-shelf (COTS) WiFi device, is utilized to acquire CSI.
According to the protocol of IEEE 802.11n, we extract the
CSI from 30 subcarriers for each pair of transmitter-receiver
antennas using the CSI tools [12] (refer to Section V-A for
the detailed experimental setup).

Let h(i) represent the CSI vector obtained from the ith
packet

h(i)=[h1,1(i),. . . ,h1,m(i),. . . ,hn,m(i),. . . ,hN,M (i)]T , (1)

where hn,m(i) means the CSI measurement at the mth sub-
carrier in the nth wireless link; M stands for the total number
of available subcarriers in each wireless link; N denotes the
total number of wireless links, and N = Nt ×Nr, where Nt
and Nr represent the number of antennas at the transmitter
and receiver, respectively; T is the transpose operation. The
CSI matrix H, acquired CSI vectors from I packets, is written
as

H = [h(1), . . . ,h(i) . . . ,h(I)]. (2)

B. CSI Preprocessing

The core tasks of this module include phase calibration for
CSI, reduction of activity-unrelated information, compression
of input signal to AF-DLN, and enhancement of feature

signals. Note that it is not suitable to directly input the
matrix H to DLN for HAR for the following two reasons.
First, H contains a lot of activity-unrelated and environment-
dependent information, e.g., multiple channel paths from
static background objects. Such information poses a severe
influence not only on the feature extraction in the subsequent
processing but also the robustness of the recognition system.
Second, since the size of H is very large, it is computation-
ally expensive and time-consuming if applying H directly
for HAR. To tackle these problems, we develop the CCE
method with three key steps: timing offset compensation,
activity-related information extraction and correlation feature
extraction.

In the first two steps, we estimate the phase shift caused
by the timing offset and make a compensation to improve the
CSI quality. We then construct the CSI for activity-unrelated
information (i.e., static objects) by utilizing a linear recursive
operation, followed by subtracting it from the received signal.
Ideally, activity-unrelated information can be largely reduced.
In the third and last step, we compute the correlation feature
matrix (CFM) of the output matrix obtained from Step 2.
In comparison with the CSI matrix H, CFM contains the
condensed activity-related information with notably reduced
dimension.

C. AF-DLN based Activity Recognition

This module intends to realize HAR with high sensing
accuracy (especially for similar activities), by automatically
extracting the hidden features from CFM obtained from
Module 2.

To effectively recognize similar activities, we first propose
an AF method to divide different activities into two groups
(i.e., “light activity” and “intensive activity”). Next, for each
group, we use one exclusive RNN network to automatically
learn and extract hidden features from CFM, which can effec-
tively differentiate different behaviors in the same group. To
facilitate a successful HAR, we first train DLNs in an offline
manner using the training data; Then we apply the well-
trained networks to distinguish different human behaviors in
an online manner.

III. CCE FOR CSI PREPROCESSING

In this section, we provide details of the designed CCE for
CSI preprocessing. We will first discuss the first two steps, i.e.,
timing offset compensation and activity-related information
extraction. Then we will describe the last step: correlation
feature extraction.

A. Timing Offset Compensation and Activity-related Informa-
tion Extraction

As aforementioned, these two steps aim to calibrate the CSI
phase, reduce activity-unrelated information while retaining
activity-related information. Consequently, it is possible to
extract feature signals which are more activity-related and



less environment-dependent. To achieve that, h(i) in (2) is
partitioned into two parts: dynamic CSI and static CSI

h(i) = hst(i) + hdy(i), (3)

where hst(i) stands for the static CSI vector which is
activity-unrelated; and hdy(i) represents the dynamic CSI
vector that is related to human activities. Notably, hst(i)
is the dominating component in h(i), and has much larger
impact on h(i) than hdy(i). The reason is that the influence
of human behavior on the whole environment is generally
limited, which is especially true when a person performs
some minor actions, e.g., raising hands, sitting, standing, etc.
Under such a situation, applying h(i) directly to HAR could
degrade the recognition accuracy (refer to Fig. 6). Therefore,
it is worthwhile to subtract the static information hst(i)
from h(i). To that end, we develop a recursive approach
by referring to the exponentially weighted moving average
(EWMA) algorithm [13].

However, one major problem here needs to be first resolved:
the timing offsets between the WiFi transmitters and receivers
are not clock-wise synchronized, which can vary over packets
and cause linear phase shift of CSI. Therefore, before applying
the recursive operation, estimation and compensation for the
timing offset are required.

Let the recursive static CSI estimation at the i-th packet be
ĥst(i). The recursive operation over consecutive packets can
be written as

ĥst(i) = δ(Φ̂∗(i)⊗ IN )h(i) + (1− δ)ĥst(i− 1), (4)

where δ is the forgetting factor and is set with small value
such as 0.01, the superscript ∗ represents conjugate of a ma-
trix/vector, IN stands for an N×N identity matrix, ⊗ denotes
the Kronecker product, Φ̂(i) = diag{exp (jϕ̂m,i)} depicts a
diagonal matrix with the m-th diagonal element exp (jϕ̂m,i),
and ϕ̂m,i is an estimate of the actual ϕm,i associated with
the timing offset. Note that a common local clock is typically
used for signals from/to all antennas, therefore, the timing
offset due to clock offset is the same for all antennas. The
phase shift ϕm,i can be represented as

ϕm,i = mψi + θi, (5)

where ψi and θi stand for phase shifts related to the timing
offset.

To estimate ψi and θi, we first compute the dot product ⊙
between h(i) and (ĥst(i− 1))∗, by

r(i) ,h(i)⊙ (ĥst(i− 1))∗

=(hst(i) + hdy(i))⊙ (ĥst(i− 1))∗

≈hst(i)⊙ (ĥst(i− 1))∗

≈(Φ(i)⊗ IN )|ĥst(i− 1)|2, (6)

where |ĥst(i−1)|2 means element-wise square of the absolute
value. In (6), the first approximation is obtained based on the
fact that the power of static paths are typically much more
significant than dynamic ones, and the second approximation

is based on the assumption that the estimate ĥst(i − 1) is
close to the actual static CSI.

Then, r(i) is stacked into an M×N array, and each column
contains CSI for one antenna. The mean over each row is
computed, getting a new M×1 vector r̄(i). Next, we compute
the cross-correlation for neighbouring elements with equal
spaced subcarrier indices in r̄(i) and then compute the mean
of the output, obtaining a sample denoted by γi. Then the
estimate for ψi is given by

ψ̂i = ∠(γi)/Ks, (7)

where Ks represents the index intervals between the selected
subcarriers which are equally spaced. In this paper, we use
the Intel NIC5300 card in the experiments, Ks = 2.

Let r̄m,i denote the m-th element in r̄(i), then we estimate
the parameter θi in (5) by

θ̂i = ∠
(∑

m

r̄m,ie
−jmψ̂i

)
, (8)

where the sum operation is conducted over a selected number
of samples with larger energy for mitigating the noise.

Then, the estimate Φ̂(i) and the recursive output ĥst(i) can
be obtained, respectively. Notably, we obtain the initial value
of ĥst(1) using (4) in a quiet environment.

As a result, the estimated value of dynamic CSI ĥdy(i),
obtained at the ith packet, can be expressed as

ĥdy(i) = (Φ̂∗(i)⊗ IN )h(i)− ĥst(i). (9)

The whole estimated dynamic CSI matrix Ĥdy, over I pack-
ets, is represented as

Ĥdy = [ĥdy(1), . . . , ĥdy(i), . . . , ĥdy(I)]. (10)

Note that, the information contained in Ĥdy is mostly
activity-related, hence, it can be utilized to extract more
distinctive features that are less environment-dependent for
HAR.

B. Correlation Feature Extraction

It is important to note that a person’s activity can be
divided into different stages. We can use a feature signal
to represent each stage, and different stages are mutually
dependent. Take the activity “stands up” as an example: a
series of stages are involved during this process, from static,
standing with accelerating, standing up with decelerating to
standing still. The features of different stages, e.g., speed
and spatial positions, are different but mutually correlated.
Notably, all the feature signals for such an activity are hidden
in Ĥdy. Besides, there are also correlations between Ĥdy in
different subcarriers, which provides additional information
for HAR.

We can hence compute the correlation between signals at
all subcarriers from all wireless links, given by

Ddy = Ĥdy × (Ĥdy)T , (11)

where Ddy represents the correlation feature matrix (CFM).
Note that, the size of Ddy (MN × MN ) is significantly
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Fig. 2. Structure of AF-DLN based activity recognition using CFM as input.

smaller than the size of Ĥdy (MN × I). Consequently,
inputting Ddy, instead of Ĥdy , into DLN for training process
can considerably reduce the computational complexity. We
provide details of performance assessment for CCE in Section
V.

IV. AF-DLN BASED HUMAN ACTIVITY RECOGNITION

In this section, we present details of the proposed AF-DLN
method, as depicted in Fig. 2. The method includes two main
steps: activity filter (AF), and deeper feature extraction and
classification. Note that, the first step divides similar activities
into the same group, which allows DLNs (in the second step)
to focus on the feature extraction of similar motions. Conse-
quently, more distinctive characteristics of similar movements
can be extracted, compared with obtaining features from all
the activities, which is beneficial to classify these similar
behaviors. The details of performance assessment for AF-
DLN is provided in Fig. 7.

A. Step 1: Activity filter (AF)

According to the intensity and range of motions, human ac-
tivities can be divided into two main groups: light activity and
intensive activities. The former group refers to the activities
with low intensity and small movement range, including e.g.
lying, standing, empty room, sitting, which cause less CSI
variation. The latter group refers to the activities with high
intensity and large movement ranges, including, e.g., walk,
fall, running, which cause larger CSI variation. The core task
of AF is to determine which group the input signals Ddy

belongs to (i.e., “light activity” or “intensive activity”). To
achieve that, we apply a singular value decomposition (SVD)
to Ddy and obtain its singular values, by

Λ = svd(Ddy), (12)

where svd(.) stands for the SVD operation, and Λ ,
[λ1, λ2, . . . , λMN ] represents the vector containing singular
values of Ddy in the descending order. Since the first two
singular values (i.e., λ1 and λ2) contain most environment-
dependent information [14], we adopt λ3 as the metric for
dividing human activities into two groups. To be specific, if λ3
is smaller than a threshold β that is obtained empirically, the
signal Ddy is divided into the “light activity” group, otherwise
the “intensive activity” group.

B. Step 2: Deeper Feature Extraction and Classification

In this step, for each group (i.e., “light activity” or “in-
tensive activity”), we train one DL architecture to distinguish
human activities. For each DL architecture, we first apply
RNN with LSTM to automatically learn and extract the hidden
features from Ddy. We then utilize the softmax regression
algorithm for classification using the extracted deeper features
from Ddy. The process of the proposed AF-DLN is illustrated
in Fig. 2.

It is noteworthy that conventional RNN-based sensing
methods generally have time-consuming training processes
due to the large size of training data. In contrast, our proposed
HAR-AF-DLN scheme can effectively complete the training
process with significantly less training overhead by using Ddy

with largely reduced size of input data.

V. IMPLEMENTATION AND EVALUATION

In this section, we carry out extensive experiments to
evaluate the performance of the proposed HAR-AF-DLN
scheme.

A. Experimental Setup

To implement our proposed HAR-AF-DLN, two computers
equipped with Intel WiFi 5300 network card are adopted as
the transmitter and receiver, respectively. The transmitter con-
tinuously sends its packets with its single antenna (Nt = 1)
at 5.32GHz frequency band, which follows the protocol of
IEEE 802.11n. The receiver, which uses the CSI tools [12],
collects and stores CSI with three antennas (Nr = 3) for
30 subcarriers (S = 30). A person performs six activities in
total: stand up, standing, walk, fall, lying, and empty room.
Since the rate of samples is 1kHz, the CSI matrix (H) has
size of 90× 1000. We use a 3.4GHz PC with Nvidia P5000
graphic card (16GB memory) to train the presented HAR-AF-
DLN. The total number of training iterations is 2000. We use
LSTM-RNN with three hidden layers, and the hidden units
for each layer is 200. We set the batch size and learning rate
as 64 and 0.001, respectively. We empirically set the value of
the threshold β of AF method to 0.6.

We conduct the experiments of the designed HAR-AF-DLN
in two indoor configurations with different environmental
complexities. Fig. 3 illustrates the layout of each indoor
configurations. The first, with several obstacles between the
transmitter and receiver, is a 4m× 6m meeting room. The
second, with many obstacles between the transmitter and
receiver, is a 8m× 10m laboratory room. Both the training
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Fig. 3. Layout of two indoor experimental areas:(a) 4m×6m meeting room.
(b) 8m× 10m laboratory.

TABLE I
AVERAGE SENSING ACCURACY OF THE THREE METHODS IN THE TWO

INDOOR CONFIGURATIONS

Methods
Experiment 1st Exp. 2nd Exp.

Proposed HAR-AF-DLN 98.4% 93.4%
RNN [7] 87.5% 78.4%
DLN-eCSI [8] 94.2% 90.7%
AE-LRCN [9] 92.4% 89.7%

and testing data sets of each indoor configuration include six
activities, with 300 times for each activity.

B. Performance Evaluation

In this section, we first compare the performance of our
proposed HAR-AF-DLN scheme with other three state-of-
the-art methods (i.e., RNN [7], DLN-eCSI [8] and AE-LRCN
[9]), taking various parameters and configurations into con-
sideration. We then provide in-depth evaluations of the effect
of CCE and AF-DLN on our proposed scheme, respectively.

1) Performance Comparison for Different Methods: Table
I illustrates the average recognition accuracy of three meth-
ods for the six activities with different configurations and
parameters. As can be seen, the proposed HAR-AF-DLN
clearly outperforms the other two methods in both indoor
configurations. Take the second configurations as an instance,
our proposed HAR-AF-DLN can achieve the average accuracy
at 93.4%. In contrast, the corresponding sensing accuracies
for the other three methods (i.e., RNN [7], DLN-eCSI [8]
and AE-LRCN [9]) are lower than 91%.

To examine the performance of each method in detail, we
present the confusion matrix for six activities in the first con-
figuration in Fig. 4. The proposed HAR-AF-DLN performs
much better than the other three methods in identifying these
activities, particularly in differentiating similar activities such
as lying and standing.

Fig. 5 demonstrates the impact of the number of sub-
carriers on average sensing accuracy. The six activities are
performed in the second experimental configuration. Clear-
ly, with an increasing number of subcarriers, each sensing
method can achieve better average recognition accuracy. In
all the cases with different numbers of subcarriers, HAR-AF-
DLN achieves higher sensing accuracy than the others.

We provide Table II to compare the training time for
the four methods. The DLNs are trained using a 3.4GHz
workstation with Nvidia P5000 graphic card (16GB memory).
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Fig. 4. Confusion matrix for different human activity recognition methods.

TABLE II
TRAINING TIME FOR DIFFERENT METHODS

Methods
Hidden units

300 500

Proposed HAR-AF-DLN 632.2s 1753.1s
RNN [7] 3822.8s 7837.1s

DLN-eCSI [8] 657.3s 1831.4s
AE-LRCN [9] 5591.4s 8956.1s

The numbers of training samples and iterations are 1200 and
2000, respectively. Our proposed HAR-AF-DLN scheme is
shown to have much less training time. This largely credits
to the notably reduced dimension of the input matrix Ddy.

2) Impacts of CCE and AF-DLN on Sensing Performance:
We present Fig. 6 to show the impact of the proposed
CCE method on sensing performance in both experimental
configurations. The average sensing accuracy of the proposed
method with CCE is significantly higher than that of the
method without CCE. This is because the CCE method can
compensate for the timing offset, reduce activity-unrelated
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information and enhance activity-related information, which
is beneficial to extract proper features for HAR.

The impact of the proposed AF method on recognition per-
formance is shown in Fig. 7, under the second experimental
configuration. From this figure, the sensing accuracy of the
proposed method with AF in recognizing similar behaviors
(e.g., standing and lying) is notably higher than that without
AF. This is because the AF method can effectively distinguish
similar activities, improving the recognition performance.

VI. CONCLUSION

In this work, we developed a HAR-AF-DLN scheme for
human activity recognition, which consists of novel CCE and
AF methods. The CCE method can compensate for the timing
offset, enhance the activity-related signals and reduce the
dimension of input signals to DLN. The AF method is able
to distinguish similar activities based on the enhanced CSI
correlation features achieved from CCE. Through extensive
experimental results, we validate that our proposed HAR-AF-
DLN scheme is superior to state-of-the-art methods in terms
of recognition accuracy and training complexity.
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