
150

Projection-Based Runtime Assertions for Testing and
Debugging Quantum Programs

GUSHU LI∗, University of California, Santa Barbara, USA

LI ZHOU∗,Max Planck Institute for Security and Privacy, Germany

NENGKUN YU2, University of Technology, Sydney, Australia

YUFEI DING, University of California, Santa Barbara, USA

MINGSHENG YING, University of Technology, Sydney, Australia, Institute of Software, CAS, China,

and Tsinghua University, China

YUAN XIE, University of California, Santa Barbara, USA

In this paper, we propose Proq, a runtime assertion scheme for testing and debugging quantum programs on a

quantum computer. The predicates in Proq are represented by projections (or equivalently, closed subspaces

of the state space), following Birkhoff-von Neumann quantum logic. The satisfaction of a projection by a

quantum state can be directly checked upon a small number of projective measurements rather than a large

number of repeated executions. On the theory side, we rigorously prove that checking projection-based

assertions can help locate bugs or statistically assure that the semantic function of the tested program is close

to what we expect, for both exact and approximate quantum programs. On the practice side, we consider

hardware constraints and introduce several techniques to transform the assertions, making them directly

executable on the measurement-restricted quantum computers. We also propose to achieve simplified assertion

implementation using local projection technique with soundness guaranteed. We compare Proq with existing

quantum program assertions and demonstrate the effectiveness and efficiency of Proq by its applications to

assert two sophisticated quantum algorithms, the Harrow-Hassidim-Lloyd algorithm and Shor’s algorithm.
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1 INTRODUCTION

Quantum computing is a promising computing paradigmwith great potential in cryptography [Shor
1999], database [Grover 1996], linear systems [Harrow et al. 2009], chemistry simulation [Peruzzo
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et al. 2014], etc. Several quantum program languages [Abhari et al. [n.d.]; Abraham et al. 2019;
Google 2018; Green et al. 2013; Paykin et al. 2017; Rigetti Forest team 2019; Svore et al. 2018] have
been published to write quantum programs for quantum computers. One of the key challenges
that must be addressed during quantum program development is to compose correct quantum
programs since it is easy for programmers living in the classical world to make mistakes in
the counter-intuitive quantum programming. For example, Huang and Martonosi [Huang and
Martonosi 2019a,b] reported a few bugs found in the example programs from the ScaffCC compiler
project [JavadiAbhari et al. 2015]. Bugs have also been reported in IBM’s OpenQASM project [IBM
2019] and Rigetti’s PyQuil project [Rigetti 2019]. These erroneous quantum programs, written and
reviewed by professional quantum computing experts, are sometimes even of very small size (with
only 3 qubits)1. Such difficulty in writing correct quantum programs hinders practical quantum
computing. Thus, effective and efficient quantum program debugging is naturally in urgent demand.
In this paper, we focus on runtime testing and debugging a quantum program on a quantum

computer, and revisit assertion, one of the basic program testing and debugging approaches, in
quantum computing. There have been two quantum program assertion designs in prior research.
Huang and Martonosi proposed statistical assertions, which employed statistical tests on classical
observations [Huang and Martonosi 2019b] to debug quantum programs. Motivated by indirect
measurement and quantum error correction, Liu et al. proposed a runtime assertion [Liu et al. 2020],
which introduces ancilla qubits to indirectly detect the system state. As early attempts towards
quantum program testing and debugging, these studies suffer from the following drawbacks:
1) Limited applicability with classical style predicates: The properties of quantum pro-

gram states can be much more complex than those in classical computing. Existing quantum
assertions [Huang and Martonosi 2019b; Liu et al. 2020], which express the quantum program
assertion predicates in a classical logic language, can only assert some simple quantum states of
three special cases (detailed later in Section 5). A lot of complex intermediate program states cannot
be tested by these assertions due to their limited expressive power. Hence, these assertions can
only be injected at some special locations where the states are within the three supported types.
Such restricted assertion types and injection locations will increase the difficulty in debugging as
assertions may have to be injected far away from a bug.
2) Inefficient assertion checking: A general quantum state cannot be duplicated [Wootters

and Zurek 1982], while the measurements, which are essential in assertions, usually only probe
part of the state information and will destroy the tested state immediately. Thus, an assertion,
together with the computation before it, must be repeated for a large number of times to achieve
a precise estimation of the tested state in Huang and Martonosi’s assertion design [Huang and
Martonosi 2019b]. Another drawback of the destructive measurement is that the computation after
an assertion will become meaningless. Even though multiple assertions can be injected at the same
time, only one assertion could be inspected per execution, which will make the assertion checking
more prolonged [Huang and Martonosi 2019b].

3) Lacking theoretical foundations: Different from a classical deterministic program, a quan-
tum program has its intrinsic randomness and one execution may not cover all possible computa-
tions of even one specific input. Moreover, some quantum algorithms (e.g., Grover’s search [Grover
1996], Quantum Phase Estimation [Nielsen and Chuang 2010], qPCA [Lloyd et al. 2014]) are de-
signed to allow approximate program states, and the quantum program assertion checking itself is
also probabilistic. Consequently, testing a quantum program usually requires multiple executions
for one program configuration. It is important but rarely considered (to the best of our knowledge)
what statistical information we can infer by testing those probabilistic quantum programs with

1We checked the issues raised in these projects’ official GitHub repositories for this information.
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assertions. Existing quantum program assertion studies [Huang and Martonosi 2019b; Liu et al.
2020], which mostly rely on empirical study, lack a rigorous theoretical foundation.

Potential and problem of projections: We observe that projection can be the key to address
these issues due to its potential logical expressive power and unique mapping property. The
logical expressive power of projection operators comes from the quantum logic by Birkhoff and
von Neumann back in 1936 [Birkhoff and Von Neumann 1936]. The logical connectives (e.g.,
conjunction and disjunction) of projection operators can be defined by the set operations on their
corresponding closed subspaces of a Hilbert space. Moreover, projections naturally match the
projective measurement, which may not affect the measured state when the state is in one of its
basis states [Li and Ying 2014]. However, only those projective measurements with a very limited set
of projections can be directly implemented on a quantum computer due to the physical constraints
on the measurement basis and measured qubit count, impeding the full utilization of the logical
expressive power of projections.
To overcome all the problems mentioned above and fully exploit the potential of projections,

we propose Proq, a projection-based runtime assertion for quantum programs. First, we employ
projection operators to express the predicates in our runtime assertion. The logical expressive
power of projection-based predicates allows us to assert much more types of states and enable more
flexible assertion locations. Second, we define the semantics of our projection-based assertions
by turning the projection-based predicates into corresponding projective measurements. Then
the measurement in our assertion will not affect the tested state if the state satisfies the assertion
predicate. This property leads to more efficient assertion checking and enables multi-assertion per
execution. Third, we quantitatively show that after a sufficient number of testing executions with
projection-based assertions, the semantics of the tested program can be guaranteed with a high
confidence level. This result can serve as the theoretical foundation of quantum program testingwith
projection-based assertions. Finally, we consider the physical constraints on a quantum computer
and introduce several transformation techniques, including additional unitary transformation,
combining projections, and using auxiliary qubits, to make all projection-based assertions executable
on a measurement-restricted quantum computer. We also propose local projection, which is a sound
simplification of the original projections, to relax the constraints in the predicates for simplified
assertion implementations.
The major contributions of this paper can be summarized as follows:

(1) We, first the time, propose to use projection operators to design runtime assertions that have
strong logical expressive power and can be efficiently checked on a quantum computer.

(2) On the theory side, we prove that testing quantum programs with projection-based assertions
is statistically effective in debugging or assuring the program semantics for both exact and
approximate quantum programs.

(3) On the practice side, we propose several assertion transformation techniques to simplify the
assertion implementation and make our assertions physically executable on a measurement-
restricted quantum computer.

(4) Both theoretical analysis and experimental results show that our assertion outperforms
existing quantum program assertions [Huang and Martonosi 2019b; Liu et al. 2020] with
much stronger expressive power, more flexible assertion location, fewer executions, and
lower implementation overhead.

2 PRELIMINARY

In this section, we introduce the necessary preliminary to help understand the proposed assertion
scheme.
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2.1 Quantum Computing

Quantum computing is based on quantum systems evolving under the law of quantum mechanics.
The state space of a quantum system is a Hilbert space (denoted by H ), a complete complex vector
space with inner product defined. A pure state of a quantum system is described by a unit vector
|𝜓 ⟩ in its state space. When the exact state is unknown, but we know it could be in one of some pure
states |𝜓𝑖⟩, with respective probabilities 𝑝𝑖 , where

∑
𝑖 𝑝𝑖 = 1, a density operator 𝜌 can be defined to

represent such a mixed state with 𝜌 =
∑

𝑖 𝑝𝑖 |𝜓𝑖⟩⟨𝜓𝑖 |. A pure state is a special mixed state. Hence, in
this paper, we adopt the more general density operator formulation most of the time since the state
in a quantum program can be mixed upon measurement, an essential type of quantum operation.
For example, a qubit (the quantum counterpart of a bit in classical computing) has a two-

dimensional state spaceH2 = {𝑎 |0⟩+𝑏 |1⟩}, where 𝑎, 𝑏 ∈ C and |0⟩, |1⟩ are two computational basis
states. Another commonly used basis is the Pauli-X basis, |+⟩ = 1√

2
( |0⟩+ |1⟩) and |−⟩ = 1√

2
( |0⟩−|1⟩).

For a quantum system with 𝑛 qubits, the state space of the composite system is the tensor product
of the state spaces of all its qubits:

⊗𝑛
𝑖=1 H𝑖 = H2𝑛 . This paper only considers finite-dimensional

quantum systems because realistic quantum computers only have a finite number of qubits.
There aremainly two types of operations performed on a quantum system, unitary transformation

(also known as quantum gates) and quantum measurement.

Definition 2.1 (Unitary transformation). A unitary transformation𝑈 on a quantum system
in the finite-dimensional Hilbert spaceH is a linear operator satisfying𝑈𝑈 †

= 𝐼H , where 𝐼H is the
identity operator on H .

After a unitary transformation, a state vector |𝜓 ⟩ or a density operator 𝜌 is changed to𝑈 |𝜓 ⟩ or
𝑈𝜌𝑈 †, respectively. We list the definitions of the unitary transformations used in the rest of this
paper as follows:

Single-qubit gates: 𝐻 (Hadamard) = 1√
2

[
1 1

1 −1

]
, 𝑋 =

[
0 1

1 0

]
Two-qubit gates: CNOT(Controlled-NOT, Controlled-X), Swap:

CNOT = |0⟩⟨0| ⊗ 𝐼2 + |1⟩⟨1| ⊗ 𝑋 =



1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0


, Swap =



1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1


Three-qubit gates: Toffoli, Fredkin (Controlled-Swap, CSwap):

Toffoli = |0⟩⟨0| ⊗ 𝐼4 + |1⟩⟨1| ⊗ CNOT Fredkin = |0⟩⟨0| ⊗ 𝐼4 + |1⟩⟨1| ⊗ Swap

=



1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1

0 0 0 0 0 0 1 0



=



1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1


Definition 2.2 (Quantum measurement). A quantum measurement on a quantum system in

the Hilbert space H is a collection of linear operators {𝑀𝑚} satisfying ∑
𝑚 𝑀†

𝑚𝑀𝑚 = 𝐼H .

After a quantum measurement on a pure state |𝜓 ⟩, an outcome𝑚 is returned with probability

𝑝 (𝑚) = ⟨𝜓 |𝑀†
𝑚𝑀𝑚 |𝜓 ⟩ and then the state is changed to |𝜓𝑚⟩ = 𝑀𝑚 |𝜓 ⟩√

𝑝 (𝑚)
. Note that

∑
𝑚 𝑝 (𝑚) = 1. For
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a mixed state 𝜌 , the probability that the outcome𝑚 occurs is 𝑝 (𝑚) = 𝑡𝑟 (𝑀†
𝑚𝑀𝑚𝜌), and then the

state will be changed to 𝜌𝑚 =
𝑀𝑚𝜌𝑀†

𝑚

𝑝 (𝑚) .

2.2 Quantum Programming Language

For simplicity of presentation, this paper adopts the quantum while-language [Ying 2011] to
describe the quantum algorithms. This language is purely quantum without classical variables but
this selection will not affect the generality since the quantum while-language, which has been
proved to be universal [Ying 2011], only keeps basic quantum computation elements that can be
easily implemented by other quantum programming languages [Abhari et al. [n.d.]; Abraham et al.
2019; Google 2018; Green et al. 2013; Paykin et al. 2017; Rigetti Forest team 2019; Svore et al. 2018].
Thus, our assertion design and implementation based on this language can also be easily extended
to other quantum programming languages

Definition 2.3 (Syntax [Ying 2011]). The quantum while-programs are defined by the grammar:

𝑆 ::= skip | 𝑆1; 𝑆2 | 𝑞 := |0⟩ | 𝑞 := 𝑈 [𝑞] | if (□𝑚 ·𝑀 [𝑞] =𝑚 → 𝑆𝑚) fi | while𝑀 [𝑞] = 1 do 𝑆 od

The language grammar is explained as follows. 𝑞 represents a quantum variable while 𝑞 means a
quantum register, which consists of one or more variables with its corresponding Hilbert space
denoted byH𝑞 .𝑞 := |0⟩means that quantum variable𝑞 is initialized to be |0⟩.𝑞 := 𝑈 [𝑞] denotes that
a unitary transformation𝑈 is applied to 𝑞. Case statement if · · · fimeans a quantummeasurement𝑀
is performed on𝑞 to determine which subprogram 𝑆𝑚 should be executed based on the measurement
outcome𝑚. The loop while · · · od means a measurement𝑀 with two possible outcomes 0, 1 will
determine whether the loop will terminate or the program will re-enter the loop body.
The semantic function of a quantum while-program 𝑆 (denoted by J𝑆K) is a mapping from the

program input state to its output state after executing program 𝑆 . For example, J𝑆K(𝜌) represents
the output state of program 𝑆 with input state 𝜌 . A formal and comprehensive introduction to the
semantics of quantum while-programs can be found in [Ying 2016].

2.3 Projection and Projective Measurement

One type of quantum measurement of particular interest is the projective measurement because all
measurements that can be physically implemented on quantum computers are projective measure-
ments. We first introduce projections and then define the projective measurement.
For each closed subspace 𝑋 ofH , we can define a projection 𝑃𝑋 . Note that every |𝜓 ⟩ ∈ H (|𝜓 ⟩

does not have to be normalized) can be written as |𝜓 ⟩ = |𝜓𝑋 ⟩ + |𝜓0⟩ with |𝜓𝑋 ⟩ ∈ 𝑋 and |𝜓0⟩ ∈ 𝑋⊥

(the orthocomplement of 𝑋 ).

Definition 2.4 (Projection). The projection 𝑃𝑋 : H ↦→ 𝑋 is defined by

𝑃𝑋 |𝜓 ⟩ = |𝜓𝑋 ⟩.

for every |𝜓 ⟩ ∈ H .

In the rest of this paper, we denote 𝑃𝑋 as 𝑃 because there is a one-to-one correspondence between
the closed subspaces of a Hilbert space and the projections in it. For simplicity, we do not distinguish
a projection 𝑃 from its corresponding subspace. Note that 𝑃 is Hermitian (𝑃†

= 𝑃 ) and 𝑃2
= 𝑃 . If

a pure state |𝜓 ⟩ (or a mixed state 𝜌) is in the corresponding subspace of a projection 𝑃 , we have
𝑃 |𝜓 ⟩ = |𝜓 ⟩ (𝑃𝜌𝑃 = 𝜌). The rank of a projection 𝑃 (denoted by rank 𝑃 ) is defined by the dimension
of its corresponding subspace.

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 150. Publication date: November 2020.



150:6 Gushu Li, Li Zhou, Nengkun Yu, Yufei Ding, Mingsheng Ying, and Yuan Xie

Definition 2.5 (Projective measurement). A projective measurement 𝑀 is a quantum mea-
surement in which all the measurement operators are projections (0H is the zero operator on H ):

𝑀 = {𝑃𝑚}, where
∑
𝑚

𝑃𝑚 = IH and 𝑃𝑚𝑃𝑛 =

{
𝑃𝑚 if𝑚 = 𝑛,

0H otherwise.

Note that if a state |𝜓 ⟩ (or 𝜌) is in the corresponding subspace of 𝑃𝑚 , then a projective measure-
ment with observed outcome𝑚 will not change the state since:

|𝜓𝑚⟩ =
𝑃𝑚 |𝜓 ⟩√

⟨𝜓 | 𝑃†
𝑚𝑃𝑚 |𝜓 ⟩

=
|𝜓 ⟩√
⟨𝜓 |𝜓 ⟩

= |𝜓 ⟩ ,
©­­«
resp. 𝜌𝑚 =

𝑃𝑚𝜌𝑃
†
𝑚

tr
(
𝑃†
𝑚𝑃𝑚𝜌

) =
𝜌

tr(𝜌) = 𝜌
ª®®¬

2.4 Projection-Based Predicates and Quantum Logic

In addition to defining projective measurements, projection operators can also define the predicates
in quantum programming. We introduce the definition of projection-based predicates.

Definition 2.6 (Projections-based predicates). Suppose 𝑃 is a projection operator on H and
its corresponding closed subspace is 𝑋 . A state 𝜌 is said to satisfy a predicate 𝑃 (written 𝜌 |= 𝑃)
if supp(𝜌) ⊆ 𝑋 , where supp(𝜌) is the subspace spanned by the eigenvectors of 𝜌 with non-zero
eigenvalues. Note that 𝜌 |= 𝑃 =⇒ 𝑃𝜌 = 𝜌 .

Some quantum algorithms (e.g., qPCA [Lloyd et al. 2014]) are not exact and their program states
may only approximately satisfy a projection-based predicate. We first introduce two concepts,
trace distance 𝐷 and fidelity 𝐹 , to evaluate the distance between two states. Then we define the
approximate satisfactory of projection-based predicates.

Definition 2.7 (Trace distance of states). For two states 𝜌 and 𝜎 , the trace distance 𝐷 , which
measures the łdistinguishabilityž of two quantum states, between 𝜌 and 𝜎 is defined as

𝐷 (𝜌, 𝜎) = 1

2
𝑡𝑟 |𝜌 − 𝜎 |

where 𝑡𝑟 |𝑋 | = 𝑡𝑟
√
𝑋 †𝑋 and

√
𝑋 †𝑋 refers to the positive square root which is unique because 𝑋 is a

density matrix which is Hermitian. Note that 0 ≤ 𝐷 (𝜌, 𝜎) ≤ 1 and 𝐷 (𝜌, 𝜎) = 0 ⇔ 𝜌 = 𝜎 . For two
normalized states 𝜌 and 𝜎 (pure states or density operators with trace 1), 𝐷 (𝜌, 𝜎) = 1 ⇔ 𝜌 and 𝜎 are
orthogonal. Trace distance is a metric and it satisfies the triangle inequality.

Definition 2.8 (Fidelity). For two states 𝜌 and 𝜎 , the fidelity 𝐹 , which is not a metric but measures
the łclosenessž of two quantum states, between 𝜌 and 𝜎 is defined as

𝐹 (𝜌, 𝜎) = 𝑡𝑟

√√
𝜌𝜎

√
𝜌

where
√
𝜌 is the unique positive square root given by the spectral theorem (the same with the square

root in the above definition). For example, suppose the spectrum decomposition of 𝜌 is
∑

𝑖 𝑝𝑖 |𝜓𝑖⟩⟨𝜓𝑖 |,
then

√
𝜌 =

∑
𝑖

√
𝑝𝑖 |𝜓𝑖⟩⟨𝜓𝑖 | (we have 𝑝𝑖 ≥ 0 since a state 𝜌 must be a positive semi-definite operator.).

Note that 0 ≤ 𝐹 (𝜌, 𝜎) ≤ 1 and 𝐹 (𝜌, 𝜎) = 1 ⇔ 𝜌 = 𝜎 . 𝐹 (𝜌, 𝜎) = 0 ⇔ 𝜌 and 𝜎 (may not be normalized)
are orthogonal. Note that fidelity does not satisfy the triangle inequality. A frequently used metric
induced by fidelity is the arccos of fidelity and it satisfies the triangle inequality.

Definition 2.9 (Approximate satisfactory of projection-based predicates). A state 𝜌 is
said to approximately satisfy (projective) predicate 𝑃 with error parameter 𝜖 , written 𝜌 |=𝜖 𝑃 if there
exists a 𝜎 with the same trace such that 𝜎 |= 𝑃 and 𝐷 (𝜌, 𝜎) ≤ 𝜖 .

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 150. Publication date: November 2020.
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In the rest of this paper, all predicates are projection-based predicates and we do not distinguish
a predicate 𝑃 , a projection 𝑃 , and its corresponding closed subspace 𝑃 . A quantum logic can be
defined on the set of all closed subspaces of a Hilbert space [Birkhoff and Von Neumann 1936].

Definition 2.10 (Quantum logic on the projections [Birkhoff and Von Neumann 1936]).

Suppose S(H) is the set of all closed subspaces of Hilbert space H . Then (S(H),∧,∨,⊥ ) is an
orthomodular lattice (or quantum logic). For any 𝑃,𝑄 ∈ S(H), we define:

𝑃 ∧𝑄 = 𝑃 ∩𝑄, 𝑃 ∨𝑄 = span(𝑃 ∪𝑄), 𝑃⊥
= {|𝜓 ⟩ ∈ H : ⟨𝜓 | 𝑃 |𝜓 ⟩ = 0}

and the notations are defined as follows. Suppose𝑇 is a set inH . Then span(𝑇 ) is the subspace spanned
by𝑇 , and𝑇 is the closure of𝑇 . That is, in this quantum logic, the logic operations on the predicates are
defined by the set operations on their corresponding subspaces.

2.5 Measurement-RestrictedQuantum Computer

Although projective measurement has restricted all the measurement operators to be projection
operators, most quantum computers which run on the well-adopted quantum circuit model [Nielsen
and Chuang 2010] usually have more restrictions on the measurement.
First, they only support projective measurement in the computational basis. That is, only

projective measurements with a specific set (which only contains all the computational basis states)
of projection operators can be physically implemented. For example, such a projective measurement
on 𝑛 qubits can be described as𝑀 = {𝑃𝑡 }, where 𝑃𝑡 = |𝑡⟩⟨𝑡 | is the projection onto the 1-dimensional
subspace spanned by the basis state |𝑡⟩, and 𝑡 ranges over all 𝑛-bit strings; in particular, for a single
qubit, this measurement is simply𝑀 = {𝑃0, 𝑃1} with 𝑃0 = |0⟩⟨0| and 𝑃1 = |1⟩⟨1|.

Second, only projective measurements with projection operators of special ranks can be physi-
cally implemented. Suppose we have an 𝑛-qubit program with a 2𝑛-dimensional state space. After
we measure one qubit, the state of that qubit will collapse to one of its basis states. The overall state
space is reduced by half and becomes a 2𝑛−1-dimensional space. A projection 𝑃 with rank 𝑃 = 2𝑛−1

can be implemented by measuring one qubit. If 𝑘 qubits are measured, the remaining space will have
2𝑛−𝑘 dimensions, and projections with rank 𝑃 = 2𝑛−𝑘 can be implemented by measuring 𝑘 qubits.
In reality, we can only measure an integer number of qubits but cannot measure a fraction number
of qubits. For an 𝑛-qubit system, we can measure {1, 2, · · · , 𝑛} qubits so that only projections with
rank 𝑃 ∈ {2𝑛−1, 2𝑛−2, · · · , 1} can be directly implemented.

3 PROJECTION-BASED ASSERTION: DESIGN AND THEORETICAL FOUNDATIONS

The goal of this paper is to provide a design of assertions which the programmers can insert in
their quantum programs when testing and debugging their programs on a quantum computer. In
particular, our design aims to achieve two objectives:

(1) The assertions should have strong logical expressive power and can be efficiently checked.
(2) The assertions should be executable on a quantum computer with restricted measurements.

In this section, we will focus on the first objective and introduce how to design quantum program
assertions based on projection operators. We first discuss the reasons why projections are suitable
for expressing predicates in a quantum program assertion. Then we formally define the syntax
and semantics of a new projection-based assert statement. Finally, we rigorously formulate the
theoretical foundations of program testing and debugging with projection-based assertions. We
prove that running the assertion-injected program repeatedly can narrow down the potential
location of a bug or assure that the semantics of the original program is close to what we expect.

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 150. Publication date: November 2020.



150:8 Gushu Li, Li Zhou, Nengkun Yu, Yufei Ding, Mingsheng Ying, and Yuan Xie

3.1 Checking the Satisfaction of a Projection-Based Predicate

An assertion is a predicate at a point of a program. The key point of designing assertions for quantum
programs is to first determine how to express predicates in the quantum scenario. Projection-based
predicates has been used widely in static analysis and logic for quantum programming. For the
first time, we employ projection-based predicates in runtime assertions for two reasons.

rank = 1

rank = 0

rank = 2
n

rank = 2

rank = 4

rank = 3

…...

zero operator

identity operator

…... … … rank = 2
n 

- 1

… …

…

…... … …

…...

all projections in 

the 2
n
-dimensional 

Hilber space

predicates supported 

in existing assertions

…... …...

…...

…

…...

Fig. 1. Logical expressive power comparison

Strong logical expressive power: Figure 1 shows
the orthomodular lattice based on all projections in a
2𝑛-dimensional Hilbert space and compares the logi-
cal expressive power of the predicates in existing as-
sertions and the projections. All predicates expressed
using a classical logical language in existing quantum
program assertions [Huang and Martonosi 2019b; Liu
et al. 2020] can be represented by very few elements
of special ranks in this lattice (detailed discussion is in
Section 5.1). But projections can naturally cover all ele-
ments in Figure 1. Therefore, projections have a much
stronger expressive power compared with the classical
logical language used in existing quantum assertions.
Efficient runtime checking: A quantum state 𝜌

can be efficiently checked by a projection 𝑃 because 𝜌
will not be affected by the projective measurement with respect to 𝑃 if it is in the subspace of 𝑃 .
We can construct a projective measurement 𝑀 = {𝑀true = 𝑃,𝑀false = 𝐼 − 𝑃}. When 𝜌 is in the
subspace of 𝑃 , the outcome of this projective measurement is always łtruež with probability of 1
and the state is still 𝜌 . Then we know that 𝜌 satisfies 𝑃 without changing the state. When 𝜌 is not
in the subspace of 𝑃 , which means that 𝜌 does not satisfy 𝑃 , the probability of outcome łtruež or
łfalsež in the constructed projective measurement is 𝑡𝑟 (𝑃𝜌) or 1 − 𝑡𝑟 (𝑃𝜌), respectively. Suppose
we perform such procedure 𝑘 times, the probability that we do not observe any łfalsež outcome is
𝑡𝑟 (𝑃𝜌)𝑘 . Since 𝑡𝑟 (𝑃𝜌) < 1, this probability approaches 0 very quickly when 𝑡𝑟 (𝑃𝜌) is not close to
1 and we can conclude if 𝜌 satisfies 𝑃 with high certainty within very few executions. Moreover,
even if the state 𝜌 is not in the subspace of 𝑃 , the projective measurement with outcome łtruež will
change the incorrect state 𝜌 to a correct state that is in the subspace of 𝑃 so that the following
execution after the assertion is still valid.

When 1 − 𝑡𝑟 (𝑃𝜌) < 𝜖 and 𝜖 is small, it is possible that we do not observe any ‘false’ outcome in
very few executions because the probability of observing a ‘false’ outcome is small. In this situation,
we have the following two cases. First, the program itself has some real bugs that makes a tested
state very close to what we expect. Given 1 − 𝑡𝑟 (𝑃𝜌) < 𝜖 , the trace distance (Definition 2.7) of

the tested state 𝜌 and at least one desired state is bounded by a small number 𝜖 +
√
𝜖 (1 − 𝜖) if we

realize that
𝑃𝜌𝑃

𝑡𝑟 (𝑃𝜌𝑃 ) is a desired state since it satisfies 𝑃 (in Lemma 3.1). It is almost impossible to

prove that no such bugs ever exist but such a bug is not severe since the final state of the program
will also be close to the expected final state. This is because the trace distance is contractive under
trace-nonincreasing quantum operations (the semantic function of any quantum program), i.e.,
𝐷 (J𝑆K(𝜌), J𝑆K(𝜎)) ≤ 𝐷 (𝜌, 𝜎) where J𝑆K is the semantic function of program 𝑆 and 𝐷 is the trace
distance. Therefore, the trace distance between the final state of the tested program and the expected

final state is also bounded by the small number 𝜖 +
√
𝜖 (1 − 𝜖). Moreover, we have checked and

confirmed that all types of bugs reported by Huang and Martonosi [Huang and Martonosi 2019a]
(the only systematic report about bugs in real quantum programs to the best of our knowledge)
can make 𝑡𝑟 (𝑃𝜌) significantly smaller than 1. Therefore, checking a projection-based predicate
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is effective for these known quantum program bugs. Second, the program itself is not an exact
quantum program and its correct program states are supposed to only approximately satisfy the
predicates. We will prove that projection-based assertions can still test and debug such approximate
quantum programs later in Section 3.4.

3.2 Assertion Statement: Syntax and Semantics

We have demonstrated the advantages of using projections as predicates. Now we add a new
runtime assertion statement to the quantum while-language grammar.

Definition 3.1 (Syntax of the assertion). The syntax of the quantum assertion is defined as:

assert(𝑞; 𝑃)
where 𝑞 = 𝑞1, ..., 𝑞𝑛 is a collection of quantum variables and 𝑃 is a projection in the state spaceH𝑞 .

As the original quantumwhile-language is already universal, we define the semantics of the new
assertion statement using the quantum while-language. An auxiliary notation abort is employed
to denote that the program terminates immediately and reports the termination location. The
formal semantics of abort is JabortK(𝜌) = 0H for all any input state 𝜌 [Ying 2016]. Intuitively, this
definition means we do not have any quantum state after abort.

Definition 3.2 (Semantics). The semantics of the new assertion statement is defined as

assert(𝑞; 𝑃) ≡ if 𝑀𝑃 [𝑞] =𝑚0 → skip

□ 𝑚1 → abort

fi

where𝑀𝑃 = {𝑀𝑚0
= 𝑃,𝑀𝑚1

= 𝐼H𝑞
− 𝑃}.

The semantics of the assertion statement is explained as follows: We construct a projective
measurement𝑀𝑃 = {𝑀𝑚0

= 𝑃,𝑀𝑚1
= 𝐼H𝑞

− 𝑃} based on the projection operator 𝑃 in the assertion.

We apply this measurement of the corresponding qubit collection 𝑞. If the measurement result is
𝑚0, which means that the tested state is in the closed subspace of 𝑃 , then we continue the execution
of program without doing anything because the tested state satisfies the predicate in the assertion.
If the measurement result is𝑚1, which means the tested state is not in the closed subspace of 𝑃 , the
program will terminate and report the termination location. Then we can know that the state at
this location does not satisfy the corresponding predicate. Here the semantics of abort is slightly
different from the original one because we need to report the termination location.

3.3 Statistical Effectiveness of Testing and Debugging with Projection-Based
Assertions

Aswith classical program testing, quantum program testing can show the presence of bugs, lowering
the risking of remaining bugs, but cannot assure the behavior of all possible computation. One
testing execution cannot even check the program behavior thoroughly for one input due to the
intrinsic randomness of quantum systems. Therefore, multiple executions are required to test a
quantum program with one input. In this section, we show that, for a program with projection-
based assertions and one specific input, running it repeatedly for enough times can locate bugs or
statistically assure the behavior of the program under the specific input with high confidence.

We consider a quantum program 𝑆 . When the programmers try to test a program with assertions,
multiple assertions could be injected so that a potential bug could be revealed as early as possible.
Suppose we insert 𝑙 assertions whose predicates are 𝑃1, 𝑃2, . . . , 𝑃𝑙 (𝑃𝑙 is the predicate for the final
state). We define that a bug-free standard program 𝑆std is a program that can satisfy all the predicates
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throughout the program. We will show that after running the program with assertion inserted
for a couple of times, we can locate the incorrect program segment if an error message occurs or
conclude that output of the tested program 𝑆 and the standard program 𝑆std (under a specific input
𝜌) is close. We first formally define a debugging scheme for a quantum program.

Definition 3.3. A debugging scheme for 𝑆 is a new program 𝑆 ′ with assertions being added between
consecutive subprograms 𝑆𝑖 and 𝑆𝑖+1:

𝑆 ′ ≡ 𝑆1; assert(𝑞1; 𝑃1); 𝑆2; assert(𝑞2; 𝑃2); · · · ; 𝑆𝑙−1; assert(𝑞𝑙−1; 𝑃𝑙−1); 𝑆𝑙 ; assert(𝑞𝑙 ; 𝑃𝑙 )
where 𝑞𝑖 is the collection of quantum variables and 𝑃𝑖 is a projection onH𝑞𝑖

for all 0 < 𝑖 ≤ 𝑙 .

In this debugging scheme, assertions are injected after every statement while this may not be
necessary in practice. The assertion injection is flexible, and the programmers can inject assertions
only on those locations where they hope to have assertions.
Now we discuss the statistical properties of this debugging scheme. A program segment 𝑆𝑖 is

considered to be correct if its output satisfies the predicate 𝑃𝑖 when its input satisfied 𝑃𝑖−1 as
specified by the assertions. We show that running the program 𝑆 ′ (defined in Definition 3.3) with
assertions injected could effectively check the program by proving that the tested program 𝑆 and
a standard program 𝑆𝑠𝑡𝑑 will have a similar semantic function under the tested input state. A
quantitative and formal description of the effectiveness of our debugging scheme is illustrated by
the following theorem.

Theorem 3.1 (Effectiveness of debugging scheme). Suppose we repeatedly execute 𝑆 ′ (with 𝑙
assertions) with input 𝜌 and collect all the error messages.

(1) If an error message occurs in assert(𝑞𝑖 ; 𝑃𝑖 ), then subprogram 𝑆𝑖 is not correct, i.e., with the input
satisfying precondition 𝑃𝑖−1, after executing 𝑆𝑖 , the output can violate postcondition 𝑃𝑖 .

(2) If no error message is reported after executing 𝑆 ′ for 𝑘 times (𝑘 ≫ 𝑙2), program 𝑆 is close to the
bug-free standard program; more precisely, with confidence level 95%,

(a) the confidence interval of min𝑆std 𝐷
(
J𝑆K(𝜌), J𝑆stdK(𝜌)

)
is

[
0, 0.9𝑙+

√
𝑙√

𝑘

]
,

(b) the confidence interval of max𝑆std 𝐹
(
J𝑆K(𝜌), J𝑆stdK(𝜌)

)
is

[
cos 0.9𝑙+

√
𝑙√

𝑘
, 1

]
,

where the minimum (maximum) is taken over all bug-free standard programs 𝑆std that satisfy
all assertions with input 𝜌 . Here 𝐷 is the trace distance (Definition 2.7) and 𝐹 is the fidelity
(Definition 2.8).

Moreover, within one testing execution, if the program 𝑠𝑚 is not correct but assert(𝑞𝑚; 𝑃𝑚) is passed,
then follow-up assertion assert(𝑞𝑚+1; 𝑃𝑚+1) is still effective in checking the program 𝑆𝑚+1.

By Theorem 3.1, we conclude that we can use projection-based assertions to test a quantum
program and find the locations of potential bugs with the proposed debugging scheme. When an
error message occurs in assert(𝑞𝑖 ; 𝑃𝑖 ), we can know that there is at least one bug in the program
segment 𝑆𝑖 . Although we could not directly know how the bug happens nor repair a bug, our
approach can help with debugging in practice, by narrowing down the potential location of a bug
from the entire program to one specific program segment. After applying the proposed debugging
scheme, programmers can manually investigate the target program segment to finally find the bug
more quickly without searching in the entire program. If we could not have any error message after
running the assertion checking program 𝑆 ′ for a sufficiently large number of times, we can conclude
that the semantics of the original program 𝑆 for the tested input is at least close to what we expected
(specified by the assertions) with high confidence. In the proposed theorem, we require 𝑘 ≫ 𝑙2

because we hope to achieve the confidence level 95%. In practice, the number of test executions
can be reduced with a lower confidence level.
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Only one input tested: It can be noticed that only one input is tested when using the proposed
debugging scheme in Theorem 3.1. However, in classical program testing, we usually prepare a
large number of testing cases to increase the testing thoroughness. Here we argue that considering
one input is already useful in testing many quantum programs because the input information of
many practical quantum algorithms (e.g., Shor’s algorithm [Shor 1999], Grover algorithm [Grover
1996], VQE algorithm [Peruzzo et al. 2014], HHL algorithm [Harrow et al. 2009]) are only encoded
in the operations and the input state is always a trivial state |00 · · · 00⟩. Consequently, we do not
need to check different inputs when testing these quantum algorithms. Checking for one specific
input 𝜌 = |00 · · · 00⟩⟨00 · · · 00| will be sufficient.

3.4 Testing and Debugging ApproximateQuantum Programs

We have shown that projection-based assertions can be used to check exact quantum programs but
there are also other quantum algorithms (e.g., qPCA [Lloyd et al. 2014], Grover’s search [Grover
1996], Quantum Phase Estimation [Nielsen and Chuang 2010]) of which the correct program states
sometimes only approximately satisfy a projection. We generalize Theorem 3.1 by adding error
parameters on all the program segments to represent the approximation throughout the program,
and prove that we can still locate bugs or conclude about the semantics of the tested program with
high confidence by checking projection-based assertions.
We first study how much a state 𝜌 is changed after a projective measurement by proving a

special case of the gentle measurement lemma [Winter 1999] with projections. The result is slightly
stronger than the original one [Winter 1999] under the constraint of projection.

Lemma 3.1 (Gentle measurement with projections). For projection 𝑃 and density operator 𝜌 ,
if tr(𝑃𝜌) ≥ 1 − 𝜖 , then we have

(1) 𝐷
(
𝜌,

𝑃𝜌𝑃

tr(𝑃𝜌𝑃 )

)
≤ 𝜖 +

√
𝜖 (1 − 𝜖), 𝐷 is the trace distance (Definition 2.7).

(2) 𝐹
(
𝜌,

𝑃𝜌𝑃

tr(𝑃𝜌𝑃 )

)
≥
√
1 − 𝜖 , 𝐹 is the fidelity (Definition 2.8).

Suppose a state 𝜌 satisfies 𝑃 with error 𝜖 , then tr(𝑃𝜌) ≥ 1 − 𝜖 which ensures that, applying
the projective measurement𝑀𝑃 = {𝑀true = 𝑃, 𝑀false = 𝐼 − 𝑃}, we have the outcome łtruež with
probability at least 1−𝜖 . Moreover, if the outcome is łtruež and 𝜖 is small, the post-measurement state

𝑃𝜌𝑃

tr(𝑃𝜌𝑃 ) is close to the original state 𝜌 in the sense that their trace distance is at most 𝜖 +
√
𝜖 (1 − 𝜖).

Consider a program 𝑆 = 𝑆1; 𝑆2; · · · ; 𝑆𝑙 with 𝑙 inserted assertions assert(𝑞𝑚, 𝑃𝑚) after each
segments 𝑆𝑚 for 1 ≤ 𝑚 ≤ 𝑙 . Unlike the exact algorithms, here each program segment 𝑆𝑚 is
considered to be correct if its input satisfies 𝑃𝑚−1, then its output approximately satisfies 𝑃𝑚 with
error parameter 𝜖𝑚 . The following theorem states that the debugging scheme defined in Definition
3.3 is still effective for approximate quantum programs.

Theorem 3.2 (Effectiveness of debugging approximate qantum programs). Assume that
all 𝜖𝑚 are small (𝜖𝑚 ≪ 1). Execute 𝑆 ′ for 𝑘 times (𝑘 ≫ 𝑙2) with input 𝜌 , and we count 𝑘𝑚 for the
occurrence of error message for assertion assert(𝑞𝑚, 𝑃𝑚).
(1) The 95% confidence interval of real 𝜖𝑚 is [𝑤−

𝑚,𝑤
+
𝑚]. Thus, with confidence 95%, if 𝜖𝑚 <

𝑤−
𝑚 , 𝑆𝑚 is incorrect; and if 𝜖𝑚 > 𝑤+

𝑚 , we conclude 𝑆𝑚 is correct. Here, 𝑤−
𝑚,𝑤

+
𝑚 and 𝑤𝑐

𝑚 are
𝐵

(
𝛼, 𝑘𝑚 + 1, 𝑘 − ∑𝑚

𝑖=1 𝑘𝑖
)
with 𝛼 = 0.025, 0.975 and 0.5 respectively, where 𝐵(𝑃,𝐴, 𝐵) is the

𝑃 th quantile from a beta distribution with shape parameters 𝐴 and 𝐵.
(2) If no segment appears to be incorrect, i.e., all 𝜖𝑚 ≥ 𝑤−

𝑚 , then after executing the original program
𝑆 with input 𝜌 , the output state 𝜎 approximately satisfies 𝑃𝑙 with error parameter 𝛿 , i.e., 𝜎 |=𝛿 𝑃𝑙 ,

where 𝛿 =
∑𝑙

𝑚=1

√
𝑤𝑐
𝑚 +

√∑𝑙
𝑚=1 (

√
𝑤+
𝑚 − √

𝑤𝑐
𝑚)2.
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With this theorem, we can test and debug approximate quantum programs by counting the
number of occurrences of the error messages from different assertions. If the observed assertion
checking failure frequency is significantly higher or lower than the expected error parameter of a
program segment, we can conclude that this program segment is correct or incorrect with high
confidence. If all program segments appear to be correct, we can conclude that the final output of
the original program approximately satisfies the last predicate within a bounded error parameter.

3.5 An Example of Using the Effectiveness Theorems

We give an example to illustrate using Theorem 3.1 and 3.2 in practical debugging. Suppose a
bug-free standard program 𝑆 has two qubits 𝑝, 𝑞:

𝑆 ≡ 𝑝 := 𝑍 [𝑝]; 𝑝 := 𝑅𝑦 (𝜋/2) [𝑝]; 𝑝, 𝑞 := CNOT[𝑝, 𝑞]
where 𝑅𝑦 (𝜃 ) is the rotation about the Y-axis, i.e.,

𝑅𝑦 (𝜃 ) =
[
cos(𝜃/2) − sin(𝜃/2)
sin(𝜃/2) cos(𝜃/2)

]
.

When the input is |00⟩𝑝𝑞 , the program produces a Bell state |Φ+⟩𝑝𝑞 =
|00⟩𝑝𝑞+|11⟩𝑝𝑞√

2
. Now we consider

a real program written by a careless programmer:

𝑆real ≡ 𝑝 := 𝑍 [𝑝]; 𝑝 := 𝑅𝑦 (1.7) [𝑝]; 𝑝, 𝑞 := CNOT[𝑝, 𝑞]
which can be decomposed into two segments, 𝑆real,1 ≡ 𝑝 := 𝑍 [𝑝]; 𝑝 := 𝑅𝑦 (1.7) [𝑝], 𝑆real,2 ≡ 𝑝, 𝑞 :=

CNOT[𝑝, 𝑞]. The careless programmer understands the program correctly and knows that if the

input is |00⟩𝑝𝑞 , the state after the first two unitary transformations on 𝑝 should be |+⟩𝑞 =
|0⟩𝑞+|1⟩𝑞√

2

and the final state should be Bell state. Thus he adds two assertions to 𝑆real:

𝑆 ′real ≡ 𝑝 := 𝑍 [𝑝]; 𝑝 := 𝑅𝑦 (1.7) [𝑝]; assert(𝑝; 𝑃1); 𝑝, 𝑞 := CNOT[𝑝, 𝑞]; assert(𝑝, 𝑞; 𝑃2)
where 𝑃1 = |+⟩⟨+| and 𝑃2 = |Φ+⟩⟨Φ+ |.

Theoretically it can be proved that 𝑆 ′
real

is close to but not equal to the bug free program in the
sense that:

𝐷 (J𝑆K( |00⟩𝑝𝑞), J𝑆realK( |00⟩𝑝𝑞)) = 0.065, 𝐹 (J𝑆K( |00⟩𝑝𝑞), J𝑆realK( |00⟩𝑝𝑞)) = 0.9979

Note that the final state is a pure state and thus all bug-free standard programs are equivalent to 𝑆
when input is |00⟩𝑝𝑞 .

We then consider three different testing cases. In the first two cases the programmer thinks the
program should be accurate and in the last case the program is considered to be approximate.
Case 1. The programmer executes 𝑆 ′

real
for 1000 times and surprisingly no error is reported. What

can he learn from the result? By Theorem 3.1 (2) with 𝑘 = 1000 and 𝑙 = 2, we have: with confidence
level 95%,

(1) the confidence interval of 𝐷 (J𝑆K( |00⟩𝑝𝑞), J𝑆realK( |00⟩𝑝𝑞)) is [0, 0.101];
(2) the confidence interval of 𝐹 (J𝑆K( |00⟩𝑝𝑞), J𝑆realK( |00⟩𝑝𝑞)) is [0.995, 1];

We can see that the real trace distance 0.065 and fidelity 0.9979 are indeed in the corresponding
intervals [0, 0.101] and [0.995, 1], respectively.
Case 2. The programmer executes 𝑆 ′

real
for 10,000 times and 37 errors are reported by the first

assertion assert(𝑝; 𝑃1) but no error is reported by the second assertion. Now what can he conclude?

(1) By Theorem 3.1 (1), the first segment 𝑆real,1 ≡ 𝑝 := 𝑍 [𝑝]; 𝑝 := 𝑅𝑦 (1.7) [𝑝] is not correct;
there must be some bugs;
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(2) By Theorem 3.1 (2), the second segment 𝑆real,2 ≡ 𝑝, 𝑞 := CNOT[𝑝, 𝑞] is very likely to be true
in the sense that: there exists a bug free standard program 𝑆1; 𝑆2 with two segments 𝑆1 and
𝑆2 such that: with confidence 95% (𝑘 = 9963, 𝑙 = 1)

(a) the confidence interval of 𝐷 (J𝑆1; 𝑆2K( |00⟩𝑝𝑞), J𝑆1; 𝑆real,2K( |00⟩𝑝𝑞)) is [0, 0.019];
(b) the confidence interval of 𝐹 (J𝑆1; 𝑆2K( |00⟩𝑝𝑞), J𝑆1; 𝑆real,2K( |00⟩𝑝𝑞)) is [0.99982, 1];
In fact, segment 𝑆real,2 is exactly correct.

Case 3. Now, the programmer thinks that the program is approximate and a small error is acceptable.
In detail, for both segments 𝑆real,1 and 𝑆real,2, he selects the same acceptable error parameters
𝜖1 = 𝜖2 = 0.01.
Fact: A straightforward calculation gives the *real value* of 𝜖1,real = 0.0042 and 𝜖2,real = 0, and
the output J𝑆realK( |00⟩𝑝𝑞) approximately satisfies 𝑃2 with error parameter 0.065.

Consider the execution results in the case 2 above. According to Theorem 3.2 (1), we first calculate
the 95% confidence intervals of real 𝜖1 and 𝜖2 are [𝑤−

1 ,𝑤
+
1 ] and [𝑤−

2 ,𝑤
+
2 ] where parameters are:

𝑤−
1 = 0.0027, 𝑤+

1 = 0.0051, 𝑤𝑐
1 = 0.0038, 𝑤−

2 = 0.00000, 𝑤+
2 = 0.00037, 𝑤𝑐

2 = 0.00007

Obviously, 𝜖1 > 𝑤+
1 and 𝜖2 > 𝑤+

2 and thus with confidence 95%, both of the segments are acceptable.
Now, by Theorem 3.2 (2), we further know that the output J𝑆realK( |00⟩𝑝𝑞) approximately satisfies
𝑃2 with error parameter 𝛿 = 0.0845 > 0.065. All of these confidence intervals and parameters
given by our theorems are consistent with the Fact.

4 TRANSFORMATION TECHNIQUES FOR IMPLEMENTATION ON QUANTUM
COMPUTERS

In the previous section, we have illustrated how to test and debug a quantum program with the
proposed projection-based assertions and proved its effectiveness. However, there exists a gap that
makes the assertions not directly executable on a real quantum computer. There are two reasons
for this incompatibility as explained in the following:

(1) Limited measurement basis: Not all projective measurements are supported on a quan-
tum computer and only projective measurement that lie in the computational basis can
be physically implemented directly with today’s quantum computing underlying technolo-
gies (in Section 2.5). But there is no restriction on the projection operator 𝑃 in the asser-
tions so that 𝑃 could be arbitrary projection operator in the Hilbert space. For example,
𝑃 = |+⟩⟨+| = 1

2
(|0⟩ + |1⟩)(⟨0| + ⟨1|) is on a basis of {|+⟩ , |−⟩}. These assertions with projec-

tions not in the computational basis cannot be directly executed on a real quantum computer.
(2) Dimension mismatch: A projective measurement, which is already in the computational

basis, may still not be executable because the number of dimensions of its corresponding
subspace cannot be directly implemented by measuring an integer number of qubits. For
an 𝑛-qubit system, only projections with rank 𝑃 ∈ {2𝑛−1, 2𝑛−2, · · · , 1} can be directly imple-
mented (in Section 2.5). But the rank of the projection in an assertion can be any integer
between 0 and 2𝑛 . For example, a projection in a 2-qubit system can be 𝑃 = |00⟩⟨00| +
|01⟩⟨01| + |11⟩⟨11|. An assertion with such projection cannot be directly implemented be-
cause rank 𝑃 = 3 and rank 𝑃 ∉ {2, 1}.

In this section, we introduce several transformation techniques to overcome these two obstacles.
The basic idea is to use the conjunction of projections and auxiliary qubit to convert the target
assertion into some new assertions without dimension mismatch. Then some additional unitary
transformations are introduced to rotate the basis in the projective measurements. These transfor-
mation techniques can be employed to compile the assertions and make a quantum program with
projection-based assertions executable on a measurement-restricted real quantum computer.
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4.1 Additional Unitary Transformation

We first resolve the limited measurement basis problem without considering the dimension mis-
match problem. Suppose the assertion assert(𝑞; 𝑃) we hope to implement is over 𝑛 qubits, that
is, 𝑞 = 𝑞1, 𝑞2, · · · , 𝑞𝑛 , each of 𝑞𝑖 is a single qubit variable. We assume that rank 𝑃 = 2𝑚 for some
integer𝑚 with 0 ≤ 𝑚 ≤ 𝑛 so there is no dimension mismatch problem.

Proposition 4.1. For projection 𝑃 with rank 𝑃 = 2𝑚 , there exists a unitary transformation𝑈𝑃 such
that (here 𝐼𝑞𝑖 = 𝐼H𝑞𝑖

):

𝑈𝑃𝑃𝑈
†
𝑃
= 𝑄𝑞1

⊗ 𝑄𝑞2
⊗ · · · ⊗ 𝑄𝑞𝑛 =

𝑛⊗
𝑖=1

𝑄𝑞𝑖 ≜ 𝑄𝑃 ,

where 𝑄𝑞𝑖 ∈ {|0⟩𝑞𝑖 ⟨0|, |1⟩𝑞𝑖 ⟨1|, 𝐼𝑞𝑖 } for each 1 ≤ 𝑖 ≤ 𝑛.𝑈𝑃 and 𝑄𝑃 can be obtained immediately after
we diagonalize the projection 𝑃 .

We call the pair (𝑈𝑃 , 𝑄𝑃 ) an implementation in the computational basis (ICB for short) of
assert(𝑞; 𝑃). ICB is not unique in general. According to this proposition, we have the following
procedure to implement assert(𝑞; 𝑃):
(1) Apply𝑈𝑃 on 𝑞;
(2) Check 𝑄𝑃 in the following steps: For each 1 ≤ 𝑖 ≤ 𝑛, if 𝑄𝑞𝑖 = |0⟩𝑞𝑖 ⟨0| or |1⟩𝑞𝑖 ⟨1|, then

measure 𝑞𝑖 in the computational basis to see whether the outcome 𝑘 is consistent with 𝑄𝑞𝑖 ;
that is, 𝑄𝑞𝑖 = |𝑘⟩𝑞𝑖 ⟨𝑘 |. If all outcomes are consistent, go ahead; otherwise, we terminate the
program with an error message;

(3) Apply𝑈 †
𝑃
on 𝑞.

The transformation for assert(𝑞; 𝑃) with ICB (𝑈𝑃 , 𝑄𝑃 ) when rank 𝑃 = 2𝑚 is:

assert(𝑞; 𝑃) ≡ 𝑞 := 𝑈𝑃 [𝑞]; assert(𝑞;𝑄𝑃 ); 𝑞 := 𝑈 †
𝑃
[𝑞]

Since 𝑄𝑃 is now a projection in the computational basis, assert(𝑞;𝑄𝑃 ) can be executed by Defini-
tion 3.2 and the projective measurement constructed by 𝑄𝑃 is executable.

Example 4.1. Given a two-qubit register 𝑞 = 𝑞1, 𝑞2, if we want to test whether it is in the Bell state
(maximally entangled state) |Φ⟩ = 1√

2
( |00⟩ + |11⟩), we can use the assertion assert(𝑞; 𝑃 = |Φ⟩⟨Φ|).

We apply proposition 4.1 and diagonalize the projection 𝑃 .

𝑃 =
1√
2
( |00⟩ + |11⟩) 1√

2
(⟨00| + ⟨11|) =



1
2

0 0 1
2

0 0 0 0

0 0 0 0
1
2

0 0 1
2



𝑈𝑃𝑃𝑈
†
𝑃
=



1√
2

0 0 1√
2

0 1√
2

1√
2

0
1√
2

0 0 −1√
2

0 1√
2

−1√
2

0


· 𝑃 ·



1√
2

0 1√
2

0

0 1√
2

0 1√
2

0 1√
2

0 −1√
2

1√
2

0 −1√
2

0


=



1 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0


= 𝑄𝑃

The generated diagonal matrix𝑄𝑃 is actually |0⟩𝑞1
⟨0|⊗|0⟩𝑞2

⟨0| and the unitary𝑈𝑃 can be implemented
with first an CNOT gate and then a 𝐻 gate. Therefore, we have:

𝐻 [𝑞1]CNOT[𝑞1, 𝑞2] · 𝑃 · CNOT[𝑞1, 𝑞2]𝐻 [𝑞1] = |0⟩𝑞1
⟨0| ⊗ |0⟩𝑞2

⟨0|
we can first apply CNOT gate on 𝑞 and 𝐻 gate on 𝑞1, then measure 𝑞1 and 𝑞2 in the computational
basis. If both outcomes are ł0ž, we apply 𝐻 on 𝑞1 and CNOT on 𝑞 again to recover the state; otherwise,
we terminate the program and report that the state is not Bell state |Φ⟩.
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Unitary generation: The generated unitary may not be the exact inverse of the preceding
operations. Suppose the desired state is |𝜓 ⟩, the only requirement for the unitary is𝑈 : |𝜓 ⟩ ↦→ |0⟩,
and the output of 𝑈 under input states other than |𝜓 ⟩ does not matter. This may allow simpler
implementations of𝑈 . In general, it is not clear whether the generated𝑈 will be simpler or more
complex when decomposing the 𝑈 into basic single- and two-qubit gates. We demonstrate an
in-principle unitary generation process but the actual implementation can be further optimized
with techniques like tensor network, decision diagram, symbolic execution, etc. The scalability will
be determined by the optimization on the matrix calculation and storage. This is left as future work.

4.2 Combining Assertions

The first transformation technique solves the measurement basis issue but does not consider the
dimension mismatch issue, which will be addressed by the next two techniques. We first consider
an assertion assert(𝑞; 𝑃) in which the projection 𝑃 has rank 𝑃 ≤ 2𝑛−1 and rank 𝑃 ≠ 2𝑚 with
some integer 𝑚. We have the following proposition to decompose this assertion into multiple
sub-assertions that do not have dimension mismatch issues.

Proposition 4.2. For projection 𝑃 with rank 𝑃 ≤ 2𝑛−1, there exist projections 𝑃1, 𝑃2, · · · , 𝑃𝑙 satis-
fying rank 𝑃𝑖 = 2𝑛𝑖 for all 1 ≤ 𝑖 ≤ 𝑙 where 𝑛𝑖 ∈ N, such that 𝑃 = 𝑃1 ∩ 𝑃2 ∩ · · · ∩ 𝑃𝑙 .

Essentially, this way works for our scheme because conjunction can be defined in Birkhoff-von
Neumann quantum logic. Theoretically, 𝑙 = 2 is sufficient; but in practice, a larger 𝑙 may allow us
to choose simpler 𝑃𝑖 for each 𝑖 ≤ 𝑙 .

Using the above proposition, to implement assert(𝑞; 𝑃), we may sequentially apply assert(𝑞; 𝑃1),
assert(𝑞; 𝑃2), · · · , assert(𝑞; 𝑃𝑙 ). Suppose (𝑈𝑃𝑖 , 𝑄𝑃𝑖 ) is an ICB of assert(𝑞; 𝑃𝑖 ) for 1 ≤ 𝑖 ≤ 𝑙 , we
have the following scheme to implement assert(𝑞; 𝑃):
(1) Set counter 𝑖 = 1;

(2) If 𝑖 = 1, apply𝑈𝑃1
; else if 𝑖 = 𝑙 , apply𝑈 †

𝑃𝑙
and return; otherwise, apply𝑈 †

𝑃𝑖−1
𝑈𝑃𝑖 ;

(3) Check 𝑄𝑃𝑖 ; 𝑖 := 𝑖 + 1; go to step (2).
The transformation for assert(𝑞; 𝑃) when rank 𝑃 ≤ 2𝑛−1 is:

assert(𝑞; 𝑃) ≡ assert(𝑞; 𝑃1); assert(𝑞; 𝑃2); . . . . . . ; assert(𝑞; 𝑃𝑙 )
where rank 𝑃𝑖 = 2𝑛𝑖 and 𝑃 = 𝑃1 ∩ 𝑃2 ∩ · · · ∩ 𝑃𝑙 . There are no dimension mismatch issues for these
sub-assertions and they can be further transformed with Proposition 4.1.

Example 4.2. Given register𝑞 = 𝑞1, 𝑞2, 𝑞3, how to implement assert(𝑞; 𝑃) where 𝑃 = |00⟩𝑞1𝑞2
⟨00|⊗

𝐼𝑞3
+ |111⟩𝑞1𝑞2𝑞3

⟨111|? We first observe that 𝑃 = 𝑃1 ∩ 𝑃2 where

𝑃1 = ( |00⟩𝑞1𝑞2
⟨00| + |11⟩𝑞1𝑞2

⟨11|) ⊗ 𝐼𝑞3
,

𝑃2 = |00⟩𝑞1𝑞2
⟨00| ⊗ 𝐼𝑞3

+ |100⟩𝑞1𝑞2𝑞3
⟨100| + |111⟩𝑞1𝑞2𝑞3

⟨111|.
with following properties:

CNOT[𝑞1, 𝑞2] · 𝑃1 · CNOT[𝑞1, 𝑞2] = 𝐼𝑞1
⊗ |0⟩𝑞2

⟨0| ⊗ 𝐼𝑞3

Toffoli[𝑞1, 𝑞3, 𝑞2] · 𝑃2 · Toffoli[𝑞1, 𝑞3, 𝑞2] = 𝐼𝑞1
⊗ |0⟩𝑞2

⟨0| ⊗ 𝐼𝑞3
.

Therefore, we can implement assert(𝑞; 𝑃) by:
• Apply CNOT[𝑞1, 𝑞2];
• Measure 𝑞2 and check if the outcome is ł0ž; if not, terminate and report the error message;
• Apply CNOT[𝑞1, 𝑞2] and then Toffoli[𝑞1, 𝑞3, 𝑞2];
• Measure 𝑞2 and check if the outcome is ł0ž; if not, terminate and report the error message;
• Apply Toffoli[𝑞1, 𝑞3, 𝑞2].
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4.3 Auxiliary Qubits

The previous two techniques can transform projections with rank 𝑃 ≤ 2𝑛−1 but those projections
with rank 𝑃 > 2𝑛−1 remain unresolved. This case cannot be handled with the conjunction of a
group of sub-assertions directly because logic conjunction can only result in a subspace with fewer
dimensions (compared with the original subspaces of the projections in the sub-assertions). The
possible subspace of a projection in an 𝑛-qubit system has at most 2𝑛−1 dimensions since we have
to measure at least one qubit. As a result, we cannot use logic conjunction to construct a projection
with rank 𝑃 > 2𝑛−1. The logic disjunction of projections with small ranks can create a subspace of
larger size but it is not suitable for assertion design. As discussed at the beginning of Section 3,
it is expected that a correct state is not changed during the assertion checking. But if a state 𝜌 at
the tested program location is in a space of a large size, applying a projective measurement with
a small subspace may destroy the tested state when the tested state is not in the small subspace,
leading to inefficient assertion checking.
We propose the third technique, introducing auxiliary qubits, to tackle this problem. Actually,

one auxiliary qubit is already sufficient. Suppose we have an 𝑛-qubit programwith a 2𝑛-dimensional
state space. If we add one additional qubit into this system, the system now has 𝑛 + 1 qubits with a
2𝑛+1-dimensional state space. This new qubit is not in the original quantum program so it is not
involved in any assertions for the program. A projection 𝑃 with 2𝑛−1 < rank 𝑃 ≤ 2𝑛 can thus be
implemented in the new 2𝑛+1-dimensional space using the previous two transformation techniques.
One auxiliary qubit is sufficient because the projection 𝑃 is originally in a 2𝑛-dimensional space
and we always have rank 𝑃 ≤ 2𝑛 .
The transformation for assert(𝑞; 𝑃) when rank 𝑃 > 2𝑛−1 is:

assert(𝑞; 𝑃) ≡ 𝑎 := |0⟩; assert(𝑎, 𝑞; |0⟩𝑎 ⟨0| ⊗ 𝑃)
where 𝑎 is the new auxiliary qubit. Noting that rank( |0⟩𝑎 ⟨0| ⊗ 𝑃) = rank 𝑃 ≤ 2𝑛 .

Example 4.3. Given register 𝑞 = 𝑞1, 𝑞2, we aim to implement assert(𝑞; 𝑃) where 𝑃 = |0⟩𝑞1
⟨0| ⊗

𝐼𝑞2
+ |11⟩𝑞1𝑞2

⟨11|.
We may have the decomposition |0⟩𝑎 ⟨0| ⊗ 𝑃 = 𝑃0 ∩ 𝑃1, where

𝑃0 = |0⟩𝑎 ⟨0| ⊗ 𝐼𝑞, 𝑃1 = |00⟩𝑎𝑞1
⟨00| ⊗ 𝐼𝑞2

+ |011⟩𝑎𝑞1𝑞2
⟨011| + |100⟩𝑎𝑞1𝑞2

⟨100|,
and 𝑃1 can be implemented with one additional unitary transformation:

Fredkin[𝑞2, 𝑎, 𝑞1] · 𝑃1 · Fredkin[𝑞2, 𝑎, 𝑞1] = 𝐼𝑎 ⊗ |0⟩𝑞1
⟨0| ⊗ 𝐼𝑞2

.

where the Fredkin gate is defined in Section 2.1.
Note that 𝑃0 automatically holds since the auxiliary qubit 𝑎 is already initialized to |0⟩, we only

need to execute:

• Introduce auxiliary qubit 𝑎, initialize it to |0⟩;
• Apply Fredkin[𝑞2, 𝑎, 𝑞1];
• Measure 𝑞1 and check if the outcome is ł0ž; if not, terminate and report the error message;
• Apply Fredkin[𝑞2, 𝑎, 𝑞1]; free the auxiliary qubit 𝑎.

4.4 Local Projection: Trading Checking Accuracy for Implementation Efficiency

As shown in the three transformation techniques, we need to manipulate the projection operators
and some unitary transformations to implement an assertion. These transformations can be easily
automated when 𝑛 is small or the tested state is not fully entangled (which means we can deal with
them part by part directly). For projections over multiple qubits, it is possible that the qubits are
highly entangled. Asserting such entangled states accurately requires non-trivial efforts to find the
unitary transformations and we need to manipulate operators of size 2𝑛 for an 𝑛-qubit system in
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the worst case, which makes it hard to fully automate the transformations on a classical computer
when 𝑛 is large. Such scalability issue widely exists in quantum computing research that requires
automation on a classical computer, e.g., simulation [Chen et al. 2018], compiler optimization and
its verification [Hietala et al. 2019; Shi et al. 2019], formal verification of quantum circuits [Paykin
et al. 2017; Rand et al. 2018].

In our runtime projection-based assertion checking, we propose local projection technique to
mitigate this scalability problem (not fully resolve it) by designing assertions that only manipulate
and observe part of a large system without affecting a highly entangled state over multiple qubits.
These assertions, which are only applied on a smaller number of qubits, could always be automated
easily with simplified implementations but the assertion checking constraints are also relaxed. This
approach is inspired by the quantum state tomography via local measurements [Chen et al. 2012;
Linden et al. 2002; Xin et al. 2017], a common approach in quantum information science.

We first introduce the notion of partial trace to describe the state (operator) of a subsystem. Let 𝑞1
and 𝑞2 be two disjoint registers with corresponding state Hilbert space H𝑞

1
and H𝑞

2
, respectively.

The partial trace over H𝑞
1
is a mapping tr𝑞

1
(·) from operators on H𝑞

1
⊗ H𝑞

2
to operators in

H𝑞
2
defined by: tr𝑞

1
( |𝜙1⟩𝑞

1
⟨𝜓1 | ⊗ |𝜙2⟩𝑞

2
⟨𝜓2 |) = ⟨𝜓1 |𝜙1⟩ · |𝜙2⟩𝑞

2
⟨𝜓2 | for all |𝜙1⟩, |𝜓1⟩ ∈ H𝑞

1
and

|𝜙2⟩, |𝜓2⟩ ∈ H𝑞
2
together with linearity. The partial trace tr𝑞

2
(·) overH𝑞

2
can be defined dually.

Then, the local projection is defined as follows:

Definition 4.1 (Local projection). Given assert(𝑞; 𝑃), a local projection 𝑃𝑞′ over 𝑞
′ ⊆ 𝑞 is

defined as:

𝑃𝑞′ = supp
(
tr𝑞\𝑞′ (𝑃)

)
.

Proposition 4.3 (Soundness of local projection). For any 𝜌 |= 𝑃 , we have 𝜌 |= 𝑃𝑞′ ⊗ 𝐼𝑞\𝑞′ .

This simplified assertion with 𝑃𝑞′ will lose some checking accuracy because some states not in 𝑃

may be included in 𝑃𝑞′ , allowing false positives. However, by taking the partial trace, we are able to

focus on the subsystem of 𝑞′. The implementation of assert(𝑞′; 𝑃𝑞′) can partially test whether the

state satisfies 𝑃 . Moreover, the number of qubits in 𝑞′ is smaller, and we only need to manipulate
small-size operators when implementing assert(𝑞′; 𝑃𝑞′). We have the following implementation
strategy which is essentially a trade-off between assertion implementation efficiency and checking
accuracy:

• Find a sequence of local projection 𝑃𝑞
1
, 𝑃𝑞

2
, · · · , 𝑃𝑞𝑙 of assert(𝑞; 𝑃);

• Instead of implementing the original assert(𝑞; 𝑃), we sequentially apply assert(𝑞1; 𝑃𝑞1
),

assert(𝑞2; 𝑃𝑞2
), · · · , assert(𝑞𝑙 ; 𝑃𝑞𝑙 ).

Example 4.4. Given register 𝑞 = 𝑞1, 𝑞2, 𝑞3, 𝑞4, we want to check if the state is the superposition of
the following states:

|𝜓1⟩ = |+⟩𝑞1
|111⟩𝑞2𝑞3𝑞4

, |𝜓2⟩ = |000⟩𝑞1𝑞2𝑞3
|−⟩𝑞4

, |𝜓3⟩ =
1√
2
|0⟩𝑞1

(
|00⟩𝑞2𝑞3

+ |11⟩𝑞2𝑞3

)
|1⟩𝑞4

.

To accomplish this, we may apply the assertion assert(𝑞; 𝑃) with 𝑃 = supp
(∑3

𝑖=1 |𝜓𝑖⟩⟨𝜓𝑖 |
)
. However,

projection 𝑃 is highly entangled which prevents efficient implementation. But if we only observe part
of the system, we will the following local projections:

𝑃𝑞1𝑞2
= tr𝑞3𝑞4

(𝑃) = |0⟩𝑞1
⟨0| ⊗ 𝐼𝑞2

+ |11⟩𝑞1𝑞2
⟨11|,

𝑃𝑞2𝑞3
= tr𝑞1𝑞4

(𝑃) = |00⟩𝑞2𝑞3
⟨00| + |11⟩𝑞2𝑞3

⟨11|,
𝑃𝑞3𝑞4

= tr𝑞1𝑞2
(𝑃) = |00⟩𝑞3𝑞4

⟨00| + |11⟩𝑞3𝑞4
⟨11|.
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To avoid implementing assert(𝑞, 𝑃) directly, we may use assert(𝑞1, 𝑞2; 𝑃𝑞1𝑞2
), assert(𝑞2, 𝑞3; 𝑃𝑞2𝑞3

),
and assert(𝑞3, 𝑞4; 𝑃𝑞3𝑞4

) instead. Though these assertions do not fully characterize the required prop-
erty, their implementation requires only relatively low cost, i.e., each of them only acts on two qubits.

In the next example, we show that a local projection may detect some bugs but not all of them.

Example 4.5. Consider the following program with three qubits 𝑝, 𝑞, 𝑟 :

𝑆 ≡ 𝑝 := 𝐻 [𝑝];𝑞 := 𝐻 [𝑞]; 𝑟 := 𝐻 [𝑟 ]; 𝑝, 𝑞 := CZ[𝑝, 𝑞]; 𝑝, 𝑟 := CZ[𝑝, 𝑟 ];𝑞 := 𝐻 [𝑞]; 𝑟 := 𝐻 [𝑟 ]

The program 𝑆 produces a GHZ state
|000⟩𝑝𝑞𝑟+|111⟩𝑝𝑞𝑟√

2
if the input state is |000⟩𝑝𝑞𝑟 . Suppose a full

description of GHZ state involving three qubits is somewhat difficult to implement due to complexity;
instead, we choose the assertion assert(𝑝, 𝑞; 𝑃) inserted at the end of the program where projection 𝑃

is the local projection of GHZ state, i.e.,

𝑃 = |00⟩𝑝𝑞 ⟨00| + |11⟩𝑝𝑞 ⟨11| =



1 0 0 0

0 0 0 0

0 0 0 0

0 0 0 1


which can be implemented by 1). Apply CNOT on 𝑝, 𝑞; 2). Measure qubit q and check if the measurement
output is 0; 3). Apply CNOT on 𝑝, 𝑞. However, it is not difficult to realize that assert(𝑝, 𝑞; 𝑃) is not
a perfect description of GHZ state; for example, the following *bug* program 𝑆bug where the final
unitary transformation 𝑟 := 𝐻 [𝑟 ] is missing:

𝑆bug ≡ 𝑝 := 𝐻 [𝑝];𝑞 := 𝐻 [𝑞]; 𝑟 := 𝐻 [𝑟 ]; 𝑝, 𝑞 := CZ[𝑝, 𝑞]; 𝑝, 𝑟 := CZ[𝑝, 𝑟 ];𝑞 := 𝐻 [𝑞]

also passes assert(𝑝, 𝑞; 𝑃) with input |000⟩𝑝𝑞𝑟 . However, the program 𝑆bug in fact produces:

|00⟩𝑝𝑞 |+⟩𝑟 + |11⟩𝑝𝑞 |−⟩𝑟√
2

if the input is |000⟩𝑝𝑞𝑟 . On the other hand, consider another *bug* program 𝑆 ′
bug

where the unitary

transformation 𝑞 := 𝐻 [𝑞] is missing:

𝑆 ′bug ≡ 𝑝 := 𝐻 [𝑝];𝑞 := 𝐻 [𝑞]; 𝑟 := 𝐻 [𝑟 ]; 𝑝, 𝑞 := CZ[𝑝, 𝑞]; 𝑝, 𝑟 := CZ[𝑝, 𝑟 ]; 𝑟 := 𝐻 [𝑟 ]

Then it can be shown that if the input state is |000⟩𝑝𝑞𝑟 , assert(𝑝, 𝑞; 𝑃) is not passed and we are able to
conclude that 𝑆 ′

bug
is not the desired program using Theorem 3.1.

4.5 Summary

To the best of our knowledge, the three transformations constitute the first working flow to
implement an arbitrary projective measurement on measurement-restricted quantum computers. A
complete flow to make an assertion assert(𝑞; 𝑃) (on 𝑛 qubits) executable is summarized as follows:

(1) If rank 𝑃 > 2𝑛−1, initialize one auxiliary qubit 𝑎, let𝑛 := 𝑛+1 and 𝑃 := |0⟩𝑎 ⟨0|⊗𝑃 (Section 4.3);
(2) If rank 𝑃 ∉ {2𝑛−1, 2𝑛−2, · · · , 1}, find a group of sub-assertions (Section 4.2);
(3) Apply unitary transformations to implement the assertion or sub-assertions (Section4.1).

The three transformations cover all possible cases for projections with different ranks and basis.
Therefore, all projection-based assertions can finally be executed on a quantum computer. The local
projection technique can be applied when an assertion is hard to be implemented (automatically).
Whether to use local projection is optional.
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5 OVERALL COMPARISON

In this section, we will have an overall comparison among Proq and two other quantum program
assertions in terms of assertion coverage (i.e., the expressive power of the predicates, the assertion
locations) and debugging overhead (i.e., the number of executions, additional gates, measurements).
Baseline: We use the statistical assertions (Stat) [Huang and Martonosi 2019b] and the QEC-

inspired assertions (QECA) [Liu et al. 2020] as the baseline assertion schemes. To the best of our
knowledge, they are the only published quantum program assertions till now. Stat employs a
classical statistical test on the measurement results to check if a state satisfies a predicate. QECA
introduces auxiliary qubits to indirectly measure the tested state.

5.1 Coverage Analysis

Assertion predicates: Proq employs projections which are able to represent a wide variety of
predicates. However, both Stat and QECA only support three types of assertions: classical assertion,
superposition assertion, and entanglement assertion. The expressive power difference has been
summarized in Figure 1. For Stat, all these three types of assertions can be considered as rank 𝑃 = 1

special cases in Proq. The corresponding projections are

𝑃 = |𝑡⟩ ⟨𝑡 | , t ranges over all 𝑛-bit strings for classical assertion (suppose 𝑛 qubits are asserted)

𝑃 = |+++ . . .⟩ ⟨+++ . . .| for superposition assertion

𝑃 = (|00 . . . 0⟩ + |11 . . . 1⟩)(⟨00 . . . 0| + ⟨11 . . . 1|) for entanglement assertion

Stat’s language does not support other types of states. QECA supports arbitrary 1-qubit states
(these states can naturally cover the classical assertion and superposition assertion in Stat), some
special 2-qubit entanglement states, and some special 3-qubit entangle states. These states can be
considered as some rank 𝑃 = 1, 2, 4 special cases in Proq, respectively. So all QECA assertions are
covered in Proq. Moreover, the implementations of QECA assertions are all designed manually
without a systematic assertion implementation generation so they cannot be extended to more
cases directly. The expressive power of the assertions in Proq, which can support many more
complicated cases as introduced in Section 3 and 4, is much more than that of the baseline schemes.
Assertion locations: Thanks to the expressive power of the predicates in Proq, projection-based

assertions can be injected at more locations with complex intermediate states in a program. The
baseline schemes can only inject assertions at those locations with states that can be checked with
the very limited types of assertions. If the baseline schemes insert assertions at locations with
other types of states, their assertions will always return negative results since the predicates in
their assertions are not correct. Therefore, the number of potential assertion injection locations of
Proq is much larger than that of the baseline schemes.

5.2 Overhead Analysis

It is not easy to directly perform a fair overhead comparison between Proq and the baseline because
Proq supports many more types of predicates as explained above. We first discuss the impact of
this difference in assertion coverage in practical debugging.
Assertion coverage impact: Proq support assertions that cannot be implemented in Stat and

QECA. These assertions will help locate the bug more quickly. When inserting assertions in a tested
program, Proq assertions can always be injected closer to a potential bug because Proq allows more
assertion injection locations. The potential bug location can then be narrowed down to a smaller
program segment, which makes it easier for the programmers to manually search for the bug after
an error message is reported.
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Then we remove the assertion coverage difference by assuming all the assertions are within the
three types of assertions supported in all assertion schemes.
Assertion checking overhead: We mainly discuss two aspects of the assertion checking over-

head, 1) the number of assertion checking program executions and 2) the numbers of additional
unitary transformations (quantum gates) and measurements to implement each of the assertions.

(1) Compare with Stat: Stat’s approach is quite different from Proq. It only injects measure-
ments to directly measure the tested states without any additional transformations.
(a) number of executions: The classical assertion, the first supported assertion type in Stat,
is equivalent to the corresponding one in Proq. The tested state remains unchanged if it is the
expected state. However, when checking for superposition states and entanglement states,
the number of assertion checking program executions will be large because 1) Stat requires
a large number of samples for each assertion to reconstruct an amplitude distribution over
multiple basis states, and 2) the measurements will always affect the tested states so that
only one assertion can be checked per execution. It is not yet clear how many executions
are required since the statistical properties of checking Stat assertions are not well studied.
The original Stat paper [Huang and Martonosi 2019b] claims to apply chi-square test and
contingency table analysis (with no details about the testing process) on the measurement
results collection of each assertion but it does not provide the numbers of required executions
to achieve an acceptable confidence level for different assertions over different numbers of
qubits, which makes it hard to directly compare the checking overhead (no publicly available
code). We believe the number of executions will be large at least when the tested state is in a
superposition state over multiple computational basis states. For example, the superposition
assertion, which checks for the state |+++ . . .⟩ in an 𝑛-qubit system, requires 𝑘 ≫ 2𝑛 testing
executions to observe a uniform distribution over all 2𝑛 basis states.
(b)number of gates andmeasurements: For an assertion (any type) in Stat, it only requires
𝑛 measurements on 𝑛 qubits in assertion checking but it may need to be executed many times
as explained above. For the corresponding assertions in Proq, a classical assertion requires 𝑛
measurements (the same with Stat, e.g., Assertion 𝐴0 in Figure 3). A superposition assertion
requires additionally 2𝑛 H gates (e.g., Assertion 𝐴1 in Figure 3). An entanglement assertion
requires additionally 2(𝑛 − 1) CNOT gates and 2 H gates (e.g., Assertion 𝐴2 in Figure 3).
Proq only needs few additional gates (linear to the number of qubits) for the commonly
supported assertions.

(2) Compare with QECA: All QECA assertions are equivalent to their corresponding Proq as-
sertions. Therefore, QECA has the same checking efficiency and supports multi-assertion per
execution if we only consider those QECA-supported assertions. The statistical properties
(Theorem 3.1 and 3.2) we prove can also be directly applied to QECA. So the number of the

assertion checking executions is the same for QECA and Proq. The difference between
QECA and Proq is that the actual assertion implementation in terms of quantum gates and
measurements. The implementation cost of Proq is lower than that of QECA because
QECA always need to couple the auxiliary qubits with existing qubits. We will have concrete
data of the assertion implementation cost comparison between Proq and QECA later in a
case study in Section 6.1.

6 CASE STUDIES: RUNTIME ASSERTIONS FOR REALISTIC QUANTUM
ALGORITHMS

In this section, we perform case studies by applying projection-based assertions on two famous so-
phisticated quantum algorithms, the Shor’s algorithm [Shor 1999] and the HHL algorithm [Harrow
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et al. 2009]. For Shor’s algorithm, we focus on a concrete example of its quantum order finding
subroutine. The assertions are simple and can be supported by the baselines, which allows us to
compare the resource consumption between Proq and the baseline and show that Proq could gener-
ate low overhead runtime assertions. For HHL algorithm, instead of just asserting a concrete circuit
implementation, we will show that Proq could have non-trivial assertions that cannot be supported
by the baselines. In these non-trivial assertions, we will illustrate how the proposed techniques,
i.e., combining assertions, auxiliary qubits, local projection, can be applied in implementing the
projections. Numerical simulation confirms that Proq assertions can work correctly.

6.1 Shor’s Algorithm

Shor’s algorithm was proposed to factor a large integer [Shor 1999]. Given an integer 𝑁 , Shor’s
algorithm can find its non-trivial factors within 𝑂 (𝑝𝑜𝑙𝑦 (𝑙𝑜𝑔(𝑁 ))) time. In this paper, we focus on
its quantum order finding subroutine and omit the classical part which is assumed to be correct.

𝑝 := |0⟩⊗𝑛;
while𝑀 [𝑝] = 1 do

𝑝 := |0⟩⊗𝑛; 𝑞 := |0⟩⊗𝑛; assert(𝑝, 𝑞;𝐴0); 𝑝 := 𝐻 ⊗𝑛 [𝑝]; assert(𝑝, 𝑞;𝐴1);
𝑝, 𝑞 := 𝑈𝑓 [𝑝, 𝑞]; assert(𝑝, 𝑞;𝐴2); 𝑝 := QFT−1 [𝑝]; assert(𝑝, 𝑞;𝐴3);

od

Fig. 2. Shor’s algorithm program with assertions. The projections 𝐴0, 𝐴1, 𝐴2, 𝐴3 are defined in Section 6.1.2.

6.1.1 Shor’s Algorithm Program. Figure 2 shows the program of the quantum subroutine in Shor’s
algorithmwith the injected assertions in the quantumwhile-language. Briefly, it leverages Quantum
Fourier Transform (QFT) to find the period of the function 𝑓 (𝑥) = 𝑎𝑥 mod 𝑁 where 𝑎 is a random
number selected by a preceding classical subroutine. The transformation 𝑈𝑓 , the measurement𝑀 ,
and the result set 𝑅 are defined as follows:

𝑈𝑓 : |𝑥⟩𝑝 |0⟩𝑞 ↦→ |𝑥⟩𝑝 |𝑎𝑥 mod 𝑁 ⟩𝑞 , 𝑀 =

{
𝑀0 =

∑
𝑟 ∈𝑅

|𝑟 ⟩ ⟨𝑟 | , 𝑀1 = 𝐼 −𝑀0

}
,

𝑅 = {𝑟 | gcd(𝑎 𝑟
2 + 1, 𝑁 ) or gcd(𝑎 𝑟

2 − 1, 𝑁 ) is a nontrivial factor of N}
For the measurement, the set 𝑅 consists of the expected values that can be accepted by the follow-up
classical subroutine. For a comprehensive introduction, please refer to [Nielsen and Chuang 2010].

6.1.2 Assertions for a Concrete Example. The circuit implementation we select for the subroutine
is for factoring 𝑁 = 15 with the random number 𝑎 = 11 [Vandersypen et al. 2001]. Based on
our understanding of Shor’s algorithm, we have four assertions, 𝐴0, 𝐴1, 𝐴2, and 𝐴3, as shown in
Figure 2. Figure 3 shows the final assertion-injected circuit with 5 qubits. The circuit blocks labeled
with assert are for the four assertions with four projections defined as follows:

𝐴0 = |00000⟩0,1,2,3,4⟨00000|; 𝐴1 = |+++⟩0,1,2 ⟨+++| ⊗ |00⟩3,4⟨00|;
𝐴2 = |++⟩0,1 ⟨++| ⊗ (|000⟩ + |111⟩)2,3,4 (⟨000| + ⟨111|);
𝐴3 = (|000⟩ + |001⟩)0,1,2 (⟨000| + ⟨001|) ⊗ (|00⟩ + |11⟩)3,4 (⟨00| + ⟨11|).

We detail the implementation of the assertion circuit blocks in the upper half of Figure 3. For
each assertion, we list its projection, the additional unitary transformations, with the complete
implementation circuit diagram. For 𝐴1, 𝐴2, and 𝐴3, since the qubits not fully entangled, we only
assert part of the qubits without affecting the results. The unitary transformations are decomposed
into CNOT gates and single-qubit gates, which is the same with QECA for a fair comparison.
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Quantum Order Finding Subroutine 

Classical Results Checking Subroutine (assumed to be correct)Success

Fail

assert A0

No unitary required

assert A1

check if the result is 000

The additional 

unitary is 3 

Hadamard gates

check if the result is 00000

assert A2

check if the result is 000

The additional unitary is 

2 CNOT gates and

 1 Hadamard gate 

assert A3

check if the result is 000

The additional 

unitary is 1 

Hadamard gate 

𝑃 = |+ + +  + + +| 

𝑃 = |00000  00000| 𝑃 = |0 0 +  0 0 + | 

𝑃 = (|000 + |111 ) 

( 000| +  111|) 

Fig. 3. Assertion-injected circuit implementation for Shor’s algorithm with 𝑁 = 15 and 𝑎 = 11

6.1.3 Assertion Comparison. Similar to Section 5, we first compare the coverage of assertions for
this realistic algorithm and then detail the implementation cost in terms of the number of additional
gates, measurements, and auxiliary qubits.
Assertion coverage: All four assertions are supported in Stat and Proq. For QECA, 𝐴0, 𝐴1, and

𝐴3 are covered but 𝐴2 is not yet supported even if it is an entanglement state. The reason is that
the QECA assertion only supports 3-qubit entanglement states with 𝑟𝑎𝑛𝑘𝑃 = 4 but 𝐴2 is a 3-qubit
entanglement state with 𝑟𝑎𝑛𝑘𝐴2 = 1.

We compare the circuit cost when implementing the assertions between Proq and QECA. Stat is
not included because we have already discussed the implementation difference in Section 5.2 and it
is not clear how many executions are required for Stat.

Table 1 shows the implementation cost of the three assertions supported by both Proq and QECA.
In particular, we compare the number of H gates, CNOT gates, measurements, and auxiliary qubits.
It can be observed that Proq uses no CNOT gates and auxiliary qubits for the three considered
assertions, while QECA always needs to use additional CNOT gates and auxiliary qubits. This
reason is that QECA always measures auxiliary qubits to indirectly probe the qubit information. So
that additional CNOT gates are always required to couple the auxiliary qubits with existing qubits.
This design significantly increases the implementation cost when comparing with Proq.

Table 1. Detailed assertion implementation cost comparison between Proq and QECA [Liu et al. 2020]

𝐴0 𝐴1 𝐴3

# of Proq QECA Proq QECA Proq QECA

H 0 0 6 6 2 2

CNOT 0 5 0 6 0 4

Measure 5 5 3 3 3 3

Aux. Qbit 0 1 0 1 0 1
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To summarize, we demonstrate the complete assertion-injected circuit for a quantum program of
Shor’s algorithm and the implementation details of the assertions. We compare the implementation
cost between Proq and QECA to show that Proq has lower cost for the limited assertions that are
supported by both assertion schemes.

6.2 HHL Algorithm

In the first example of Shor’s algorithm, we focus the assertion implementation on a concrete circuit
example and compare against other assertions due to the simplicity of the intermediate states. In
the next HHL algorithm example, we will have non-trivial assertions that are not supported in the
baselines and demonstrate how to apply the techniques introduced in Section 4.
The HHL algorithm was proposed for solving linear systems of equations [Harrow et al. 2009].

Given a matrix𝐴 and a vector ®𝑏, the algorithm produces a quantum state |𝑥⟩ which is corresponding
to the solution ®𝑥 such that 𝐴®𝑥 = ®𝑏. It is well-known that the algorithm offers up to an exponential
speedup over the fastest classical algorithm if 𝐴 is sparse and has a low condition number 𝜅.

𝑝 := |0⟩⊗𝑛; 𝑞 := |0⟩⊗𝑚; 𝑟 := |0⟩;
while𝑀 [𝑟 ] = 1 do

assert(𝑝, 𝑟 ; 𝑃);
𝑞 := |0⟩⊗𝑚; 𝑞 := 𝑈𝑏 [𝑞]; 𝑝 := 𝐻 ⊗𝑛 [𝑝]; 𝑝, 𝑞 := 𝑈𝑓 [𝑝, 𝑞]; 𝑝 := QFT−1 [𝑝]; assert(𝑝; 𝑆);
𝑝, 𝑟 := 𝑈𝑐 [𝑝, 𝑟 ]; 𝑝 := QFT[𝑝]; 𝑝, 𝑞 := 𝑈 †

𝑓
[𝑝, 𝑞]; 𝑝 := 𝐻 ⊗𝑛 [𝑝]; assert(𝑝, 𝑞, 𝑟 ;𝑅);

od

assert(𝑞;𝑄);
Fig. 4. HHL algorithm program with assertions

6.2.1 HHL Program. The HHL algorithm has been formulated with the quantum while-language
in [Zhou et al. 2019] and we adopt the assumptions and symbols there. Briefly speaking, 𝐴 is a
Hermitian and full-rank matrix with dimension 𝑁 = 2𝑚 , which has the diagonal decomposition

𝐴 =
∑𝑁

𝑗=1 𝜆 𝑗 |𝑢 𝑗 ⟩⟨𝑢 𝑗 | with corresponding eigenvalues 𝜆 𝑗 and eigenvectors |𝑢 𝑗 ⟩. We assume for all

𝑗 , 𝛿 𝑗 =
𝜆 𝑗 𝑡0
2𝜋

∈ N+ and set 𝑇 = 2𝑛 = ⌈max𝑗 𝛿 𝑗 ⌉, where 𝑡0 is a time parameter to perform unitary

transformation𝑈𝑓 . Moreover, the input vector ®𝑏 is presumed to be unit and corresponding to state

|𝑏⟩ with the linear combination |𝑏⟩ = ∑𝑁
𝑗=1 𝛽 𝑗 |𝑢 𝑗 ⟩. It is straightforward to find the solution state

|𝑥⟩ = 𝑐
∑𝑁

𝑗=1
𝛽 𝑗

𝜆 𝑗
|𝑢 𝑗 ⟩ where 𝑐 is for normalization.

The HHL program has three registers 𝑝, 𝑞, 𝑟 which are 𝑛,𝑚, 1-qubit systems and used as the
control system, state system, and indicator of while loop, respectively. For detailed definitions of
𝑈𝑏,𝑈𝑓 , QFT, and the measurement𝑀 , please refer to [Harrow et al. 2009; Zhou et al. 2019].

6.2.2 Debugging Scheme for HHL Program. We introduce the debugging scheme for the HHL
program shown in Figure 4. The projections 𝑃,𝑄, 𝑆, 𝑅 are defined as follows:

𝑃 = |0⟩𝑝 ⟨0| ⊗ |0⟩𝑟 ⟨0|; 𝑄 = |𝑥⟩𝑞 ⟨𝑥 |; 𝑆 = supp

(
𝑁∑
𝑗=1

|𝛿 𝑗 ⟩𝑝 ⟨𝛿 𝑗 |
)

𝑅 = |0⟩𝑝 ⟨0| ⊗ (|𝑥⟩𝑞 ⟨𝑥 | ⊗ |1⟩𝑟 ⟨1| + 𝐼𝑞 ⊗ |0⟩𝑟 ⟨0|).
Projection 𝑅 is across all qubits while 𝑃 is focused on register 𝑝, 𝑟 and 𝑄 is focused on the output
register 𝑞. These projections can be implemented using the techniques introduced in Section 4;
more precisely:
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(1) Implementation of assert(𝑝, 𝑟 ; 𝑃):
measure register 𝑝 and 𝑟 directly to see if the outcomes are all ł0ž;

(2) Implementation of assert(𝑞;𝑄):
apply𝑈𝑥 on 𝑞; (additional unitary transformation in Section 4.1)
measure register 𝑞 and check if the outcome is ł0ž;

apply𝑈 †
𝑥 on 𝑞;

(3) Implementation of assert(𝑝, 𝑞, 𝑟 ;𝑅):
measure register 𝑝 directly to see if the outcome is ł0ž;
introduce an auxiliary qubit 𝑎, initialize it to |0⟩; (auxiliary qubit in Section 4.3)
apply𝑈𝑥 on 𝑞 and𝑈𝑅 on 𝑟, 𝑞, 𝑎;
measure register 𝑎 and check if the outcome is ł0ž; (combining assertions in Section 4.2)

apply𝑈 †
𝑅
on 𝑟, 𝑞, 𝑎 and𝑈 †

𝑥 on 𝑞;

where𝑈𝑥 is defined by𝑈𝑥 |𝑥⟩ = |0⟩ and𝑈𝑅 is defined by

𝑈𝑅 |1⟩𝑟 ⟨1| ⊗ |𝑖⟩𝑞 ⟨𝑖 | ⊗ |𝑘⟩𝑎 ⟨𝑘 | = |1⟩𝑟 ⟨1| ⊗ |𝑖⟩𝑞 ⟨𝑖 | ⊗ |𝑘 ⊕ 1⟩𝑎 ⟨𝑘 ⊕ 1|
for 𝑖 ≥ 1 and 𝑘 = 0, 1 and unchanged otherwise.
We need to pay more attention to assert(𝑝; 𝑆). The most accurate predicate here is

𝑆 ′ =
𝑁∑

𝑗, 𝑗 ′=1

𝛽 𝑗𝛽 𝑗 ′ |𝛿 𝑗 ⟩𝑝 ⟨𝛿 𝑗 ′ | ⊗ |𝑢 𝑗 ⟩𝑞 ⟨𝑢 𝑗 ′ | ⊗ |0⟩𝑟 ⟨0|

which is a highly entangled projection over register 𝑝 and 𝑞. As discussed in Section 4.4, in order
to avoid the hardness of implementing 𝑆 ′, we introduce 𝑆 = supp(tr𝑞,𝑟 (𝑆 ′)) which is the local
projection of 𝑆 ′ over 𝑝 . Though assert(𝑝; 𝑆) is strictly weaker than original assert(𝑝, 𝑞, 𝑟 ; 𝑆 ′), it
can be efficiently implemented and partially test the state.

6.2.3 Numerical Simulation Results. For illustration, we choose𝑚 = 𝑛 = 2 as an example. Then the
matrix 𝐴 is 4 × 4 matrix and 𝑏 is 4 × 1 vector. We first randomly generate four orthonormal vectors
for

��𝑢 𝑗

〉
and then select 𝛿 𝑗 to be either 1 or 3. Such configuration will demonstrate the applicability

of all four techniques in Section 4. Finally, 𝐴 and 𝑏 are generated as follows.

𝐴 =



1.951 −0.863 0.332 −0.377
−0.863 2.239 −0.011 −0.444
0.332 −0.011 1.301 −0.634
−0.377 −0.444 −0.634 2.509


, 𝑏 =



−0.486
−0.345
−0.494
−0.633


Assertion coverage:We have four assertions, labeled 𝑃 ,𝑄 , 𝑅, and 𝑆 , for the HHL program. Only

𝑃 is for a classical state and supported by the Stat and QECA. 𝑄 , 𝑅, and 𝑆 are more complex and
not supported by the baseline assertions.

Figure 5 shows the amplitude distribution of the states during the execution of the four assertions
and each block corresponds to one assertion. Since our experiments are performed in simulation,
we can directly obtain the state vector |𝜓 ⟩. The X-axis represents those basis states of which the
amplitudes are not zero. The Y-axis is the probability of the measurement outcome. Each histogram
represents the probability distribution across different computational basis states. This probability is
be calculated by ∥⟨𝜓 |𝑥⟩∥2, where |𝑥⟩ is the corresponding basis state. The texts over the histograms
represent the program locations where we record each of the states. For example, in ‘Assertion Q’
block, we show that the state vector has non-zero amplitudes on multiple basis states. But after
applying the unitary transformation Assertion Q, the state vector only has non-zero amplitudes on
one basis state.
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Fig. 5. Numerical simulation results for the states around the assertions in HHL algorithm

Assertion P is at the beginning of the loop body. The predicate is 𝑃 = |000⟩𝑟,𝑝 ⟨000|, which
means that the quantum registers 𝑟 and 𝑝 should always be in state |0⟩ and |00⟩, respectively, at
the beginning of the loop body. Figure 5 shows that when the program enters the loop 𝐷 at the
first and second time, the assertion is satisfied and the quantum registers 𝑟 and 𝑝 are 0.

Assertion Q is at the end of the program. Figure 5 shows that there are non-zero amplitudes
at 4 possible measurement outcomes at the assertion location. But after the applied unitary trans-
formation, the only possible outcome is 10000. Such an assertion is hard for Stat and QECA to
describe but it is easy to define this assertion using projection in Proq.
Assertion R is at the end of the loop body. Figure 5 confirms that the basis states with non-zero

amplitudes are in the subspace defined by the projection in assertion R. Its projection implementation
involves the techniques of combining assertions and using auxiliary qubits. Such complex predicates
cannot be defined in Stat and QECA while Proq can implement and check it.
Assertion S is in the middle of the loop body. At this place the state is highly entangled as

mentioned above and directly implementing this projection will be expensive. We employ the
local projection technique in Section 4.4. Since 𝛿 𝑗 s are selected to be either 1 or 3, the projection 𝑆

becomes |01⟩𝑝 ⟨01| + |11⟩𝑝 ⟨11|. This simple form of local projection that can be easily implemented.
Figure 5 confirms that the tested highly entangled state is not affected in this local projective
measurement.

To summarize, we design four assertions for the program of HHL algorithm. Among them, only
𝑃 can be defined in Stat and QECA. The remaining three assertions, which cannot be defined in Stat
or QECA, demonstrate that Proq assertions can better test and debug realistic quantum algorithms.
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7 DISCUSSION

Program testing and debugging have been investigated for a long time because it reflects the
practical application requirements for reliable software. Compared with its counterpart in classical
computing, quantum program testing and debugging are still at a very early stage. Even the basic
testing and debugging approaches (e.g., assertions) are not yet available or well-developed for
quantum programs. This paper made efforts towards practical quantum program runtime testing
and debugging through studying how to design and implement effective and efficient quantum
program assertions. Specifically, we select projections as predicates in our assertions because of
the logical expressive power and efficient runtime checking property. We prove that quantum
program testing with projection-based assertion is statistically effective. Several techniques are
proposed to implement the projection under machine constraints. To the best of our knowledge,
this is the first runtime assertion scheme for quantum program testing and debugging with such
flexible predicates, efficient checking, and formal effectiveness guarantees. The proposed assertion
technique would benefit future quantum program development, testing, and debugging.

Although we have demonstrated the feasibility and advantages of the proposed assertion scheme,
several future research directions can be explored as with any initial research.
Projection implementation optimization:We have shown that our assertion-based debug-

ging scheme can be implemented with several techniques in Section 3 and demonstrated concrete
examples in Section 6. However, further optimization of the projection implementation is not yet
well studied. One assertion can be split into several sub-assertions, but different sub-assertion
selections would have different implementation overhead. We showed that one auxiliary qubit
is enough but employing more auxiliary qubits may yield fewer sub-assertions. For the circuit
implementation of an assertion, the decomposition of the assertion-introduced unitary transforma-
tions can be optimized for several possible objectives, e.g., gate count, circuit depth. A systematic
approach to generate optimized assertion implementations is thus important for more efficient
assertion-based quantum program debugging in the future.
More efficient checking: Assertions for a complicated highly entangled state may require

significant effort for its precise implementation. However, the goal of assertions is to check if a
tested state satisfies the predicates rather than to prove the correctness of a program. It is possible
to trade-in checking accuracy for simplified assertion implementation by relaxing the constraints in
the predicates. Local projection can be a solution to approximate a complex projective measurement
as we discussed in Section 4.4 and demonstrated in one of the assertions for the HHL algorithm
in Section 6. However, the degree of predicate relaxation and its effect on the robustness of the
assertions in realistic erroneous program debugging need to be studied. Other possible directions,
like non-demolition measurement [Braginsky et al. 1980], are also worth exploring.

8 RELATED WORK

This paper explores runtime assertion schemes for testing and debugging a quantum program on
a quantum computer. In particular, the efficiency and effectiveness of our assertions come from
the application of projection operators. In this section, we first introduce other existing runtime
quantum program testing schemes, which are the closest related work, and then briefly discuss
other quantum programming research involving projection operators.

8.1 Quantum Program Assertions

Recently, two types of assertions have been proposed for debugging on quantum computers.
Huang and Martonosi proposed quantum program assertions based on statistical tests on classical
observations [Huang and Martonosi 2019b]. For each assertion, the program executes from the
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beginning to the place of the injected assertion followed by measurements. This process is repeated
many times to extract the statistical information about the state. The advantage of this work is
that, for the first time, assertion is used to reveal bugs in realistic quantum programs and help
discover several bug patterns. But in this debugging scheme, each time only one assertion can be
tested due to the destructive measurements. Therefore, the statistical assertion scheme is very time
consuming. Proq circumvents this issue by choosing to use projective assertions.

Liu et al. further improved the assertion scheme by proposing dynamic assertion circuits inspired
by quantum error correction [Liu et al. 2020]. They introduce ancilla qubits and indirectly collect the
information of the qubits of interest. The success rate can also be improved since some unexpected
states can be detected and corrected in the noisy scenarios. However, their approach requires
manually designed transformation circuits and cannot be directly extended to more general cases.
Their transformation circuits rely on ancilla qubits, whichwill increase the implementation overhead
as discussed in Section 6.1.

Moreover, both of these assertion schemes can only inspect very few types of states that can be
considered as some special cases of our proposed projection-based assertions, leading to limited
applicability. In summary, our assertion and debugging schemes outperform these two existing
assertion schemes mentioned above in terms of expressive power, flexibility, and efficiency.

8.2 Quantum Programming Language Research with Projections

Projection operators have been used in logic systems and static analysis for quantum programs. All
projections in (the closed subspaces of) a Hilbert space form an orthomodular lattice [Kalmbach
1983], which is the foundation of the first Birkhoff-von Neumann quantum logic [Birkhoff and
Von Neumann 1936]. After that, projections were employed to reason about [Brunet and Jorrand
2004] or develop a predicate transformer semantics [Ying et al. 2010] of quantum programs. Recently,
projections were also used in other quantum logics for verification purposes [Unruh 2019; Yu 2019;
Zhou et al. 2019]. Orthogonal to these prior works, this paper proposes to use projection-based
predicates in assertion, targeting runtime testing and debugging rather than logic or static analysis.

9 CONCLUSION

The demand for bug-free quantum programs calls for efficient and effective debugging scheme on
quantum computers. This paper enables assertion-based quantum program debugging by proposing
Proq, a projection-based runtime assertion scheme. In Proq, predicates in the assert primitives are
projection operators, which can significantly increase the expressive power and lower the assertion
checking overhead compared with existing quantum assertion schemes. We study the theoretical
foundations of quantum program testing with projection-based assertions to rigorously prove
its effectiveness and efficiency. We also propose several transformations to make the projection-
based assertions executable on measurement-restricted quantum computers. The superiority of
Proq is demonstrated by its applications to inject and implement assertions for two well-known
sophisticated quantum algorithms.
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