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9 Abstract Protein domains are structural and fundamental

10 functional units of proteins. The information of protein

11 domain boundaries is helpful in understanding the evolu-

12 tion, structures and functions of proteins, and also plays an

13 important role in protein classification. In this paper, we

14 propose a support vector regression-based method to

15 address the problem of protein domain boundary identifi-

16 cation based on novel input profiles extracted from

17 AAindex database. As a result, our method achieves an

18 average sensitivity of *36.5% and an average specificity

19 of*81% for multi-domain protein chains, which is overall

20better than the performance of published approaches to

21identify domain boundary. As our method used sequence

22information alone, our method is simpler and faster.

23

24Keywords Domain boundary prediction �
25Support vector regression � AAindex �
26Principal component analysis

27Introduction

28Protein domains are importantly independent units of

29protein tertiary structures and have been studied exten-

30sively in recent decades. Edelman et al. studied the struc-

31tures of immunoglobulins and first proposed some

32important hypothesizes on domain structures (Edelman

331973; Porter 1973). Wetlaufer (1973) subsequently pro-

34posed the concept of domain and defined domains as stable,

35compact, and autonomously folding structures of proteins

36based on a thorough investigation of immunoglobulins. A

37domain can span an entire polypeptide chain or be a sub-

38unit of a chain which can be folding into a stable tertiary

39structure independently (Levitt and Chothia 1976).

40Typically, most domains have a single continuous

41polypeptide segment, while a few others consist of several

42discontinuous segments. Furthermore, many protein chains

43consist of more than one structural domains, all of them

44form independently compact structures (Wetlaufer 1973).

45Moreover, it is observed that a large protein may get its

46optimal protein folding by domain formation, when giving

47an observed random distribution of hydrophobic residues in

48large proteins (George and Heringa 2002a, b). Actually,

49each domain contains an individual hydrophobic core that

50is built from secondary structures (Zhou et al. 1999).

51Residues in hydrophobic core are more conserved than
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52 residues at the surface in a protein family unless the latter

53 are involved in the functions of the protein (Zhou et al.

54 1999).

55 Previous works on the prediction of protein domain

56 boundaries are roughly classified into two categories:

57 template-based methods (Altschul et al. 1997; Cheng et al.

58 2006; Gewehr and Zimmer 2005; Marchler-Bauer et al.

59 2007; Marsden et al. 2002; Orengo et al. 1997) and

60 ab initio methods (Copley et al. 2002; Dumontier et al.

61 2005; Galzitskaya and Melnik 2003; George and Heringa

62 2002b; Nagarajan and Yona 2004; Sikder and Zomaya

63 2006; Sim et al. 2005; Suyama and Ohara 2003). Tem-

64 plate-based methods aim to predict domain boundaries

65 using sequence alignment (Marchler-Bauer et al. 2007),

66 secondary structure alignment (Cheng et al. 2006; Marsden

67 et al. 2002), or other profile alignments. They align target

68 profiles against profiles in a domain database. Among

69 template-based methods, conserved domain database

70 (CDD) (Marchler-Bauer et al. 2007) locates residues in

71 domain boundaries using a search tool, reverse position-

72 specific BLAST (RPS-BLAST). With CDD method, firstly,

73 query sequences are compared to databases of position-

74 specific score matrices (PSSMs). Secondly, E values are

75 obtained in much the same way as in the PSI-BLAST

76 application (Altschul et al. 1997). Overlapping domain hits

77 are finally obtained by the sort of the E values. DomSSEA

78 (Marsden et al. 2002) predicts domain boundaries by

79 aligning the predicted secondary structures of target

80 sequences against a database of observed secondary

81 structures of chains that have known domain boundaries

82 (Orengo et al. 1997). SSEPDomain method predicts

83 domains with the alignment information of secondary

84 structures and profile–profile as well as pattern searches

85 (Gewehr and Zimmer 2005).

86 Most ab initio methods aim to identify protein domain

87 boundaries based on the information of the properties of

88 residues in protein chains using various machine learning

89 techniques. Among them, CHOPnet addresses some issues

90 in domain annotation with evolutionary information, amino

91 acid composition, and amino acid flexibility (Copley et al.

92 2002); SnapDRAGON predicts domain boundaries using a

93 distance geometry-based folding technique with a 3D

94 domain assignment algorithm (George and Heringa 2002b);

95 Galzitskaya and Melnik (2003) propose a simple approach

96 to identify domain boundaries in proteins using side chain

97 entropy of a residue region; DomCut’s method predicts

98 inter-domain linker regions using amino acid sequence

99 information (Suyama and Ohara 2003); Nagarajan and

100 Yona (2004) propose a neural network-based method to

101 detect domain structure of a protein, which uses the infor-

102 mation from multiple sequence alignments analysis, posi-

103 tion-specific properties of amino acids, and predicted

104 secondary structures; PRODO (Sim et al. 2005) uses a

105neural network method with information from position-

106specific scoring matrix (PSSM) generated by PSI-BLAST

107(Altschul et al. 1997); Armadillo aims to predict domain

108boundaries by converting protein sequences to smoothed

109numeric profiles based on domain linker propensity index

110(DLI) from amino acids’ composition (Dumontier et al.

1112005); Dovidchenko et al. (2007) propose a simple and fast

112method with the use of a minimal number of amino acid

113sequence alone; DomainDiscovery detects domain bound-

114aries by the use of support vector machines with sequence

115information including a PSSM, secondary structure, solvent

116accessibility information and inter-domain linker index

117(Sikder and Zomaya 2006); DOMpro applies recursive

118neural network to predict domain boundaries with evolu-

119tionary information, solvent evolutionary information, sol-

120vent accessibility information, and secondary structure

121(Cheng et al. 2006); Ye et al. (2007) present a Back-Prop-

122agation (BP) neural network approach to predict the domain

123boundaries with various property profiles; recently, Yoo

124et al. (2008) develop a new improved general regression

125network (IGRN) model to detect domain boundaries using a

126PSSM, secondary structure, information, and inter-domain

127linker index.

128However, the accuracy of predicting multi-domain

129boundaries is considerably less than 40% in spite of great

130development on domain boundary prediction in the past

131years by the use of a large number of machine learners.

132Therefore, novel machine learning-based approaches

133should be developed to accurately identify protein domain

134boundaries.

135Most previous work in the prediction of domain

136boundaries has been on the so-called ‘‘classification prob-

137lem’’. In this case, residues are assigned to one of two

138states, domain boundary or non-domain boundary, with

139arbitrary cutoff thresholds. However, the selection of

140thresholds is neither objective nor optimal, and the

141decomposition of residues into two classes decreases the

142prediction accuracy. To overcome such disadvantages, we

143predict domain boundary value for each residue. That is,

144our method predicts a series of real values representing

145residues in a protein sequence (also regarded as the

146boundary profile). In this paper, we develop an accurate,

147fast, and reliable ab initio protein domain boundary pre-

148dictor, named as DomSVR, by the use of support vector

149regression (SVR) starting from protein sequence alone. The

150method just uses profiles extracted from AAindex database

151(Kawashima et al. 2008). Our proposed method DomSVR

152achieves an average sensitivity of*36.5% and an average

153specificity of *81% for multi-domain protein chains,

154which is overall better than the performance of published

155approaches to identify domain boundary. As our method

156used sequence information alone, our method is simpler

157and faster.
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158 Methods

159 Dataset preparation

160 Our model is trained and tested on the dataset extracted from

161 DOMpro method (Cheng et al. 2006). In this paper, we only

162 consider proteins with more than one domain. Finally, 354

163 multi-domain proteins are used to evaluate our proposed

164 method of protein domain boundary prediction. In the

165 dataset, sequence identity of each two protein chains is less

166 than 25%.Moreover, all protein chains contain more than 40

167 amino acid residues. The dataset consists of 282 two-domain

168 chains, 50 three-domain chains, and 22 chains having more

169 than three domains. The dataset can be found at our website:

170 http://mail.ustc.edu.cn/*bigeagle/DomSVR/index.htm.

171 Creation of amino acid physicochemical profiles

172 for inputs of SVR predictor

173 In this work, we encode input vectors of SVR predictor

174 using amino acid profiles extracted from AAindex database

175 (Kawashima et al. 2008). First, we need to assign physical

176 and chemical properties to amino acid residues. Vectors of

177 suitable amino acid physicochemical properties will then

178 be created and be used for the domain boundary assign-

179 ment. The physicochemical properties of amino acid resi-

180 dues include inter-residue contact energy, secondary

181 structure, residue charge, and other properties. In addition,

182 the simple forms of the vectors make the entire algorithm

183 robust, fast, and easy to apply.

184 The AAindex database contains a large number of

185 experimental indexes, representing a large variety of

186 physicochemical and biological properties of the amino

187 acids. The AAindex1 section of the amino acid index

188 database collects published indices together with the result

189 of cluster analysis using the correlation coefficient as the

190 distance between two indices (Kawashima et al. 2008). The

191 section currently contains 544 indices, excluding all

192 empirically derived propensities of amino acids. Taking all

193these 544 amino acid properties as input features for a

194predictor may cause over-fitting. In order to distinguish and

195separate significant data and then construct our profile

196vectors, we applied principal component analysis (PCA)

197(Jolliffe 2002) on these properties. PCA is often used to

198reduce the dimensionality of a given dataset to lower

199dimensions for analysis. It can then produce a new set of

200principal components, which account for the top largest

201variations of the original data. PCA takes linear combina-

202tions of the data complying with the rule that the first

203principal component accounts for the maximum variation,

204the second principal component accounts for the next

205maximum variation which is subject to being orthogonal to

206the first one, the third one has the third maximum variation

207subject to being orthogonal to the first two, and so on.

208Nineteen principal components were created which account

209for 99.99% of the variance in the AAindex1 dataset. Among

210those components, the top four components account for

21193.78% of the experimental data variation. Using only four

212principal component vectors as shown in Table 1, the entire

213original dataset of properties is described with an approxi-

214mate 6.22% loss of variation. Thus, the dimensionality of

215the original data is significantly reduced. The first principal

216component, PrinComp1, which solely accounts for 55% of

217the data variation, has a strong correlation to inter-residue

218contact energy property (Miyazawa and Jernigan 1999).

219The second component, PrinComp2, is correlated to sec-

220ondary structure propensities of amino acids (Munoz and

221Serrano 1994). The third component, PrinComp3, is cor-

222related to entire chain composition of amino acids (Fukuchi

223and Nishikawa 2001). Finally, PrinComp4 is mainly cor-

224related to conformational and nucleation properties of

225individual amino acids (Rackovsky and Scheraga 1982).

226For protein chain with L residues, in the case of Prin-

227Comp1 profile, each residue is encoded as the central

228residue in a sliding window with nine residues along the

229peptide chain. Then, the central residue is represented by a

2301 9 9 vector, and the value for each element of the vector

231corresponds to specific amino acid type in PrinComp1.

Table 1 The top four principal component profiles and the variation account rates

Profile A/R N/D C/Q E/G H/I L/K M/F P/S T/W Y/V Rate (%)

PrinComp1 -81.9

-269.3

-280.1

-134.5

460.7

-277.7

-257

-260.5

-19.5

271.5

220.1

-350.2

316.3

408.9

-262.3

-262.3

-44.8

467.8

125

229.8

51.01

PrinComp2 357.2

-276

-66.5

-20.2

102.8

-209.1

-101.2

377

-257.5

74.5

203.3

-77.8

-140.9

-30.3

-30.5

189.5

112.7

-270

-178.2

241.1

25.45

PrinComp3 -55.8

-18.4

-86

243

214.8

-16.3

150.6

-105.7

-155

-82

-67.1

212.6

-71

-35.8

-187.4

-44.1

155.4

10.6

-76.3

13.8

10.09

PrinComp4 -26.8

-137.6

55.2

95.3

209.6

51.3

-3.4

48.7

98.9

-58.3

-179.4

-185.6

100.1

-67.8

151.9

28.5

31.1

-28.3

-104.4

-78.9

7.23

Each principal component profile needs to be equalized by normalized itself when applying to create input vectors for SVR predictor
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232 Therefore, the protein chain is represented by a L 9 9

233 matrix which corresponds to a real value vector L 9 1,

234 where each residue is assigned to a real value that measures

235 the sequence distance between the residue and the central

236 residue of its closest domain boundary.

237 The outputs of SVR predictor

238 The identification of domain boundaries for each protein

239 chain can be viewed as a binary regression problem. Each

240 residue along the polypeptide chains is encoded by AA-

241 index amino acid profiles and assigned a real target value.

242 Following the conventions used in prior work (Cheng et al.

243 2006; Liu and Rost 2004; Marsden et al. 2002), suppose

244 that residues within more than 20 continuous amino acids

245 of a domain boundary are regarded as domain boundary

246 residues, and non-domain boundary residues otherwise.

247 Actually SVR is particularly suitable for solving such

248 regression problem. Assigned real value to a residue as

249 target can be more efficient and effective than the assign-

250 ment of classification value 1 or 0 as target. In this work, a

251 residue is assigned to a domain boundary (DB) value,

252 which measures the residue distancing away from its

253 closest domain boundary in sequence. The assignment for

254 residue i is shown in the following form:

DBi ¼

cbm�ji�cbmj

cbm

if i in boundary

� ji�rendj
rend�rstart

if i in non-boundary near

the N-termini

� ji�rstartj
rend�rstart

if i in non-boundary near

the C-termini

� cnbn�ji�cnbnj

cnbn

Otherwise

8

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

:

; ð1Þ

256256 where DBi denotes the DB value for residue i, cbm indicates

257 the sequence position of central residue m in domain

258 boundary cb if cb existed, cnbnmeans the sequence position

259 of central residue n in non-boundary cnb, while rstart and

260 rend stand for the sequence positions of the starting and the

261 end residues in the non-boundary sequence, respectively.

262 The form of Eq. 1 is a triangular distribution with

263 respect to residue position in primary sequence. Central

264 residue in domain boundary is assigned to a bigger value,

265 while the more far away from the boundary the more small

266 value the residue is assigned to. Finally, the target vector

267 DB also needs to be normalized to equalize itself.

268 For each residue in protein chains, in summary, vector to

269 be input into SVR is represented as an array Xi, where each

270 element in the array corresponds to amino acid type of each

271 AAindex profile, while the corresponding target DBi is

272 another real value which is assigned by Eq. 1 in terms of

273 the sequence distance between residue i and its closest

274 domain boundary. Similar to most other machine learners,

275 DomSVR method aims to learn the mapping from the input

276array X onto the corresponding target array DB. Suppose

277that O is an output array of SVR, DomSVR is trained to

278make the output O as close as possible to the target DB.

279Approach

280Support vector regression aims to apply support vector

281machine to regression problems by introducing an alternative

282loss function. Likely as SVM approach (Chen et al. 2007),

283linear regression of SVR is performed in a high-dimensional

284feature space mapped from complex data with a non-linear

285mapping (Gunn 1998). With SVR, a e-insensitive loss func-

286tion is used where only errors greater than a predefined

287parameter e are considered in the loss function. Readers can

288refer to (Drucker et al. 1996; Gunn 1998) for more details.

289Consider the problem of learning a set of data, (Xi, DBi),

290such that Xi 2<n is an input vector which characterizes a

291residue along protein chains, and DBi 2< is a real target

292value which represents its associated boundary value mea-

293suring the separation between the residue i and the closest

294domain boundary in sequence, with a linear function,

f ðXÞ ¼ hw;Xi þ b: ð2Þ

296296The optimized parameters w and b can be obtained by

297minimizing the following objective function:

;ðw; nÞ ¼
1

2
k w k2 þC

X

i

ðn�i þ n
þ
i Þ: ð3Þ

299299where C is a regularization constant that balances training

300errors and model complexity, and n
- and n

? are slack

301variables representing upper and lower constraints which

302used to measure the deviation of samples outside the e-

303insensitive zone.

304In this work, we adopt an e-insensitive loss function,

L�ðDBÞ ¼
0 if jf ðXÞ � DBj � �

jf ðXÞ � DBj\� Otherwise

�

: ð4Þ

306306To solve the optimization problem, therefore, two

307Lagrange multipliers ai and ai
* are applied and the solution

308is given by

Maximize � 1
2

PL
i¼1

PL
j¼1ðai � a�i Þðaj � a�j ÞQij

þ
PL

i¼1 aiðDBi � �Þ � a�i ðDBi þ �Þ
subject to 0� ai; a

�
i �C; i ¼ 1; . . .; L

and
PL

i¼1ðai � a�i Þ ¼ 0:

ð5Þ

310310where Qij ¼ Kðxi; xjÞ�;ðxiÞ
T;ðxjÞ .

311Finally the decision function is

X

L

i¼1

ðai � a�i ÞKðXi;XÞ þ b: ð6Þ

313313Once the Lagrange multipliers ai and ai
* and the bias b

314are determined from the training data, Eq. 6 can be applied

P. Chen et al.
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315 to predict the domain boundary values for a test protein

316 chain.

317 As a result, our model infers the domain boundary

318 regions from predictions of domain boundary values for a

319 test protein chain. The larger the prediction value is, the

320 more possible the corresponding residue is belonging to

321 domain boundary. In this work, a series of continuous

322 residues are considered to be in domain boundary if the

323 residue amount is more than 20 and their DB values are

324 larger than other neighboring ones. At the same time, a

325 series of continuous residues with bigger DB values are

326 ignored if the residue amount is less than 5. Moreover, two

327 inferred boundary regions that separate less than 10 resi-

328 dues should be merged into one region. The test chain is

329 then cut into domain regions linked by boundary region

330 (regions).

331 Evaluation measures

332 To evaluate our method, three measurements are used to

333 evaluate the performance of the predictor: criteria of sen-

334 sitivity (Sen), specificity (Spec), and accuracy (Acc) (Baldi

335 et al. 2000; Saini and Fischer 2005). They are defined as

336 follows:

Sen ¼
TP

TPþ FN
; Spec ¼

TP

TPþ FP
; Acc ¼

TPþ TN

Ntotal

ð7Þ

338338 where TP denotes the number of true positives (residues in

339 domain boundaries), FP denotes the number of false posi-

340 tives, TN stands for the number of true negatives (residues

341 in non-domain boundaries), and Ntotal stands for the num-

342 ber of total residues.

343 When assessing predictor with respect to domain

344 boundary, evaluation is based on the above measures of

345 Sen and Spec and, for the assessment with respect to

346 domain number, measure of accuracy is the ratio of the

347 number of chains whose domain number was predicted

348 correctly to that of total protein chains.

349 Results

350 Domain boundary distribution

351 In this work, there are total 354 protein chains, each of

352 which contains more than one domain. Figure 1 shows the

353 distribution of sequence positions of residues at the center

354 of domain boundaries. Most domain boundaries are far

355 from the start and the end of the protein sequences. The

356 distribution is helpful for limiting random noise of outputs

357 from domain boundary prediction methods and further

358 improves the identification rate of domain residues.

359Figure 2 shows chain length distributions of multi-

360domain chains in the non-redundant set. From Fig. 2, the

361length distributions of multi-domain chains are not dis-

362crete, which has implications in domain prediction. As

363chain length increases, the likelihood of the chain having a

364multi-domain conformation almost increases. Most two-

365domain chains contain 100–200 amino acids. Most of

366three-domain chains contain 200–700 amino acids. Fur-

367thermore, chains containing more than 800 amino acid

368residues always have four or more domains.

369The output from domain boundary predictor is quite

370noisy. To limit random noises that come from false positive

371hits and false negative hits, smoothing technique is used to

372correct the random fluctuation of outputs for neighboring

373residues (Goodall 1990). The smoothing technique is

374accomplished by averaging over a window around each

375residue position. For instance, Fig. 3 shows a case study of

376prediction for protein chain PDB:1qu6A, where each resi-

377due is assigned a state (boundary/not boundary) by a cutoff

378threshold at 0.5 to the output of model. A residue will be

379assigned to 1 (boundary state) when the corresponding

380output is larger than the threshold and, 0 (not boundary

381state) otherwise. After smoothing the outputs for each

382residue, the center of the domain boundary was predicted at

383residue 80 and the domain number was also correctly

384predicted. Figure 3 also illustrates how smoothing tech-

385nique helps reducing noises found in the raw outputs from

386the model. It is evident from Fig. 3 that the domain

387boundary threshold used to define the two classes (domain

388boundary and non-domain boundary) strongly affects the

389absolute classification results.

390Performance of the PCA profiles

391Figures 4, 5, 6, 7, and 8 show the ROC analysis of protein

392chains in CATH according to class membership, with the

393top four principal components being used as property
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394 descriptors. Based on CATH architecture, protein chains in

395 our dataset are classified into four classes, i.e., mainly

396 alpha, mainly beta, alpha and beta, and fewer secondary

397 structure (SS). If all domains of a protein chain belong to

398 one CATH class, the chain is classified into the same class.

399 Inversely, if domains of a protein chain belong to different

400 CATH classes, the chain is classified into class ‘‘Others’’.

401 It is clearly shown that all the four profiles behave

402 similar in their predictive ability. The average accuracy

403 increases with the increase of the threshold, and all pre-

404 dictors reach high accuracy near the value of 0.7 for all

405 protein classes. However, many key differences of their

406 performance should be noted. An increase of the cutoff

407 threshold positively affects performance of the domain

408 boundaries prediction. The tradeoff for the increase of the

409 sensitivity is the dramatic decrease of the specificity for

410 almost all the four principal component profiles, as illus-

411 trated in Figs. 4, 5, 6, 7, and 8. In other words, from Eq. 7,

Fig. 2 Chain length

distributions as observed in the

CATH representative set used in

this study. Intervals were

calculated with a width of 100

residues. The domain

frequencies were used to

calculate probabilities of

predicted domain sizes
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412 the decrease of false domain boundary residues leads to the

413 dramatic increase of false domain residues. In general,

414 however, the decrease of the specificity (the same as the

415 increase of the 1 - specificity being shown in the figures)

416 will lead to the decrease of the sensitivity starting from a

417 point in ROC curve. The point for mainly alpha proteins is

418 near specificity 0.55 (i.e., 1 - specificity = 0.45), 0.6 for

419 mainly beta proteins, 0.75 for alpha-beta proteins, and 0.7

420 for fewer SS proteins.

421 From Fig. 5 we can observe that for the set of mainly

422 alpha proteins, PrinComp1 provides good predictions

423 compared to other three profiles. This could be an indication

424 that inter-residue contact energy is very important. Predic-

425 tions using the first profile are also important for fewer SS

426 proteins. Furthermore, predictions from PrinComp4 are

427important for mainly beta proteins but show poor prediction

428for alpha–beta proteins and all alpha proteins. PrinComp2

429shows a much lower prediction performance for fewer SS

430proteins and other proteins.

431It has also been observed that the sensitivities of pre-

432dictions from PrinComp2 are the same as those from

433PrinComp3 for mainly alpha, mainly beta, and alpha–beta

434proteins in CATH. The specificities of predictions from

435PrinComp2 are the same as those from PrinComp1 for

436mainly alpha, mainly beta, and alpha–beta proteins in

437CATH. More importantly, all the four profiles show good

438predictions for mainly beta proteins compared to other

439proteins in CATH. The fewer SS proteins also show the

440same results although containing fewer numbers of

441proteins.
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442 Performance with respect to protein classes

443 Tables 2 and 3 show the performance comparisons of the

444 model on protein chains in our dataset classified by CATH

445 and SCOP architectures, respectively. In the case of CATH

446 architecture, protein chains are classified into seven classes

447 in terms of the composition of secondary structure (SS), i.e.,

448 all alpha, all beta, alpha/beta, alpha ? beta, multi-domain

449 proteins, membrane and cell surface proteins, and small

450 proteins. In this work, similar to the above discussion, all

451 domains of a protein chain belonging to one SCOP class have

452 the chain to be classified into the class. Inversely, all domains

453 of a protein chain belonging to different SCOP classes may

454 make the chain being classified into class ‘‘Other’’.

455 When being classified by SCOP, small protein chains,

456 although having six members, show the best performance.

457 The overall sensitivity and the accuracy are around 0.666

458 and 0.75 from all the four profiles. However, all beta

459 proteins and alpha ? beta proteins have the second best

460 sensitivities and accuracies. Proteins in other classes have

461 sensitivity and specificity of 0.413 and 1 from all the four

462 profiles, respectively. It has also been observed that the

463 sensitivities of predictions from PrinComp2 tend to be the

464 same as those from PrinComp3 and PrinComp4 for all

465 alpha, all beta, alpha/beta, alpha ? beta proteins when

466 being classified by SCOP database.

467As a result, the PrinComp1 profile shows a good pre-

468diction for all proteins compared to the other three profiles.

469Moreover, predictions from PrinComp3 are very similar to

470those from PronComp4. The reason behind the similarity of

471the predictions between PrinComp3 and PrinComp4 is that

472even though the two profiles are correlated to entire chain

473composition of amino acids and conformational properties

474of individual amino acids, they may also share other

475physicochemical properties from the original 544 proper-

476ties set in AAindex1 database. In general, using all the four

477principal components leads to higher prediction accuracy.

478Not all protein chains demonstrate similar behavior in

479the domain boundary prediction. It is noted that for some

480chains such as 1tf3A and 1dx5I, DomSVR predicts a very

481few number of false positives and false negatives, which

482lead to higher sensitivity and specificity performance. For

483protein chains such as 1hf2B, 1cfb0, and 1jr3E, our method

484make bad predictions, close to zeros for sensitivities and

485specificities with all the four profiles.

486The important conclusion from these figures and tables

487is that PrinComp1, which as stated above is related to inter-

488residue contact energy, provides the most reliable predic-

489tion. This is due to the fact that in general PrinComp1 has

490the largest domain boundaries of predictions compared to

491the other three profiles. The average sensitivity of predic-

492tions over all protein chains is 0.365 for PrinComp1, 0.356

Table 2 Comparison of protein chains classified by CATH (%)

SS No. PrinComp1 PrinComp2 PrinComp3 PrinComp4

Sen Spec Acc Sen Spec Acc Sen Spec Acc Sen Spec Acc

Mainly alpha 40 32.9 76.2 63.7 31.7 72.5 62.6 31.8 72.6 62.8 32 729 62.8

Mainly beta 95 41.6 80.1 68.1 41.4 80 67.9 41.6 80.6 68.3 41.7 80.8 68.3

Alpha ? beta 194 33.2 81.6 65.4 33 81.6 65.2 33 81.1 65.1 32.7 80.3 64.9

Fewer SS 9 47.6 88.1 72.4 44.4 80 69.6 45.9 83.8 70.9 46.1 85.5 71.2

Others 16 30.6 78.6 64.8 28.5 72.7 63.7 30.4 78 64.8 30.9 79.7 65.1

Table 3 Comparison of protein chains classified by SCOP (%)

SS No. PrinComp1 PrinComp2 PrinComp3 PrinComp4

Sen Spec Acc Sen Spec Acc Sen Spec Acc Sen Spec Acc

All alpha 6 34.9 72.3 63.6 33.2 67.6 62.1 33.3 67.8 62.3 33.3 67.8 62

All beta 36 37.5 83.6 67.3 37 82.9 67 37.5 84 67.4 37.9 84.9 67.8

Alpha/beta 80 28.4 84.1 64.2 27.6 82.4 63.7 27.7 82.6 63.5 27.3 81.5 63.1

Alpha ? beta 85 34.5 78.3 65.6 34.4 78.9 65.5 34.6 78.6 65.7 34.5 78.1 65.6

Multi-domain 101 29.5 89.7 65.5 28.5 87.2 64.2 27.9 84.4 64.2 29.3 88.8 65.5

Membrane and cell 10 30.5 84.5 65 30.9 85.7 65.3 30.8 85.7 65.2 29.6 82.7 64.1

Small proteins 8 66.6 74.4 75 66.6 73.9 75 66.8 74.8 75.3 66.4 74.5 74.9

Others 28 41.3 100 72.6 41.3 100 72.6 41.3 100 72.6 41.3 100 72.6

Total 354 36.5 80.8 66.3 35.6 80 65.8 35.9 80 66 35.8 80 65.9
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493 for PrinComp2, 0.359 for PrinComp3, and 0.358 for Prin-

494 Comp4; the average specificity of predictions for all pro-

495 tein chains is 0.808 for PrinComp1 and 0.8 over all other

496 three profiles.

497 Accuracy for different chains comparison with other

498 methods

499 Our DomSVR method aims to predict domain boundaries

500 for protein chains containing more than one domain.

501 However, it is also suitable for the identification of one-

502 domain protein chain. To make the comparison with other

503 methods, we trained DomSVR predictor on our dataset

504 integrating with other 963 one-domain chains, and then

505 evaluated it both with respect to one-domain chains and

506 multi-domain chains on CAFASP-4 and CASP7 bench-

507 mark datasets. The experiments on one-domain proteins

508 were similar to those on multi-domain proteins. The dataset

509 of one-domain chains is also available at our website:

510 http://mail.ustc.edu.cn/*bigeagle/DomSVR/index.htm.

511 The detailed comparison with other similar methods is

512 shown in Table 4 based on the PrinComp1 profile. Table 4

513 shows 13 previous predictors evaluated in the Critical

514 Assessment of Fully Automated Structure Prediction 4

515 (CAFASP-4) (Saini and Fischer 2005), where some sta-

516 tistical data are extracted from DOMpro paper (Cheng

517 et al. 2006). The evaluation dataset of CAFASP-4 consists

518 of 41 one-domain CASP6 targets and 17 two-domain

519 CASP6 targets (58 targets in total). The targets in CA-

520 FASP-4 dataset are divided into two main divisions:

521homology modeling and fold recognition targets. Twenty

522one-domain chains and 7 two-domains chains are homol-

523ogy modeling targets, and 21 one-domain chains and 10

524two-domain chains are fold recognition targets. In the

525CAFASP-4, seven predictors belong to the category of

526template-based methods, which have an advantage due to

527this evaluation set contains only comparative modeling and

528fold recognition targets (no new fold targets). Our method

529achieves higher sensitivity and specificity than other

530ab initio predictors when averaging over all of the targets.

531Moreover, in spite of our model outperforms even better

532than some template-based methods such as ADDA, Inter-

533ProScan, and Dompred-Domssea, it performs worse than

534other template-based methods such as Dopro, SSEPDo-

535main, and Robetta-Ginzu.

536Table 5 shows the performance comparison of the 14

537domain boundary predictors, random predictor, and our

538DomSVR predictor with PrinComp1 profile on the selected

539CASP7 dataset. Currently, the dataset contains 95 peptide

540chains where some chains were removed by assessors of

541CASP7. It consists of 62 one-domain chains, 30 two-

542domain chains, 2 three-domain chains and 1 four-domain

543chain. In this work, we made comparison of our method

544and 14 predictors in the CASP7 assessment by evaluated

545on one-domain chains, two-domain chains, and even chains

546containing more than two domains. All the prediction

547data for the 14 predictors are created from CASP7

548http://www.predictioncenter.org/casp7/. In Table 5, the

549accuracy is calculated as the ratio of the number of chains

550with correctly predicted domain number to that of chains

Table 4 Performance comparison with other methods on CAFASP-4 benchmark dataset

Predictor 1-Da 2-D Al-D

Sen Spec Sen Spec Sen Spec

DomSVRb 0.8 0.9 0.34 0.78 0.67 0.87

ADDA (Heger and Holm 2003)b 0.85 0.73 0.18 0.33 0.66 0.67

Armadillob 0.1 1 0.24 0.18 0.14 0.31

Biozon (Nagarajan and Yona 2004)b 0.1 1 0.35 0.19 0.17 0.29

Dompred-DPS (Bryson et al. 2005)b 0.68 0.78 0.47 0.5 0.62 0.69

DOMprob 0.85 0.76 0.35 0.5 0.71 0.71

Globplot (Linding et al. 2003)b 0.83 0.71 0.18 0.6 0.64 0.7

Mateo (Lexa and Valle 2003)b 0.51 0.78 0.12 0.15 0.4 0.58

Dompred-Domssea (Marsden et al. 2002) 0.8 0.75 0.29 0.63 0.66 0.73

Dopro (von Ohsen et al. 2004) 0.85 0.88 0.53 0.64 0.76 0.81

InterProScan (Zdobnov et al. 2001) 0.93 0.75 0.24 0.67 0.72 0.74

Robetta-Ginzu (Chivian et al. 2003) 0.8 0.92 0.53 0.69 0.72 0.86

Robetta-Rosettadom 0.83 0.94 0.71 0.75 0.79 0.88

SSEPDomain (Gewehr et al. 2005) 0.93 0.84 0.47 0.73 0.79 0.82

a 1-D denotes that each tested protein chain is a 1-domain one, 2-D denotes that each tested protein chain contains more than one domain, while

All-D stands for all tested protein chains
b Ab initio method
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551 for one-domain, two-domain, three-domain, or all-domain

552 category. In this case, template-based predictors outper-

553 form ab initio-based predictors due to the advantage of

554 containing similar fold targets in their template set. Sta-

555 tistically, our method performs better than other ab inito-

556 based predictors and even better than some template-based

557 predictors, such as HHpred1, HHpred2, and DomSSEA. In

558 addition, our method also makes better prediction than a

559 meta predictor, Meta-DP, which integrated several pre-

560 dictors in order to obtain better predictions than the use of

561 single predictor (Saini and Fischer 2005).

562 One important aspect should be noted that split-domain

563 in chain involved in CAFASP-4 and CASP7 datasets is

564 treated as one single domain due to the complex domain

565 topology. For the CAFASP-4 database, there are five such

566 targets, T0226, T0248, T0268, T0279, and T0280. In the

567 case of target T0226, predictors Robetta-Rosettadom,

568 Biozon, and DOMpro make correct predictions of domain

569 number but predict the domain boundary between the first

570 split of the split-domain and another domain as non-

571 boundary. Our method makes a similar prediction as

572 DOMpro predictor. Other predictors in CADASP-4 make

573 wrong predictions of domain number for target T0226. For

574 other four targets, all predictors perform similar. For the

575 CASP7 dataset, there are 18 such targets containing 17

576 two-domain chains and 1 three-domain chains. Some

577 methods in CASP7 identify split-domain as two or more

578 domains and some other ones correctly predict one split of

579the domain. Table 4 demonstrates prediction performance

580excluding the targets having split-domain on CAFASP-4

581dataset, while Table 5 shows prediction performance

582involving in 18 split-domain targets on CASP7 dataset. We

583evaluate the predictors on the condition that split-domain in

584one chain is treated as one domain. Performance of each

585method is varied with and without involving these split-

586domain targets, and the comparison excluding such targets

587is shown in Table 6. Note that no method can make correct

588predictions for three-domain chains and, additionally, in

589Tables 5 and 6 all predictions for the 1 four-domain chain

590are not correct.

591However, predictions may be changed if the evaluation

592is with respect to both domain boundary and domain

593number, but not with respect to domain number alone.

594Suppose that a chain is correctly predicted if its domain

595number was predicted correctly and the predicted domain

596boundaries distance from the true boundaries less than ±20

597residues in primary sequence. In this case, accuracies of

598our method are 82.26, 40, 33.33, and 67.37% for one-

599domain, two-domain, three-domain, and all-domain cate-

600gories, respectively, which are a little less than the case of

601those with respect to domain number alone. In detail, the

602predictions of domain boundaries for targets T0330 and

603T0379 are wrong although the predictions of domain

604number were correct by our model. Target T0330 consists

605of two domains: one domain is split into two so-called

606split-domains containing residues from SER2 to LYS16

Table 5 Performance comparison with other methods on CASP7 benchmark dataset (%)

Predictor 1-D 2-D 3-Da All-D

DomSVRb 82.26 (51/62) 46.67 (14/30) 33.33 (1/3)c 69.47 (66/95)

chopb 53.66 (22/41) 28.57 (6/21) 0 (0/3) 43.08 (28/65)

chop_homob 58.33 (21/36) 36.36 (8/22) 0 (0/3) 47.54 (29/61)

DomFOLDb 97.96 (48/49) 20.69 (6/29) 0 (0/3) 66.67 (54/81)

DPSb 78.95 (30/38) 42.31 (11/26) 0 (0/3) 61.19 (41/67)

Distillb 77.42 (48/62) 46.67 (14/30) 33.33 (1/3) 66.32 (63/95)

NN_PUT_lab 77.59 (45/58) 10.34 (3/29) 33.33 (1/3) 54.44 (49/90)

BAKER-ROSETTADOM 88.52 (54/61) 80 (24/30) 0 (0/3) 82.98 (78/94)

DomSSEA 97.44 (38/39) 30.77 (8/26) 33.33 (1/3) 69.12 (47/68)

FOLDpro 98.36 (60/61) 76.67 (23/30) 33.33 (1/3) 89.36 (84/94)

HHpred1 96 (48/50) 14.29 (4/28) 33.33 (1/3) 65.43 (53/81)

HHpred3 94.12 (48/51) 17.24 (5/29) 33.33 (1/3) 65.06 (54/83)

Ma-OPUS-DOM 87.8 (36/41) 76.92 (20/26) 33.33 (1/3) 81.43 (57/70)

Robetta-Ginzu 83.61 (51/61) 86.67 (26/30) 33.33 (1/3) 82.98 (78/94)

Meta-DP 97.56 (40/41) 14.81 (4/27) 0 (0/3) 61.97 (44/71)

Random predictor 65.21 (40.43/62) 31.51 (9.45/30) 3.17 (0.0951/3) 52.61 (49.98/95)

a ‘‘1-D’’, ‘‘2-D’’, and ‘‘3-D’’ denote that each tested protein chain is a 1-domain one, 2-domain one, and chain with three or more domains,

respectively. In addition ‘‘All-D’’ stands for all tested protein chains
b Ab initio method
c The numbers in parentheses denote correctly predicted chains and the amount of chains used to the prediction
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607 and from THR92 to THR229, while the other one is located

608 from VAl17 to ILE91. As a result, the predicted domain

609 boundary is located from residue LEU115 to residue

610 ILE154. Actually, some residues of the target were missed

611 in the structure-determined experiments, and the target

612 structure also contains several ‘‘non-standard’’ groups. All

613 of these make the prediction of domain boundary hard. In

614 the case of target T0339, it also consists of two domains:

615 one domain is split into two split-domains containing res-

616 idues from MSE1 to LEU16 and from LEU84 to GLN207,

617 while the other one is located from ASN17 to PHE83.

618 Containing ‘‘non-standard’’ groups and missed residues

619 makes the same effect on the prediction of domain

620 boundary as the Target T0330.

621 To make sure the prediction is accurate, a random pre-

622 dictor was constructed and the prediction performance

623 based on CASP7 dataset is appended to the last row of

624 Tables 5 and 6. In the case of evaluation on CASP7, the

625 random predictor was constructed in the same form of

626 CASP7 dataset which consists of 62 one-domain chains, 30

627 two-domain chains, and three chains having three or more

628 domains. To better simulate the real random sampling test,

629 we ran the random predictor 10,000 times and one average

630 accuracy of 52.61% was achieved. From the Table 5, most

631 of methods outperform the random one except for predic-

632 tors ‘‘chop’’ and ‘‘chop_homo’’. In the case of evaluation

633 on CASP7 without chains having split-domain, random

634 predictor was created and ran in the same way. The dataset

635consists of 62 one-domain chains, 13 two-domain chains,

636and two chains with three or more domains. The last row of

637Table 6 can be seen on average accuracy of 67.75% for

638random predictor. From Table 6, predictors ‘‘chop’’,

639‘‘chop_homo’’, and NN_PUT_lab perform worse than

640random predictor.

641Moreover, we assess both template-based and ab initio

642predictors on the CASP7 dataset, respectively. Figure 9,

643respectively, illustrates domain number comparison of such

644two categories of predictors, our model, and random pre-

645dictor, with and without split-domain chains. The overall

646accuracies of domain number prediction for the template-

647based and ab initio predictors are 72.53 and 56.96%,

648respectively; while the accuracies are respectively 79.19

649and 64.06% if excluding split-domain chains.

650As discussed above, it can be found that our SVR

651model outperforms other predictors despite of obtaining a

652lower accuracy for three-domain chains, probably due to

653the small number of three-domain chains in CASP7

654dataset. Actually, more one-domain chains and less chains

655with two or more domains may make the prediction over-

656estimated. In addition, the small number of chains in

657CAFASP-4 and CASP7 datasets may also aggravate the

658trend. Therefore, the evaluation based on a small size of

659dataset cannot fully reflect the advantages and disadvan-

660taged of these methods. As a result, lager benchmark

661dataset is more desirable to compare these similar meth-

662ods in the future.

Table 6 Performance comparison with other methods on CASP7 benchmark dataset excluding chains having split-domain (%)

Predictor 1-D 2-D 3-Da All-D

DomSVRb 82.26 (51/62) 53.85 (7/13) 0 (0/2)c 75.32 (57/77)

chopb 53.66 (22/41) 22.22 (2/9) 0 (0/2) 46.15 (24/52)

chop_homob 58.33 (21/36) 33.33 (3/9) 0 (0/2) 51.06 (24/47)

DomFOLDb 97.96 (48/49) 25 (3/12) 0 (0/2) 80.96 (51/63)

DPSb 78.95 (30/38) 60 (6/10) 0 (0/2) 72 (36/50)

Distillb 77.42 (48/62) 46.15 (6/13) 0 (0/2) 70.13 (54/77)

NN_PUT_lab 77.59 (45/58) 16.67 (2/12) 0 (0/2) 65.28 (47/72)

BAKER-ROSETTADOM 88.52 (54/61) 53.85 (7/13) 0 (0/2) 80.26 (61/76)

DomSSEA 97.44 (38/39) 40 (4/10) 0 (0/2) 82.35 (42/51)

FOLDpro 98.36 (60/61) 69.23 (9/13) 0 (0/2) 90.79 (69/76)

HHpred1 96 (48/50) 9.09 (1/11) 0 (0/2) 77.78 (49/63)

HHpred3 94.12 (48/51) 16.67 (2/12) 0 (0/2) 76.92 (50/65)

Ma-OPUS-DOM 87.8 (36/41) 60 (6/10) 0 (0/2) 79.25 (42/53)

Robetta-Ginzu 83.61 (51/61) 69.23 (9/13) 0 (0/2) 78.95 (60/76)

Meta-DP 97.56 (40/41) 30 (3/10) 0 (0/2) 81.13 (43/53)

Random predictor 80.54 (49.92/62) 16.98 (2.21/13) 1.25 (0.025/2) 67.75 (52.17/95)

a ‘‘1-D’’, ‘‘2-D’’, ‘‘3-D’’, and ‘‘All-D’’ are the same as in Table 5
b Ab initio method
c The numbers in parentheses denote correctly predicted chains and the amount of chains used to the prediction
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663 A case study of domain boundary prediction

664 In order to illustrate the prediction of domain boundaries

665 directly, protein chain 1qu6A (the same protein discussed

666 as Fig. 3) is taken as a case of domain boundary prediction

667 and shown in Fig. 10. The protein chain has 179 residues

668 and consists of two double-stranded RNA (dsRNA)-bind-

669 ing domains linked by a domain boundary ranging from

670 residue LYS85 to GLY104 (shown in Fig. 10). The protein

671 1qu6, categorized as kinase PKR (protein kinase RNA-

672 regulated), is an interferon-induced enzyme that plays a

673 key role in the control of viral infections and cellular

674homeostasis (Nanduri et al. 1998). Protein kinase PKR is

675activated by a distinct mechanism that involves dsRNA

676binding in its N-terminal region in an RNA sequence-

677independent fashion. The structure of dsRNA-binding

678domain exhibits a dumb-bell shape comprising two tandem

679linked dsRNA-binding motifs both with an alpha-beta-

680beta-beta-alpha fold. The structure may reveal a highly

681conserved RNA-binding site on each dsRNA-binding motif

682and suggests a novel mode of protein-RNA recognition.

683The central linker between the two dsRNA-binding motifs

684is highly flexible, which may enable the two motifs to wrap

685around the RNA duplex for cooperative and high-affinity

686binding and advance the overall change of PKR confor-

687mation and its activation (Nanduri et al. 1998). The domain

688boundary prediction for this protein chain is demonstrated

689in Fig. 10. In this case, our approach predicted the domain

690boundary actually but a little extension to several residues,

691ranging from residue VAL77 to residue THR120.

692Conclusions

693In this paper, we addressed the problem of domain

694boundaries prediction from sequence information alone.

695Amino acid residue profiles were taken from AAindex

696database using PCA technique to extract necessary physi-

697cochemical properties. The profiles were then used to train

698and test our predictor by the form of input vectors. As a

699result, our method achieves a sensitivity of 36.5% and a

700specificity of 80.8%. Our method is also evaluated on two

701datasets: the CAFASP-4 dataset and the CASP7 benchmark

702dataset. On the CAFASP-4 test dataset, our method per-

703forms better than the template-based method InterProScan

704and comparably to all other template-based methods with

705respect to specificities. Moreover, our method performs

706significantly better than all other ab initio methods for

707domain boundary prediction. On the CASP7 test dataset,
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Fig. 9 Performance

comparison based on CASP7

dataset. No yellow bar is shown

in the right graph for template-
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accuracies for three-domain
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Fig. 10 Comparison of natural versus predicted domain boundaries

for protein chain 1qu6_A. The chain is colored in gold and the

domain boundary (true or predicted) are colored in bluetint.a True

domain boundary for protein chain1qu6A, b Predicted domain

boundary for protein chain1qu6A
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708 our method is able to outperform all the other ab initio

709 methods for two-domain protein chains and slightly worse

710 than some other methods for one-domain protein chains.

711 However, the overall accuracy of our model is the best. It

712 should be noted that the purpose of the comparison is just

713 to estimate the current state-of-the-art of domain boundary

714 prediction instead of ranking these methods, because pre-

715 dictors used different scales of protein set from the CA-

716 FASP-4 and CASP7 datasets to evaluate themselves.

717 In general, we are not only interested in the overall

718 performance of domain boundary prediction, but also

719 interested in how the prediction accuracy varies across

720 different protein classes by CATH and SCOP architectures.

721 Three hundred and fifty-four protein chains representing all

722 major classes from CATH and SCOP have been chosen for

723 training and testing our method. Mainly beta proteins and

724 fewer SS proteins achieve better prediction compared to

725 other proteins when classifying by CATH. When being

726 classified by SCOP, small proteins show the best sensitiv-

727 ities although containing six protein chains. However, all

728 beta proteins and alpha ? beta proteins achieve the second

729 best sensitivities and accuracies. PrinComp1, having strong

730 correlation to inter-residue contact energy property, is the

731 one that the predictor achieves the most reliable results

732 from. The model also achieves very accurate predictions

733 from PrinComp2, PrinComp3, and PrinComp4, but the

734 number of correctly predicted domain boundary residues

735 from them is smaller than the model gets from PrinComp1.

736 The DomSVR algorithm described in this work gives

737 good results for most of proteins in our dataset taken from

738 PDB database. The successful application of SVR approach

739 in this study suggests that SVR can accurately describe the

740 relationship between primary sequence and domain

741 boundaries using amino acid information alone. The pre-

742 dicted domain boundaries can be used for classification of

743 proteins and understanding the evolutions, structures and

744 functions of proteins, which motivate us to improve the

745 algorithm and apply it to other protein chains. In future

746 work, we expect that the improved version of our predictor

747 can test more protein chains and reevaluate the chains that

748 have already been tested with our current predictor.

749 Acknowledgments This work was supported in part by grant 2 G12
750 RR003048 from the RCMI program, Division of Research Infra-
751 structure, National Center for Research Resources, NIH and the
752 Mordecai Wyatt Johnson program of Howard University. This work
753 was also supported in part by the Singapore MOE ARC Tier-2 funding
754 grant T208B2203 and the National Science Foundation of China
755 (No. 60803107). CL’s work was supported by NSF (CCF-0845888).

756 References

757 Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W,
758 Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new

759generation of protein database search programs. Nucleic Acids
760Res 25:3389–3402
761Baldi P, Brunak S, Chauvin Y, Andersen CA, Nielsen H (2000)
762Assessing the accuracy of prediction algorithms for classifica-
763tion: an overview. Bioinformatics 16:412–424
764Chen P, Wang B, Wong HS, Huang D.S. (2007) Prediction of protein
765B-factors using multi-class bounded SVM. Protein Pept Lett
76614(2):185–190
767Cheng J, Sweredoski MJ, Baldi P (2006) DOMpro: protein domain
768prediction using profiles, secondary structure, relative solvent
769accessibility, and recursive neural networks. Data Min Knowl
770Discov 13:1–10
771Copley RR, Doerksa T, Letunica I, Borka P (2002) Protein domain
772analysis in the era of complete genomes. FEBS Lett 513:129–
773134
774Dovidchenko NV, Lobanov MY, Galzitskaya OV (2007) Prediction
775of number and position of domain boundaries in multi-domain
776proteins by use of amino acid sequence alone. Curr Protein Pept
777Sci 8(2):189–195
778Drucker H, Burges CJC, Kaufman L, Smola AJ, Vapnik V (1996)
779Support vector regression machines. In: Proceedings of the
780NIPS, pp 155–161
781Dumontier M, Feldman R, Yao HJ, Hogue CWV (2005) Armadillo:
782doamin boundary prediction by amino acid composition. J Mol
783Biol 350:1061–1073
784Edelman GM (1973) Antibody structure and molecular immunology.
785Science 180:830–840
786Fukuchi S, Nishikawa K (2001) Protein surface amino acid compo-
787sitions distinctively differ between thermophilic and mesophilic
788bacteria. J Mol Biol 309:835–843
789Galzitskaya OV, Melnik BS (2003) Prediction of protein domain
790boundaries from sequence alone. Protein Sci 12:696–701
791George RA, Heringa J (2002) Protein domain identification and
792improved sequence similarity searching using PSI-BLAST.
793Proteins: Struct Funct Gen 48:672–681
794George RA, Heringa J (2002) SNAPDRAGON: a new method to
795predict protein structural domain boundaries from sequence data.
796J Mol Biol 316:839–851
797Gewehr JE, Zimmer R (2005) SSEP-Domain: protein domain
798prediction by alignment of secondary structure elements and
799profiles. Bioinformatics 22:181–187
800Goodall C (1990) Modern methods of data analysis. Sage Publica-
801tions, Newbury Park, CA
802Gunn SR (1998) Support vector machines for classification and
803regression. Faculty of Engineering and Applied Science, Uni-
804versity of Southampton
805Jolliffe IT (2002) Principal component analysis. Springer, NY.
806Kawashima S, Pokarowski P, Pokarowska M, Kolinski A, Katayama
807T, Kanehisa M (2008) AAindex: amino acid index database,
808progress report. Nucleic Acids Res 36:D202–D205
809Levitt M, Chothia C (1976) Structural patterns in globular proteins.
810Nature 261:552–558
811Liu J, Rost B (2004) Sequence-based prediction of protein domains.
812Nucleic Acids Res 32:3522–3530
813Marchler-Bauer A, Anderson JB, Derbyshire MK, DeWeese-Scott C
814(2007) CDD: a conserved domain database for interactive
815domain family analysis. Nucleic Acids Res 35:D237–240
816Marsden RL, McGuffin LJ, Jones DT (2002) Rapid protein domain
817assignment from amino acid sequence using predicted secondary
818structure. Protein Sci 11:2814–2824
819Miyazawa S, Jernigan RL (1999) Self-consistent estimation of inter-
820residue protein contact energies based on an equilibrium mixture
821approximation of residues. Proteins 34:49–68
822Munoz V, Serrano L (1994) Intrinsic secondary structure propensities
823of the amino acids, using statistical phi–psi matrices: comparison
824with experimental scale. Proteins 20:301–311

Domain boundary prediction

123
Journal : Large 726 Dispatch : 8-2-2010 Pages : 14

Article No. : 506
h LE h TYPESET

MS Code : AMAC-D-09-00264 h CP h DISK4 4

A
u

th
o

r
 P

r
o

o
f



U
N
C
O
R
R
E
C
T
E
D
P
R
O
O
F

825 Nagarajan N, Yona G (2004) Automatic prediction of protein
826 domains from sequence information using a hybrid learning
827 system. Bioinformatics 20:1335–1360
828 Nanduri S, Carpick BW, Yang Y, Williams BR, Qin J (1998)
829 Structure of the double-stranded RNA-binding domain of the
830 protein kinase PKR reveals the molecular basis of its dsRNA-
831 mediated activation. EMBO J 17:5458–5465
832 Orengo CA, Michie AD, Jones DT, Swindells MB, Thornton JM
833 (1997) CATH: a hierarchic classification of protein domain
834 structures. Structure 5:1093–1108
835 Porter RR (1973) Structural studies of immunoglobulins. Science
836 180:713–716
837 Rackovsky S, Scheraga HA (1982) Differential geometry and
838 polymer conformation. 4. Conformational and nucleation prop-
839 erties of individual amino acids. Macromolecules 15:1340–1346
840 Saini HK, Fischer D (2005) Meta-DP: domain prediction meta server.
841 Bioinformatics 21:2917–2920
842 Sikder AR, Zomaya AY (2006) Improving the performance of
843 DomainDiscovery of protein domain boundary assignment using
844 inter-domain linker index. BMC Bioinform 7:S6

845Sim J, Kim SY, Lee J (2005) PRODO: prediction of protein domain
846boundaries using neural networks. Proteins 59:627–632
847Suyama M, Ohara O (2003) DomCut: prediction of inter-domain
848linker regions in amino acid sequences. Bioinformatics 19:673–
849674
850Wetlaufer DB (1973) Nucleation, rapid folding, and globular
851intrachain regions in proteins. Proc Natl Acad Sci USA
85270:697–701
853Ye L, Liu T, Wu Z, Zhou R (2007) Sequence-based protein domain
854boundary prediction using BP neural network with various
855property profiles. Proteins: Struct Funct Bioinform 71:300–307
856Yoo PD, Sikder AR, Zhou BB, Zomaya AY (2008) Improved general
857regression network for protein domain boundary prediction.
858BMC Bioinform 9:S12
859Zhou Y, Vitkup D, Karplus M (1999) Native proteins are surface-
860molten solids: application of the Lindemann criterion for the
861solid versus liquid state. J Mol Biol 285:1371–1375

862

P. Chen et al.

123
Journal : Large 726 Dispatch : 8-2-2010 Pages : 14

Article No. : 506
h LE h TYPESET

MS Code : AMAC-D-09-00264 h CP h DISK4 4

A
u

th
o

r
 P

r
o

o
f




