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Abstract

Many algorithms for Knowledge-Based Question
Answering (KBQA) depend on semantic parsing,
which translates a question to its logical form.
When only weak supervision is provided, it is usu-
ally necessary to search valid logical forms for
model training. However, a complex question typi-
cally involves a huge search space, which creates
two main problems: 1) the solutions limited by
computation time and memory usually reduce the
success rate of the search, and 2) spurious logical
forms in the search results degrade the quality of
training data. These two problems lead to a poorly-
trained semantic parsing model. In this work, we
propose an effective search method for weakly su-
pervised KBQA based on operator prediction for
questions. With search space constrained by pre-
dicted operators, sufficient search paths can be ex-
plored, more valid logical forms can be derived,
and operators possibly causing spurious logical
forms can be avoided. As a result, a larger pro-
portion of questions in a weakly supervised train-
ing set are equipped with logical forms, and fewer
spurious logical forms are generated. Such high-
quality training data directly contributes to a better
semantic parsing model. Experimental results on
one of the largest KBQA datasets (i.e., CSQA) ver-
ify the effectiveness of our approach and deliver a
new state-of-the-art performance.

1 Introduction

Knowledge-based question answering (KBQA) interacts with
a knowledge base (KB) and draws a correct answer for a fac-
toid question. Many top-performing approaches to KBQA
are based on a semantic parsing framework, that is, trans-
lating a natural language question into corresponding logical
form in the light of pre-defined grammars [Artzi and Zettle-
moyer, 2013; Vlachos and Clark, 2014; Suhr et al., 2018;
Agarwal et al., 2019]. For example, “how many people have
birthplace at Provence” has a corresponding logical form
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COUNT(FIND( Provence, place-of-birth)). The logical form
is then executed by a KB system to retrieve an answer.

To train a semantic parser, ideal training example is in
the format of {(question, logical form). Nevertheless, it usu-
ally requires some expertise to compose logical forms, espe-
cially for complex questions [Berant ef al., 2013; Pasupat and
Liang, 2015; Saha et al., 2018], so it is not realistic to employ
crowdsourcing to scale up the size of such training data. To
circumvent this challenge, a weakly supervised training set-
ting was proposed. The idea is to create training examples
in the format {question, answer) instead of (question, logical
Sform), since it is easier to get the answer for a factoid ques-
tion than writing the corresponding logical form. However,
answers cannot be directly used to train a semantic parser ef-
fectively. Hence, given a factoid question, a crucial step in
weak supervision is to automatically search for valid logical
forms over a knowledge base, which must lead to the given
ground-truth answer after its execution. Logical forms de-
rived from the searching process will then be considered as
fully-supervised training targets for a semantic parser.

In this case, the quality of a semantic parser depends heav-
ily on the effectiveness of upstream searching process for log-
ical forms. However, the search space for eligible logical
forms can be very large [Iyyer et al., 2017]. For example,
a complex question frequently involves 7 to 8 steps, and in
each step an operator is chosen from up to 20 candidates. The
size of search space is then about 207 ~ 20%. Although we
may leverage the constraint of grammars to prune the search
space, it can still be at the magnitude of 10* ~ 10°. The large
search space results in two challenges as follows.

First, it may not be practical to exhaustively search the
whole hypothesis space, since this takes huge cost in com-
putation time and memory to verify each candidate by ex-
ecuting the logical form in a large-scale KB. Therefore, an
usual practice is to search a randomly-selected, middle-sized
subspace. However, such incomplete search possibly misses
valid logical forms. In our empirical study, we define search
success ratio as the number of questions for which the sub-
space search can find valid logical forms, divided by the total
number of questions. We applied some traditional search al-
gorithms, such as naive BFS [Guo e al., 2018], on a public
dataset CSQA [Saha et al., 2018], and found the success ratio
is very low. For example, the search success ratio for com-
parative and quantitative questions are barely 25% and 43%
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respectively. In other words, for a large percentage of these
questions, there are no corresponding logical forms gener-
ated as training data. As shown in our experiment part (§3.2),
the insufficient training data can negatively impact the perfor-
mance of a semantic parsing model.

Second, even if we overcome the practical resource limita-
tions and search the entire space, we are likely to find spuri-
ous logical forms rather than correct ones. A spurious logical
form does not match the semantic meaning of the original
question, but coincidentally results in ground-truth answer
after execution. For example, given a question “Who wrote
the screenplay for Inherent Vice”, the following two logi-
cal forms, i.e., 1) DIFF(FIND(SET(Inherent Vice), screen-
writer), SET(Inherent Vice)), and 2) FIND(SET(Inherent
Vice, screenwriter)), are valid and lead to the ground-truth
answer, but only the latter is correct. To measure the severity
of spurious logical forms, we conducted a quantitative analy-
sis over randomly held-out examples by human evaluation on
CSQA, and found that up to 54.5% of the search results are
spurious. A large percentage of spurious forms in the train-
ing set can introduce high noise and thus also diminish the
performance of a semantic parsing model.

Several prior works have been proposed to reduce search
space or decrease spurious logical forms, which can be cat-
egorized into two ways. First, some methods use techniques
to reduce search space but still suffer from spurious logical
forms, such as macro grammars [Zhang er al., 2017] and log-
ical form sketch [Dong and Lapata, 2018]. Second, other
works try to gradually reduce spurious logical forms while
their models are iteratively trained on weakly supervised data,
such as iterative search [Dasigi et al., 2019] and discrete hard
EM [Min et al., 2019], but these methods still suffer from
high failure ratio due to exponentially-growing search space.

In this work, we propose a novel approach to effectively
search for logical forms over a large-scale knowledge base
by introducing an operator predictor. Intuitively, we can es-
timate operator candidates for a given question based on its
semantics, e.g., interrogative, keywords and contextual em-
beddings. For example, the phrase “the most” may suggest
ARGMAX and “less than” may suggest LESS. With the con-
straint of the predicted operator set, searching for valid logi-
cal forms will result in a lower percentage of spurious logical
forms and a higher ratio of the search success. In turn, high-
quality training data will improve the accuracy of downstream
question-to-logical-form translation model. Additionally, the
predicted small set of operators can also be easily integrated
into translation model’s decoder to improve performance by
constraining the decoding vocabulary.

Experiments on CSQA dataset [Saha et al., 2018], one of
the largest weakly supervised KBQA datasets over a large-
scale KB with complex questions, verify the effectiveness of
this approach. In particular, by searching for logical forms
with our approach, the percentage of spurious logical form
is reduced from 55% to 27% by human evaluation, and the
search success ratio increases from 72% to 76%; for KBQA
task, the overall score is significantly improved compared to
baselines, and achieves a new state-of-the-art performance.
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Alias Operator

A1/A2/A3 start — set/num/bool

A4 set — FIND(set, p)

A5 num — COUNT(set)

A6 bool — IN(e, set)

AT/A8/A9 set — UNION / INTER / DIFF(sety, setz)
A10/A11 set — GREATER / LESS(set, p, num,)
Al12 set — EQUAL(set, p, num)

Al3/A14 set — ARGMAX / ARGMIN(set, p)
AlS set — SET(e)

A16/A17/A18 | e/p/num — constant *

Table 1: Grammars to compose logical form. *Instantiation for en-
tity e, predicate p or number num from an input question.

2  Our Approach

This section starts with an introduction to grammars and log-
ical form. Then, an outline of proposed approach and the
details of its components are elaborated.

2.1 Grammar and Logical Form

We leverage similar formats of grammar and logical form as
in [Guo er al., 2018]. Here we give a brief introduction and
refer readers to [Guo et al., 2018] for more details.

Grammar. The grammar definitions are shown in Table 1,
where each operator is composed of three parts, i.e., a seman-
tic category, a function symbol and a list of arguments. An
argument can be a semantic category or a constant instanti-
ated from a question.

Logical Form. A KB-executable logical form is usually
formatted as a tree structure, where the root is the start oper-
ator and each child node is a legitimate operator constrained
by a semantic category in its parent’s argument list. To
take advantage of sophisticated sequence-to-sequence mod-
els [Bahdanau et al., 2015; Vaswani et al., 2017] for question-
to-logical-form translation, we re-format tree structure into a
sequence by applying depth-first traversal over the tree. Re-
versely, once a sequence-formatted logical form is generated
during decoding phase, it can be easily recovered into tree
structure under grammars’ guidance.

2.2 Overview of Our Approach

As shown in Figure 1, our approach mainly consists of 6
steps: searching, cleaning, training operator predictor, opera-
tor prediction, re-searching, and training semantic parser.

Searching and Cleaning. Step 1 and 2 create training ex-
amples for proposed operator predictor based on a sampled
small subset (e.g., 1/10 of the total in this work) of the entire
training data D, which results in a new training set D’.

In Step 1, for each question Q° in the sampled small
dataset, we naively search and get valid' logical forms LF? =
{12112, ... }. As stated in §1, this step could generate
spurious logical forms and lead to bad operator predictor if
we directly use these data for the model training. Hence, we
further clean the searched results in Step 2.

"Multiple valid logical forms would be found for one question,
but only a part of them are correct, otherwise spurious.
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Figure 1: An overview of the proposed approach.

In Step 2, we clean searched logical forms according to tax-
onomy of questions, which is inspired by an observation that
questions belong to the same type require similar operators.
For example, these three quantitative questions, “How many
cities are sister town of ...”, “How many rivers flow through
..., and “How many countries have ...” require the COUNT
operator, rather than ARGMAX. Specifically, we first create a
legitimate operator set for each question type. The criterion
is that, for a question type, an operator is legitimate if remov-
ing the operator from the candidates leads to a notable (e.g.,
1% in our setup) search success ratio drop for the questions
in that type. Then for each LEF"*, we remove illegal logical
forms that contain any operators not belonging to the legit-
imate set of the corresponding question type. And, Ops’ is
defined as a set of unique operators appearing in the cleaned
LF". To obtain a type of each question, we use unsupervised
clustering to train a question typing model (detailed in §2.3).

Model Training for Operator Predictor. In Step 3, an op-
erator predictor model M, which maps a question Q° into its
most likely operators Ops® to compose a correct logical form,
is trained based on the cleaned training data D’. More details
about operator predictor are presented in §2.3.

Training Data Generation for KBQA. In Step4 and 5, we
apply M to each question in all training data D for predicting
its most likely operators Ops?, and then re-search for valid
logical forms LF? based on the reduced operator candidates
Ops® C A. Ais a set of all operators defined in Table 1.

Model Training for KBQA. Lastly, in Step 6, we train a
semantic parser based on the re-searched results in Step 5.
Notably, this approach involves two rounds of searches, but
it is still faster than previous works (e.g., naive BFS by Guo
et al. [2018]). The reason is that, in Step 1 only a small sub-
set (e.g., 10%) needs to be fully searched as previous works
do; and with reduced search space, the re-search in Step 5
is much faster than previous works. For example, on CSQA
benchmark, our algorithm is ~20x faster than its baseline.
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There are two main benefits to incorporating an operator
predictor into a standard “searching and training” scheme.
First, it helps to provide high-quality data for downstream
model training by improving search success ratio and reduc-
ing the number of spurious logical forms. Second, it makes
training and inference more efficient by providing the con-
straint from legal operators.

2.3 Model Details

We detail the implementation of our models in this section,
including question typing in Step 2 and operator predictor
in Step 3. Then, we summarize a neural symbolic model
[Guo er al., 2018] as semantic parsing baseline to complete
our framework, which consists of three sub-tasks: entity
detection & linking, predicate prediction, and sequence-to-
sequence translation (refer to [Guo ef al., 2018] for details).

In formal terms, a question () is first tokenized as a list of
words, i.e., Q = [wy,...,w,], and then, a word embedding
approach [Mikolov et al., 2013] is invoked to transform the
discrete words into low-dimensional vector representations,
ie, X = [x1,...,Tn] € R%X" where d. denotes embed-
ding size and n stands for question sequence length.

Unsupervised Question Typing. Off-the-shelf question
type information is not usually provided in a dataset, so an
unsupervised question typing approach is proposed to gen-
eralize our pipeline. This can be regarded as a text cluster-
ing task that targets assigning same cluster label to the ques-
tions with similar purposes. LDA topic modeling or k-means
clustering, which operates on texts (or their embeddings), are
typical ways to fulfill text clustering. However, direct operat-
ing on texts in an unsupervised manner empirically results in
an inferior performance because the pivotal words (e.g., how
many, large than) of this problem are usually identified as
stop words by TF-IDF. To handle this, we make the cluster-
ing algorithm operate on the logical forms. We first derive a
binary vector b* € {0, 1}/ from LF? in naive search (Step
1). Each element in b* denotes whether the corresponding
operator appears in LF?. Then we use the binary vectors of
the small dataset in Step 1 as input features to train a k-means
model, and assign each question with a cluster label.

Operator Predictor. We define this sub-task as a multi-
label classification problem, whose input is a natural language
question and output is a set of operators possibly compos-
ing correct logical form for the question. In particular, a bi-
directional LSTM (Bi-LSTM) [Hochreiter and Schmidhuber,
1997] performs over input word embeddings as an encoder to
capture contextual information, which is denoted as

B = LSTM(as, B 060), Vi=1,...,n, (1)
B = 8T (i, B ($:009), Vi=n,...,1, (@)
w® = [B®; 7)) e ¥, 3)

where #(*) are learnable parameters for Bi-LSTM, [; ] denotes

a concatenation operation, and u(*) is the resulting vector
representation for the whole question. Then, the probability
of generating each operator p(®) is defined as

p® = sigmoid(MLP(u(®);003)) e RMI (4)
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where MLP(+) is a multi-layer perceptron.

Entity Detection & Linking and Predicate Prediction.
Entity detection aims to locate named entity mention in the
input question, which is usually formulated as a sequence la-
beling problem. To solve this, we use a Bi-LSTM to predict
entity mention tag for each input word. Then, given the de-
tected mentions, we use entity linking system from [Guo et
al., 2018] for linking them back to entities in a KB. In addi-
tion, identifying predicates in a question is also essential to
compose an executable logical form. To this end, we simply
formulate this predicate prediction sub-task as a multi-class
classification problem. In brief, a Bi-LSTM is used to embed
the sentence as a vector representation, which is followed by
an MLP classifier to predict the correct predicate.

Question-to-Logical-Form Translation. Given predicted
entity and predicate candidates from the upstream, a seman-
tic parsing model aims to translate an input natural language
question into KB-executable logical form. Since the gold log-
ical forms have been formatted as sequences, we employ a
sequence-to-sequence encoder-decoder structure with atten-
tion mechanism [Bahdanau et al., 2015] to fulfill this task.

3 Experiment

This section begins with experimental setups. Then, the eval-
uations includes KBQA, logical form searching, and two sub-
tasks. Lastly, case study and error analysis are presented for
qualitative understanding of this work.

3.1 Experimental Settings

Dataset. We used one of the largest weakly-supervised KB-
QA datasets over a large-scale knowledge base, Complex Se-
quential Question Answering (CSQA) [Saha et al., 2018].
There are 1.6M turns in 200K dialogues without logical form.
Its KB is built on WIKIDATA in the form of (subject, predi-
cate, object), including 21.2M triplets over 12.8M entities.

Evaluation Metrics. Following Saha et al. [2018], we used
Precision/Recall for questions whose answer is entity(s), and
Accuracy for questions whose answer is boolean/numeric.

Model Setup. For each neural model, the word embedding
weight matrix was independent of each other and the embed-
ding size d. was 300D; the hidden state size d;, was also set
to 300D and activation function was ReL.U for the middle
layer of each MLP. For the optimization, we used Adam op-
timizer with learning rate of 1073, the batch size was set to
64 for 6 epochs, and early stop strategy was applied when
there was no longer a significant improvement over the de-
velopment set during the training. Moreover, for the question
typing and operator predictor we first used naive BFS method
to search only 10% training data from CSQA and applied the
data preprocessing steps outlined in §2.2. And the number of
clusters in question typing was 10.

Baselines. HRED+KVmem [Saha et al., 2018] and D2A
[Guo et al., 2018] are two typical paradigms in regard to in-
formation retrieval and neural symbolic machine respectively.
In particular, HRED+KVmem involves a seq-to-seq based
HRED model [Serban et al., 2016] and a key-value memory
network [Miller et al., 2016] to retrieve answer from KB. In
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Overall Score

Methods Recall Precision F1

HRED+KVmem [Saha et al., 2018] [ 18.40% 6.30% 9.39%
D2A [Guo et al., 2018] 66.83% 66.57% 66.70%
D2A+MAML [Guo et al., 2019] 65.23% 63.02% 64.11%
MaSP [Shen et al., 2019] 78.07% 80.48% 79.26%
D2A+Rule-based filtering{ 64.54% 63.88% 64.21%
D2A+Iterativet [Dasigi et al., 2019] | 67.86% 69.40% 68.62%
D2A+Hard EM{ [Min er al., 2019] |69.03% 70.90% 69.95%
D2A+ours 71.14% 71.33% 71.23%
MaSP+ours 80.10% 82.49% 81.28%

Table 2: Comparisons on CSQA dataset. Note, 1) “+ours” means
that D2A or MaSP model is integrated with the proposed pipeline as
shown in Figure 1; and 2) although the oracle type label is provided
in CSQA, question type for our framework is still obtained in an
unsupervised manner. tadapted and implemented by us.

contrast, D2A? defines a set of semantic parsing grammars
and translates natural language questions into corresponding
logical forms to query KB via a memory-augmented neural
symbolic model. Further, Guo et al. [2019] extended D2A
to D2A-MAML by coupling retrieval and meta-learning for
semantic parsing, and Shen et al. [2019] proposed a multi-
task learning framework, MaSP, for neural semantic parsing,
which are also considered as competitors. In addition, we
also adapted and implemented D2A with other three meth-
ods that also aim to mitigate large search space or spurious
logical form problems: 1) rule-based filtering method filters
spurious logical forms according to handcraft lexicon rules
adapted from Dasigi et al. [2019]; 2) iterative search [Dasigi
et al., 2019] assigns a loss weight to each logical form based
on current model for subsequent training; 3) hard EM [Min
et al., 2019] aims at training on the most likely logical form
from its candidates associated to a question at each update.

3.2 Question Answering Performance

As listed in Table 2, our proposed effective search approach
coupled with D2A or MaSP model improves previous base-
lines by a significant margin, setting a new state-of-the-art
performance on CSQA dataset. Specifically, compared with
D2A and MaSP baseline, the proposed framework is able to
improve by 4.53% and 2.02% F1 score respectively. Our pro-
posed method also outperforms the other three with similar
purpose (i.e., rule, iterative search and hard EM), which fur-
ther verifies the effectiveness of the proposed method.
Additionally, in Table 3, we compared D2A baseline to
our frameworks equipped with different ways to obtain the
question type for logical form cleaning. In particular, al-
though obtaining question types via oracle labels slightly out-
performs that via unsupervised clustering, the former depends
on labor-intensive crowdsourcing — with the cost of general-
ization ability. And, it is also observed that the improvements
are more notable with more complex question types. For ex-
ample, 8.89%/12.07% improvement of recall/precision over

>The re-implemented D2A in this work outperforms the one
originally proposed by Guo et al. [2018], and one possible reason is
that our re-implemented grammars reach a better performance bal-
ance between simple and non-simple questions. For a fair compari-
son, we report the re-produced results for D2A in this paper.
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Methods D2A  |+ours(oracle)|+ours(cluster)
Q Type in CSQA R P R P R P
Overall 66.83 66.57|71.63 72.42 [71.14 71.33
Simple (Direct) 79.5077.37|82.80 83.20 |83.23 81.71
Simple (Co-ref) 58.47 56.94|64.67 64.58 |63.64 63.21
Simple (Ellipsis) 84.6777.90(84.88 83.02 | 86.05 82.64
Logical (All) 65.82 68.86|73.88 72.00 |77.12 70.78
Quantitative (All) 52.74 60.6360.30 68.06 |41.42 57.87
Comparative (All) 44.14 54.68|50.42 60.62 |53.03 66.75
Clarification 37.2433.97(38.74 34.80 [35.44 35.70
Q Type in CSQA Accu Accu Accu
Verification (Boolean)| 37.07 45.80 46.97
Quantitative (Count) 38.42 41.35 36.90
Comparative (Count) 16.62 20.93 21.17

Table 3: Detailed comparisons on CSQA. Note, “oracle” and “clus-
ter” in parenthesis denote the way to obtain question type for logical
form cleaning (Step 2 in §2.2) — using oracle question type labels
from the dataset and unsupervised clustering respectively.

Overall Score
Methods Recall  Precision F1
D2A+ours (cluster) 71.14% 71.33% 71.23%
- w/o cleaning in Step 2 68.46%  69.27%  68.86%
- w/o constraints in decoding | 68.78%  69.45%  69.11%
- w/o proposed pipelinef 66.83% 66.57%  66.70%

Table 4: Ablation study on CSQA. fdegraded to D2A model.

Comparative Reasoning is much greater than 3.73%/4.34%
improvement over Simple. A possible reason is that the log-
ical forms for complex questions usually require more oper-
ators to compose, and thus they are more vulnerable to large
search space problem. We attribute this to more operators re-
quired to answer more complex questions, which exacerbates
the problems associated with large search space. Besides, our
framework with cluster achieves an inferior performance over
Quantitative and a reason is that the errors from clustering al-
gorithm are propagated to logical form cleaning, where the
correct logical forms were mistakenly filtered out.

Lastly, we conducted an ablation study to verify the effec-
tiveness of each part in proposed pipeline. As shown in Ta-
ble 4, removing logical form cleaning for operator predictor
training, and discarding operator constraints during decoding
lead to 2.37% and 2.12% F1 score decreases respectively.

3.3 Searching Effectiveness and Efficiency

In this section, we analyzed our proposed algorithm in terms
of alleviating the two problems raised by large search space.
Lastly, we also compared search efficiency with the baseline.

Increasing Search Success Ratio. The search success ratio
is defined as the number of questions, each with at least one
valid logical form found by a search method, over the total
number of questions. We compared our method with tradi-
tional BFS one [Guo ef al., 2018], and reported the results
in Figure 2. From the figure we found our method increases
the search success ratio significantly, especially almost 2x
increase for logical reasoning questions. And we also found,
the improvement of KBQA is roughly proportional to the in-
crease of search success ratio w.r.t. question types.
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Figure 2: Search success ratio comparison w.r.t. question type.

Method #Correct | #Spurious | %Spurious
Naive BFS | 114 136 54.5%
Ours 115 40 26.7%

Table 5: Statistics of spurious logical forms. Note that a question
may be assigned with multiple valid logical forms.

Reducing Spurious Logical Forms. To determine whether
our approach reduces the number of spurious logical forms,
we randomly sampled 40 questions, each with at least one
valid logical form found through both naive BFS search
method and our approach. Human evaluators manually in-
spected the results and made a judgment as to whether the
logical form is correct or spurious. The results listed in Ta-
ble 5 demonstrate that our approach considerably reduces the
incidence of spurious logical forms from 54.5% to 26.7%
compared to the baseline. This is a substantial reduction and
provides a clear evidence that this approach can improve the
quality of training data and thus benefit any downstream se-
mantic parsing model.

Search Efficiency. One notable merit of the proposed
searching method is that, with the constrained operator can-
didates, the searching procedure is significantly sped up. Sta-
tistically, our searching method takes only 0.06s per dialog
turn for valid logical form(s) on average, which is 20x faster
than our baseline, naive BFS, that needs 1.19s.

3.4 Sub-Task Evaluation
We evaluated question typing and operator predictor here.

Unsupervised Question Typing. we evaluated this task by
checking the consistency between predicted cluster label and
oracle question type from dataset. In brief, we calculated av-
eraged proportion of the questions belonging to most frequent
oracle question type in each cluster. The resulting 85.10%
demonstrates the effectiveness of our proposed clustering for
question typing. In contrast, direct applying k-means to raw
text only results in ~20% consistency.

Operator Predictor. To assess the quality of the operator
predictor, we took {(question, valid operators) pairs found by
naive BFS as evaluation set, and evaluated the performance
according to a metric, Question Coverage. Question coverage
is defined as the ratio of questions, with predicted operators
able to compose at least one valid logical form. In result, our
operator predictor can achieve 98.67% of question coverage,
which means when re-searching logical forms in Step 5, our
approach will locate correct searching subspace for at least
98.67% questions. In addition, we calculated mean propor-
tion of the size of predicted operator candidates over the num-
ber of all operators defined in Table 1, and found that merely
30.83% operators are retained for logical form searching and
thus lead to a reduced search space and improved speed.
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Question Logical Form from Naive Approach Logical Form from Ours Ops Prediction

Where is Zinc finger protein 775 DIFF(FIND(SET(Zinc...775), found-in-taxon), FIND(SET(Zinc...775), found-in-taxon)™ [start — set, FIND,
found? SET(Zinc...775)) SET]

Is Sumy Oblast adjacent to Poltava IN(Poltava Oblast, UNION(FIND(SET( Sumy Oblast), IN(Sumy  Oblast, FIND(SET( Poltava [start — bool, N,
Oblast? shares-border), SET(Italy))) Oblast), shares-border))™ FIND, SET]

Which administrative territories
holds diplomatic relationship with
max number of administrative
territories?

DIFF(ARGMAX(COUNT(FIND(FIND(SET(
istrative territorial), is-a)),
SET(Quebec))

admin- | ARGMAX(COUNT(FIND(FIND(
diplomatic-relation)),

[start — set, FIND,
COUNT, UNION, DIFF,
ARGMAX, SET]

SET(administrative
diplomatic-relation))™

territorial),  is-a)),

Which administrative territories are
Yale University present in and are
the origins of Anna Karenina?

INTER(FIND(SET(Yale University),

country),
FIND(SET(Anna Karenina), country-of-origin))™

[start — set, FIND,
COUNT, UNION, IN-
TER, DIFF, SET]

FIND(SET(Yale University), country)

Table 6: Case study of valid logical forms. And a logical form ending with * means it is correct by human judgement, otherwise spurious.

3.5 Case Study

In this section, we leveraged some cases to demonstrate the
effectiveness of our proposed algorithm in searching for log-
ical forms on weakly supervised KBQA. As shown in Table
6, for each question, we listed the logical forms searched by
naive BFS approach and our proposed one respectively, as
well as the predicted operators from operator predictor.

According to first three cases, due to the constraints posted
by operator predictor (last column), our approach could
avoid some spurious results. Meanwhile, as shown in fourth
case, although predicted operator candidates substantially re-
duce the search space, it is still possible to include spurious
logical forms in searching results.

3.6 Error Analysis

To conduct an error analysis and provide an insight into the
causes of the prediction errors, we randomly sampled 50
wrongly-predicted examples for KBQA, and found the errors
could be coarsely categorized as follows. 1) Entity Ambigu-
ity This is the most serious problem leading to wrong predic-
tions during question-to-logical-form translation since many
entities with identical text however express totally different
meanings. For example, an entity The Avengers could be a
movie, a soundtrack album or a punk rock band; even for a
movie whose title is The Avengers, it also could be 2012 su-
perhero film produced by Marvel or 1998 film by Jeremiah S.
Chechik. 2) Error Propagation Because a pipeline approach
is employed to solve KBQA problem, it is inevitable that the
prediction errors occurring at early stage will be propagated
into downstream models. An apparent case is that the errors
in unsupervised question typing directly lead to a slight per-
formance decrease for KBQA. 3) Translation Error Due to
translation model’s limitation on representative expression, a
wrong operator or entity could be chosen to compose a logical
form during decoding, which results in an incorrect answer.

4 Related Work

This work is in line with semantic parsing based approach
for KBQA task. Given a natural question, based on a set
of well-defined grammars for specific task, typical seman-
tic parsing approaches learn a model to transform the ques-
tion to a KB-executable logical form for answer retrieval
[Wong and Mooney, 2007; Zettlemoyer and Collins, 2009;
Kwiatkowski et al., 2011; Andreas et al., 2013; Artzi and
Zettlemoyer, 2013; Zhao and Huang, 2014; Long et al., 2016;
Jia and Liang, 2016; Ling er al., 2016; Xiao et al., 2016].
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Due to limited crowdsourcing, only final answers instead
of full logical forms are provided to learn a semantic parsing
model, i.e., in a weakly supervised learning scheme [Berant
et al., 2013; Iyyer et al., 2017; Saha et al., 2018]. Hence,
“searching and training” is a conventional stepwise approach
to handle such weakly supervised setting by searching logical
form for semantic parser learning [Bao et al., 2014; Yih et al.,
2015; Zhang et al., 2017; Guu et al., 2017; Liang et al., 2018;
Guo et al., 2018; Dasigi et al., 2019].

However, searching over structured KBs inevitably leads to
spurious logical form problem, which introduces wrongly la-
beled data and thus poses negative effect on KBQA [Pasupat
and Liang, 2016; Guo et al., 2018]. To alleviate spurious log-
ical forms’ effect, for example, Liang et al. [2018] separately
estimated expectations over the trajectories inside and outside
high-rewarded memory buffer, rather than maximum likeli-
hood training. Guu et al. [2017] reduced the impact of spuri-
ous logical forms by using randomized beam search and more
balanced optimization. And, Dasigi et al. [2019] alternated
between searching for consistent logical forms and maximiz-
ing the marginal likelihood of the retrieved ones while it-
erative training, which increases logical forms’ complexity
for subsequent ones, thus dealing with the problem of spuri-
ousness. Min er al. [2019] proposed a simple but effective
method that computes gradients relative to the most likely
solution at each update. Some other works are proposed to
handle large search space, e.g., macro grammars [Zhang et
al., 2017] and logical form sketch [Dong and Lapata, 2018].

5 Conclusion

We proposed a novel approach for effective search of logical
forms by operator prediction for weakly supervised KBQA
task. It provides sufficient and superior data for down-
stream question-to-logical-form translation model training,
and makes training and inference more effective under the
constraints of the possible operators. The proposed approach
is simple and effective, which makes it of great practical use.
Experimental results verify the effectiveness of our approach
in terms of reducing spurious logical forms, increasing search
success ratio, improving search efficiency, and boosting the
final accuracy for question answering.
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