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Abstract: Most of current evaluations for structural design are based on deterministic analysis. In practice, the parameters of the 

structure such as material, mass distribution, imperfections and damping have uncertainties. this will affect the final evaluations and 

structural safety if the deterministic analysis method is still used. The conventional method has to be improved. Therefore, there is an 

increasing need for evaluating the structural performance with the uncertainty analysis method. In this study, a method is developed 

and presented for the dynamic uncertainty analysis of a large-scale single-layer lattice dome. The method can take into account the 

uncertainties of the damping, the material, the structural mass or load, and the geometry imperfections of the structural shape and all 

members. It is implemented by assuming that the variability of each random input parameter with respect to the ideal parameters of 

the perfect structure obeys a mathematical distribution. Specifically, there is a basic difference between the present study and other 

related studies on treatments of uncertainty in damping. After a computer model of the dome with the geometry imperfections of the 

structural shape and all members is constructed, finite element dynamic analyses with uncertainties of damping and input parameters 

are performed. Additionally, the mathematical distributions of dynamic properties and demands are analyzed. Results show that the 

variability of the parameters with an associated uncertainty imposes significant negative effects on the dynamic performance of the 

dome, and the probability of failure of the dome increases as increase of variability levels of uncertain parameters, indicating that 

reducing the uncertainty of the input parameters has a significant contribution to the safety of a dome. By comparison, a significant 

difference in the dynamic demands is observed when the uncertainty analysis method and conventional analytical method are 

respectively used for the dynamic analysis; the numerical results reveal the necessity for the use of the proposed method in practical 

applications.  
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1. Introduction 
  In accordance to the current building design practice and guidelines, most design evaluations are based on 
deterministic values. However, numerous prior research studies [1–3] have indicated that the uncertainties in design 
evaluations can be quite significant. In recent years there has been increased attention in the use of uncertainty analysis 
(UA) for the evaluation of structural performance [4–6].  
  It is commonly assumed that an uncertainty can be classified into two categories [7, 8]: aleatoric uncertainty and 
epistemic uncertainty. In general, in a specific structure, the uncertainties can be related to the materials used, the 
geometry, structure, and loads [9].  
  At the material level, over all physical and mechanical properties that a material exhibits, mass and stiffness usually 
are fairly close to their nominal values, unlike strength, which depends strongly on chemical composition and heat 
treatment. However, the elastic modulus is a particularly important parameter among these mechanical properties, and 
the material strength and the instability failure modes of structures rely heavily on this parameter [9]. It is observed by 
experimental tests that the parameter has an important variability, and the statistical analysis indicated that the normal 
or lognormal distribution matched closely the experimental test data [10]. The results [11] showed that the variation of 
elastic modulus mostly affected the behavior of the structure during the elastic region and changed the deformation 



demands. 
  At the member level, the members in a steel structure are commonly analyzed assuming that the members are 
perfectly straight between joints. However, no member is perfectly straight in a manufacturing process, the initial 
imperfection always exists, and its quantification is random and uncertain. However, it should be noted that the 
mechanical behaviors of the steel members are very sensitive to the initial imperfections [12, 13]. Many researchers [10, 
14–16] have investigated the influence of the initially random imperfection on the load-carrying capacity of a member, 
and pointed out that the initial imperfections led to the reduction of the load-carrying capacity of the member under 
compression or/and bending due to second order phenomena (𝑃 − 𝛿  effect). In terms of modeling the initial 
imperfection of the steel member, AISC-2010 [17] considers that it shall be taken into account either by direct modeling 
or by the application of notional loads, as specified in this standard. However, more researchers [18, 19] considered that 
the initial imperfection should be directly modeled, and that the random approach, instead of statistical approach, is 
more reasonable.  
  Uncertainties of structural shape may typically arise from imprecision during the process of manufacturing or 
construction or round-off errors [20]. This leads to inexact joint positions during construction. The existence of such 
random errors reduces the structural stiffness. However, these errors cannot be avoided, and their quantification is 
random. It was observed in previous studies [6, 21] that the variance of nodal coordinates may be an important source 
of uncertainty in structural reliability, particularly when nonlinear structural behavior is considered [21]. Therefore, the 
conventional deterministic analysis for a structure may lead to inaccurate results. proposed analytical methods for 
structures with a small uncertainty in nodal locations have reported [20, 22]. 
  Loads in structures are the important source of uncertainty in the evaluation of structural performance. These loads 
mainly include the dead load and the live load. The wind load and seismic load belongs to external excitations, which 
are not discussed in this study. For internal loads, their stochastic models and characteristics depend on many factors, 
such as the shape of the structure, distribution of different materials, and the precision in the construction process. The 
dead load comprises the weights of the structural elements and nonstructural items, but the uncertainty in the weights of 
nonstructural items only is the main source of the dead load variability [23]. Therefore, dead loads usually have 
minimal uncertainties. For live loads, a limited number of load surveys were conducted to estimate the statistics relevant 
to the live load [24, 25]. It was observed that in the vast majority of cases, live loads are the primary contributors to the 
uncertainties of loads [26]. In general, the dead load is normally distributed and the live load has a Gumbel (extreme 
value type I) distribution [23]. Therefore, the deterministic method for describing the properties of the loads need to be 
improved. 
  In terms of damping, numerical results show that the damping value selected has a significant effect on the dynamic 
demands, especially for lightly damped structures [27]. However, in engineering practice, damping is very difficult to 
identify and quantify due to its complex nature, the estimation of structural damping depends on a wide range of factors. 
The scatter test data from real buildings, quantification techniques of damping, and even the occasional misuse of 
measurement techniques, lead to the intrinsic variability of the damping. At present, although there are empirical 
formulas to predict the total damping of a structure, those formulas may result in an unacceptable scatter in damping 
values [28]. As pointed out by Kareem [29], quantification of damping is by far the most vexing problem in structural 
engineering.  
  Beyond all the listed aspects relevant to a structure, there are significant sources of uncertainty. Modeling 
uncertainties of these sources are one of the most challenging topics in the seismic assessment of existing buildings. The 
objective of this paper is to investigate how the treatment of the different sources with randomness and uncertainty will 
affect the assessment of structural performance. The following primitive variables for a large-scale single-layer lattice 
dome subjected to dynamic loads are considered in this paper: (1) elastic modulus of material, (2) mode damping ratio, 
(3) shape imperfection (nodal coordinates), (4) initial imperfections of members, and (5) roof mass distribution. In the 



finite element dynamic analyses, the primitive variables vary randomly and simultaneously. The mathematical 
distributions of the dynamic demands and the dynamic performance of the dome are investigated. 
  
2. Damping in structures 
2.1Material damping 
2.1.1 A hysteretic material model for modeling material damping 
   The Bouc–Wen model is a smooth hysteretic model [30]. The model is often used to describe nonlinear hysteretic 
systems subjected to different excitations due to its ability to represent a wide range of hysteresis loop shapes. However, 
it is rarely used in simulating hysteretic behaviors in materials, and this is mainly because of a lack of a thorough 
understanding for material damping.  
  The nonlinear material stress–strain relationship of the Bouc–Wen model is expressed as [30],   

                                   (1) 

where 𝜎 is the stress, 𝜀 is the strain, 𝑧 represents the hysteretic deformation,	𝐸 is the elastic modulus, and 𝛼 is the 
ratio of post-yielding to elastic modulus. The model defines the hysteretic behavior as the sum of a linear part and a 
hysteretic part. The first part represents the participation level of the initial stiffness into the inelastic response of the 
oscillator, whereas the latter part accounts for the nonlinear hysteretic characteristic with memory of previous loading 
cycles by means of the hysteretic deformation, 𝑧. The model was improved by Baber and Noori [31] to account for 
degrading behaviors by introducing the rate of hysteretic deformation, 𝑧̇,  

                               (2) 

where 𝜀 ̇ is strain rate, 𝛽, 𝛾, and 𝑛, are parameters that control the shape of the hysteretic loop. In this model, 𝐴, 𝑣, 
and 𝜂, are variables that control the degradation process in stiffness and strength.  
   Eq. (2) can also be rewritten as, 

                           (3) 

Using Eqs. (1) and (3), the following expression can be obtained, 

                      (4) 

Depending upon the memory of past cycles, the degradation process is introduced by the following expressions [30], 

                                      (5) 

where 𝑒(𝑡) is the hysteretic energy up to the specific time 𝑡, and 𝐴!, 𝛿", 𝛿#, and 𝛿$, are user-defined parameters.  
  It has been found that the parameters of the Bouc–Wen model are functionally redundant. Eliminating this 
redundancy is best achieved by setting 𝐴 = 1 [32]. Herein, 𝑛 is usually greater or equal to 1, and as 𝑛 increases, the 
transition from the elastic range to the inelastic range becomes sharper. The parameter 𝛽 is positive by assumption, 
while the admissible values 𝛾 ∈ [−𝛽, 𝛽]. In the Bouc–Wen model, softening behavior occurs when (a) 𝛽 + 𝛾 > 0 and 
𝛽 − 𝛾 > 0, (b) 𝛽 + 𝛾 > 0 and 𝛽 − 𝛾 < 0, and (c) 𝛽 + 𝛾 > 0 and 𝛽 − 𝛾 = 0. In this model, the dynamic behavior is 
governed by several parameters, which are determined using experimental data.  
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Fig. 1 Hysteretic behavior of the Bouc–Wen steel material and its degradation 

   An example on the hysteretic behavior exhibited by the application of the Bouc–Wen model for steel materials is 
illustrated in Fig. 1. The material parameters are obtained from the literature [3], and are based on experimental test data. 
In this example, the strength and stiffness degradation in the steel material is shown after each loading cycle. Most of 
the previous literature studies that considered the nonlinear behavior of materials used nondegrading hysteretic models 
subjected to repeated cyclic load reversals, such as earthquakes. Consequently, this may have led to an overestimation 
of the steel material performance. In this paper, these degradation properties of the steel material are directly considered 
in dynamic analyses. 
 
2.1.2 Quantification of material damping  
   For steel materials, dislocation slip occurs when the materials are subjected to cyclic stresses, even under very low stress 
levels, and this leads to internal material friction and energy loss (or alternatively, to a material damping effect). In previous 
literature studies, the material damping was usually incorporated into the global damping using an approximate estimation 
of the material damping ratio, depending on the vibration frequency. However, in a physical sense, the energy loss due to 
the internal friction of materials can be directly described by means of material constitutive models that consider internal 
friction effects, such as the Ramberg–Osgood or the Bouc–Wen material models [33]. As stated previously, these hysteretic 
models merged a linear component and a nonlinear component in parallel, regardless of the elastic and plastic ranges. The 
nonlinear component is owing to the internal friction of the material in the elastic range. Thus, in this paper, another 
advantage in the use of the Bouc–Wen model to the modeling of steel materials is that it is able to capture the material 
damping, even in the elastic range of the material, as illustrated in Fig. 2. It is clearly observed that for steel materials 
subjected to cyclic loading, hysteresis occurs and induces the damping effect.  

 
Fig. 2 Hysteretic loops of steel based on the Bouc–Wen model  

 

   These stress–strain hysteretic loops can be used to quantify the material damping ratios in accordance to,  
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                                     (6) 

where 𝜉%& is the equivalent material damping ratio, 𝜂 is the material loss factor, 𝐸' is the dissipated energy of the 
material, and 𝐸( is the maximum strain energy of the material, 𝐸( = 𝜎) (2𝐸)⁄ . For metallic materials, the specific 
damping energy of material 𝐷 is a function of stress, as stated by Goodman [34]. 

                                        (7) 

where 𝐽 and 𝑛 are the material constants, 𝜎 is the material stress level in a cycle, and 𝜎% is the fatigue limit. Usually, 
the exponent 𝑛 is equal to 2.4. Substituting Eq. (7) into Eq. (6), leads to 

                                         (8) 

where 𝐶 is a material constant that is associated with the fatigue limit. From Eq. (8), it can be seen that the relationship 
between the material damping ratio and the material stress is nonlinear. However, when 𝑛 = 2 the equivalent material 
damping ratio, ξ*+, is constant.  
   According to Eq. (6), 𝜉%& can be calculated under different material stress levels in the elastic range, as shown in 
Fig. 3. Evidently, as the material stress increases, the material damping ratio increases nonlinearly instead of being 
frequency-dependent. The relationship between the equivalent material damping ratio and the material stress can be 
obtained by fitting these discrete data,  

                                    (9) 

where 𝜎 is the material stress. In Eq. (9), the exponent is equal to 2.176, and equivalently, in Eq. (8), the exponent 𝑛 
is 4.176. This equation is very important for estimating the material damping ratio in engineering practice. However, 
when the material reaches a high stress level, which is lower than the yielding strength of the material, such as 200 MPa, 
the material damping ratio is nearly equal to 10%. It should be noted that the material damping ratios of a member or 
structure are far below these values because the stress in a member or structure is non-uniformly distributed. Therefore, 
it could not simultaneously reach the high stress in all parts of a member or structure. The material damping ratio of a 
single-layer lattice dome subjected to earthquake ground motions have been evaluated by Zhang et al. [35]. In their 
study, they showed that the material damping ratio of a dome is approximately 0.5%. Although the value is small, it 
approximately accounts for 20% of the total damping in the dome. 

 
Fig. 3 Material damping ratio of steel under different stress levels 

2.1.3 Uncertainty of material damping 
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Fig. 4 Damping ratios of materials at different elastic moduli 

   According to Eqs. (1) and (9), it can be seen that the elastic modulus 𝐸 has a direct effect on the material damping 
ratio. As stated previously, because the material parameter 𝐸 has a significant variability instead of a constant value, 
this gives rise to the variability of the material damping ratio. Through sensitivity analyses, the effects of this material 
parameter on the material damping ratios are presented in Fig. 4. It is observed that the effect of the elastic modulus on 
the material damping ratio are obvious at middle and high stress values, and that the reduction of the elastic modulus 
can increase the material damping. With the increase of material stress, the trend is more notable. Moreover, it can also 
be seen in this figure that the exponent in Eq. (8) deceases, and that the constant 𝐶 increases with the increase of the 
elastic modulus. Additionally, the exponent value is approximately between 1.9 and 2.3. Therefore, it can be concluded 
that the material damping ratio is approximately proportional to the square of the material stress when the Bouc-Wen 
material model is used.  
 
2.2 Structural damping 
2.2.1Modeling structural damping using the Rayleigh damping model 
   The energy dissipation of a structure subjected to earthquakes is from three main sources, namely, the energy 
radiation, nonlinearity of the material, and inherent damping. The energy radiation exists at the supports of the structure. 
While the nonlinearity of the material can dissipate part of the energy through plastic deformation, the internal friction 
of the material in the inherent damping can be captured by means of the material constitutive model. However, the 
inherent damping, such as the Coulomb frictions in joint connections of a structure, and between members and 
nonstructural components, and in other frictional mechanisms, is still unidentified. For these unquantifiable damping 
sources, the Rayleigh damping model is commonly used to implicitly represent their energy dissipations. Although the 
physical or rheological meaning of this approach is not clear, it is a very convenient way of accounting for damping for 
numerical solution purposes [36].  
 
2.2.2 Calculation of damping coefficients 
   The form of Rayleigh damping is in accordance to the following equation,  

                                      (10) 

where 𝑀 and 𝐾 are the mass and stiffness matrices, respectively, 𝐶 is the damping matrix, and 𝛼 and 𝛽 are the 
mass and stiffness damping coefficients, respectively. According to Eq. (10), the damping ratio of the ith mode is, 

                                      (11) 
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The coefficients 𝛼 and 𝛽 can be determined from the specified damping ratios, 𝜉, and 𝜉-, for the mth and nth 
modes, respectively. Usually, assuming that 𝜉,=𝜉-=𝜉, yields 

                                    (12) 

In Eq. (12) the coefficients are defined using two modes only. After that, other mode damping ratios are estimated by 
these coefficients. This may lead to a very large error. In order to reduce the error, the Least Squares Method (LSM) is 
used to obtain the damping coefficients. According to Eq. (11), the following expression can be derived, 

                              (13) 

where ∆𝜎.  is the standard deviation. When ∆𝜎.  attains its minimum value, the best fitting curve of the 
frequency-damping ratios can be obtained. Define the function, G(𝛼, 𝛽),  

                             (14) 

In order to obtain the values of 𝛼 and 𝛽, let the partial derivatives of G(𝛼, 𝛽) with respect to 𝛼 and 𝛽 be equal to 
zero,  

                           (15) 

Solving Eq. (15), yields the following solutions, 

                             (16) 

   In order to present the accuracy of the LSM, an example is illustrated next. According to the first 20 frequencies and 
mode damping ratios listed in Table 1, the frequency-damping ratio curves predicted by means of the conventional 
method and LSM are compared, as illustrated in Fig. 5. It is observed that only two damping values lie on the curve 
with the conventional method, whereas most of values lie below the curve. This leads to an overestimation of the 
damping ratios in a structure. However, the estimation values based on LSM exhibit a good agreement with the real data, 
and the real values are very near the estimation curve. It is apparent that the LSM yields better results than the 
conventional method in terms of estimating the damping values. 
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Table 1 Frequency versus the damping ratio 

Mode 1 2 3 4 5 6 7 8 9 10 

Frequency /Hz 2.96 2.97 3.20 3.20 3.227 3.24 3.268 3.268 3.289 3.29 

Damping ratio 0.0148 0.0146 0.0147 0.0147 0.0147 0.0147 0.0147 0.0147 0.0148 0.0148 

 

 
Fig. 5 Frequency-damping ratio curves using different methods 

 
2.2.3 Uncertainty of structural damping  
   In reality most structures behave nonlinearly with the increase of the amplitude of the input force. However, existing 
damping evaluation techniques are based on linear system theories. When linear identification methods are applied to 
nonlinear dynamic properties, an equivalent linear method has to be employed. It should be noted that this equivalence 
may cause remarkable errors. In general, at present, the accuracy of the estimated damping is much lower than that of 
the estimated natural frequencies and mode shapes. There is an example from field experiments to present the 
uncertainty of mode damping ratios in identification precision, as listed in Tables 2 and 3.  

Table 2 Damping ratios evaluated by the multimode random decrement (MRD)  

method and the frequency domain decomposition (FDD) method [37, 38] 

 MRD FDD error 

Mode 1 0.18% 0.24% 33% 

Mode 2 0.30% 0.39% 30% 

Mode 3 0.83% 0.30% -64% 

Mode 4 0.85% 0.91% 7% 

Mode 5 0.55% 0.65% 18% 

 

Table 3 Estimated damping ratios and FFT data points [37, 38] 

 256 512 1024 2048 4096 8192 

Mode 1 3.05% 1.60% 0.95% 0.65% 0.54% 0.51% 

Mode 2 2.81% 1.58% 0.99% 0.74% 0.67% 0.58% 

Mode 3 2.06% 1.29% 0.98% 0.84% 0.80% 0.87% 

Mode 4 1.52% 1.24% 1.11% 1.10% 1.08% 1.06% 

Mode 5 1.91% 1.64% 1.65% 1.56% 1.62% 1.29% 

 
   According to Table 2, it is observed that the estimated damping ratios of different modes with different 
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identification methods have significant differences. The reason is that the equivalence of a nonlinear system to a linear 
system is approximate and the error is unavoidable, as stated previously. The FFT data points have a remarkable effect 
on the estimations of the damping ratios, as it can be seen in Table 3. These result in a high variability and low stability 
in the damping values. According to the experimental validation [39], it was found that the mode damping ratio has a 
Gaussian (or normal) distribution. A fundamental purpose in identifying the damping ratios of a structure is for using 
these values to construct the damping matrix. Due to the uncertainty of the damping ratios, the damping matrix is 
inaccurate. 
 
3. Random imperfections in a structure 
3.1 Imperfection of the structural shape 
  The positions of connections define the geometry of a structure. However, due to the construction errors the positions 
of connections are inexact. Correspondingly, this causes variability in the shape of structural geometry. Because the 
errors are random, the structural geometry shape has randomness. In the present paper, the imperfection is created by 
considering only the degrees of freedom of global translation (but not the rotation) of the end-joints of a member. The 
variations of nodal coordinates of a joint are introduced using random variables, and are added to the ideal nodal 
coordinates. Assume that the 𝑖/0 joint has randomness in its location, and then its coordinates can be expressed as, 

                               (17) 

where {𝑋𝑌𝑍1}1,2 are the nodal coordinate vectors with construction errors, in which 	𝑖=1, 2, and 3, respectively 
represent the	𝑥, 𝑦, and 𝑧 directions, {𝑋𝑌𝑍1}3 are the nodal coordinate vectors without imperfections, and {𝑅1} are 
the random error vectors of the nodal coordinates, which are respectively randomly generated with a normal distribution 
that has a zero mean and specified standard deviations along the 𝑥, 𝑦, and 𝑧 directions. The random errors herein are 
considered to be uncorrelated.  
 
3.2 Member imperfections 
  Initial deflection, initial eccentricity and residual stress are unavoidable in practical members, and must be considered 
in dynamic analyses. However, these imperfections cannot be directly measured. To describe these imperfections, most 
standards recommend an equivalent imperfection, based on the use of a half wave for all member imperfections, which 
are equivalently translated into the initial deflection. This is implemented by adding a finite element node at the 
mid-span of a member, as shown in Fig. 6, in which nodes 1 and 2 are the end-joints of the member. The initial position 
of node 3 is located at the mid-span of the member. It should be noted that nodes 1 and 2 have been assigned coordinate 
deviations due to construction errors. Subsequently, through the control of the coordinates of the finite element node 3, 
the equivalent initial deflection of the member, 𝛿, can be defined to be normally distributed with a zero mean and 
specific standard deviations along the 𝑥, 𝑦, and 𝑧 directions. Herein, the deflection is considered as an independent 
random variable. 

 
Fig. 6 Implementation of the equivalent initial deflection 
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4. Uncertainty analysis method for structures 
   In order to incorporate relevant sources of uncertainties of random input parameters, a fully probabilistic method 
coupled with nonlinear dynamic analysis provides a more realistic way to evaluate structural safety. Unlike the 
traditional deterministic analysis, structural probabilistic analysis treats these inputs as samples from probability 
distributions. 
   The cumulative distribution function (CDF) of a continuous random variable, 𝐹(𝑥), and the probability density 
function (PDF), 𝑓(𝑥), are defined as 

                                    (20) 

where 𝑋 is random variable, 𝑥 is specific value of the random variable, and 𝑃[∙] is the probability of the variable 
listed inside the square brackets.  
  For the elastic modulus, the damping ratio of each mode, for all imperfections and the dead load, are considered as 
independent random variables and are normally distributed. The PDF of a normal distribution can be expressed as 

                            (21) 

where 𝑅 is the random variable, 𝜇 is the mean of 𝑅, and 𝜎( is the prescribed standard deviation of the random 
variable.  
  For a live load, the PDF can be described by a Gumbel distribution (extreme value type I),  

                         

(22) 

where 𝑥 is the random variable, 𝜇 is the location parameter of 𝑥, and 𝛽 is the scale parameter (𝛽 > 0).  
  Recent developments using a Monte Carlo Simulation (MCS) technique have resolved many of the problems in the 
analysis of uncertainty. The computational process, however, is lengthy and expensive. The first- and second-order 
reliability methods (FORM and SORM) can be carried out for uncertain analyses [40, 41]. However, the FORM and 
SORM may give rise to numerical convergence in the reliability analysis for nonlinearity [42]. In order to reduce the 
calculation workload and avoid the numerical convergence, in this paper, the fitting techniques for the data from limited 
sampling are used in order to compute the probability of failure. Therefore, in the present case, the procedure is as 
follows: 
  Step 1: The random elastic modulus, imperfections, and loads, are respectively assigned to a mathematical 
distribution according to Eqs. (21) and (22), and the numerical model is updated   
  Step 2: A sequence of damping ratios of modes are generated, and the damping coefficients in the Rayleigh damping 
model are then solved using Eq. (16)  
  Step 3: The performance function of the dynamic demand is defined and a sampling size, 𝑁𝑡𝑟𝑖𝑎𝑙𝑠, is given.  
  Step 4: The static analysis is carried out, and the external excitations are then applied to the structure, thereby solving 
the value of the performance function 𝑔(𝑖) of each sample, until a specified number of analysis steps, 𝑁𝑡𝑟𝑖𝑎𝑙𝑠, is 
completed. The probability distribution of {𝑔(𝑖)} can then be obtained using fitting technique.  
  Step 5: Finally, according to the probability distribution of {𝑔(𝑖)}, the probability of failure of the structure can be 
approximately estimated with an integral. 
 
5. Illustrative example  
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5.1 Descriptions of the structure and analytical model  
   A numerical example is presented to illustrate the methodology described in this paper, and to quantify the influence 
of uncertainties of input parameters on the overall dynamic demands of a structure. The single-layer lattice dome that is 
subjected to dynamic excitations shown in Fig. 7, is taken as the basic model for the computations.  

  

Fig. 7 Dome schematics without imperfections 

 
Fig. 8 A dome with imperfections 

  The 3D sophisticated numerical model is developed in OpenSees. Its span and height are 90 m and 15 m, respectively. 
In the dome, the lengths of the members range between 7.844 m and 10.81 m. The members used are steel tubes with an 
external diameter of 0.32 m and a wall thickness of 0.01 m. The uniform roof dead load is 90 kg/m2 and the live load is 
36 kg/m2, and they are assumed to be concentrated at the joints as masses. The Bouc–Wen model is selected to model 
the nonlinear material behaviors, and the material parameters used for the perfect dome are shown in Fig. 1. The dome 
with joint construction errors and initial imperfections of members is randomly generated, as shown in Fig. 8. In this 
case, the errors and imperfections are normally distributed with a zero mean and standard deviations of 0.5 m and 0.2 m, 
respectively. 
  In the model, the force-based beam-column element is used to model the nonlinear behavior of members. However, 
compared with the displacement-based beam-column element, the torsional stiffness of the section needs to be 
supplemented. To be able to observe buckling of a member, each member is divided into two inelastic elements. Each 
element has five Gauss integration points along the element length to describe the dynamic behaviors of the element. 
The section of each tube is dispersed into 20 fiber areas along the hoop, and into five layers along the radial direction. 
These treatments are sufficient for an accurate result on a hysteretic buckling behavior of the member, and on 
estimating the stress–strain distribution on steel tube sections. The corotational coordinate transformation object is 



constructed, which performs a geometric transformation of stiffness of the member and the resisting force from the 
basic system to the global coordinate system. Given that the imperfections of the dome are very small compared to the 
sizes of members, it should be noted that in this paper the geometric transformation vectors of each element in the dome 
with imperfections are approximated with those of the perfect dome.  
  A failure criterion using the vertical response quantity 𝑑 at the top is prescribed in terms of a performance 
function	𝑔(𝑑[, 𝑑). A negative outcome of the function, 𝑔 ≤ 0, is defined as a failure. In this paper, the performance 
function employed is expressed by a threshold and a response quantity in the form, 

                                 (23) 

where 𝑑[ is the threshold, and 𝑑({𝑥1}) is the maximum vertical dynamic response at the top in the time series of each 
sampling, and 𝑥1 is the random variable. In reliability problems, the probability of failure, 𝑃4, is defined by the 
integration of PDF of 𝑔(𝑑[, 𝑑),  

                                    (24) 

where 𝑓(𝑥) represents the joint probability density of the basic random variables, the random vector 𝑥 contains all 
the uncertain variables, and 𝑔(𝑥) is the performance function corresponding to the considered failure mode. 

 
Fig. 9 Load–displacement curve 

  The specification of the appropriate safety level for the design is of special significance in engineering practice. In domes, 
the vertical stability is the governing factor. To evaluate the reliability of the dome, numerical approaches are first 
needed to evaluate the value of 𝑑[. Herein, the incremental vertical roof loads, which are assumed to be evenly 
distributed in the dome, are applied to all joints of the dome, and the vertical reaction force at the supports, and vertical 
deformation at the top of the dome can then be obtained, as shown in Fig. 9. Through the load–displacement curve, the 
collapse limit displacement due to the loss of stability is determined. In this paper, the load at the first critical point 
(peak value point or branch point) is considered as the ultimate load of the dome. It is observed that when the vertical 
deformation at the top is approximately 0.137 m, the limit state of the dome is reached. In general, the ultimate vertical 
deformation at the top is less than 1/300 of the span of a perfect dome when the collapse limit is reached. While the 
deformation at the top will be larger for the dome with imperfections, nevertheless, it is less than 1/250 of the span [43]. 
However, the dome subjected to complicated loads loses stability more easily than the one subjected to a single load. 
Therefore, in this paper, the selected threshold 𝑑[  is less than the ultimate displacement of 0.137 m for the purpose of 
safety. It is set to be 0.1 m for the domes with/without imperfections, which is approximately 75% of the ultimate 
displacement. Moreover, according to the curve, moderate nonlinearity is observed at a position of 0.1 m, where yielding 
of the dome begins to occur.  
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5.2 Generation of initial mode damping ratios  
  For the dome with the large span, the range of damping ratios of the entire structure is approximately 1–3%. One of 
the major problems encountered in dynamic analysis is the determination of damping ratios corresponding to higher 
modes. However, the results of field experiments indicate that the damping ratios of higher modes are difficult to be 
obtained. Because of limited experimental data, in order to obtain these damping ratios in this paper, the Rayleigh 
damping model that was proposed by Hall [44] is used to generate all the needed mode damping ratios. The form of the 
model is as following, 

                                (25) 

                                          (26) 

where R>1 and x is the first mode damping ratio. In order to consider the softening of the dome 𝜔̂ = 0.667𝜔5	in the 
cases where the initial stiffness matrix in Eq. (10) is used for a dynamic analysis. The parameters, x and R, are set to be 
equal to 0.025 and 1.4, respectively. Through the use of Eqs. (25) and (26), the damping coefficients, 𝛼 and 𝛽, can be 
calculated, and the first 20 mode damping ratios are then generated for dynamic analyses through the use of Eq. (11). 
  After the generation, each mode damping ratio is assumed to obey the normal distribution, in which the mean of each 
damping ratio is equal to the value calculated based on Eq. (11), and in which a standard deviation is specified. In this 
paper, the damping ratio of each mode is randomly generated through the mean and the standard deviation, and the 
mass and stiffness damping coefficients are then calculated using Eq. (16). 
 
5.3 Random variables in the dome and their deviations 
  In this paper, different distributions and standard deviations of random parameters are set and listed in Table 4. In the 
table, each random variable is uncorrelated. The standard deviations represent the variability levels of random variables. 
It is noted that, although the input parameters are random, they are bounded to avoid unrealistic values because of the 
control of construction quality. 

Table 4 Uncertainty sources of the dome and their distributions 

Uncertainty sources  Mean Standard deviation Probability distribution Bounds 

Elastic modulus /MPa 2.1e5 (0.03a/0.06b/0.1c)*Mean Normal [1.9e5, 2.3e5] 

Joint and support error /m 0 (0.05a/0.1b/0.2c) Normal [-0.3, 0.3] 

Member imperfection /m 0 (0.01a/0.03b/0.05c) Normal [-0.03, 0.03] 

Mode damping ratio 0.025 (0.1a/0.2b/0.3c)*Mean Normal [0.015, 0.035] 
dDead load /(kg/m2) 90 0.1*Mean  Normal [72, 108] 
dLive load /(kg/m2) 36 0.5*mean Extreme value type I [18, 54] 

Note: a Case 1, b Case 2, c Case 3; d In the analysis for the perfect structure, the factors of dead and live loads are set as 1.2 and 1.4, respectively.   
 
5.4 Applied dynamic loads for dynamic analyses 
  In order to clearly present the dynamic behaviors of the dome with the developed method in this paper, the 
acceleration time series are designed using triangular functions as an example, and they are input at all nodes restrained 
in a specified direction with an uniform excitation method. Each time series includes three components, as illustrated in 
Fig. 10. The periods of the three components are respectively equal to 0.3 s, 0.3 s, and 0.4 s. The total duration is 8 s for 
each time series. The acceleration amplitudes (cFactors) and properties of dynamic loads are listed in Table 5, in which 
the phase shift is not included. The variability of the external excitations is not considered in this study. 
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Fig. 10 Designed acceleration time series 

Table 5 Properties of dynamic loads 

Acceleration cFactor 1 cFactor 2 cFactor 3 tStart tEnd Cycles Period 

1 

Period 2 Period 3 

Direction: X 0.4g 0.5g 0.05g 0s 8 s 1,1,9 0.3 0.3 0.4 

Direction: Y 0.3g 0.4g 0.04g 0s 8 s 1,1,9 0.3 0.3 0.4 

Direction: Z 0.24g 0.3g 0.03g 0s 8 s 1,1,9 0.3 0.3 0.4 

 
6. Results and analyses 
6.1 Random eigenvalue analyses 
6.1.1 Dynamic property of the dome and its distribution 
  For a structure with a small damping, the natural frequency is an important characteristic and depends mainly on the 
two structural properties: stiffness, and mass. Compared with an ideal structure, its variance directly represents the 
changes of structural stiffness and/or mass distributions. Additionally, it has an important effect on structural dynamic 
demands of the structure, especially when subjected to earthquake ground motions because the structure may have a 
resonance with some frequency components in earthquake spectrums. Through single-random sampling, the first 20 
natural frequencies of the dome are presented in Fig. 11. Through the sampling of a finite frequency, the distributions of 
natural frequencies of the dome of different cases are investigated. Fig. 12 shows the distributions of the first natural 
frequency of the dome using a sampling size equal to 100.  

   

Fig. 11 Variation of the first twenty frequencies of the dome using single-random sampling 
  It is observed in Fig. 11 that the natural frequencies of the structure decrease to a certain extent with the increase of 
the standard deviations of the random variables. This indicates that the variance levels of the random variables have a 
negative effect on dynamic properties of the dome, because the reduction of the natural frequencies elicits the decrease 
of the stiffness when the distribution of the mass is constant. This results in structural flexibility and the reduction of the 
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carrying capacity of the dome. It can also be seen in Fig. 12 that the fundamental frequency (first mode frequency) 
obeys a normal distribution, and that the variability of the natural frequency increases with the increase of the variability 
levels of the random variables. However, in general, the standard deviations of the fundamental frequencies are very 
small in these normal distributions. 

 
Fig. 12 Distributions of the first modal frequency using sample sizes equal to 50   

 
6.1.2 Distributions of damping coefficients  
  Through random sampling over 100 times, the damping coefficients of different cases are calculated, as shown in Fig. 
13. It can be seen that the damping coefficients are normally distributed. However, it should be noted that a large 
variability in damping coefficients is observed. In this paper, although the damping ratio of each mode has a variability, 
and the sample size for the damping ratio of each mode is limited, the use of LSM can reduce the errors of the damping 
coefficients estimated, and the LSM thus has robustness in predicting the damping coefficients. According to these 
mean damping coefficients,(𝛼, 𝛽), and Eq. (11), the frequency-damping ratio curves can be obtained, as shown in Fig. 
14. It is noted that although the difference of the frequency-damping ratio curves is small in different cases, the 
damping coefficients will be random in the single-sampling case, and this may lead to a significant difference in 
dynamic demands. 

  
Fig. 13 Distributions of proportional damping coefficients for mass and stiffness 
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Fig.14 Generated frequency-damping ratio curves using the means of damping coefficients 

 
6.2 Dynamic analyses 
6.2.1 Dynamic responses and probabilities of failure of the dome  
  Through random sampling over 100 times, the statistical maximum vertical dynamic responses at the top are shown 
in Fig. 15. It is observed that all these responses generally obey the 𝑙𝑜𝑔𝑛𝑜𝑟𝑚𝑎𝑙 distribution. The distribution can be 
described using Eq. (27). Fitting the histogram yields the statistical parameters about all three cases, as listed in Table 6. 
Their means are respectively 0.0239 m, 0.0312 m, and 0.0384 m, while the maximum vertical dynamic response at the 
top is 0.0313m for the perfect dome. The probabilities of failure of the three cases are 0, 3e-4, and 7.8e-3, respectively. 
Therefore, it can be concluded that the variability levels of the input parameters have an important negative effect on 
the reliability of the dome. This suggests that reducing the uncertainty of the input parameters has a significant 
contribution to the safety of the domes. The CDFs of the three cases are shown in Fig. 16. It can be noted that the 
probabilities that the maximum vertical displacements are respectively larger than 0.06 m, 0.10 m, and 0.12 m are near 
zero among the three cases.  
  In engineering practice, estimating the dynamic reliability of a structural system has been a challenging aspect due to 
the mathematical description of the random input parameters, and the calculated workload. In this study, however, by 
means of a limited sampling size, the fitting technique for the performance function is used to approximately evaluate 
the reliability of the dome, and the computation complexity is thus reduced.   

   

Fig. 15 statistical analyses of displacement                 Fig.16 CDFs of displacement   
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    , 𝑥 > 0               (27) 

in which the 𝑚𝑒𝑎𝑛 = 𝑒𝑥𝑝 h𝜇 + 6!

)
i, and the variance is 𝑣𝑎𝑟 = 𝑒𝑥𝑝(2𝜇 + 𝜎))(𝑒𝑥𝑝(𝜎)) − 1). 

Table 6 Parameter estimations and probability of failure of the dome 

Case  𝝁 𝝈 Mean /m Variance Pf 

1 -3.76 0.233 0.0239 3.18e-5 0.0 

2 -3.53 0.353 0.0312 1.29e-4 3e-4 

3 -3.35 0.433 0.0384 3.03e-4 7.8e-3 

 
6.2.2 Damping force of the dome 
  In previous studies, discussion on the damping performance of a structure was limited, and there is still not a 
thorough understanding of the order of the magnitude of the damping force in a structure. Thus, the damping 
performance of the structure cannot be assessed. However, the damping performance is noneligible in 
performance-based seismic designs because it is an important energy dissipation part in a structure. In this study, the 
maximum vertical damping forces at the top of the dome in the three cases studied are investigated, as shown in Fig. 17. 
Through a statistical analysis, it is observed that these damping forces obey the 𝑙𝑜𝑔𝑛𝑜𝑟𝑚𝑎𝑙 distribution, and the 
statistical parameters of PDFs are listed in Table 7. In the table, the means of the maximum vertical damping forces 
have an order of amplitude of approximately 2–3 kN, and increase with the increase of the variability levels of the 
random input parameters, while the maximum vertical damping force at the top is 3.87 kN for the perfect dome. Their 
CDFs are shown in Fig. 18. This shows that the probabilities that the maximum vertical damping force at the top is 
larger than 4 kN, 7 kN, and 10 kN are equal to zero among the three cases.  

  

Fig. 17 Statistical analyses of damping force              Fig.18 CDFs of damping forces 
Table 7 Distribution parameters of damping force 

Case  𝝁 𝝈 Mean /kN Variance 

1 -6.09 0.243 2.32 3.28e-7 

2 -5.96 0.327 2.72 8.33e-7 

3 -5.84 0.391 3.12 1.61e-6 

 
6.3 A comparative study of the domes with and without uncertainties  
  In a single-sampling case, one sample is selected at random from every variable from their individual sampling space. 
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This group of data from single sampling represents a potential case of a structure. This can present the uncertainties of 
dynamic demands, and the entire effect of all random variables on dynamic demands. In this paper, the uncertainties of 
forces and deformations are discussed using two single-sampling schemes. Considering three typical members M-1 
(hoop member), M-2 (ridge member), and M-3 (diagonal member), shown in Fig.7(b), as an example, the relationships 
between the axial reaction forces and vertical deformations at mid-span in different cases are shown in Figs. 19 to 21.  

 
Fig. 19 Axial force–deformation curves of the member M-1 (hoop member) 

 

  

Fig. 20 Axial force–deformation curves of the member M-2 (ridge member) 

 

Fig. 21 Axial force–deformation curves of the member M-3 (diagonal member) 
  It can be seen that these members are mainly subjected to the axial pressure force. In general, as the variability levels 
of the random variables increase, the maximum axial reaction force decreases. This indicates that the contribution of the 
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members to the carrying capacity of the domes reduces. As expected, the reduction of the variability levels of the 
random input variables can improve the structural performance. Compared to the perfect dome, the axial reaction forces 
of the members in the dome with uncertain input parameters are less than the one in the dome with specific input 
parameters. There are, however, some exceptions, such as the axial forces in Fig. 21. In addition, a large difference in 
responses can also be observed in these figures. Therefore, the conventional method for a dynamic analysis may give 
rise to large errors in predicting the dynamic demands of the dome. 
 
7. Conclusions 
  In this paper, a comprehensive dynamic analytical procedure with multisource random variables is presented based 
on the finite element method. Damping, material, geometry, and load parameters are simultaneously taken into account 
in these analyses. The treatments of uncertainty in damping are proposed, where the material damping is modeled by 
the Bouc–Wen material model and the structural damping is modeled using the Rayleigh damping model. In Rayleigh 
damping model, the damping coefficients are calculated using the LSM that has a high accuracy and robustness. 
Dynamic reliability analysis of a dome is performed. Such analysis indicates that the variance level of the random 
variable has a negative effect on the dynamic properties and safety of the dome, and that the structural dynamic 
responses and damping forces obey the 𝑙𝑜𝑔𝑛𝑜𝑟𝑚𝑎𝑙 distribution. It has an order of amplitude of less than 10 kN in 
damping forces under the current external excitations. Through a comparison between the perfect dome and the one 
with uncertain input parameters, the obvious difference in dynamic demands is observed. Numerical results in this 
paper also reveal the necessity for the method proposed. 
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