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ABSTRACT: The temporal dynamics of heterotrophic bacteria and Synechococcus-type cyanobac-
teria communities were studied in a coastal habitat characterised by strong hydrodynamic variahility
using 10 s (microscale) and 30 min (small-scale) sampling intervals. Flow cytometric analysis allowed
for the discrimination of 3 populations of heterotrophic bacteria and the examination of the Syne-
chococcus cell cycle, During the 11 h small-scale study, 2-fold changes in the total abundance of both
the bacterial and Synechococcus communities were observed, and clear temporal patterns in the
abundance, activity and cellular state of the 2 populations were evident. Cumulative sum analysis
further revealed distinct periods and trends in the temporal dynamics of the bacterial and Syne-
chococcus communities. Shifts in the abundance of all heterotrophic bacterial poputations were sig-
nificantly correlated to turbulent energy dissipation. No such correlation was evident for the Syne-
chococcus population, which instead appeared to follow a diel cell cycle very similar in nature to
patterns observed in other environments. In 2 microscale studies, conducted during dissimilar hydro-
dynamic conditions, approx. 2-fold shifts in the abundance of the bacterial and Synechococcus pop-
ulations were also observed. Microscale temporal patterns were dominated by localised variability
and the existence of hotspots in abundance and activity, although cumulative sum analysis also
revealed more general trends, sometimes occurring over periods of several minutes. Fundamentally
different patterns, in the extent of tempeoral variahility and coupling between the different microbial
populations, were observed between the microscale and small-scale studies, suggesting that intrinsi-
cally different mechanisms and responses occurred independently and simultaneously at the differ-
ent temporal scales. Furthermore, the variability in microbial parameters observed over these short
temporal scales indicates the profound importance of microscale and small-scale processes in the
ecology of communities of marine microorganisms.
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INTRODUCTION Over periods of weeks to months, and across dis-

Communities of marine microorganisms experience
variability in physical and biclogical parameters at
spatial and temporal scales spanning 9 orders of mag-
nitude (Dickey 1991). Consequently, the extent and
nature of environmental variability can have implica-
tions that range from shifting the metabolic state of
individual cells to altering the function of entire
ecosystems.

*Email: justin.seymour@{linders.edu.au

tances of tens of kilometres, variahility amongst plank-
tonic communities, often characterised by mesoscale
patchiness and the formation and decline of bloom
events, occurs in response to large-scale oceano-
graphic features and seascnal oscillations in tempera-
ture and nutrients {(Ducklow 1984, Denman & Gargett
1995, Beaugrand et al. 2000, Okubo & Mitchell 2001).
Embedded within these large-scale processes are
physical, biclogical and chemical cycles and rhythms
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that influence communities over the course of hours to
days. Populations of autotrophic microorganisms ex-
hibit clear diel patterns in photosynthesis, cell growth
and cell division in response to daily light cycles
(Jacquet et al. 1298, 2001, 2002, Vaulot & Marie 1999).
Additionally, diel variability in the supply of dissolved
organic subsirates and grazing intensity promotes
daily shifts in the abundance, growth rate and produc-
tion of heterotrophic bacterioplankton communities
(Meyer-Reil et al, 1879, Simon 1994, Torréton et al.
1994, Shiah & Ducklow 1995, Gasol et al. 1998,
Hagstrom et al. 2001).

At even smaller scales, microscale processes, occur-
ring across distances of micrometres to centimetres
(Mitchell et al. 1985, Azam 1998, Kierboe & Jackson
2001), often over time frames of just seconds to minutes
(Brathak et al. 1996, Blackburn et al. 1998, Seuront et
al, 2002), are also predicted to influence the behaviour
and ecology of marine microorganisms. Microscale
patches of dissolved organic and inorganic substrates
may provide important, albeit ephemeral, growth
habitats for heterotrophic {Mitchell et al. 1985, Black-
burn et al. 1997, 1998, Blackburn & Fenchel 1999) and
autotrophic microorganisms (Lehman & Scavia 1982,
Seuront et al. 2002), while suspended and sinking
particulate matter also provides unique microhabitats
of increased nutrients for attached (Bidle & Azam 1999,
Grossart et al. 2003) and free-living microorganisms
(Kierboe & Jackson 2001). In addition, physical pro-
cesses are likely to affect planktonic life at a variety of
scales (Marrasé et al. 1997), and turbulence has
repeatedly been shown to confrel the extent of vari-
ability observed in the small-scale distributions of
nutrients (Seuront et al. 2002), bacteria (Seymour et al.
2000, Andreatta et al. 2004} and phytoplankion (Seu-
ront et al. 1999, Seuront & Schmitt 2001, 2003)

Given that the mechanisms responsible for developing
and maintaining heterogeneity amongst aquatic
microbial communities vary according to scale, the
extent and nature of biological variability will also differ
with scale, Small- and microscale variability in microbial
parameters can often be as great as, or greater than, the
variability observed at the ocean's largest scales, Diel
changes amongst autotrophic communities are often
larger than the variability observed over weeks to
months (Vaulot & Marie 1999). Similarly, whereas bulk
abundances of heterotrophic bacteria remain relatively
stable across a broad range of aquatic environments,
rarely varying by more than 3 orders of magnitude (del
Giorgio & Scarborough 1995), bacteria associated with
microscale features, such as organic aggregates, can be
up to 5 orders of magnitude more concentrated than in
the sarrounding water (Alldredge et al. 1986).

The nature and pattern of variability in microbiolog-
ical parameters will also differ with scale. Over large

distances and long time periods, spatial and temporal
variability is characterised by palpable incremental
changes and oscillations that remain relatively coher-
ent and are often highly predictable (e.g. diel, tidal or
seasonal oscillations}. Microscale processes, however,
are generally more intermittent, and are likely to gen-
erate ‘peaky’ temporal and spatial distributions, char-
acterised by the existence of discrete ‘hotspots’ and
‘coldspots’ {Bratbak et al. 1996, Azam 1998, Seymour
et al. 2000, 2004).

To understand the relative importance of any one or
suite of the physical and biological factors that influence
the ecology and dynamics of communities of aquatic
microorganisms, it is first necessary to appreciate the
scales at which the greatest levels of change occur,
Multi-scale comparative studies allow for this determina-
tien, and previous studies have compared large-scale
and diel dynamics within a single ecosystem or habitat
{Wikner & Hagstrdm 1991, Shiah & Ducklow 19935) and
have widely illustrated the importance of processes
occurring over the shorter time scales (Shiah & Ducklow
1995, Jacquet et al, 2002}, However, despite an increas-
ing awareness of the relevance of microscale processes
in marine microbial ecology {Azam 1998, Seuront 2001),
to our knowledge comparisons between small-scale
thours) and microscale {seconds-minutes) temporal
dynamics have yet fo be made.

In this context, we have studied a coastal microbial
community and compared the degree and nature of
tempeoral variability in biological parameters occurring
during the daylight hours of a single day by sampling
at a small-scale resolution of 30 min, to the microscale
community dynamics observed by sampling at a reso-
lution of 10 s. Inherently different mechanistic pro-
cesses and responses are expected to operate at these
different temporal scales, but we demonstrate that the
absolute extent of variation in microbial abundance
and cellular parameters (e.g. cell size, DNA content)
were comparable between scales; however, the nature
and patterns of the observed variability were some-
what dissimilar.

MATERIALS AND METHODS

Study site. Sampling was conducted over an 11 h
pericd from 08:00 to 1%:00 h on 31 January 2003.
Samples were collected from the end of a coastal
jetty, situated within a lagoon on the shoreward side
of a rocky coastal reef at Pt Noarlunga (35°09'S,
138°28'E}, within St. Vincent Gulf in South Australia.
The sampling point was situated approximately 150 m
from the shoreline of a protected coastal beach and
approximately 7 m from the periodically tidally sub-
merged Pi. Noarlunga reet.
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The Pt. Noarlunga reef is a flat-topped rocky reef
that supports an abundant macroalgae community
generally dominated by the kelp Ecklonia radiata
(Cheshire et al. 1999). The environment to the shore-
ward side of the reef, where samples were collected, is
characterised by highly variable hydrodynamic condi-
tions that are strongly tide-dependent and can vary
considerably over the course of a day. During high tide,
wave surges wash over the reef and high levels of tur-
bulence are experienced within the lagoon. During
low tide, however, the reef provides a natural barrier
between the water masses on the seaward and shore-
ward sides of the reef, and there is little or no water
exchange across the reef, The depth of the water col-
umn at the sampling site varies from approximately 8
to 10 m in depth, depending upon the stage of the tidal
cycle.

Characterisation of the physical environment.
Salinity and temperature were measured every 30 min
using a Hydrolab DataSonde 4a. Hydrodynamic condi-
tions were also measured at 30 min intervals using a
Sontek Acoustic Doppler Velocimeter (ADV), with flow
data accumulated onto a laptop computer for at least
3 min, at a sampling rate of 25 Hz, during each meas-
wement. Velocity fields in 3 dimensions {u,, u,, u,)
were compuied using WinADV software (Tony Wall,
US Bureau of Reclamation), and turbulent kinetic
energy dissipation rates (£) were calculated using the
following derivation.

TFollowing the Reynolds decomposition (Tennekes &
Lumley 1972), a 1-dimensional velocity field (u, m s}
was decomposed into an average (U, m s}) and an
instantaneous, fluctnating turbulent component (u',
m sty as:

u=U+u' 1)

where the average component U represents the long-
term structured variation, such as a mean velocity
field, a tidal current or wave motion.

Taking into account the noise related to the mea-
surement device and/or the quantity and quality of
suspended particles that may contaminate the
observed turbulent signal u, the Reynolds decomposi-
tion must be rewritten as:

u= U+t + e (2

where s, (m 571 is the velocity component associated
with noise. Here we estimated u,4. by placing the
ADYV probe within a 1.5 m high, 40 cm diameter plastic
cylinder filled with seawater from the sampling site. It
was ensured using the Sontek ADVField Software
(Version Z.4a) that no boundary (associated with the
walls of the cylinder) was detected by the probe, and
after being allowed to settle for 10 min, data were accu-
mulated for 5 min and analysed as described ahove.

Then, squaring and time averaging Eq. (2) leads to:

() = {(U+ 1 Upe)) (3)
and
(@) = {U2) +{@)") + (U200} + (2 Unt?
(2 Uty i) (2 WU i) (4)

Under the assumption that the 3 velocity components
U, u' and t,5 are uncorrelated, Eq. (4) is equivalently
written as:
uzrms = (U2>—U2— (urzmise) (5)
where Uy, (ms™), u,,, = \[((u')z) , is the root-mean-
square turbulent velocity of the 1-dimensional velocity
field, and U? = {U?).
Now, the 3-dimensional root-mean-square turbulent
velocity wiyns (m 57') is estimated as (Tennekes & Luni-
ley 1972):

m!

wi o= %(u,zﬁ ui+ u?) (6)

where i, i1y and u, are the 2 herizontal and the vert-
cal velocity components, respectively. The turbulent
kinetic energy dissipation rate £ (m? s is subse-
quently estimated as (Taylor 1338}

e = k(w?,,/L) @

where k is a constant (k = 1, Wolk et al. 2001) and L the
integral length scale of turbulence, i.e. a characteristic
length scale representing the larger turbulent vor-
texes. Here L was assigned as 8 m, which is the ap-
proximate size of the largest eddies in the sampling
system, which in this case is the depth of the water
column at the sampling point.

Small-scale temporal dynamics of the planktonic
microbial community. The small-scale temporal dy-
namics of the microbial community inhabiting the Pt.
Noarlunga site were examined over the course of an
11 h daylight period at a sampling resolution of 30 min.
At each sampling interval, triplicate 400 pl water sam-
ples were coellected from 5 ecm below the water surface
using a micropipette. Samples were transferred to ster-
ile 2 ml cryovials and immmediately incubated with 2%
{(final concentration) paraformaldehyde for 20 min
before being quick-frozen in liquid nitrogen and then
stored at —80°C,

Microscale temporal dynamics of the planktonic
microbial community. The microscale temporal dy-
namics of the Pt, Noarlunga hacterial community were
investigated during 2 independent time series.
Microscale Study 1 (M1) was conducted at 13:30 h dur-
ing mid-low tide and relatively calm hydrodynamic
conditions. Microscale Study 2 (M2) was conducted at
16:30 h during mid-high tide and a period of strong tur-
bulence. In each case, 400 pl samples were collected
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from 5 cm below the water surface using a micro-
pipette, at a temporal resolution of 10 s, for a period of
16,5 min, Samples were fixed and frozen as described
above.

Flow cytometric analysis of samples. Flow cytome-
try (FCM) was used to identify and enumerate hetero-
trophic bacteria and Synechococcus-type cyanobac-
teria within both the microscale and small-scale
time-series samples. Prior to flow cytometric analysis,
samples were stained with SYBR-I Green solution
(1:10 000 dilution; Molecular Probes) and incubated in
the dark for 15 min (Marie et al. 1997, 1999). Fluores-
cent beads 1 pm in diameter (Molecular Probes} were
added to samples in a final concentration of approx.
10° beads ml™! {Gasol & del Giorgio 2000), and all mea-
sured cytometry parameters were normalised to bead
concentration and fluorescence.

Flow cytometric analysis was conducted using a
Becton-Dickinson FACScan flow cytometer, equipped
with an air-cooled argon laser (15 mW, 488 nm) with
phosphate buffered saline (PBS) solution employed as
a sheath fluid. Acquisition was run until at least 50 to
100 pl of sample was analysed at a rate of approx. 40 pl
min~!, For each sample, forward-angle light scatter
(FSC), side-angle light scatter (SS8C), green (SYBR-I)
fluocrescence, red (chlorophyll} fluorescence, and
orange (phycoerythrin) fluorescence were acquired.
Discrete subpopulations of heterotrophic bacteria
were identified according to variations in green fluo-
rescence and side scatter (Marie et al. 1997, Gasol et al.
1999), while Synechococcus populations could be
clearly defined accerding to higher levels of orange
and red fluorescence than the heterotrophic commu-
nity (Marie et al. 1997, Jacquet et al. 1998). Data for
individual subsamples were collected in list-mode files
and analysed using CYTOWIN flow cytometry analysis
software (Vaulot 1989), and cytograms were drawn
using Win Midi 2.8 software (Joseph Trotter).

Statistical analysis. As the temporal distributions
of the microbial community were significantly non-
normal (Kelmogorov-Smirnov test, p < 0.05) and the
number of measurements was low (n = 23}, non-
parametric statistics were employed throughout this
work, Correlations between different microbial vari-
ables were investigated using Kendall's coefficient of
rank correlation, © (Kendall & Stuart 1966). Kendall's
coefficient of correlation was used in preference to
Spearman's coefficient of correlation p here because
Spearman’s p gives greater weight to pairs of ranks
that are further apart, while Kendall's T weights each
disagreement in rank equally (see Sokal & Rohlf 19935).

Trends in fime-series data, including time, intensity
and duration of changes in the values of a given
parameter, were investigated using the cumulative
sums method {Ihafiez et al. 1993). The cumulative sums

method has been applied to investigate patierns in
phytoplankton, zooplankton and hydroclimatic fime
series data (Le Fevre-Lehoerff et al. 1995, Nicholls
1997, Beaugrand et al. 2000} and has been proposed as
a robust method for environmental time-series moni-
toring (Manly & Mackenzie 2000}, Cumulative sum
analysis consists of subtracting a reference value k
{usually the mean of the series) from each data point
within a chronological series of data x, sampled at time
t (for ¢ between 1 and n) and then adding the residuals
successively to form a cumulative function (Ibafez et
al. 1993, Le Fevre-Lehoerff et al. 1995):

S, = Zx-pk {8)

Specifically, in this study, k was assigned as the
mearn value of the time series and then subtracted from
each data point from the time series separated by a
time interval of 30 min (small-scale study) or 10 s
(microscale study}, The residual values were then
added successively to form cumulative sum plots.

In cumulative sumn plots, when successive negative
residuals occur, a decreasing slope is created, whereas
successive positive residuals create an increasing
slope {the value of the slope is proportional to the devi-
ation from the mean). Values similar to the mean (k)
exhibit no slope. Therefore, this technique allows for
the graphical representation of distinct periods in time-
series data. Furthermore, the cumulative sum function
is very sensitive to changes of the local mean within
time-series daia sets (Ibafiez et al. 1993), and trends
and cycles, which may not be immediately apparent in
raw time-series data, can be identified graphically by
shifts and inflection points in the cumulative sum
series, To gain an indication of the strength of the rela-
tionship between the cumulative sum plots from differ-
ent populations, Kendall's coefficient of rank correla-
tion was calculated (see Le Fevre-Lehoerff et al. 1995
for a discussion on calculating correlations for autocor-
related cumulative sums data}. -

RESULTS
Environmental conditions

During the study period, high tide occurred prior to
the start of sampling at 04:00 h and then again at
17:30 h, while low tide occurred at 11:30 h. During
mid-high tide {08:30 to 10:00 h and 15:30 to 19:00 h}
free exchange of water occurred over the Pt Noar-
lunga reef, with ~1 m waves breaking over the sub-
merged reef, and during these times the highest levels
of turbulent kinetic energy (~20 cm? 5% were ob-
served (Fig. 1}. Levels of turhbulent kinetic energy
reached maximum levels at the end of the measure-
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Fig. 1. Turbulent kinetic energy dissipation rates at the PL
Noarlunga site calcuiated from measurements made with a
Sonlek ADV during ihe small-scale study

ment period when the low tide coincided with a mod-
erate (40 km h~') on-shore south-westerly wind, which
led to an increase in the size and frequency of the
waves breaking over the reef and inio the lagoon.
During mid-low tide {between 10:30 and 15:00 h) the
reef was totally exposed, preventing water exchange
between the open waters of St. Vinceni's Gulf and the
shoreward side of the reef, and levels of turbulent
kinetic energy were consequently the lowest during
this time (~0.1 cm? 573, Fig. 1),

Mean surface temperature and salinity levels were
21 £ 0.3°C and 37.75 £ 0.1, respectively, and remained
relatively homogenous over the course of the sampling
period, Depth profiles of these parameters measured at
low, mid and high tide also indicated that the water
column at the sampling site remained well mixed
during the course of the study (data not presented).

Flow cytomeiric identification of microbial
populations

Flow cytometry allowed for the discrimination of 3
populations of heterotrophic bacteria and & population
of the autotrophic cyanocbacterium Synechococcus
within samples (Fig. 2}, The bacterial community
exhibited clear differentiation between high DNA
(HDINA) and low DNA (LDNA) groups of bacteria
(Gasol et al. 1999}, A 2.5-fcld difference in green fluo-
rescence, applied here as a measure of DNA content
(Marie et al. 1997), was observed between the HDNA
and LDNA groups. In accordance with the observa-
tions of numerous previous studies showing that
HDNA bacteria represent active cells, while LDNA
bacteria represent dead or dormant cells (Li et &l. 1995,
Jellett et al. 1896, Gasol et al. 1999, Lebaron et al. 2001,
2002, Servais et al. 2003), we applied the percentage of

- HDNA bacteria as a measure of bacterial single cell

activity (Gasel et al. 1989). Within the HDNA popula-
tion, further differentiation between groups differing
in SSC, and corresponding to the BIf and BHI popula-
tions previously described by Marie et al. (1997), was
observed. These populations were defined here as
HDNA(I) and HDNA(I} groups (Fig. 2A). A popula-
tion of Synechococcus-type cyanobacteria could also
be differentiated from the heterotrophic bacteria
according to higher levels of red and crange fluores-
cence (Jacquet et al. 1998} (Fig. 2B).

Small-scale temporal variability in microbial
populations

Mean concentrations of heterotrophic bacteria were
8.6 x 10° celis ml™ during the study period. Over the
course of the 11 h study, total bacterial concentrations
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varied by approximately 2-fold, with maximum con-
centrations observed at the end of the sampling period.
Total bacterial abundance remained relatively con-
stant from morning uniil noon, and then showed a gen-
eral trend of increasing concentration from noon until
dusk (Fig. 34). This was confirmed by the pattern
exhibited by the cumulative sum of bacterial abun-
dance, where a U-shape trend and 2 distinct periods
were clearly evident (Fig. 4A). An inflection point is
apparent at 14:00 h, with a negative slope, indicative of
successive values lower than the mean, observed
before this time, and a positive slope, indicative of suc-
cessive values higher than the mean, observed after
this point. The abundance of the bacterial community
was significantly correlated to turbulent energy dissi-
pation levels measured during the sampling period
(Table 1). Furthermore, the cumulative sum of the het-
erotrophic bacteria exhibited & significant level of cor-
relation to the cumulative sum of the turbulent energy
dissipation (T = 0.518, p < 0.01).

Within the heterotrophic bacterial community the
HDNA(I) and HDNA(II} populations displayed similar
trends in abundance that mirrored the changes in
abundance of the total bacterial community, with a 2.3-
and 2.4-fold change in concentration exhibited by the
HDNA({I) and HDNA(I} populations respectively
{Fig. 3B)., The HDNA(I} and HDNA(I} populations
were highly correlated to the distribution of the fotal
bacterial community and to each other (Table 1). The
cumulative sum plot of the combined HDNA popula-
tions exhibited a U-shape pattern, with 2 distinct peri-
ods apparent, and a clear inflection point at approxi-
mately 14:00 h present {Fig. 4D). The cumulative sum
of the HDNA populations was correlated to the cumu-
lative sums of the total bacterial community (t = 0.934,
p < 0.01) and turbulent energy dissipation (T = 0.660,
p<0.01).

The LDNA population exhibited a lower degree of
variahitity than the HDINA populations, with only a
1.5-fold change in abundance observed during the
sampling period (Fig. 3B). The temporal patterns

Table . Correlation values for microbial parameters from the small-scale time-series study. All values = Kendall's coefficient of
rank correlation, T, Significance: *0.05 level, "*0.01 level. Synech = Synechococcus populalien; FSC = cellular {orward scatter;
FL2 = orange (phycoerythrin) fluorescence

Turbulence  LDNA HDNA(I} HDPNA{H) Total bacleria %HDNA Synech  Synech FSC
Turbulence
LDNA 0.534""
HDNA(I) 0.366" - 0.067
HDNA(H) 0.320° -0.067 0.787*"
Total bacteria 0.352* 0.075 0.945* 0.826°"
%HDNA 0.075 -0.233 0.700*" 0.834°* 0.692°"
Synech 0.208 0.39¢* -0.178 -0.296"* ~0.170 -0.383"
Synech FSC -0.091 -0.162 0312 0.368° 0.320° 0.407** -0.676°"
Synech FL2 -0.237 —0.375¢ 0.004 0.047 -0.02 0.089 -0.352* 6.170
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exhibited by the LDNA population were net signifi-
cantly correlated to either the HDNA(I) or {II} popula-
tions or to the total bacterial population (Table 1) and
exhibited an entirely different cumulative sum pattern
to the HDINA and total bacteria populations (Fig. 4C).
However, the LDNA population was significantly cor-
related to turbulent energy dissipation rates (Table 1).

The changes in concentration of the HDNA(I) and (1)
populations caused a shift in the percentage of HDNA
cells during the course of the sampling period. The
mean percentage of HDNA cells was 73 %, and a gen-
eral trend of increasing HDNA percentage was

observed over the course of the day, varying from 65 to
81% (Fig. 3C}. In a cumulative sum plot, the percent-
age of HDNA cells expressed a similar U-shape pat-
tern to that observed for both the total bacteria and
HDNA populations (Fig. 4B). No correlation was
cbserved between the percentage of HDNA cells and
turbulent energy dissipation rates (Table 1).

Mean Synechococcus concentrations were 2 x 10*
cells ml™! but also varied by approximately 2-fold dur-
ing the course of the study. A clear decrease in the con-
centration of Synechococcus from a maximum of 3 x
10* cells mI™! at 08:30 h to a minimum of 1.5 x 10* cells
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mi! at 13:00 h was observed {Fig. 5A). While no clear
trends in either the mean orange phycoerythrin fluc-
rescence or the red chlorophyll fluorescence of Syne-
chococcus cells were observed during the study period
(Fig. 5C), forward-angle light scatter (FSC} (indicative
of cell size) was shown to exhibit an opposing trend to
cell counts, with maximum values experienced in mid-
afterncon and minimum values in early morning
{Fig. 5B). Statistically significant negative correlations
were observed between Synechococcus cell concen-
tration and mean cell forward scatter and orange fluo-
rescence {Table 1). No correlation between the Syne-
chococeus population and the heterotrophic bacterial

population or turbulent energy dissipation raies were
observed (Table 1).

Where temporal patterns were expressed as cumula-
tive sum plots, the Synechococcus population exhib-
ited a dissimilar pattern to the bacterial populations
(Fig. 4E). In cumulative sum plots of Synechococcus
mean F5C, a paitern directly inverse to that of Syne-
chococcus cell counts was observed (Fig. 4F), and a
significant negative correlation (t =-0.790, p < 0.01)
was calculated between the cumulative sums of Syne-
chococcus cell counts and Synechococcus FSC,

Microscale variability in microbial populations

As a consequence of being conducted at different .
times of day, mean microbial abundances varied
slightly between the 2 microscale studies. In Micro-
scale Study 1 (M1}, mean bacteria and Synechococcus
concentrations were 8.6 x 10° and 1.6 x 10! mi,
respectively, and the mean percentage of HDNA cells
was 77 %. Alternatively, in Microscale Study 2 (M2),
mean bacteria and Synechococcus concentrations
were 1.1 x 10% and 1.7 x 10* m1"!, respectively, and the
mean percentage of HDNA cells was 78%. Addition-
ally, due to equipment failure, M1 was conducted over
only 14.5 min, rather than 16.5 min.

M1 was conducted at mid-low tide and during rela-
tively calm conditions, where turbulent kinetic energy
dissipation rates were 0.31 cm? 573, M2 was alterna-
fively conducted during a period of moderate-high
turbulence (5.4 cm?® 573 during mid-high tide. Exami-
nation of the 3-dimensional velocity components mea-
sured using the ADV showed that during the study
pericd flow was dominated by water movement over
the Pt. Noarlunga reef in a shoreward direction. The
mean water velocity in this direction was 6.1 cms™! and
22.6 cm 57! for M1 and M2, respectively. By applying
Taylor's hypothesis of frozen turbulence {Taylor 1938},
which states that temporal and spatial averages of time
(t) and length scale (I} can be related by a constant
velocity V as I = V x {, we estimated the spatial scales
associated with the sampling procedure as 61 cm and
2.3 m for M1 and M2, respectively.

In both microscale studies, distributions were char-
acterised by localised variability and the presence of
‘hotspots’ and ‘coldspots’ (Fig. 6A}. While the nature of
the variability observed was different between the
small-scale and microscale studies (see Figs. 3, 5 &
Fig. 6}, the absolute changes in abundance were
highly comparable between studies. The bacterial
community exhibited a 1.8- and 1.9-fold change in
fotal abundance in the M1 and M2 studies, respec-
fively, and spanned a similar range of concentrations
over the 16 min sampling periods to the changes
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observed over the 11 h period. Each of the bacterial
subpopulations was also found to span a comparable
range of concentrations to those observed overthe 11h
sampling period. However, whereas the LDNA group
was the least variable subpopulation during the 11 h
study period, in the case of both microscale studies,
this group represented the most variable of the bacte-
rial subpopulations, with a change in concentration of
2.5-fold observed in both the M1 and M2 studies. As
was observed at the larger sampling scale, the LDNA
populafion was not found to be positively correlated to
either of the HDNA populations (Tables 2 & 3}, while
the FIDNA(I) and (II) populations were correlated to
each other and to the distribution of the total bacterial
community in both microscale studies (Tables 2 & 3}.
Changes in the percentage of HDNA cells exhibited
slightly larger degrees of variability in both of the
16 min microscale studies {M1: 67 to 85%, M2: 67 to
86 %) than were observed during the 11 h study period
{65 to 81%) (Fig. 6}

The Synechococcus population exhibited an equiva-
lent degree of variability during the 16 min microscale
studies to that observed during the 11 h study, with a
2.0- and 2.2-fold change in total abundance observed
in the M1 and M2 studies, respectively. Like the
heterotrophic bacterial populations, the variability
expressed at the microscale was in the form of
locatised hotspots and coldspots in abundance

Table 2. Correlation values for microbial parameters from Microscale Time
Series 1 (M1). All values = Kendall's coefficient of rank correlation, 1. *: signifi-
: significance at the 0.01 level. LDNA: low DNA,

cance at the 0.05 level, **
HDNA: high DNA

(Fig. 6B). In several instances the hotspots and
coldspots observed for Synechococcus coincided with
those observed in bacterial abundance {Fig. 6A,B), and
in both microscale studies the Synechococcus popula-
tion was found to be significantly correlated to the het-
erotrophic bacterial population {Tables 2 & 3). No pat-
terns in Synechococcus cellular scatter or fluorescence
parameters were observed, nor were significant corre-
lations between cell abundance and scatter oz fluores-
cence parameters in either of the microscale studies.

Where we applied cumulative sum analysis, the exis-
tence of strongly localised patterns in the microscale
studies, rather than the more global trends present in
the small-scale study, was further highlighted (Figs. 7
& 8). However, cumulative sum analysis also revealed
distinct regimes, characterised by regions of positive or
negative slope, indicative of successive values above
or below the mean, for several of the populations
(Figs. 7 & 8).

DISCUSSION

Small-scale temporal variability in heterotrophic
bacteria

The temporal variability in the abundance of the
total bacterial community observed during the small-
scale study was primarily driven by
increases in the HDNA populations, as
no significant increasing trend was
observed for the LDNA population.
This is consistent with previous stud-
ies that observed highly dynamic

HDNA populations associated with
relatively invariable pools of LDNA

LDNA HDNA{I) HDNA(Il) Total bacleria %iDNA
LDNA
HDNA(I) -0.023
HDNA(I) -0.067 0.651°"
Tolal Bacteria 0.197** 0.719** 0.665"*
%HDNA -0.657** 0.355"* 0.383"* 0.146*
Synechococcus 0145 0.113 0.166* 0.234*"

cells (Gasol et al, 1999, Yanada et al.
2000). As a consequence, the propor-
tion of IIDNA cells within the bacterial
community also exhibited a significant
increase during the sampling period.
This implies a gradual increase in the

-0.013

Table 3. Correlation values for microbial paramelers from Microscale Time
Series 2 {M2). Ali values = Kendall's coefficient of rank correlation, ©. *: signifi-
cance at the 0.05 level, **: significance at the 0.01 level. LDNA; low DNA,

HDNA: high DNA

average activity levels of the bacterio-
plankton community throughout the
day (Gasol et al. 1999, Lebaron et al.
2001).

Significant diel and small-scale

{minutes to hours) temporal changes
in bacterioplankton communities have

LDNA HDNA(I) HDNA(I) Total bacteria %HDNA
LDNA
HDNA(D -0.164*
HDNA{ID -0.081 0.612**
Tatal Bacteria 0.149*  0.646"* 0.696*"
%HDNA -0.704"* 0451 0.357°" 0.146*
Synechococcus  -0.111 0.412°* 0.405"" 0.376*"

been observed {Riemann et al. 1984,
Fuhrman et al. 1885, Torréten et al.
1994, Gasol et al. 1998, Shiah 1999,
Hagstrém et al. 2001), and the

0.253** increases in bacterial abundance and

activity displayed during the late
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afternoon here are congruent to patterns observed
elsewhere (Marcussen 1984, Riemann et al. 1984,
Gasol et al. 1998). Increases in bacterial growth during
the daylight hours implies a coupling to the phyto-
plankton community, which relies on daily light cycles
for photosynthetic production (Fuhrman et al. 1985). In
the current study, increases in bacterial abundance
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and activity of bacterial communities have also been
attributed to a number of other biological processes,
inchuding nutrient puises (Hagstrom et al. 2001), peri-
odicity in bacterivory (Wikner et al. 1990, Psenner &
Sommaruga 1992), DOM release from zooplankton
grazing {Peduzzi & Herndl 1992, Torréton et al. 1994},
the influence of solar radiation (Chrost & Faust 1999),
and changes in viral lysis rates (Weinbauer et al. 1995,
Bettarel et al. 2002).

Physical processes, including tidal fluctuations and
wind-induced mixing, also influence bacterioplankton
communities over short time periods within coastal
habitats (Troussellier et al. 1993, Painchaud et al. 1995,
Shiah & Ducklow 1995, Torréton & Dufour 1996). Here,
bacterial abundance was positively correiated to turbu-
lence intensity, with increases in bacterial biomass oc-
curring during and after high tide in the late afternoon,
when waves freely washed over the Pt. Noarlunga reef.
Interestingly, while bacterial abundance increased duar-
ing this period, changes in bacterial activity (percent-
age of HDNA cells) were not correlated to turbulence
levels, Torréton & Dufour (1996) observed similar asso-
ciations between wind speed and bacterial communi-
ties within an atoll lagoon and suggested that increases
in bacterial abundance without concomitant increases
in activity may be explained by the resuspension of
sediments. Due to the shallow water column and high
levels of turbulence experienced in the present study,
resuspension remains a possible mechanism for the in-
creases in bacterial abundance observed (Wainwright
1990}, Alternatively, as the dominant direction of water
flow measured using the ADV was in a shoreward di-
rection during high tide, advection of bacterial commu-
nities from the waters outside of the reef, or overlaying
the reef, into the sampling site may have also led to the
increased bacterial biomass during this period.

Given the rich macrophyte population covering the
Pt. Noarlunga reef {Cheshire et al. 1999), the shallow
waters overlying the reef are likely to accommodate a
dense and active bacterial community (Delille & Perret
1991). Indeed, during subsequent sampling conducted
at the Pt. Noarlunga site, concentirations of bacteria in
the waters overlying the reef were found to be over
30% higher than within the lagoon (J, R. Seymour et
al. unpubl. results}. The partial transfer of this water
mass, or the advection of bacterial communities from
outside the reef, into the lagoon could therefore have
contributed to the increase in bacterial abundance ob-
served during the afternoon.

A complex milieu of physical and biclogical forces
shape short-ferm growth and loss processes within
aquatic bacterial communities. The patterns observed
here provide evidence for the potential importance of
both physical (turbulence) and biological (chlorophyll
levels) parameters in structuring bacterioplankton

dynamics over the course of a few hours. Short-term
increases in bacterial activity and abundance of this
type are predicted to greatly and rapidly influence the
cycling of organic materials in coastal waters (Meyer-
Reil et al, 1979),

Small-scale temporal variahbility in Synechococcus

While coupling between heterotrophic bacteria and
Synechococcus populations has been observed over
short time scales elsewhere (Jacquet et al. 1998), there
was no significant correlation between bacterioplank-
ton and Synechococcus populations observed during
this study. The Synechococcus population displayed
distinct temporal patterns of its own, in both abun-
dance and cellular parameters.

Synechococcus populations exhibit highly synchro-
nised diel patterns in photosynthesis, cell growth and
cell division that have been atiributed to both daily
light cycles (Vaulot et al. 1996, Jacquet et al. 1998,
2001) and a circadian rhythm (Sweeney & Borgese
1989, Johnsen et al. 1996}. In this study Synechococcus
cell abundance decreased throughout the morning
until mid-afternoon, and then began to increase in the
late afternoon and early evening. Cell forward-angle
light scatter (FSC), which is correlated to phytoplank-
ton cell size (Cunningham & Buonaccorsi 1992),
increased from early morning until early evening. The
decreases in mean cell size and concemitant increase
in cell abundance observed here close to dusk is
indicative of cell division occurring during this period
and follows a datily pattern that is apparently universal
for Synechococcus communities across systems (Vaulot
et al, 1996, Jacquet et al. 1998, 2001, 2002, Vaulot &
Marie 1999).

Unlike the heterotrophic bacterial community, there
was no correlation between the Synechococcus popula-
tton and levels of turbulent kinetic energy dissipation.
This is consistent with the findings of Jacquet et al
(2002) who showed that strong hydrological variability
had little influence on Synechococcus cell cycles.

Cell loss processes amongst Synechococcus commu-
nities are driven by grazing by heterotrophic nanofia-
gellates (Dolan & Simek 1899) and viral infection (Sut-
tle & Chan 1994}, Short-term variations in cell
concenirations, like those observed here, indicate that
loss processes do not occur at a uniform rate (Vaulot &
Marie 1999). Grazing rates by heterotrophic nanofla-
gellates indeed vary with time of day and stage of
Synechococcus cell cycle {Christoffersen 1994, Dolan &
Simek 1999, Christaki et al. 2002}, and viral infection
rates can also exhibit diel variability (Weinbauer et al.
19935). I the biomass of the Synechococcus community
is controlled by short-term rhythms in grazing or viral
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activity, then heterotrophic bacteria may experience
intermittent pulses of increased DOM in the [orm of
grazer excreta or viral lysate (Dolan & Simek 1999), It
is noteworthy that during this study bacterial activity
and abundance increased following a significant
decline in Synechococcus abundance, suggesting an
indirect coupling between the 2 communities over
short time scales.

Microscale temporal variability amongst microbial
populations

Microscale spatial structure and variability in the
abundance, activity and composition of bacterial and
phytoplankton communities have been widely illus-
trated (Mitchell & Fuhrman 1989, Seymour et al. 2000,
2004, Long & Azam 2001, Waters et al. 2003). However,
only a few studies have investigated temporal variabil-
ity over periods of seconds to minutes in natural envi-
ronments. Of those that have, intense shifts in viral
abundance (Bratbak et al. 1996) and nutrients {(Seuront
et al. 2002) have been shown to occur over time periods
of seconds to minutes.

Microscale temporal measurements can be directly
related to compatible length scales (Taylor 1838}, and
we calculated that the temporal resolution of 10 s
employed here was equivalent to spatial resolutions of
61 cm and 2.3 m in the 2 microscale studies conducted.
In this specific case, however, due to the small sample
volumes and the expectation that volumes of this size
may represent fundamentally different biological and
physical microenvirenments (Azam 1998, Long &
Azam 2001, Seuront 2001), we suggest that these
subsamples could alternatively be viewed as discrete
volumes or microenvironments rather than length or
time-series measurements. Consequently, the highly
intermittent patterns observed in the microscale stud-
ies are likely to have been generated by the interac-
tions between organisms and a heterogenous micre-
habitat, where distinet microenvironments facilitate
increased levels of microbial abundance, diversity and
activity (Azam 1998, Long & Azam 2001).

Microscale variability in the availability of dissolved
and particulate organic and inorganic nutrients is pre-
dicted fo be a common feature of the marine environ-
ment, creating heterogeneity in the distribution and
composition of autotrophic and heterotrophic microor-
ganisms (Lehman & Scavia 1982, Azam & Ammerman
1984, Mitchell et al. 1985, Blackburn et al. 1997, 1998,
Azam 1998, Blackburn & Fenchel 1999, Kierboe &
Jackson 2001}. In particular, suspended and sinking
organic particles represent localised microhabitats for
microbial assemblages (Lampitt et al. 1993, Alldredge
et al. 1996, Azam 1998, Ploug et al. 1999), with concen-

frations of attached heterotrophic bacteria and
cyanobacleria several orders of magnilude higher on
organic aggregates than in the surrounding water
{Lampitt et al. 1993, Grossart et al. 2003). Mitchell &
Fuhrman {1989} suggested that the single-point abun-
dance peaks of bacteria that they regularly observed
during microscale sampling were probably generated
by the collection of organic aggregates, and due to the
small sample volumes used in this study, even modey-
ately enziched particles could be responsible for the
hotspots of microbial abundance and activity ebserved
here.

While the most dominant features of the microscale
time series were often discrete hotspots and coldspots,
cumulative sums analysis also revealed underlying
patterns and trends in both microscale studies, charac-
terised by discrete regions of positive or negative
slope, indicative of successive values above or below

the global mean. These coherent trends sometimes

extended over periods of up to 5 to 7 min and may indi-
cate the existence of small-scale (m} patches of organ-
isms. The mechanisms generating these patterns are
not straightforward, but the dissimilar extent of cou-
pling between the cumulative sums of different popu-
lations observed between the 2 microscale studies may
indicate a role of turbulence. In M1, where turbulence
levels were low, the cumulative sums of the bacteria
and Synechococcus populations, as well as the HDNA
and LDNA populations, were significantly dissimilar,
In M2, where turbulence levels were high, all popula-
tions exhibited significantly similar cumulative sum
plots. Turbulent forcing is predicted to strongly influ-
ence small-scale patterns and processes in the ccean
(Rothschild & Osborn 1988, Squires & Yamazaki 1995,
Jimenez 1997, Kierboe 1997, Seuront et al, 2001), and
close coupling between turbulent mixing and small-
scale spatial variations in the abundance of bacteria
has been ohserved (Andreatta et al. 2004}, While it is
difficult fo predict the extent to which physical pro-
cesses directly influenced the patterns observed here,
the temporal variability and patterns observed here
indicate that processes operating on time scales of sec-
onds to minutes can exert significant control over the
abundance and activity of planktonic microbial com-
munities in the ocean.

Small-scale versus microscale variability

In this study we have identified variability in the
abundance and cellular characteristics of a coastal
microbial community at different temporal scales. The
absolute changes in abundance of the bacterial com-
munity observed during the 16 min sampling periods
were comparable to the variation observed over the
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course of the 11 h study period. Shifts in the activity of
the heterotrophic bacterial community and the abun-
dance of Synechococcus were actually slightly greater
at the smaller temporal scale. However, the patterns
observed, and the nature of this variability, were fun-
damentally different between the 2 temporal scales.

Over the course of the 11 h small-scale study, vari-
ahility was expressed in the form of coherent trends
that were highly comparable to the patierns previously
observed in diel studies (Riemann et al. 1984, Vaulot et
al. 1996, Gasol et al, 1998, Jacquet et al. 1998, 2001).
Alternatively, the microscale time series were charac-
terised by intermittent and spikey patterns, often con-
sisting of discrete hotspots of abundance. Conse-
quently, while the range of the variability was similar
between the small-scale and microscale studies, the
extent of variance at each scale was dissimilar, due to
the absence of sirong high and low peaks in the small-
scale study. The high and low peaks driving the vari-
ability in the microscale experiments were relatively
infrequent and therefore rarely encountered during
the low-frequency sampling conducted in the small-
scale study.

The characteristic nature of the different patterns
observed here is a manifestation of the dissimilar gen-
erating mechanisms operating at the different scales
studied. These differences were further demonstrated
by the dissimilar cumulative sum plots observed in the
small-scale and microscale studies. In the small-scale
study the cumulative sums were characterised by rela-
tively smooth and distinct periods, while the micro-
scale patterns were largely characterised by fluctua-
tions indicative of more localised processes.

Relationships between the different microbial popu-
lations studied here were also found to be quite dis-
similar between the different temporal scales. The
temporal patterns of the heterotrophic bacteria and
Synechococcus populations were not correlated dur-
ing the small-scale study but were shown to be signif-
icantly correlated in both of the microscale studies,
implying an inherently different relationship between
the 2 communities at the different temporal scales. We
also found that the LDNA populalion was relatively
invariable during the small-scale study, as is pre-
dicted by the assumption that this group represents
dead or dormant cells (Jellett ef al. 1996, Gasol et al,
1999, Lebaron et al. 2001) but actually exhibited
higher levels of variability than the HDNA population
in both of the microscale studies. The cause of this
unexpected variahility within the LDNA population is
not clear, but this pattern of apparent variability at
one scale and not another once again indicates that
intrinsically different processes and controls appear to
have been operating at the different temporal scales
investigated here,

Implications

Biological and physical variability in the oceans
occurs simultanecusly on different time and space
scales {Ducklow 1984, Dickey 1991}, and our results
clearly represent a manifestation of this complexity.
We observed dissimilar patterns at the different tem-
poral scales investigated here, implying that funda-
mentally different forcing mechanisms and ecological
interactions dominated at each scale. An appreciation
of the processes occurring over the short time frames
investigated here is important to our understanding of
marine microbial communities hecause (1} events of
major ecological significance often result from spo-
radic and short-lived environmental periurbations
(Taylor & Howes 1994} and {2) the time frames of rele-
vance to the life history of marine microorganisms are
relatively short. Often, particularly in large-scale stud-
ies, the intermittent patterns observed at smaller scales
may be interpreted as of little ecological importance
and ‘averaged out'. However, we argue that this small-
scale and microscale variability will often have an eco-
logical relevance that is equivalent to, or greater than,
the changes observed at larger scales. For instance,
microscale intermittency in prey density will have a
definitive effect on the grazing efficiency and growth
and survival of planktonic predators (Rothschild 1992),
subsequently influencing the flow of carbon through
the microbial loop (Azam et al. 1583}.

Likewise, small-scale shifts in microbial activity will
lead to localised biogeochemical cycling, which could
have critical implications for calculations of bulk pro-
cesses, because specific microzones or ‘hotspots’,
where microbial activity and production significantly
exceed background levels, may be missed by bulk
analysis techniques (Azam 1998), Indeed it has been
recognised for several years that large volume samples
may lead to underestimates of productivity due to the
inadequate sampling of discrete microzones (Knauer
et al, 1982), and that even if one is interested in large-
scale patterns and processes, samples should be taken
at smaller intervals, otherwise a misleading picture
may be obtained (Gocke et al. 1987, Taylor & Howes
1994, Karl et al. 2003). We further stress that an under-
standing of the dynamics occurring at small scales is
vital not only for an appreciation of the ecology of the
microorganisms whose lives are defined on the basis of
these spatio-temporal scales but for the phenomencl-
ogy of entire aquatic ecosystems.
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