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Abstract—Accurate detection of heartbeat through radar
has many potential applications in, e.g., security and health.
However, it is generally challenging to obtain clear heart-
beat signature, due to its weak signal and relatively large
interference caused by, e.g., body and respiration movement.
In this paper, we propose an advanced algorithm based on
convolutional sparse coding (CSC) and Gaussian mixture model
(GMM) for suppressing the interference and extracting clear
heartbeat signals. In this study, heartbeat signals are modelled
by CSC and recovered by exploiting the sparsity of the signal.
GMM is introduced to model the unknown noise, which could
be a mixture from multiple noise/interference sources. The
parameters of GMM , dictionary and codes are computed via
the expectation maximization (EM) algorithm. To achieve faster
processing, convolution computing is proposed to be processed
in the frequency domain. The proposed method is tested and
validated by simulation and experiments. The results show that
our proposed algorithm can accurately extract the heartbeat
components.

Index Terms—Heartbeat Detection , FMCW Radar, Gaussian
Mixture Model, Accelerated Proximal Gradient Descent

I. INTRODUCTION

Heartbeat rate (HR), is a critical physiological parameter
of human body, that is desired in smart home, life detection,
and medical applications. Traditional methods for obtaining
heartbeats is using contact equipment like ECG. Contact
equipment can get accurate measurements, however, its
usage may cause inconvenience to users, and sometimes
users may be in inaccessible locations. Therefore noncontact
devices such as radar are great alternative options. Radar has
been used in, e.g., monitoring infant heart disease and for
observing important human physiological parameters related
to multiple kinds of diseases. In these applications, tiny
displacements caused by vital signs can be detected by
observing peak phases in the frequency domain. The larger
the bandwidth of the radar signal is, the better the resolution
capability is.

Research on noncontact vital sign measurement can be
traced back to 1970s [1]. Many efforts have been devoted to
improving the sensing accuracy and detection range [2] since
then. The arctangent demodulation [3] and adaptive DC
calibration [4] based on continuous-wave (CW) radar extract
primarily the Doppler frequency information. The micro-
Doppler information is also utilized in the time-frequency

domain [5]. Besides, assisting devices are designed to im-
prove the accuracy of pattern extraction and cancel the
interference caused by random body movement (RBM) or
random system movement (RSM), such as deep camera [6],
extra transceiver antenna pairs [7], and hybrid camera-radar
system [8]. These traditional techniques typically transfer the
reflected radar signals to other domains and apply parameter
estimation.

Recently, more advanced techniques have been investi-
gated to handle heartbeat extraction using radar in more
challenging environment, e.g., in the presence of large
interference and noise. Such noise largely affects the stability
of many proposed algorithms. High demand for experi-
ment parameters and the requirement of high-SNR data
limit their applications [9] [10]. For example, the cubic
polynomial fitting method in [11] reduces the accuracy of
detection and the capability of processing low-SNR data
allows noises caused by 20 mm/s random body movement at
most, which is hard to control in experiment. The empirical
mode decomposition(EMD) [10] and ensemble empirical
mode decomposition (EEMD) [9] are introduced to cancel
the high frequency artifacts. The periodicity of heartbeats
are exploited by using the cyclostationary function [12]. The
matched filter is used to deal with data obtained at low
signal-to-noise ratio (SNR) [11].

The amplitude of heartbeat movement is typically much
smaller compared to respiration and other movements, which
makes heartbeat detection under noisy environment particu-
larly challenging [13]. In [14], convolutional sparse coding
(CSC) is introduced to detect heart beat rates. The sparse
characteristics of heartbeats in the time domain can be
utilized to separate them from noise by sparse decomposition
and rebuild algorithms. As an unsupervised machine learning
algorithm, CSC has been widely utilized in image process-
ing, motion recognition, trajectories analysis and audio sig-
nal processing. Unsupervised machine learning requires few
parameters, so this algorithm can be adaptive to environment
variations. Compared with other algorithms, CSC works
without requiring complicated parameter configuration.

In this paper, we improve the CSC scheme by introduc-
ing the Gaussian Mixture Model (GMM) to model noises,
including device noise and environmental interferences, in
heartbeats detection. Due to the square loss function, con-



ventional CSC algorithms generally utilize Gaussian model
to model noises, which may not reflect the real noises
in data. Actually, noises in measurement signals can be
caused by, e.g., movement of tiny animals, environments,
human body small movements and system itself, and its
statistical distribution can be complicated [15]. Compared
with existing methods, our GMM-CSC method uses less
parameters, which makes training simpler, while improving
system performance.

The rest of this paper is organized as follows. Section
IT describes data collection and pre-processing, to make
the data ready for further CSC processing. Section III
describes the proposed GMM-CSC scheme. Simulation and
experimental results are presented in Section IV. Section V
concludes the paper.

II. DATA COLLECTION AND PRE-PROCESSING

This section describes the principle of using FMCW radar
for heartbeat collection, and the pre-processing modules to
make the data ready for input to GMM-CSC.

A. FMCW Radar for Signal Collection

We use a FMCW radar operating at 60-64 GHz for
collecting signals containing heartbeat information, with
details to be provided in Section IV.

In an FMCW radar system, the transmitter sends the
following chirp signals:

st = sin(wt + @) (D

where w; represents frequency and ¢ is the initial phase. The
frequency w changes with time as wy = S*t+f.,0 >t < T,
where f. is start frequency, S is the slope and T, is the
duration.

The FMCW radar captures the signals reflected by objec-
tives in its propagation paths as s, = sin(w,t + ¢,.). The IF
signal after the frequency mixer is

srr = sin((wy — wp )t + ¢ — or). 2)

The initial phase of the IF signal can be expressed as
the difference between the initial phases of the received and
transmitted signals. Since the initial phase of the received
signal is fixed, the initial phase of the IF signal is determined
by the arrival time of the transmitted signal. Chest vibration
caused by vital signs may result in a slight change in the
length of the propagation path. Therefore, heartbeats can be
determined by observing the peak phase in the frequency
domain. The relationship between distance d and phase ®
can be represented as ¢ = 2w f.7 = % where 7 is the
arrival time delay caused by d and X is the wavelength.

B. System Structure and Pre-Processing

The structure of the system is shown in Fig. 1. It includes
the following modules:
« Beat signal extraction: Extract the vibration information
of the target;
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Fig. 1: System structure and signal pre-processing.
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Fig. 2: Constellation correction of the received complex
signal

o ADC: Convert raw continuous data to digital;

o Range FFT: Obtain the raw phase from the peak in
every short-time matrix;

o DC compensation: Improve the quality of signals by
compensating the DC component;

o Phase unwrapping: Unwrap phase for continuous dis-
placement information; and

e GCSC: The module runs the GMM-CSC algorithm.

The operation of extracting the phase information from
raw ADC data is elaborated as follows, referring to Fig. 1.
After sampling N points from the single chirp, the range-
FFT is applied for complex range profile. Repeat this for
M chirps a range — slow time matrix of size M x N is
constructed. Each row of the matrix contains the information
of the target at a certain time. The position of the peak in
each line represents the distance between the target and the
radar, and the number of peaks is corresponding to the num-
ber of objects. The small displacement change, including
heartbeats, is reflected in the phase of peak value. Before
obtaining the angle of the complex data, it is necessary to
ensure that any non-linearity, distortion and artifacts have
been eliminated. The phase calculation is highly non-linear,
which increases the complexity of eliminating these defects.
One method to improve phase quality is DC compensation.
DC terms due to reasons rather than chest motions, for
example the linkage form TX to RX, will affect the accuracy
of phase. Fig.2 shows an example, where there is an apparent
shift before DC compensation. In this paper, columns in
range — slow time matrix are presented in a I-Q axis. The
DC component can be estimated by calculating the center
of the point cloud data. After DC compensation the phases
of each column in range — slow time matrix is wrapped in
[—7, 7). In contrast, the physical displacement may change
beyond A/4 (for a radar with frequency 60 GHz to 64
GHz, \/4 is 1.25mm). Thus the phase may change beyond
[—7,7]. The detailed unwrapping operation is referred to
[16]. After DC compensation and phase-unwrapping, the
phase data is now ready for GMM-CSC processing.
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III. CSC WITH MIXED GAUSSIAN NOISE

This section presents the proposed GMM-CSC algorithm
in detail, based on modeling the noises with GMM. In the
first subsection, we use the expectation maximization (EM)
algorithm for deriving the parameters of the GMM model. In
the second subsection, via adding a regular term, we translate
the M-step into a traditional CSC problem. We then use a
mature and accelerated optimization algorithm to solve this
problem.

The main steps of the method are as follows, as repre-
sented in Fig. 3.

1) Initialize parameters;

2) Compute the posterior probability (the E-step);

3) Update the GMM parameters (one part of the M-step):

update covariance matrix to maximize the expectation;

4) Accelerated Proximal Gradient (APG) (another part of

M-step): Update the dictionary and codes by solving
a CSC problem;

5) Go back to the second step, until the maximum itera-

tions are reached;

6) Output the de-noised signal.

In the beginning of the algorithm, random initial values
of the dictionary and GMM parameters (the number of
Gaussian components G, covariance matrix X4, and weight
mg) are given. The posterior probability of the mixture can
be obtained by the Bayesian equation. In the M-step we
compute the derivative of the posterior probability to update
the GMM parameters. A fast proximal gradient is used to
update the dictionary and codes [17].

1) GMM and the EM Algorithm: The distance informa-
tion Y we obtained can be presented as:

Dm
Yi=) dixzn+ei, 3)
k=1
where i presents the ith sample and dj and z;; represent
the element and corresponding codes, respectively. We can
compute N samples at one time so ¢ < N; g; is the
combined noise caused by multiple factors as discussed
before. Assume that noise NN; is a sample from a GMM
distribution with probability density function (pdf)

Zﬂg

where G is the total number of Gaussian components.
The EM algorithm can be used to estimate the parameters
that maximize the likelihood function of the GMM. We
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define a latent variable ¢;; € 0,1, which indicates the
assignment of the noise in the ith data to the kth Gaussian
noise. From [15] we can get the log posterior probability as:
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We can take derivation of (6) to maximum the upper
bound:
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From (7) we can update the sets w4 and X, for every sam-
ple. After removing the updated parameter, the maximum of
(6) is
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which is equal to an optimization problem
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where wg;(P) = U;a)) In order to ensure the sparsity of

codes z we can add a Lasso regularization part to (10) as
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If we separate the funct10n into two parts: F' = f +r
where f = 5 Zz 1 Zg [wgi®(Yi=37 dixzip) |3 and r =
S Bllziklli+1Ip (di). With (wg;) known we can treat F
as a weighted CSC problem.

2) CSC: We choose the accelerate proximal gradient
(APG) method to solve the CSC problem. APG and its
variances are one of the best methods for solving non-
smooth optimization problems. Almost all APG algorithms
can reach the convergence rate of O(1/k). We can update dj,
and z;; by using APG. The APG algorithm is summarized
in Algorithm 1. Using the outputs from the algorithm we
can update dj, and z;g.

IV. SIMULATION AND EXPERIMENTAL RESULTS

In this section, we provide simulation and experimental
results to validate the efficiency of the proposed GMM-CSC
scheme. We first use artificially generated data to simulate
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some heartbeat for testing. We then conduct experiments
using practically collected data with an FMCW radar. In
both simulation and experiments, only the step length (for
optimization) and the regularization parameter require ad-
justment. Our proposed GMM-CSC method is compared to
the known normal CSC algorithm and the one with applying
a low-pass filter.

A. Simulation

We first construct a clean signal, which is composed of a
respiratory signal with a frequency of 0.5 and an amplitude
of 1.5, and a heartbeat signal with a frequency of 1 and an
amplitude of 0.2. We mixed five types of noise, as shown
in Table I. In the simulation the number of elements is set
as 12 and each element has a length OF 30 points. There
are 200 points in the signal so the length of codes used in
CSC is 171. The step size of every iteration are fixed and
the number of iteration are set as 50 times.

The simulation results for different methods are shown
in Fig. 4. Fig. 4a and Fig.4b show the original signal we
create and the signal with added mixed noises. Fig.4c to Fig
4e show the results of applying three processing methods.

Fig. 4c shows the result of processing the signal with
a low-pass filter. The high frequency component of noise

Noise Composition  Distribution
Guassian N(0,0.1)
Laplace 1.5% £(0,0.8)
Gaussian N(0,0.3)
Gaussian N(0,0.7)
Gaussian N(0,1)

TABLE I: Parameters of different distributions.

Methods Deviation
Low-pass filter 22.3731
Normal CSC 12.6231
CSC with GMM 8.2225

TABLE II: Results of different methods.
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Fig. 4: Simulation result

is eliminated, however the low frequency component that
is close to the vital sign frequency is not removed. Fig. 4d
and Fig. 4e are the signals obtained by using normal CSC
and CSC with GMM. Our proposed GMM-CSC demon-
strates improved performance. Firstly, the frequency domain
spectrum obtained by the normal CSC always contains
components which do not belong to the original signal 5.
Secondly, as shown in Table II, the deviation of estimation
for the normal CSC is about 50% more than that for GMM-
CSC.

B. Experimental Results

In the experiments, a Texas Instrument (TI) mm-wave
radar (IWR6843) operating from 60 to 64 GHz is employed,
and the maximal wavelength (at the 60 GHz band) is
4.99 mm. The frame period is 40 ms and there are 128
chirps per frame. The sampling rate is 256 times per chirp.
The maximal detection range is 2.14 m and the vibration
frequency resolution is 0.0782 Hz. The vibration frequency
of the chest for the heart rate is in the range of [0.8,2]
Hz. For a typical adult, the amplitude of heartbeat is about
0.5 mm to 0.8 mm. Both frequencies and amplitudes of the
heartbeat signal are within the acceptable range of the radar,
thus they can be effectively detected.

Fig. 6 presents the initial scene setting for the experiment.
The distance between the subject and radar is 50 cm at the
beginning and step up 10 cm each time until 100 cm. The
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Fig. 6: Scene setup for experiment.

length of collected data each time is also one of the important
parameters. Though data collected over longer time can
lead to higher frequency resolution, heartbeat rate always
changes with time so it is not suitable to select data with a
period of 30 s or longer, as mentioned in [18]. Additional
algorithms adaptive to the variations of HR need to be further
developed to allow continuous tracking. Here, signal data of
approximately 5 seconds is used each time.

As shown in Fig 7, vibration caused by heartbeat is
obvious. It is not feasible to obtain the heart rate directly
from the unprocessed data because the heart rate in the
frequency domain is interfered by respiratory harmonics and
other noises.

A band-filter with band pass [0.4, 5] is utilized to remove
respiration component. The frequency spectrum obtained
before and after applying the GMM-CSC algorithm are
shown in Fig. 8a and Fig. 8b. Only principal components
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Fig. 7: unwrapped-phase signal with time period 25 seconds
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Fig. 8: Change in frequency domain after GMM-CSC

are presented through adjusting the code sparsity and the
main ingredient in frequency domain gather around one
peak. The heartbeat spectrum is shown in Fig.9. the HR
is approximately 1.6 Hz. Taking the limited resolution and
leakage effect, the deviation is about +£0.2 Hz. Results
compared to other ones [16] [19] are presented in Table
1.

Experiments on multiple targets were also conducted. Fig
10 shows the scene of the two-target experiments. From the
range-FFT figure as shown in Fig. 11, two peaks can be
separated easily. Phase information from two targets can then
be extracted from two separated peaks and the results are
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Fig. 9: Heartbeat signal extracted.



Ref. Distance(m) f:,(GHz) Correct rate(HR)
[16] 1.7 77 0.80

[19] 1 80 0.87

Ours 1.6 60 about 0.88

TABLE III: Comparison with existing algorithms.

Fig. 10: Two-target experimental scene.

shown in Fig. 11. The figure indicates that vital signs for
both people can be obtained. The distance between target 2
and radar is larger thus the heartbeat component extracted
for target 2 is interfered.

V. CONCLUSIONS

In this paper, the GMM-CSC algorithm is proposed for
suppressing the mixed noise in measured radar signals con-
taining heartbeat information. Performance improvements in
detecting heart rates are demonstrated via both simulation
and experimental data. The algorithm is especially effec-
tive when processing phase signals that contain complex
noise and less motion artifacts. The proposed method has
the following advantages: (i) Simple unsupervised machine
learning method, with very few parameters to adjust; and (ii)
Strong robustness to noise. Future works include adaption to
varying heartbeats and automatic separation of multi-target
signals.
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[1]
[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

REFERENCES

J. C. Lin, “Noninvasive microwave measurement of respiration,”
Proceedings of the IEEE, vol. 63, no. 10, pp. 1530-1530, 1975.

C. Li, V. M. Lubecke, O. Boric-Lubecke, and J. Lin, “A review on
recent advances in doppler radar sensors for noncontact healthcare
monitoring,” IEEE Transactions on microwave theory and techniques,
vol. 61, no. 5, pp. 2046-2060, 2013.

B.-K. Park, O. Boric-Lubecke, and V. M. Lubecke, “Arctangent
demodulation with dc offset compensation in quadrature doppler
radar receiver systems,” IEEE transactions on Microwave theory and
techniques, vol. 55, no. 5, pp. 1073-1079, 2007.

X. Zhao, C. Song, V. Lubecke, and O. Boric-Lubecke, “Dc coupled
doppler radar physiological monitor,” in 2011 Annual International
Conference of the IEEE Engineering in Medicine and Biology Society.
IEEE, 2011, pp. 1909-1912.

T. Thayaparan, L. Stankovié¢, and 1. Djurovié, “Micro-doppler-based
target detection and feature extraction in indoor and outdoor environ-
ments,” Journal of the Franklin Institute, vol. 345, no. 6, pp. 700-722,
2008.

M. Papakostas, J. Staud, F. Makedon, and V. Metsis, “Monitoring
breathing activity and sleep patterns using multimodal non-invasive
technologies,” in Proceedings of the 8th ACM International Confer-
ence on PErvasive Technologies Related to Assistive Environments,
2015, pp. 14.

C. Li and J. Lin, “Random body movement cancellation in doppler
radar vital sign detection,” IEEE Transactions on Microwave Theory
and Techniques, vol. 56, no. 12, pp. 3143-3152, 2008.

C. Gu, G. Wang, Y. Li, T. Inoue, and C. Li, “A hybrid radar-camera
sensing system with phase compensation for random body movement
cancellation in doppler vital sign detection,” IEEE Transactions on
Microwave Theory and Techniques, vol. 61, no. 12, pp. 4678-4688,
2013.

K. Shyu, L. Chiu, P. Lee, T. Tung, and S. Yang, “Detection of
breathing and heart rates in uwb radar sensor data using fvpief-based
two-layer eemd,” IEEE Sensors Journal, vol. 19, no. 2, pp. 774-784,
2019.

1. Mostafanezhad, E. Yavari, O. Boric-Lubecke, V. M. Lubecke, and
D. P. Mandic, “Cancellation of unwanted doppler radar sensor motion
using empirical mode decomposition,” IEEE Sensors Journal, vol. 13,
no. 5, pp. 1897-1904, 2013.

Q. Lv, L. Chen, K. An, J. Wang, H. Li, D. Ye, J. Huangfu, C. Li, and
L. Ran, “Doppler vital signs detection in the presence of large-scale
random body movements,” IEEE Transactions on Microwave Theory
and Techniques, vol. 66, no. 9, pp. 4261-4270, 2018.

S. Kazemi, A. Ghorbani, H. Amindavar, and C. Li, “Cyclostationary
approach to doppler radar heart and respiration rates monitoring with
body motion cancelation using radar doppler system,” Biomedical
Signal Processing and Control, vol. 13, pp. 79-88, 2014.

S. Bakhtiari, S. Liao, T. Elmer, A. Raptis et al., “A real-time heart rate
analysis for a remote millimeter wave iq sensor,” IEEE transactions
on biomedical engineering, vol. 58, no. 6, pp. 1839-1845, 2011.

P. Wang, FE. Qi, M. Liu, F. Liang, H. Xue, Y. Zhang, H. Lv, and
J. Wang, “Noncontact heart rate measurement based on an improved
convolutional sparse coding method using ir-uwb radar,” IEEE Access,
vol. 7, pp. 158492-158502, 2019.

Y. Wang, J. T. Kwok, and L. M. Ni, “Generalized convolutional sparse
coding with unknown noise,” IEEE Transactions on Image Processing,
vol. 29, pp. 5386-5395, 2020.

M. Alizadeh, G. Shaker, J. C. M. D. Almeida, P. P. Morita, and
S. Safavi-Naeini, “Remote monitoring of human vital signs using mm-
wave fmcw radar,” IEEE Access, vol. 7, pp. 54 958-54 968, 2019.
Q. Yao, J. T. Kwok, F. Gao, W. Chen, and T.-Y. Liu, “Efficient inexact
proximal gradient algorithm for nonconvex problems,” arXiv preprint
arXiv:1612.09069, 2016.

H. Shen, C. Xu, Y. Yang, L. Sun, Z. Cai, L. Bai, E. Clancy, and
X. Huang, “Respiration and heartbeat rates measurement based on
autocorrelation using ir-uwb radar,” IEEE Transactions on Circuits
and Systems II: Express Briefs, vol. 65, no. 10, pp. 1470-1474, 2018.
S. Wang, A. Pohl, T. Jaeschke, M. Czaplik, M. Kony, S. Leonhardt,
and N. Pohl, “A novel ultra-wideband 80 ghz fmcw radar system
for contactless monitoring of vital signs,” in 2015 37th Annual
International Conference of the IEEE Engineering in Medicine and
Biology Society (EMBC). 1EEE, 2015, pp. 4978-4981.



	20xx IEEE
	d762d27d-5e3a-4829-a14f-c41d828a151f

