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• Various machine learning and data analytics techniques have been 
used to address the unprecedented complexity of cross-domain 
urban data.

• Individual industries could expand the horizon of their data analytics 
projects by adopting inter-domain data.

• Policymakers can make more informed and comprehensive decisions 
with a holistic view of urban systems.

• There are still significant challenges in making organisation-owned 
data open to public. But potential solutions exist and the related tech-
niques are fast developing.

 Introduction

Urbanisation is a global trend that has resulted in a  fast-growing 
demand for infrastructure, transportation, energy, dwelling, educa-
tion, healthcare, entertainment, communication, banking and financ-
ing and other urban services. Cities are complex socioeconomic 
systems that must provide all these services. Urban systems or cit-
ies consist of a large number of sub-systems which must support indi-
vidual demands and also interact closely  with each other. A 
comprehensive understanding of the whole urban system can help us 
make efficient urban asset maintenance, accurate forecasts and 
informed plans for future demand.

However, in the past, data about different urban sub-systems are often 
locked up in different government agencies and organisations. Studies of 
a sub-system usually can only access isolated and fragmented datasets, 
and therefore treat the sub-system in an isolated and fragmented way, 
rather than considering it holistically. Fortunately, following the recent 
Open Data advocacy, more and more public data about urban sub- 
systems have been released by government agencies and organisations. 
This unlocks limitless opportunities for all parties in the urban systems to 
collaborate and innovate, not only for individual sub-systems but also for 
the urban system as a whole.
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Along with the Open Data movement, studies are now aiming to 
“move from data to information to knowledge, and, ultimately, to action 
for urban sustainability and human well-being.” (Ramaswami, Russell, 
Culligan, & Karnamadakala Rahul Sharma, 2016). To derive insights 
from the data collected in disparate areas, we need cross-domain data- 
driven solutions. In this chapter, we will shed light on three successful 
cases on water utility, parking and urban planning projects. This show-
cases how cross-domain urban data analysis techniques, combining a 
mixture of public urban data and private sub-system-specific data, can 
reshape the decision-making processes of businesses, governments and 
societies.

While current projects are often driven by a public/private organisa-
tion of a closed nature, we believe the general public and the organisa-
tions themselves could benefit from a more open environment. Following 
the case studies, we conclude this chapter with discussions on possible 
directions to increase the openness of urban sub-system data analytic 
projects, and how such movements could be a win-win for all parties.

 Urban Wastewater Pipe Blockage Prediction

 Background

For water utilities, wastewater pipe (sewer) blockages pose a great chal-
lenge to the daily operation of wastewater pipe networks. Not only do 
they result in high economic costs in emergency repairs and clean up, but 
they also have social impacts, such as service disruption, environmental 
pollution and road and amenity closure. Traditional forecasting and pre-
diction techniques are currently not capable of accurately predicting 
sewer chokes. Sydney Water, one of the largest water utilities in Australia, 
sponsored a study with us to address this challenge. The aim was to inves-
tigate and understand the key factors that impact the sewer blockage 
patterns and develop a prediction model to predict future blockage prob-
ability. The outcome of this project provides data-driven decision support 
to water utilities that could lead to a more efficient and predictive main-
tenance strategy.

10 Linking Complex Urban Systems: Insights… 
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If current field validation of the model is successful, a preventative 
maintenance programme may reduce the social, reputational and 
 environmental impact of sewer chokes, enable more efficient allocation 
of resources, improve regulatory compliance and reduce disruptions, 
rebates and property damage costs.

Interestingly, the data from vegetation coverage, climate, soil and 
demography plays a significant role in the solution, which demonstrates 
the value of cross-domain data analysis.

 Datasets

Sewer blockages can be caused by many things, including tree roots, grease, 
debris and foreign objects (e.g., soft wipes). There are many factors which 
may contribute to blockage incidents, including the pipe’s intrinsic charac-
teristics (diameter, length, material, etc.), the pipe’s external environment 
(vegetation coverage, climate and soil condition, property type and demo-
graphical characteristics) and historical blockage events. In order to achieve 
accurate prediction, we investigated the following datasets (Table 10.1).

Table 10.1 Datasets used for urban wastewater pipe blockage prediction

Dataset Description Source

Sewer 
network

Characteristics of pipes, 
including laid year, diameter, 
length, material, location, etc.

Private—water utility

Blockage 
records

Historical blockage records, 
including blocked pipe, date, 
type of blockage, blockage 
location, etc.

Private—water utility

Vegetation 
coverage

Shapes (polygons) of tree 
canopies for more than 4 
million trees, obtained from 
satellite imagery.

Private/Public—third party

Climate and 
soil

Rainfall, temperature, 
evaporation and soil moisture.

Private/Public—Bureau of 
Meteorology and Office of 
Environment and Heritagea

Demographic Property types and densities, 
population, etc.

Public—Australian Bureau 
of Statisticsb

ahttp://www.bom.gov.au/climate/data/
bhttp://www.abs.gov.au/websitedbs/censushome.nsf/home/datapacks
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 Factor Analysis

Based on the historical data of sewers and blockages, we conducted statis-
tical analysis (Li, Zhang, Wang, Chen, & Vitanage, 2014; Li et al., 2015) 
to discover the influences of different factors. This provides useful insights 
towards the prediction model, such as:

Pipe characteristics: using only the sewer and blockage data, we could 
get the insights about the performance of pipes with different character-
istics. Figure 10.1 shows the blockage rates of pipes laid in different years. 
Figure 10.2 shows the blockage rates for a few common materials, which 
suggests that pipes made of PVC (polyvinyl chloride) are less prone to 
blockage than other materials. When local knowledge of the number and 
types of pipes laid in different years is taken into account, these confirm 
the domain knowledge held by experts in water utility.

Tree coverage: tree root intrusion is one of the most common causes of 
sewer blockages in the Sydney Water network. For a tree, the extent of its 
root system is dependent on the species, age, nutrient availability and 
physical limitations of surrounding soil. However, the tree canopy often 
provides a good indication of the size of the root system. Sydney Water, in 
collaboration with Jacobs, developed a tree canopy polygon layer in order 
to understand the relationships between vegetation and blockages caused 
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Fig. 10.1 Blockage rates of wastewater pipes laid in different years
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by tree roots. The pipe network is overlaid on the tree canopy poly-
gons (refer to Fig. 10.3) to compute the tree canopy coverage percent-
age of each pipe. As shown in Fig. 10.4, a clear positive correlation 
between tree canopy coverage and blockages caused by tree roots can 
be observed.

Climate and soil conditions: to understand the impact of climate and 
soil condition to sewer blockages, we matched the temperature, rain-
fall, evaporation and soil moisture data to each pipe in the whole net-
work. A strong correlation between the climate and soil conditions  
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and the  blockages occurred 6 months later is observed. One theory is 
that the climate in summer affects the growth of tree roots, which in 
turn affects the number of blockages for the following winter peak. 
Figure 10.5 demonstrates the predictive power of the climate and soil 
conditions on the blockages.
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 Methodology and Outcome

We proposed a new variant of Hawkes process (Hawkes, 1971) for short- 
term (one year) sewer blockage prediction (Lin et  al., 2015, 2016a). 
Hawkes process is a stochastic point process (Daley & Vere-Jones, 2002) 
based statistical model. In this study, each blockage event is treated as a 
point, and the point intensities (number of blockages in the future) are 
predicted using both background intensity and trigger intensity. The 
background intensity models the impact of a pipe’s intrinsic characteris-
tics and external environment on blockage behaviours, while the trigger 
intensity models the contribution of a pipe’s past blockage history on 
future blockage events. All the key influential factors discovered in the 
factor analysis phase are utilised in the prediction model.

To evaluate the performance of our predictive model, we split the 15-year 
blockage data into two parts: the first 14 years’ data are used to train the 
model, and the model is blind-tested using the last year’s data. As shown in 
Fig. 10.6, the prediction model could accurately predict risk of blockages in 
testing year: the top 1% pipes with high-predicted blockage risk contribute 
to about 8% of the blockages in the testing year. In other words, if top 1% 
high-risk pipes according to prediction were fixed, about 8% of the blockages 
would have been prevented. Similarly, fixing 10% of the pipes according to 
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the predicted risk would have prevented more than 40% of blockages. Sydney 
Water is conducting a field validation to confirm the performance of the 
model, and if passed, the predictive model could improve the efficiency and 
reduce the cost of the future maintenance schedules.

This project illustrates how water utilities could improve their mainte-
nance schedules by bringing in open urban data. With the predictive model 
driven by cross-domain data, water utilities could reduce their operation 
cost and service interruptions, providing a better service with lower cost to 
the public. Modern cities are a complex system with sub- systems interact-
ing with each other. With the movement of Open Data, datasets of differ-
ent sub-systems will be empowering similar techniques in other 
asset-intensive urban sub-systems, bringing better services to the citizens.

 Smart Parking Occupancy Pattern Analysis

 Background

With the increasing demand and expectation for public parking spaces, 
smart parking systems are being adopted in many parking lots. They uti-
lise sensing devices to monitor occupancies in real-time, and distribute 
the information via various channels, such as signboards, Internet web-
sites and mobile applications. They help reduce parking time, ease traffic 
load burden and better utilise the parking spaces.

In this study, we collaborated with a local government agent on a trial 
of smart parking system. The aim is to understand the parking patterns 
from the sensor data, and develop a prediction model for the future occu-
pancy rates. The outcomes of the data analysis and prediction model pro-
vide decision support for both policymakers and motorists.

 Datasets

The parking lots in this trial are located at a local central business area, 
surrounded by shops, restaurants, a cinema and a cricket/oval ground 
hosting Australian Football League (AFL) games. Each of the facilities 

10 Linking Complex Urban Systems: Insights… 
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has different attendance patterns, which generates different parking 
demand. In order to understand the impacting factors for the parking 
patterns, we investigated the following datasets (Table 10.2).

 Factor Analysis

In order to identify influential factors for predicting parking patterns, we 
conduct statistical analysis on different factors. We analysed the parking 
patterns in three metrics:

• Occupancy rate: the utility ratio of a parking bay, defined as the per-
centage of duration that the bay is occupied by vehicles.

• Arrival rate: the turn-over of a parking bay, defined as the number 
vehicles arrived per hour per bay.

• Overstay rate: the percentage of vehicles that stayed more than 10 
minutes over the parking time limit.

A few useful insights discovered include:
Hour of day: as one would expect, the demand for parking spaces would 

have its peak and non-peak time during a day. Table 10.3 summarises the 

Table 10.2 Datasets used for smart parking occupancy pattern analysis

Dataset Description Source

Parking 
records

Records of more than 4 million parking 
events for more than 400 bays, 
including start time, end time, bay, 
lot type (1P Free, 2P Voucher, etc.), 
location, etc.

Public—Open Data 
Portal (ACT 
Government, 2017)a

Public Wi-Fi Number of users connected to nearby 
public Wi-Fi access points.

Private—Local 
government

Payment 
transactions

Payment records for paid parking lots. Private—Local 
government

Special days Dates of public holidays and events 
(Father’s day, Mother’s day, AFL 
game).

Public—Public

Weather Temperature, rainfall and solar. Public—Bureau of 
Meteorologyb

ahttps://www.data.act.gov.au/Transport/Smart-Parking-Stays/3vsj-zpk7
bhttp://www.bom.gov.au/climate/data/
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occupancy rate for different lot types. Two peak times for lunch 
(11:00–13:00) and dinner (18:00–20:00) are observed for most lot types.

Special days: we matched the parking records with the dates of public 
holidays and events to see if there are any differences in parking patterns. 
As depicted in Fig. 10.7, such days do exhibit different parking patterns 
compared to a normal day, and each day has its unique pattern. For 
instance, the occupancy rate is higher on Easter Saturday, AFL game day 
and Mother’s Day, but much lower on Christmas and Boxing Day.

Weather: to investigate the parking behaviours in different weather, we 
matched the parking records with the local temperature, rainfall and solar 
records. However, no significant difference in parking pattern is observed. 
Figure 10.8 shows the results for rainfalls, no matter a day is sunny or 
rainy, the occupancy, arrival and overstay rate stay in same levels.

 Methodology and Outcome

In order to help motorists plan their trips, we build an ensemble-based 
regression model (Polikar, 2006) that takes all the factors as input to pre-
dict next hour occupancy rate for every parking lot. The model is chosen 

Hour Overall
5Min 
Free

1/4P 
Free

1/2P 
Free

1/2P 
Voucher

1P Free
1P 

Voucher
2P Free

2P 
Voucher

4P 8P Disabled Dropoff EV LZ

0 0.053 0.119 0.043 0.076 0.079 0.094 0.114 0.126 0.042 0.022 0.030 0.016 0.067 0.013 0.025
1 0.043 0.095 0.036 0.052 0.050 0.081 0.081 0.122 0.032 0.019 0.028 0.012 0.038 0.008 0.016
2 0.042 0.073 0.039 0.039 0.038 0.078 0.082 0.148 0.029 0.018 0.028 0.010 0.022 0.007 0.016
3 0.043 0.064 0.034 0.032 0.034 0.074 0.104 0.166 0.027 0.018 0.028 0.010 0.021 0.007 0.014
4 0.045 0.060 0.037 0.029 0.035 0.069 0.120 0.175 0.027 0.019 0.028 0.010 0.015 0.010 0.014
5 0.062 0.069 0.046 0.029 0.063 0.076 0.199 0.205 0.058 0.019 0.027 0.018 0.016 0.016 0.015
6 0.107 0.224 0.067 0.033 0.148 0.157 0.270 0.232 0.158 0.021 0.028 0.065 0.023 0.016 0.029
7 0.200 0.634 0.339 0.070 0.284 0.337 0.367 0.308 0.357 0.028 0.039 0.120 0.036 0.017 0.067
8 0.308 0.720 0.457 0.452 0.317 0.521 0.402 0.451 0.573 0.050 0.105 0.219 0.043 0.043 0.137
9 0.430 0.776 0.552 0.776 0.419 0.620 0.489 0.653 0.760 0.121 0.202 0.398 0.090 0.097 0.272
10 0.567 0.790 0.625 0.858 0.606 0.769 0.612 0.774 0.897 0.308 0.246 0.691 0.116 0.296 0.422
11 0.634 0.827 0.680 0.885 0.714 0.833 0.671 0.773 0.912 0.450 0.293 0.811 0.162 0.409 0.468
12 0.725 0.863 0.734 0.926 0.874 0.934 0.742 0.784 0.946 0.646 0.334 0.869 0.327 0.521 0.492
13 0.729 0.853 0.735 0.910 0.846 0.897 0.733 0.770 0.929 0.706 0.357 0.788 0.339 0.516 0.446
14 0.646 0.837 0.728 0.865 0.739 0.805 0.676 0.723 0.867 0.536 0.339 0.717 0.236 0.443 0.360
15 0.579 0.841 0.739 0.867 0.689 0.735 0.675 0.679 0.831 0.393 0.289 0.625 0.243 0.371 0.286
16 0.539 0.844 0.760 0.854 0.725 0.731 0.695 0.640 0.770 0.335 0.237 0.508 0.237 0.345 0.289
17 0.543 0.859 0.764 0.831 0.873 0.804 0.762 0.540 0.739 0.383 0.148 0.444 0.376 0.419 0.478
18 0.653 0.870 0.735 0.883 0.917 0.913 0.811 0.530 0.888 0.643 0.108 0.550 0.501 0.596 0.691
19 0.694 0.870 0.678 0.885 0.913 0.920 0.792 0.523 0.902 0.761 0.160 0.592 0.540 0.625 0.723
20 0.605 0.847 0.574 0.792 0.868 0.830 0.739 0.451 0.759 0.646 0.147 0.455 0.483 0.550 0.647
21 0.404 0.764 0.414 0.538 0.729 0.607 0.601 0.316 0.466 0.371 0.094 0.243 0.352 0.375 0.510
22 0.232 0.594 0.212 0.306 0.476 0.399 0.431 0.231 0.221 0.181 0.059 0.121 0.218 0.197 0.221
23 0.113 0.224 0.067 0.146 0.219 0.203 0.262 0.179 0.090 0.072 0.039 0.045 0.115 0.053 0.069

Table 10.3 Occupancy rate for different hour of day and different lot types

10 Linking Complex Urban Systems: Insights… 
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because it is able to handle heterogeneous data types from different data 
sources, and it offers competitive prediction performance.

The predictive model is tested by using the standard ten-fold cross- 
validation process. That is, the data are split into ten folds, and the model 
is trained and tested for ten rounds, where in each round, nine folds of 
data are used to train the model, and one fold is left to test the results. 
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The overall R2 score is 89.9%, which means the model could predict the 
occupancy rate with high accuracy, explaining about 90% of the varia-
tion. According to a survey for the trial smart parking app, most users 
find the occupancy rate prediction function to be useful in planning their 
trips and reducing parking time.

The project illustrates how Open Data could be contributing to the 
modelling of parking availability. Like other urban sub-systems, the traffic 
condition of a city is impacted by many factors. By providing a better guide, 
the parking time is reduced, and the traffic condition improved. To bring 
greater good to the community, and to inspire further research, the parking 
data is made available on the Open Data Portal (ACT Government, 2017).

 Urban Function and Region Popularity 
Analysis

 Background

In recent years, the fast-growing urban population and shifting urban 
functions pose a major challenge for urban planners. In a joint study with 
the planning department of a regional government, we aim to under-
stand various factors involved in these processes, and answer the  question: 
“where, when and why a region develops?” (Zhang, Zhang, Guo, Wang, 
& Chen, 2018)

 Datasets

There are many factors influencing the developments of urban systems. 
In this study, we investigated the following datasets (Table 10.4).

 Methodology and Outcome

We performed three different analyses on the collected cross- 
domain datasets:

Dwelling productions: dwelling production is an important indicator of 
urban development. Using the macroeconomic indicators as input factors, 

10 Linking Complex Urban Systems: Insights… 
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we aim to predict when and where new dwelling will appear. As shown in 
Fig.  10.9, macroeconomic indicators are informative predictors for the 
dwelling production, yielding an accurate prediction.

Table 10.4 Datasets used for urban function and region popularity analysis

Dataset Description Source

Development 
application

Time, location, type, scale of 
new developments.

Public—Planning 
departmenta

Macroeconomic 
indicators

GDP, inflation rate, labour 
markets, housing, population, 
market/consumer 
performance, etc.

Public—Australian 
Bureau of Statistics and 
Reserve Bank of 
Australiab

Urban functions More than 100 categories of 
business and public facilities, 
including location, type and 
size.

Public—Google Places 
APIc

Properties Type (house/apartment/unit), 
configurations (number of 
bedrooms), historical price.

Public—real estate 
websitesd

ahttps://data.gov.au/dataset/sydney-region-dwellings/resource/cd918b27-05a8- 
426e-9d9e-e54d5b963c53

bhttps://www.rba.gov.au/statistics/tables/
chttps://developers.google.com/places/web-service/intro
dhttps://www.realestate.com.au/
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Urban functions: we try to understand the similarities and differences 
of different urban regions in terms of urban functions. To achieve this, we 
first compute the function intensities for each region from the business 
and public facility location data. The function intensity for a particular 
type of business and public function (e.g., bank, restaurant or school) 
measures the density of facilities with that function. Some examples of 
urban functions are shown in Fig. 10.10.

With the function intensities for each region, we then cluster the 
regions into different groups using a Bayesian nonparametric mixture 
model with spatial constraints (Lin et al., 2016b). The algorithm offers a 
tool to discover the regional patterns of urban functions and the similari-
ties among regions.

Region popularity: lastly, we combine the urban functions and prop-
erty data to analyse the region popularity. A self and mutually excited 
stochastic interaction point process (Lin et al., 2016a, 2016b) is used to 

Fig. 10.10 Examples of urban functions for the greater Sydney area
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estimate the region popularity based on both the historical property 
price and region functions. The estimated popularity heat map and price 
contour lines are shown in Fig. 10.11. The model (Zhang et al., 2018) 
provides a useful tool to understand the interactions between urban 
functions and regional popularities.

 Conclusion and Future Direction

The advocacy of Open Data helps make a huge amount of valuable 
urban data publicly available. The potential of such data, however, 
can only be fully realised by adopting a holistic cross-domain view of 
them. In many cases, the open urban data needs to be exploited with 
the support of organisation-owned private data for maximising its 
value. In this chapter, we showcased how industries and government 
agencies can utilise a combination of cross-domain data from both 
public and private sources to improve their capabilities in planning, 
operating and maintenance. These successful projects demonstrate 
the demand, methodology and benefit of the cross-domain urban 
data analysis. In the following, we share some of our observations and 
considerations on how to fully release the power of open urban data 
and how to gradually make more privately owned urban data publicly 
open for the society to use.

Fig. 10.11 Region popularity (median property price) heat map and evaluation 
contour line for the greater Sydney area
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• Thanks to the advanced data analytic techniques, especially the recent 
advance in artificial intelligence and machine learning, the value of 
open urban data can be greatly released and help generate valuable 
insights for supporting efficient urbanisation.

• Synergy exists between open and private urban data. Open urban data 
can help leverage the potential value of organisation-owned private 
data. Both open and private urban data can work together to empower 
the efficient operation and maintenance of urban systems.

• Urban system has many sub-systems, for example, urban infrastruc-
ture, urban transportation and so on, which are working closely with 
each other. Making one sub-system’s data public open can benefit 
other sub-systems via cross-domain urban data analysis.

• Due to the data security and privacy concerns, it is difficult for many 
industrial organisations to make their datasets public open. However, 
the value of such private urban data is significant. Hence, efforts need 
to be made to help industrial organisations to gradually release their 
data and make it publicly available for other parties’ utilisation.

• Research community has also paid attention to help make private data 
safely open for sharing. For instance, privacy preserving data analysis 
and machine learning on encrypted data techniques (Aldeen, Salleh, 
& Razzaque, 2015; Graepel, Lauter, & Naehrig, 2013) have attracted 
increasing attention and have been widely adopted in many different 
areas for making private data safely sharable.

Performing cross-domain data analysis for a single urban sub-system is 
just the first step. Looking into the future, more efficient optimisation of 
urban systems could be achieved if we could jointly optimise multiple 
sub-systems together. For example, by considering the current demo-
graphics and new developments of shops and dwellings, local govern-
ments could obtain an accurate forecast of how the urban functions will 
change in the future, and make collaborated policies to facilitate such 
transition. Such information could also be passed to utility and telecom-
munication companies to ensure the infrastructures could be built to 
match the growing demand. We believe that Open Data, combined with 
cross-domain data analysis, could transform future cities into smart, 
inclusive and responsive open cities.

10 Linking Complex Urban Systems: Insights… 



238

Acknowledgements The authors would like to thank our Sydney Water col-
laborators, Bronwyn Cameron, Mark McGowan, Craig Mitchell, Judith Winder 
and Rod Kerr, for the wastewater pipe blockage prediction work.

References

ACT Government. (2017). Smart parking stays | Open data portal. [Online]. 
Retrieved May 21, 2018, from https://www.data.act.gov.au/Transport/
Smart-Parking-Stays/3vsj-zpk7

Aldeen, Y. A. A. S., Salleh, M., &. Razzaque, M. A.. (2015). A comprehensive 
review on privacy preserving data mining. s.l.: SpringerPlus.

Daley, D., & Vere-Jones, D. (2002). An introduction to the theory of point pro-
cesses. s.l.: Springer.

Graepel, T., Lauter, K., & Naehrig, M. (2013). ML confidential: Machine learn-
ing on encrypted data. s.l.: Information Security and Cryptology—ICISC 
2012. ICISC 2012. Lecture Notes in Computer Science, vol. 7839. Springer, 
Berlin, Heidelberg.

Hawkes, A. G. (1971). Spectra of some self-exciting and mutually exciting point 
processes. Biometrika, 58(1), 83–90.

Li, B., Zhang, B., Li, Z., Wang, Y., Chen, F., & Vitanage, D. (2015). Prioritising 
water pipes for condition assessment with data analytics. s.l.: OzWater.

Li, Z., Zhang, B., Wang, Y., Chen, F., & Vitanage, D. (2014). Water pipe condi-
tion assessment: A hierarchical Beta process approach for sparse incident data. s.l.: 
Machine Learning.

Lin, P., Zhang, B., Wang, Y., Li, Z., Li, B., Wang, Y., & Chen, F. (2015). Data 
driven water pipe failure prediction: A Bayesian nonparametric approach 
(pp.  193–202). New  York, NY: ACM International Conference on 
Information and Knowledge Management.

Lin, P., Zhang, B., Guo, T., Wang, Y., & Chen, F. (2016a). Infinite hidden semi- 
Markov modulated interaction point process (pp.  3900–3908). Barcelona, 
Spain: Advances in Neural Information Processing Systems.

Lin, P., Zhang, B., Guo, T., Wang, Y., & Chen, F. (2016b). Interaction point 
processes via infinite branching model. Phoenix, AZ: Thirtieth AAAI Conference 
on Artificial Intelligence.

Polikar, R. (2006). Ensemble based systems in decision making. IEEE Circuits 
and Systems Magazine, 6(3), 21–45.

 L. Zhang et al.

https://www.data.act.gov.au/Transport/Smart-Parking-Stays/3vsj-zpk7
https://www.data.act.gov.au/Transport/Smart-Parking-Stays/3vsj-zpk7


239

Ramaswami, A., Russell, A. G., Culligan, P. J., & Karnamadakala Rahul Sharma, 
E. K. (2016). Meta-principles for developing smart, sustainable, and healthy 
cities. Science, 940–943.

Zhang, B., Zhang, L., Guo, T., Wang, Y., & Chen, F. (2018). Simultaneous 
urban region function discovery and popularity estimation via an infinite urban-
ization process model. London, UK: ACM SIGKDD Conference on 
Knowledge Discovery and Data Mining.

10 Linking Complex Urban Systems: Insights… 


