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Abstract: The morphometric characteristics of the Kalvārı̄ basin were analyzed to prioritize sub-basins
based on their susceptibility to erosion by water using a remote sensing-based data and a GIS.
The morphometric parameters (MPs)—linear, relief, and shape—of the drainage network were
calculated using data from the Advanced Land-observing Satellite (ALOS) phased-array L-type
synthetic-aperture radar (PALSAR) digital elevation model (DEM) with a spatial resolution of 12.5 m.
Interferometric synthetic aperture radar (InSAR) was used to generate the DEM. These parameters
revealed the network’s texture, morpho-tectonics, geometry, and relief characteristics. A complex
proportional assessment of alternatives (COPRAS)-analytical hierarchy process (AHP) novel-ensemble
multiple-criteria decision-making (MCDM) model was used to rank sub-basins and to identify the
major MPs that significantly influence erosion landforms of the Kalvārı̄ drainage basin. The results
show that in evolutionary terms this is a youthful landscape. Rejuvenation has influenced the
erosional development of the basin, but lithology and relief, structure, and tectonics have determined
the drainage patterns of the catchment. Results of the AHP model indicate that slope and drainage
density influence erosion in the study area. The COPRAS-AHP ensemble model results reveal that
sub-basin 1 is the most susceptible to soil erosion (SE) and that sub-basin 5 is least susceptible.
The ensemble model was compared to the two individual models using the Spearman correlation
coefficient test (SCCT) and the Kendall Tau correlation coefficient test (KTCCT). To evaluate the
prediction accuracy of the ensemble model, its results were compared to results generated by the
modified Pacific Southwest Inter-Agency Committee (MPSIAC) model in each sub-basin. Based on
SCCT and KTCCT, the ensemble model was better at ranking sub-basins than the MPSIAC model,
which indicated that sub-basins 1 and 4, with mean sediment yields of 943.7 and 456.3 m3km−2 year−1,
respectively, have the highest and lowest SE susceptibility in the study area. The sensitivity analysis
revealed that the most sensitive parameters of the MPSIAC model are slope (R2 = 0.96), followed by
runoff (R2 = 0.95). The MPSIAC shows that the ensemble model has a high prediction accuracy. The
method tested here has been shown to be an effective tool to improve sustainable soil management.
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1. Introduction

Soil erosion (SE) threatens sustainable development [1]. More than three hundred years is needed
to form a centimeter of soil [2], therefore the prevention of SE is vital to protect valuable resources [3]. In
arid and semiarid regions, SE destroys soil fertility and threatens agriculture [4]. Defoliation, flooding,
reduced effectiveness of dams, increasing economic losses, desertification, and land use changes are
major consequences of SE [5]. The global rate of annual SE is approximated to be 75 billion tons [6].
Iran loses more than two billion tons every year, approximately three times the rates of other Asian
countries. Approximately 125 million of the 165 million ha of the country experiences erosion [7]. This
is roughly 75% of the entire country and 60% of Iran’s agricultural land. Iran’s average erosion is 30–32
ton/ha/year, which is 4.3 times the global average [7]. Economic losses caused by SE in Iran have been
estimated to be 10 trillion rial [8]. Therefore, SE management and protection in Iran is urgently needed,
in line with the United Nations Sustainable Development Goals [9]. This study prepared a SE risk map
using effective factors to predict locations that are more likely to be SE “hot spots.”

A basin is the developmental unit used to effectively manage resources sustainably [10]. It is
a natural hydrological feature within which runoff is directed into collecting channels, streams, or
rivers [11]. The characteristics and conditions of a basin or drainage basin determine the development
of the landforms within it. Therefore, identification of the most important characteristics of a basin is
integral to understanding its geomorphology [12]. Basin management planning can strive to control
losses from SE in a basin [13]. Although there are several factors that influence SE, the major agent is
water. SE is not a new problem, but it has become common and is worsening in Iran. It is particularly
visible in the Kalvārı̄ river basin.

Soil, geomorphology, hydrology, and landscapes are intimately linked. Measurement and analysis
of Earth’s surface through geomorphometry is undertaken to understand the relationships between
the sizes and shapes of a region’s features [10]. SE, runoff, the evolution of rivers, sedimentation,
and drainage geometry are reflections of hydrological and geomorphic processes, and are ultimately
assessable using morphometry [10]. Therefore, the morphometry of a basin can explain its hydrological
behaviors. The basin is the unit of morphometric analysis, which is a technique introduced by
Horton [14,15] and elaborated upon by Strahler [16–18], Miller [19], and Schumm [20]. Together, they
provided the foundations for the field of quantitative fluvial geomorphology [21].

Because resource development planning is generally conducted at the watershed scale, it is critical
to prioritize management of natural resources for sustainable development [11]. Prioritization for
soil or water conservation can be improved by quantitative analyses of morphometric watershed
parameters [10]. Morphometric analysis quantitatively describes drainage systems to understand
landform- and soil-development processes as well as erosional characteristics [22]. Morphometry is
the quantitative measurement of the shapes and dimensions of Earth’s landforms. Areas, volumes,
elevations, slopes, profiles, and textures of the surface are the characteristics of utmost interest [22].
River basin morphometry reflects the hydrological and geomorphic responses of runoff, SE, flooding,
drought, sedimentation, fluvial bifurcation, the flow characteristics and flow volumes of drainages
and rivers, and the capacities and sustainability of reservoirs within a basin. Conventional studies
have explored the relationships between the properties of drainage networks and other influences like
climate, relief, lithology, structure, and tectonics to interpret morphometrics [23–25]. The tectonics of
river basins have been examined for links to the geomorphological processes that shape drainages [26].
Recently, stream network morphometry has been used more often to assess water, soil, and hazards in
developing countries [27–30].

Geospatial analytical techniques (geographic information systems (GIS) and remote sensing
(RS)), and multi-criteria decision-making models (MCDM) have enhanced quantitative assessments of
drainage networks, thematic mapping of morphometry, and applied morphometric analyses [31–36].
Furthermore, other software designed to quantify and calculate linear, areal, shape, and relief MPs
have also advanced the sophistication of morphometrics [37,38]. Comparisons of conventionally and
manually collected data to automated geospatial methods have demonstrated that modern technologies
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are powerful and cost-effective for better management and processing of data and for creating maps
for a variety of applications [39,40].

Digital elevation models (DEMs) are a standard source of data that can be used to discern the
mechanisms behind geomorphological processes. DEMs are developed using several data sources.
Ground surveys, photogrammetry, optical RS, radar, and lidar are the principal data acquisition
methods. Synthetic aperture radar (SAR) data are analyzed using interferometry and radargrammetry,
which detect phase discrepancies in each pixel. Elevation change is determined stereoscopically [41].
Highly detailed models of elevations are developed by comparing precise measurements of phase-shifts
of reflected wavelengths from Earth’s surface using interferometric synthetic aperture radar (InSAR) [42].
Numerous studies have examined the use of methods to analyze radar data to produce DEMs [41].
First-order streams (Horton’s “fingertip” streams) can be delineated precisely using DEMs. GIS and
RS can be used to measure and calculate drainage-basin MPs economically and can enable efficient
analysis of large amounts of spatial information [43–45].

Few studies have used morphometric analysis of SE to prioritize sub-watersheds. Altaf and
Meraj [46] combined an Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER)
DEM with 14 MPs in a multi-criteria analysis (MCA) to assess the susceptibility of a watershed in
the western Himalaya to SE. They found that three sub-watersheds could be regarded as very high
priority (highly susceptible to SE) for management. Ahmad Rather et al. [47] coupled 13 morphometric,
land use, and slope parameters and data from a Shuttle-Radar Topography Mission (SRTM) DEM
in an MCA to estimate SE susceptibility in the Jhelum basin of Kashmir. Gajbhiye et al. [13] used
an SRTM DEM and morphometric analysis on 14 sub-watersheds of the Manot River catchment (a
tributary of the Narmada River) to discern SE susceptibility. One sub-watershed had the lowest
compound parameter value and was therefore most likely to experience the greatest amount of SE. This
study combines a novel MCDM-based approach (the complex proportional assessment of alternatives
(COPRAS)-analytical hierarchy process (AHP)) with MPs to prioritize sub-basins by their susceptibility
to SE. SE was mapped: (1) to model non-quantitative parameters; (2) to devise a method to compare
different types of variables and to handle data at different scales; (3) to eliminate strict assumptions
behind the study; (4) to fill a gap in the scholarship wherein only a few studies have employed MCDM
models to assess SE susceptibility; and (5) to undertake a comprehensive study of the capabilities of
COPRAS-AHP ensemble models for SE susceptibility analysis. The study area is the Kalvārı̄ Basin in
Iran, an area that experiences high rates of SE. The main objectives of this study were: (1) to analyze
the MPs of the Kalvārı̄ Basin using GIS, RS, and a Phased-Array type L-band Synthetic Aperture Radar
(PALSAR) DEM (spatial resolution 12.5 m); (2) to prioritize sub-basins and to identify the major MPs
that influence SE in the Kalvārı̄ Basin using the COPRAS-AHP novel ensemble MCDM model; and (3)
to identify the sub-basin landscape parameters that dictate the SE potential of fluvial forces and SE
susceptibility throughout the region. The results will provide better SE management and will enhance
other environmental activities like land use planning, hazard management, and water conservation.
This approach to morphometric analysis could be transferred to other, similar highland basins in other
arid regions.

2. Materials and Methods

2.1. Study Area

The Kalvārı̄ Basin, with an area of 70.21 km2, is approximately 187 km southwest of Shahrekord
in Chaharmahal va Bakhtiari Province, Iran. It is located between 31◦32′33” and 31◦37′31”N and
50◦29′23” and 50◦38′E (Figure 1). The highest elevation is found in the western part of the basin at
1999 m above sea level (asl) and the lowest is in the southwestern part of the basin at 1100 m asl. Mean
annual precipitation and temperature in the study area are 295 mm and 20.6◦C respectively [48]. The
geology of the study area varies from Paleocene limestone, shale, and marl to Quaternary deposits,
including low-level piedmont fan and valley-terrace deposits [49]. The Asmari Calcareous Formation,
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the Bakhtiari Clastic Formation, Quaternary sediments, and the Gachsaran Evaporite Formation are
the most important formations in the study area [49]. The area’s surface is covered with rock outcrops
and inceptisols [50]. The watershed includes several macro-faults, formed mainly by shale and phylite
contact with granite and re-crystallized limestone formations. The main soil texture is silt loam
covering the hills. Runoff height in the Kalvārı̄ Basin is 109.8 mm. The average slope of the basin
is 22.4◦. Land use/land cover classes in the study area include orchard (0.07%), low forest (23.05%),
agriculture-dry farming (0.58%), dry farming (31.06%), moderate rangeland (0.009%), moderate forest
(10.94%), and poor rangeland (34.27%).

Remote Sens. 2020, 12, x FOR PEER REVIEW 4 of 25 

 

with rock outcrops and inceptisols [50]. The watershed includes several macro‐faults, formed mainly 
by shale and phylite contact with granite and re‐crystallized limestone formations. The main soil 
texture is silt loam covering the hills. Runoff height in the Kalvārī Basin is 109.8 mm. The average 
slope of the basin is 22.4˚. Land use/land cover classes in the study area include orchard (0.07%), low 
forest (23.05%), agriculture‐dry farming (0.58%), dry farming (31.06%), moderate rangeland (0.009%), 
moderate forest (10.94%), and poor rangeland (34.27%). 

 

Figure 1. Location of the study area in Iran. 

2.2. Methodology 

There are seven steps to this method (Figure 2), which are: (1) determine the boundaries of 11 
sub‐basins using topographic maps (1:50,000 scale and 20 m contours) and PALSAR DEM (12.5 m 
resolution); 2) extract basic MPs (basin area, basin length, numbers and lengths of streams of each 
order, basin perimeter, and bifurcation ratio) of the Kalvārī Basin from drainage networks, sub‐basin 
polygons, and an elevation model generated from the PALSAR DEM; 3) extract linear, shape, and 
relief factors, including mean bifurcation ratio (Rbm), drainage density (Dd), stream frequency (Fu), 
texture ratio (T), length of overland flow (Lo), infiltration number (If), constant of channel 
maintenance (C), form factor (Rf), shape factor (Bs), elongation ratio (Re), compactness coefficient 
(Cc), circularity ratio (Rc), ruggedness number (Rn), basin relief (Bh), relief ratio (Rh), and slope (S) 
from the basic parameters and formula (Table 1); 4) apply the AHP model to determine the relative 
importance of the morphometric factors in SE; 5) calculate the relative weight of each alternative (for 
the sub‐basins) and prioritize them using the COPRAS model; 6) prepare an SE susceptibility map 
using the AHP‐COPRAS ensemble model; and 7) validate the results using the MPSIAC model and 
non‐parametric correlation tests such as the Spearman correlation coefficient test (SCCT) and the 
Kendall Tau correlation coefficient test (KTCCT). 

Morphometric (elevation and slope) and hydrologic (drainage networks) parameters were 
estimated using an ALOS PALSAR DEM (12.5 m resolution). Detailed descriptions of the 
methodology used to produce the ALOS PALSAR DEM using InSAR are discussed in [51,52]. The 
key step in DEM generation is the transformation of phase‐change measurements to elevations [53]. 
InSAR was developed by Graham [54]. In terms of economics, efficiency, and resolution, InSAR is 
the best DEM production technique [55]. InSAR calculates phase changes from two radar image pairs 
taken at different times and reveals changes in the surface quantitatively and qualitatively [56]. There 
are 6 steps in InSAR generation of DEMs from PALSAR data [52] (Figure 3), which are: (1) register 
radar images—in this study, two images (Slave (2008/07/11) and Master (2010/08/16)) were entered 
chronologically; (2) produce interferogram—the images iSRTMn SARScape4.8 are converted into 

Figure 1. Location of the study area in Iran.

2.2. Methodology

There are seven steps to this method (Figure 2), which are: (1) determine the boundaries of 11
sub-basins using topographic maps (1:50,000 scale and 20 m contours) and PALSAR DEM (12.5 m
resolution); (2) extract basic MPs (basin area, basin length, numbers and lengths of streams of each
order, basin perimeter, and bifurcation ratio) of the Kalvārı̄ Basin from drainage networks, sub-basin
polygons, and an elevation model generated from the PALSAR DEM; (3) extract linear, shape, and
relief factors, including mean bifurcation ratio (Rbm), drainage density (Dd), stream frequency (Fu),
texture ratio (T), length of overland flow (Lo), infiltration number (If), constant of channel maintenance
(C), form factor (Rf), shape factor (Bs), elongation ratio (Re), compactness coefficient (Cc), circularity
ratio (Rc), ruggedness number (Rn), basin relief (Bh), relief ratio (Rh), and slope (S) from the basic
parameters and formula (Table 1); (4) apply the AHP model to determine the relative importance of the
morphometric factors in SE; (5) calculate the relative weight of each alternative (for the sub-basins) and
prioritize them using the COPRAS model; (6) prepare an SE susceptibility map using the AHP-COPRAS
ensemble model; and (7) validate the results using the MPSIAC model and non-parametric correlation
tests such as the Spearman correlation coefficient test (SCCT) and the Kendall Tau correlation coefficient
test (KTCCT).
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Table 1. Computation of basic, linear, shape, and relief morphometric parameters.

Parameters Parameters Formula References

Basic

Area (A) - [15]
Basin perimeter (P) - [15]

Stream order - [17]
Basin length (Lb) - [15]

Mean stream length (Lsm) LSM = Lu
Nu

[17]
Stream length ratio (RL) RL = Lu

Lu+1 [15]
Bifurcation ratio (Rb) Rb = Nu

Nu+1 [15]

Linear

Drainage density (Dd) (km/km2) Dd = Lu
A [15]

Stream frequency (Fu) (no./km2) Fu = Nu
A [15]

Mean bifurcation ratio (Rbm) - [17]
Texture Ratio (T) (no./km2) T = Nu

P [15]
Length of Overland Flow (Lo) (km) Lo =

1
2Dd [15]

Infiltration number (If) I f = Fu ×Dd [17]
Constant of channel maintenance (C) C = A∑i=1

i=n Lu
[15]

Relief

Ruggedness number (Rn) Rn = Dd ×
( Bh

1000

)
[15]

Relative relief (Bh) Bh = h− h1 [15]
Relief ratio (Rh) Rh = Bh

Lb
[17]

Average slope (S) Sa = Bh√
A
× 100 [17]

Shape

Form Factor (Rf) R f =
A
L2

b
[15]

Shape Factor (Bs) Bs =
L2

b
A

[19]

Elongation Ratio (Re) Re = 1.128
√

A
Lb

[15]

Compactness Coefficient (Cc) Cc =
0.2821× P/A0.5 [15]

Circularity Ratio (Rc) Rc = 4×π× A
P2 [19]

Lu. Total stream length of all orders; Nu. Total number of stream segments of order “u”; A. Area of the basin (km2);
P. Perimeter of the basin (km); Dd. Drainage density; Fu. Stream frequency; Bh. Basin relief; H. Maximum height; h1.
Minimum height; Lb. Basin length; and Lb2. Square of the basin length.
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Morphometric (elevation and slope) and hydrologic (drainage networks) parameters were
estimated using an ALOS PALSAR DEM (12.5 m resolution). Detailed descriptions of the methodology
used to produce the ALOS PALSAR DEM using InSAR are discussed in [51,52]. The key step in
DEM generation is the transformation of phase-change measurements to elevations [53]. InSAR was
developed by Graham [54]. In terms of economics, efficiency, and resolution, InSAR is the best DEM
production technique [55]. InSAR calculates phase changes from two radar image pairs taken at
different times and reveals changes in the surface quantitatively and qualitatively [56]. There are 6 steps
in InSAR generation of DEMs from PALSAR data [52] (Figure 3), which are: (1) register radar images—in
this study, two images (Slave (2008/07/11) and Master (2010/08/16)) were entered chronologically;
(2) produce interferogram—the images iSRTMn SARScape4.8 are converted into single-look complex
(SLC) format with the following settings, TB (745 days), SB (114.8 m), and critical baseline (2623.5 m);
(3) remove flat effect—the DEM derived from the Shuttle Radar Topography Mission (SRTM) and its
Doppler Orbitography and Radiopositioning Integrated by Satellite (DORIS) files are used to remove
the topographic effect; (4) filter noise—adaptive filters are used to eliminate the effect of noise from the
interferogram, as they may reduce its quality (this step will also produce a coherent image, coherence
indicates interferogram quality and should be less than 0.5; the Goldstein filter was used in this study
and the coherence value of the image was 0.20); (5) unwrap phase—region-growing and minimum
cost-flow algorithms are the most common methods for phase correction, a region-growing algorithm
was used in this study; and (6) convert phase to height—the ALOS PALSAR DEM is created by
phase-to-height conversion, the PALSAR DEM of the study area was produced with the mosaicking
tools in ENVI v4.8.
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An ALOS PALSAR DEM enhanced reproduction of the complex topography of the study area
to improve approximations of morphometric and hydrological factors [57,58]. The vertical accuracy
of the ALOS DEM was assessed by ground-truthing the model’s elevation values in ArcGIS 10.5 at
selected 230 ground control points (GCPs) (Figure 4), following procedures used in [59]. The root mean
square error (RMSE) of DEM generated based on comparisons with GCPs was 1.2 m.
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The boundaries of the sub-basins (Figure 5) were extracted by determining the pour point, the
location where water drained from the basin flows into the main river. For drainage network extraction,
the Arc Hydro package was used. Compared to the manual approach, this package provides a rational,
effective, and consistent algorithm [46]. Generating the drainage network using Arc Hydro has been
explained by Ahmad Rather et al. [47]. To do this, DEM sinks were specified and filled to designate the
flow direction and locations of accumulation. Stream networks in the sub-basin were defined according
to the cumulative number of upstream cells draining into each cell. A threshold of greater than 500 was
used to extract the drainage; this critical threshold is the minimum upstream area necessary to produce
a stream. The areas and perimeters of the sub-basins were extracted by computing the geometry of the
sub-basin polygons. Strahler’s scheme was used for stream ordering [16].
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2.3. Models

2.3.1. COPRAS

COPRAS is an MCDM method presented by Zavadskas and Kaklauskas in 1996 [60]. The COPRAS
method assumes direct and commensurate affiliations of the levels of magnitude and usefulness of
alternatives in the presence of conflicting criteria [61]. The COPRAS procedure consists of the following
steps [62]:

Step 1: Prepare the primary matrix;
Step 2: Normalize the primary matrix using Equation (1):

xi j =
xi j∑m

i=1 xi j
(1)

where xi j is the normalized quantity of the jth criterion, xi j is the ith alternative performance of the jth

criterion, and m denotes the alternative numbers;
Step 3: Determine the normalized weighted decision-making matrix (Equation (2)):

di j = w j × xi j (2)

where xi j is the efficiency of the ith alternative, and wj is the criterion weight;
Step 4: Compute the maximum and minimum indices for alternatives—in this step, alternatives

are classified as maximising and minimising indices (Equations (3) and (4)):

S+
j =

n∑
j=1

y+i j j = 1, 2, 3 . . . , n; (3)

S−j =
n∑

j=1

y−i j j = k + 1, k + 2, . . . , n; (4)

where y+i j and y−i j are the weighted normalized qualities for advantageous and non-advantageous
adjectives, respectively. In fact, the highest value of parameters that have a direct relationship with SE,
such as slope, and the lowest value of parameters that have an inverse relationship with SE, such as
shape factors, is y+i j and vice versa; and

Step 5: Calculate the relative weights of each alternative using (Equation (5)):

Qi = S+
j +

S−min
∑n

j=1 S−j

S−j
∑n

j=1
S−min
S−j

= S+
j +

∑n
i=1 S−j

S−j
∑n

i=1
1

S−j

(5)

where S−min is the minimum value of S−j . S+
j and S−j are maximum and minimum indices, respectively.

2.3.2. AHP

Several methods can characterize the weights of criteria, but in this study the AHP was used.
Weights were calculated with a pair-wise variable comparison matrix developed from experts’ opinions.
For this purpose, an AHP questionnaire was designed and was administered to 18 geomorphology and
15 hydrology experts. Initially, due to the incompatibility of some of the paired-comparison matrices
from the experts’ votes, the questionnaire was redistributed to confirm the matrices’ compatibilities
and the validity of the questionnaire. The expert judgments reflect a blend of rational thinking and
experience [63]. Based on the AHP method, Saaty’s linguistic scales (Table 2) of pair-wise comparisons
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were converted to quantitative values [64]. Then, the weights of criteria were determined using
Equations (6) and (7) [63]:

ni j =
ai j∑n

i=1 ai j
(6)

W j =

∑n
i=1 ai j

n
(7)

where W j is the weight of criteria by AHP, ni j is normalized of pair-wise comparison matrix and ai j is
matrix element in row i and column j.

Table 2. Saaty’s linguistic scales in the analytical hierarchy process (AHP) [64].

Preference Factor Degree of Preference

1 Equally
3 Moderately
5 Strongly
7 Very strongly
9 Extremely

2, 4, 6, and 8 Intermediate between 2 adjacent judgments

The consistency ratio (CR) is the mechanism by which the validity of the expert response is
measured in the pair-wise comparison matrix [63]. A CR < 0.1 is acceptable. Equations (8) to (12) were
used to calculate CR [4]:

CR =
CI
RI

(8)

CI =
λmax − n

n− 1
(9)

λmax =

∑
λ

n
(10)

λ =
wsv
w

(11)

WSV = A×W (12)

where CR is consistency ratio, CI is consistency index, RI is a random index (extracted from Table 3),
n is the number of criteria, λmax is the largest special matrix value, λ is consistency vector, WSV is
weighted sum vector, A is pair-wise comparison matrix, and W is weight of criteria vector.

Table 3. Values of random index (RI).

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

RI 0.00 0.00 0.58 0.9 1.12 1.24 1.32 1.41 1.45 1.49 1.51 1.53 1.56 1.59 1.67

2.4. Validation of Results

2.4.1. Non-Parametric Correlation Tests to Comparing Models Ranking

The non-parametric Spearman correlation coefficient test (SCCT) and Kendall Tau correlation
coefficient test (KTCCT) were used to compare the ranks of the observed values of two independent
variables within the models instead of comparing their values [65,66] to determine whether the
variables are statistically dependent. A reciprocal comparison is made between each random pair

of variables. The number of comparisons is equal to n (n−1)
2 where n is the number of alternatives.
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KTCC (Equation (13)) is used to compare two variables with dissimilar ranks. When two variables
have similar rankings of observed values, Equation (14) is used:

t =
C−D
n (n−1)

2

(13)

T =
C−D

2

√(
n (n−1)

2 − T
)
×

(
n (n−1)

2 −U
) (14)

where C and D are the numbers of concordant pairs and the number of discordant pairs, respectively.
T and U are the numbers of pairs having the same ranks within the two data sets.

The non-parametric SCCT test compares the ranked values of two variables. Equation (15) is used
when the observations of two variables are never similarly ranked and Equation (16) is used when one
set of observations for two variables have the same rank:

rs = 1−
6
∑n

i=1 d2
i

n (n2 − 1)
(15)

rs =

∑n
i=1(xi − x) × (yi − y)

2
√∑n

i=1(xi − x)2
×

∑n
i=1(yi − y)2

(16)

where di is the difference between the ranks of models for each alternative, and x and y are the mean
of x and y model, respectively.

2.4.2. Validation of Results Using MPSIAC Model

To validate the model, the sediment-delivery ratio (SDR) was calculated for each sub-basin using
the modified Pacific Southwest Inter-Agency Committee (MPSIAC) method. The PSIAC method was
created in 1968 by the US Water Management Committee [67]. MPSIAC was used in Walnut Gulch
basin in southeastern Arizona. In 1982, Johnson and Gembhart quantified the descriptive concepts of
the first model and presented each of the factors mathematically. In this method, the effects of nine
important effective parameters—surface geology (X1), soil (X2), climate (X3), runoff (X4), topography
(X5), land cover (X6), land use (X7), upland SE (X8) and channel SE (X9)—are evaluated. Depending
on the relative importance of each parameter, values are attributed and the sum of the values of each is
used to estimate SE severity and sediment yield [68]. Details of the MPSIAC model have been reported
elsewhere [69–71].

Estimation of Sediment Yield and Total Sediment Production

Each effective parameter is divided into classes. Based on the estimated impact of each class,
augmentation values are assigned by consulting model tables. The SE severity and annual sediment
yield are estimated by summation of the values. This is signified by R:

R =
n∑

i=1

Xi (17)

where R is ranking value (m3km−2year−1) and Xi is each factor in the model.
To manage the accuracy of interpolations and extrapolations of the nine parameter values in the

MPSIAC model, this equation was developed to estimate sediment yield [70]:

QS = 18.60 e0.0360R (18)

where Qs is rate of sediment yield (m3km−2year−1) and R is ranking value (m3km−2year−1).



Remote Sens. 2020, 12, 874 11 of 24

To calculate the total sediment production of a study area, the rate of sediment yield is multiplied
by surface area:

S = QS ×A (19)

where S is the total sediment production based on sediment yield (m3year−1), Qs is the sediment rate
(m3km−2year−1), and A is surface area.

3. Results

3.1. Analysis of MPs

The characteristics of physical processes in a basin drainage system significantly impact its
infiltration capacity and runoff dimensions [14]. Basin morphometry describes the relationships
between the geomorphic, hydrologic, and geologic surface processes and a landscape [16]. Quantitative
analysis of the Kalvārı̄ Basin and its 11 sub-basins was carried out to evaluate the basin’s morphometric
characteristics and the characteristics of each sub-basin drainage network. This analysis enables
prioritization of the variables in terms of conservation and management efforts. In this regard, 23 MPs
that represent basic (Table 4), linear, shape, and relief characteristics of the basin were examined.

Table 4. Basic morphometric parameters of Kalvārı̄ basin.

Sub-Basin Basin
Area (A)

Basin
Perimeter

(P)

Stream
Order (U)

Number of
Streams

(Nu)

Basin
Length

(Lb)

Stream
Length

(Lu)

Mean Stream
length (Lsm)

Bifurcation
Ratio (Rb)

1 2.23 6.65 3 74 2.09 13.33 0.915 0.18
2 8.27 14.6 4 245 4.39 33.94 0.825 0.138
3 1.61 5.86 3 66 1.73 8.22 0.47 0.124
4 2.9 8.21 4 71 2.42 11.55 0.21 0.162
5 13.98 20.66 5 462 5.91 67.31 0.48 0.145
6 1.37 4.91 3 38 1.58 4.62 0.185 0.121
7 20.48 21.14 5 663 7.34 91.62 0.66 0.138
8 2.12 6.19 3 47 2.02 8.82 0.737 0.187
9 2 8.15 3 68 1.96 9.87 0.336 0.145

10 11 15.99 4 353 5.16 56.8 0.63 0.16
11 4.76 11.01 3 121 3.2 21.85 0.462 0.18

3.2. Basic Parameters

The Kalvārı̄ Basin is a 5th-order (Figure 6) basin with an area of 70.71 km2. The basin contains
2204 stream segments. The total length is 327.93 km. The number and length were determined by
the drainage threshold defined during the extraction of the stream network from the DEM. These
characteristics are indicative of Horton’s First Law [15], which states that the number of streams of
different ranks in the basin tends to have an inverse geometric ratio. This inverse geometric relationship
is shown in the form of straight lines when the logarithm of the number of streams is plotted on a
regular graph (Figure 7a). Changes in stream rankings are strongly dependent on the morphological
and structural features of the basin. The number and length of streams vary directly with the size of
the sub-basins. The lengths of the stream (Lu) were calculated according to Horton’s law. The length
indicates the temporal development of a stream interacting with tectonic disturbances. The higher
the stream ranking, the greater the length of the stream. The characteristics of the basin length of
the Kalvārı̄ Basin conform to Horton’s Second Law [15], which states that the average flow length of
each stream tends to have a straight geometric ratio relative to basin length. This linear geometrical
relationship is shown when the logarithms of the basin length values are plotted on a regular graph
(Figure 7b). The lengths of streams in the basin vary from 4.62 km (sub-basin 6) to a maximum of 91.62
km (sub-basin 7). Mean stream length ranges from 0.1216 (sub-basin 6) to 0.1877 (sub-basin 8). The
minimum and maximum heights of the basin are 1100 m and 1999 m. A comparison of the areas and
lengths of sub-basin waterways also reveals a direct relationship (Figure 7c).
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Figure 7. (a) Correlation between stream orders and logarithm of the number of streams in sub-basins
(Horton’s first law); (b) correlation between stream orders and logarithm of stream length in sub-basins
(Horton’s second law); and (c) relationship between area and stream length in the Kalvārı̄ Basin.
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3.3. Linear Parameters

3.3.1. Stream Density (Dd)

Stream density reflects landscape dissection and a basin’s runoff potential. Slope angle and relative
relief are the primary morphological factors that control drainage density. Strahler [16] concluded
that Dd is low when basin relief is high. Lower Dd in a basin indicates highly permeable subsurface
material, good vegetation, and low roughness, and the opposite conditions produce high Dd [72]. In
the Kalvārı̄ Basin, the lowest stream density was observed in sub-basin 4 (3.94 km). This sub-basin,
therefore, has the highest infiltration among all sub-basins. If the condensation parameter alone is
considered, it has the highest SE resistance and is the least susceptible to SE, and sub-basin 1 has the
highest value. Sub-basins 10 (5.12), 3 (5.08), 9 (4.9), 5 (4.78), 11 (4.55), 7 (4.43), 8 (4.13), 2 (4.06), and 4
(3.94) are in the following categories of SE susceptibility (Table 5).

Table 5. Shape, linear and relief geomorphometric parameters of the Kalvārı̄ basin.

Sub-basin
Parameters 1 2 3 4 5 6 7 8 9 10 11

(Rbm) 5.81 5.87 3.66 6.4 9.96 8.96 6.01 4.56 3.96 5.51 4.17
(Dd) 5.93 4.06 5.08 3.9 4.78 3.35 4.43 4.13 4.9 5.12 4.55
(Fu) 33.09 29.57 41.06 24. 33.01 27.8 32.34 22.15 34 32.05 25.41
(T) 11.09 16.74 11.23 8.6 22.32 7.7 31.33 7.55 8.3 22.03 10.95

(Lo) 2.94 2.01 2.51 1.9 2.36 1.65 2.19 2.04 2.42 2.54 2.25
(If) 197.66 121.36 240.16 97. 159.0 94.1 144.7 92.3 168.0 165.6 116.86
(C) 0.13 0.2 0.16 0.2 0.17 0.26 0.18 0.2 0.16 0.15 0.18
(Rf) 0.473 0.389 0.497 0.4 0.36 0.509 0.34 0.477 0.481 0.373 0.423
(Bs) 1.9 2.28 1.82 1.9 2.45 1.78 2.59 1.89 1.87 2.37 2.11
(Re) 0.77 0.7 0.79 0.7 0.67 0.8 0.66 0.77 0.78 0.69 0.73
(Cc) 1.21 1.38 1.25 1.3 1.51 1.14 1.27 1.15 1.58 1.31 1.37
(Rc) 0.59 0.45 0.55 0.5 0.37 0.67 0.54 0.05 0.34 0.5 0.45
(Rn) 5.41 3.34 2.4 0.7 2.27 0.58 2.91 3.03 1.61 3.21 2.08
(Rh) 13.72 5.61 8.1 2.5 2.28 3.72 3.08 11.86 4.08 3.89 4.15
(Bh) 0.4 0.15 0.24 0.0 0.04 0.08 0.05 0.32 0.13 0.08 0.1
(S) 36.08 23.61 24.13 14 27.09 23.72 19.1 26.17 21.3 24.09 22.17

3.3.2. Stream Frequency (Fu)

Fu is the ratio of the number of streams in a basin to that basin’s area [15,73]. The Fu is inversely
related to infiltration and is directly related to basin roughness [73]. High Fu indicates that the basin
has a rocky surface and low permeability that contributes to further SE, and vice versa. Values of Fu in
the study area vary from 22.15 streams/km2 for basin 8 to 41.06 for basin 3. Thus, sub-basin 3 has the
lowest absorption capacity and is the most susceptible to SE, whereas basin 8 is least susceptible to SE.
Sub-basins 9 (34), 1 (33.09), 5 (33.01), 7 (32.34), 10 (32.05), 2 (29.57), 6 (27.08) 11 (25.41) and 4 (24.4) rank
second to tenth in susceptibility.

3.3.3. Mean Bifurcation Ratio (Rbm)

Rbm indicates that the infiltration of the basin are inversely correlated. A high Rbm value is the
peak of the initial hydrograph when flooding results in high soil degradation. Rbm values are too
high for all sub-basins in this study area, indicating that they are structurally complex and have low
infiltration rates. Rbm values range from 3.66 for sub-basin 3 to 9.96 for sub-basin 5. Sub-basin 5 is the
basin most susceptible to SE and sub-basins 6, 4, 7, 2, 1, 10, 8, 11 and 9 with values (8.96, 6.48, 6.01, 5.87,
5.81, 5.51, 4.56, 4.17, and 3.96) follow in rank.

3.3.4. Drainage Texture (T)

T depends on several physical factors—climate, rainfall, vegetation, rock, and soil type, infiltration
capacity, and soil evolutionary stage. According to Smith [74], drainage texture is classified into four
levels: rough (less than 4), moderate (4–10), soft (more than 10), and ultra-soft (or highland topography)
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(more than 15). According to this classification, the drainage texture of the basin is super soft (14/39).
High drainage texture indicates soft rocks of low SE-resistance. The drainage texture values of this
study area indicate the basin is highly sensitive to SE. The highest drainage texture is found in sub-basin
7 (31.33) and it, therefore is the sub-basin most sensitive to SE. Sub-basin 8 (7.55) is least sensitive to SE.
Sub-basins 5 (22.32), 10 (22.03), 2 (16.74), 3 (11.23), 1 (11.09), 11 (10.95), 4 (8.6), 9 (8.3) and 6 (7.7) ranked
second to tenth most sensitive to SE.

3.3.5. Constant of Channel Maintenance (C)

This indicator reflects infiltration and the control of flow to the basin outlet [19]. The relationship
between this parameter and SE is analogous to the relationship of drainage density to stream frequency.
The values of C range from a minimum (0.13) for sub-basin 1 to a maximum (0.26) for sub-basin 6.
Sub-basin 6 is the most erodible sub-basins, and sub-basin 1 is not susceptible to SE. Sub-basins 4 (0.21),
2 (0.2), 8 (0.2), 7 (0.18), 11 (0.18), 5 (0.17), 9 (0.16), 3 (0.15), and 10 (0.15) are the next nine of the top ten.

3.3.6. Length of Overland Flow (Lo)

Lo affects the hydrological evalution of the basin [16]. This factor is lower for steeper slopes and
higher for more mild slopes. Lo values for the basin range from 2.9 in sub-basin 1 to 1.65 in sub-basin
6. Higher values of Lo indicate greater susceptibility to SE. Sub-basins 10 (2.54), 3 (2.51), 9 (2.42), 5
(2.36), 11 (2.25), 7 (2.19), 8 (2.04), 2 (2.01), 4 (1.95), and 6 (1.65) are the next ten sub-basins ranked in
terms of susceptibility to SE.

3.3.7. Infiltration Number (If)

Sub-basins with high infiltration values are less susceptible to SE. If values for the sub-basins
range from the minimum (92.3) in sub-basin 8 to the maximum (240.16) in sub-basin 3. Sub-basin 8 is
then most susceptible to SE. Sub-basins 6 (94.1), 4 (97.3), 11 (116.86), 2 (121.36), 7 (144.7), 5 (159), 10
(165.6), 9 (168), and 1 (197.66) are ranked next in terms of susceptibility to SE.

3.4. Shape Parameters

3.4.1. Elongation Ratio (Re)

The values of Re range from 0.6 to 1.0 based on climate and geological conditions [20]. Values
of about 1 are typical of areas with very low roughness [15], mild topography, and little frictional
resistance to flow, while values of 0.6 to 0.8 are associated with high roughness and steep terrain [75].
In the study area, sub-basin 9 is most the elongated sub-basin (0.78) and is therefore least susceptible to
SE. Sub-basin 7 has the smallest elongation ratio (0.66) and is the most susceptible to SE. Sub-basins 5
(0.67), 10 (0.69), 2 (0.7), 11 (0.73), 4 (0.75), 1 (0.77), 8 (0.77), 6 (0.8) and 3 (0.79) fill out the top ten in terms
of susceptibility.

3.4.2. Circularity Ratio (Rc)

Rc relates to several basin characteristics: stream length and frequency, geological structure,
climate, roughness, and slope. High Rc indicates a circular basin with moderate to high roughness,
high infiltration, less elongated, lower roughness, and low infiltration. Sub-basin 9, with the lowest
Rc value (0.34), is least susceptible to SE due to high infiltration. Sub-basin 6, having the highest Rc
value (0.67), is most susceptible to SE. In terms of Rc and susceptibility to SE, sub-basins 5 (0.37), 2
(0.45), 11 (0.45), 4 (0.5), 10(0.5), 7 (0.54), 3 (0.55), 1 (0.59), and 8 (0.65) were next in rank of the nine least
susceptible to SE.

3.4.3. Form Factor (Rf)

The effect of the Rf parameter on SE is similar to the effect of the elongation factor: basins with
the lowest Rf values are most susceptible to SE. The extracted Rf values are low in the study area and
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ranged from a minimum (0.34) in sub-basin 7, the most SE-susceptible sub-basin, to a maximum (0.5)
in sub-basin 6. Sub-basins 5 (0.36), 10 (0.37), 2 (0.38), 11 (0.42), 4 (0.45), 1 (0.47), 8 (0.47), 9 (0.48), and 3
(0.49) ranked as the next most SE-susceptible.

3.4.4. Shape Factor (Bs)

The sediment- and runoff-production rates, drainage length, and roughness are influenced by
Bs. Thus, in terms of SE response, Bs behaves like Rf. Among the sub-basins, the lowest Bs value
(1.78) and therefore the highest erodibility is observed in sub-basin 6, while the highest (2.59) and least
SE-susceptible is sub-basin 7. Sub-basins 3 (1.82), 9 (1.87), 8 (1.89), 1 (1.9), 4 (1.97), 11 (2.11), 2 (2.28), 10
(2.37), and 5 (2.45) complete the list of the ten most erodible.

3.4.5. Compactness Coefficient (Cc)

The Cc is directly linked to infiltration capacity. Therefore, the relationship between Cc and
SE is the same as Rf and Bs. Sub-basin 6 has the lowest Cc value (1.14) and has surfaces with low
permeability. Therefore sub-basin 6 is the most SE-susceptible basin. Sub-basin 9 has the highest Cc
(1.58) and therefore is least SE-susceptible. Sub-basins 8 (1.15), 1 (1.21), 3 (1.25), 7 (1.27), 10 (1.31), 4
(1.31), 11 (1.37), 2 (1.38), and 5 (1.51) have the next lowest Cc values and are the next most susceptible
to SE.

3.5. Relief Parameters

3.5.1. Basin Relief (Bh)

Bh indicates height difference [76]. This parameter has a significant role in hydrological
characteristics [6]. The Bh indicates the overall slope of a basin and therefore the intensity of
the SE forces operating on the slopes. The relationships of this parameter to SE is the same as Dd, and
Fu. Sub-basin 4 has the lowest Bh (0.05) and sub-basin 1 has the highest Bh (0.40), thus sub-basin 1 is
most susceptible and sub-basin 4 is least susceptible. Sub-basins 8 (0.32), 3 (0.24), 2 (0.15), 9 (0.13), 11
(0.1), 6 (0.08), 7 (0.05), and 5 (0.04) rank second to ninth in Bh values.

3.5.2. Slope (S)

In terms of SE response, slopes are drainage density and stream frequency factors. The steepest
slope in the sub-basins is in sub-basin 1 (36.08◦) which makes it the most susceptible to SE. The lowest
slope is in sub-basin 4 (14.1◦) which is least susceptible to SE. Sub-basins 5 (27.09◦), 8 (26.17◦), 3
(24.13◦), 10 (24.09◦), 6 (23.72◦), 2 (23.61◦), 11 (22.17◦), 9 (21.3◦), and 7 (19.1◦), rank as the next nine
SE-susceptible sub-basins.

3.5.3. Ruggedness Number (Rn)

Rn is used to calculate the flood potential of streams [16]. This parameter reflects the geometrical
characteristics of the basin. The Rn is directly related to erodibility: increasing Rn increases erosivity.
Rn ranged from a minimum of 0.079 for sub-basin 4 to a maximum of 5.41 for sub-basin 1. Sub-basin 1
is therefore most susceptible, followed by sub-basins 2, 10, 8, 7, 3, 11, 9, 4, and 6.

3.5.4. Relief Ratio (Rh)

Rh is directly related to slope. It affects hydrological processes and SE. Rh, like the other shape
parameters, is direct related to a basin’s likelihood to be exposed to erosive fluvial forces. Sub-basin 1
has the highest value (13.72) and sub-basin 5 the lowest (2.28). Sub-basin 1 is most susceptible to SE
and is followed by sub-basins 8 (11.86), 3 (8.1), 2 (5.61), 9 (4.08), 11 (4.15), 10 (3.89), 6 (3.72), 7 (3.08), and
4 (2.51).
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3.6. Prioritization of Sub-Basins Using Novel AHP-COPRAS Ensemble Model

To determine the relative importance of the contribution that each MP makes to determining
soil-SE potential, a set of academic experts were asked to express their informed opinions of expected
importance of each variable. From their responses, a pairwise comparison matrix was created to
determine the weight of each parameter using AHP (Table 6). The consistency ratio from this matrix
was 0.05, indicating that the opinions were consistent. Based on the AHP results (Table 6 and Figure 8),
Slope (0.122), Dd (0.120), and If (0.113) are the most important determinants of SE. By contrast, the
parameters Re (0.022), Fu (0.029), and Rf (0.0316) were the least important influencers of sub-basin
erosivity. This is consistent with the results of [23]. T (0.097), Lo (0.073), Bh (0.067), Rbm (0.063), Rh
(0.056), Rn (0.045), C (0.042), Rc (0.04), Cc (0.037), and Bs (0.034) bridge the gap in these ranks. The
scores obtained for all 11 sub-basins using the COPRAS model varied from the minimum (0.118) to the
maximum (0.319) and were divided into 5 groups (Figure 8): very low (0.118–0.137), low (0.137–0.159),
moderate (0.159–0.171), high (0.171–0.208) and very high (0.208–0.319) using the natural-break method
(Figure 9). Accordingly, sub-basin 4 is in the very low-SE class. Sub-basins 5, 6, and 9 are in the low-SE
group. Sub-basins 7, 10, and 11 have moderate SE potential. Sub-basin 2 is highly likely to be prone to
SE, and sub-basins 1, 3, and 8 are very highly likely to experience SE.

Table 6. Pair-wise comparison matrix.

Dd S T Bh Fu Rbm If Rn Lo C Rh Re Bs Cc Rf Rc

Dd 1
S 0.43 1
T 0.31 0.46 1

Bh 0.21 0.33 0.41 1
Fu 0.25 0.23 0.35 0.47 1

Rbm 0.21 0.24 0.26 0.31 0.39 1
If 0.21 0.19 0.22 0.29 0.38 0.40 1

Rn 0.19 0.19 0.22 0.19 0.25 0.27 0.39 1
Lo 0.15 0.18 0.18 0.19 0.21 0.24 0.23 0.43 1
C 0.18 0.14 0.15 0.19 0.23 0.22 0.23 0.33 0.4 1

Rh 0.13 0.17 0.16 0.17 0.21 0.21 0.18 0.23 0.36 0.49 1
Re 0.16 0.16 0.12 0.18 0.16 0.23 0.20 0.22 0.28 0.32 0.5 1
Bs 0.11 0.12 0.18 0.17 0.15 0.18 0.22 0.21 0.24 0.25 0.37 0.43 1
Cc 0.13 0.12 0.11 0.12 0.14 0.16 0.19 0.22 0.22 0.22 0.29 0.38 0.47 1
Rf 0.12 0.12 0.14 0.15 0.17 0.15 0.18 0.20 0.21 0.21 0.23 0.24 0.32 0.46 1
Rc 0.11 0.12 0.11 0.13 0.12 0.13 0.13 0.17 0.19 0.20 0.20 0.24 0.22 0.31 0.41 1

Consistency Ratio = 0.05
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Figure 9. Prioritization of sub-basins for conservation programs.

The COPRAS algorithm indicated (Table 7) that sub-basins 1 (0.319), 8 (0.257), and 3 (0.208) are
the most susceptible to SE. Sub-basins 2, 10, 11, 7, and 9 rank next in terms of SE susceptibility. And
sub-basins 4 (0.118), 6 (0.137), and 5 (0.147) are the least susceptible to SE.

Table 7. Final weight of sub-basins using complex proportional assessment of alternatives
(COPRAS) models.

Sub-Basin sj+ sj- Q Rank

1 0.3165 0.0721 0.3195 First
2 0.1984 0.0558 0.2014 Fourth
3 0.2056 0.0721 0.2086 Third
4 0.1442 0.0524 0.1472 Eleventh
5 0.1158 0.0581 0.1188 Ninth
6 0.1347 0.0712 0.1377 Tenth
7 0.1568 0.0644 0.1599 Seventh
8 0.2546 0.0214 0.2576 Second
9 0.1489 0.0511 0.1519 Eighth
10 0.1684 0.0628 0.1714 Fifth
11 0.1570 0.0555 0.1600 Sixth

3.7. Validation of Results

Results of mean sediment yield from the MPSIAC model (Table 8) show that sub-basins 1, 8, and
3, with mean sediment yields of 943.7, 845.2, and 715.8 m3km−2 year−1, have the highest susceptibility
to SE. By comparison, sub-basins of 4, 6, and 5, with mean sediment yields of 550.6, 511.4, and
456.3 m3km−2 year−1, are the least susceptibility to SE. Sub-basins 2, 10, 11, 7, and 9, with mean
sediment yields of 675.1, 645.2, 613.7, 601.8, and 581.3 m3 km−2 year−1, ranked fourth to eighth in
terms of sensitivity to SE. The results of regressing the nine effective factors from the MPSIAC model
against sediment yield at each sub-basin revealed high correlation coefficients with topography, runoff,
upland SE, and channel SE (R2 = 0.92 − 0.96; Table 9). Comparing the results of sub-basin prioritization
using the hybrid method and the MPSIAC method showed that the ensemble method prioritizes the
sub-basins rather accurately (100%) (Figure 10). Non-parametric tests indicate that, compared to the
AHP and COPRAS models, the AHP-COPRAS ensemble had the best correlation (Table 10).
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Table 8. Surface area, mean sediment yield, and sediment production at each sub-basin of the study area.

Sub-Basin Surface Area
(km2)

Mean Sediment Yield
(m3 km−2 year−1) Rank Sediment Production

(m3 year−1)

1 2.23 943.7 First 2104.45
2 8.27 675.1 Fourth 5583.07
3 1.61 715.8 Third 1152.43
4 2.9 456.3 Eleventh 1323.2
5 13.98 550.6 Ninth 7679.3
6 1.37 511.4 Tenth 700.61
7 20.48 601.8 Seventh 12324.8
8 2.12 854.2 Second 1810.9
9 2 581.3 Eighth 1162.6

10 11 645.2 Fifth 3071.1
11 4.76 613.7 Sixth 6750.7

Table 9. Correlation between sediment yield and modified Pacific Southwest Inter-Agency Committee
(MPSIAC) factors in the study area.

Statistical Analyses
MPSIAC Factors

X1 X2 X3 X4 X5 X6 X7 X8 X9

Sediment
yield

Pearson Correlation
(R) −0.85 0.78 −0.93 0.78 0.96 −0.79 −0.83 −0.95 0.97

R2 0.73 0.58 0.59 0.95 0.96 0.64 0.66 0.93 0.92
Significance
(two-tailed) 0.071 0.127 0.111 0.006 0.008 0.12 0.115 0.007 0.018

X1 to X9: Geology, Soil, Climate (rainfall), Runoff, Topography (slope), Land cover, Land use, Upland erosion,
Channel erosion.
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Table 10. Comparison of models using non-parametric tests.

Non-Parametric Tests Models AHP COPRAS AHP-COPRAS

KTCCT
AHP 1 0.886 0.725

COPRAS 0.886 1 0.749
AHP-COPRAS 0.725 0.749 1

SCCT
AHP 1 0.295 0.025

COPRAS 0.295 1 0.036
AHP-COPRAS 0.025 0.036 1
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4. Discussion

The Kalvārı̄ Basin was selected for study because of the extent to which it is impacted by SE.
Erosion processes in the basin reflect its morphology—visible in its linear relief pattern, its shape,
and its spatial extent. After determining its drainage network and MPs using RS, GIS, and a DEM,
the AHP-COPRAS ensemble model was used to develop a map of SE susceptibility and to rank the
sub-basins by the intensity of SE. The results of the map were compared to the results from two
individual models.

Digitally estimating MPs provided an easier, more accurate, and more quantitative method to
evaluate morphometric characteristics and to analyze the variations within the region. PALSAR DEM
has been used previously for morphometric studies, especially in mountainous regions, as it provides
more accurate elevation measurements and better morphometric and geomorphic details (compared
to ASTER and SRTM DEMs) [77].

First-order streams comprise nearly 67% of the streams in the study area. That first-order streams
are the most numerous of all orders indicates that there is a structural weakness in the basin in the
form of lineaments [78]. Stream frequency in all sub-basins is moderate, which indicates that there
is moderate run-off intensity and high drainage density. The terrain is highly dissected. Sub-basins
are finely textured, indicating highly developed drainage and high rates of SE. Stream frequency,
drainage density, and texture are very high in sub-basins 1 and 3, which indicates that these sub-basins
experience intensive SE. The values of these three characteristics are lowest in sub-basin 4, a unit that
is less prone to SE. Relief ratios generally depict a high-energy basin with substantial SE and high
sediment loads. This parameter is very high in sub-basins 1 and 8, where SE rates are high, and slopes
are moderate. By contrast, the relief ratios are very low in sub-basins 4 and 5, low-energy drainages as
exhibited by their gentle topographies.

Despite the low mean slope for the region overall, both the maximum and minimum slope angles
of the Kalvārı̄ Basin are in sub-basin 4, where the gentle topography has attracted greater human
activity. This has created a plateau-like terrain—a flat platform with steeply sloping edges on its
perimeter. This unit is a low-energy landscape with less sediment in streams. Sub-basins 1, 11, and 8
have higher mean slopes, and provide favorable topography for higher SE potential. The ruggedness
numbers of all the sub-basins reflect the mountainous nature of the region’s terrain, with significant
amounts of SE and dissection. The lowest ruggedness value is found in sub-basin 4 and the highest
is in sub-basin 8; these compliment the patterns of slope and relief ratios discussed above. Shape
factors reflect the geomorphology of a landscape and provide evidence of run-off and infiltration
processes [76]. Sub-basins 6, 3, 9, and 1 have the highest form factors of the sub-basins, reflecting their
more ovate and less elongated shapes (these forms are consistent with the elongation measures and
circulatory ratios for those units). The higher form-factor values of these sub-basins indicate more
drainage development and more structural control.

Based on the results of the AHP model, we know that slope, drainage density, infiltration
number, and texture ratio significantly impact SE in the study area, results which are consistent with
others [12,79–82]. Arabameri et al. [82] used four MCDM-based models to rank the sub-basins’ SE
susceptibilities by analyzing the MPs. The mean bifurcation ratio (Rbm), slope (S), and infiltration
number (If) have key roles in SE rates. Slope is a morphometric factor associated with hydrology that
indicates runoff volumes and runoff concentration time [76]. Soil infiltration-capacity and the initial
resistance of a surface to SE depend on drainage density [73]. Infiltration number is very important for
expressing a basin’s infiltration characteristics and depends directly on the basin’s runoff capacity [76].
Validation of the results by using non-parametric tests shows that the ensemble model performed
better than the AHP and COPRAS individual models. This is consistent with the findings of Arabameri
et al. [83] which indicated that ensemble MCDM-based models perform better than individual models.

Validation of the ensemble model with the MPSIAC model shows that the ensemble model very
accurately prioritized sub-basins and could be used to prepare SE susceptibility maps. Sub-basins 1,
3, and 8 might be experiencing heavy SE and sedimentation due to either higher erodibility of hills
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in these areas, greater slopes, or land-cover changes (from compact to less compact pastures). The
sub-basins with slight and moderate SE and sedimentation may be less affected because of ultrabasic
and crystallized limestone formations, rock outcrops, or cultivated lands. The results provide ways to
identify very erosive areas and open new horizons in watershed management and sediment control by
providing greater evidence to support conservation-project prioritization.

Compared to other commonly used approaches to produce SE susceptibility maps, this ensemble
approach can be achieved with much simpler input data, specifically morphometric data, that can be
easily extracted from DEMs. Our approach does not need other SE parameters that might necessitate a
soil-inventory map, a source that is very time-consuming and expensive create. One limitation of this
method is that it ignores human activities that interfere with hydrologic processes (e.g., reducing a
river’s flow capacity), actions that often amplify SE. Moreover, additional information derived from
land use analyses that can be used to detail soil-erosion history would be beneficial, as they would
clarify the connection between spatial patterns of activities and SE zones. But suitable results can be
achieved without the best information.

5. Conclusions

The common approaches to assess the problem of SE, to develop management plans to address
it, require quantitative SE rate data at regional and global scales. In this research, the morphometric
characteristics of the Kalvārı̄ Basin were determined for use in an MCDM-based ensemble model. A
PALSAR DEM was input into a GIS, allowing for the development of quantitative and qualitative
morphometric analyses and the extraction of the spatial patterns of MPs. An AHP model was used to
evaluate the importance of each of the 16 parameters and revealed that slope, drainage density, and
infiltration number were the most important predictors of SE potential. A COPRAS-AHP ensemble
model indicated that sub-basins 1, 3, and 8 are highly susceptible to SE. Validation of the modeled
results using MPSIAC and non-parametric tests show that the ensemble model and the ranking of MPs
achieved strong prediction accuracy of SE susceptibility and this enables a faster and less expensive
prioritization of sub-basins for management actions. The method presented here takes advantage of
computer-assisted extraction and computation of morphometric characteristics to predict the spatial
patterns of the intensity of SE potential. A significant advantage is that only high-quality empirical
topographical data are employed. In this way, one can produce assessments for catchments that
either lack stream gages and extensive, large-scale records of past SE patterns, or are remote and
difficult to access. This, in fact, describes most of the watercourses in Iran. Given the predicted high
SE-susceptibility of sub-basins 1, 3, and 8, it is recommended that protective measures be taken to arrest
SE, reduce sedimentation in reservoirs, stabilize slopes against mass wasting, and reduce flood risk.
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