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OpenAI Gym [1] and DeepMind Lab [6], which were
developed to

The open-source Unity platform, where agents can be
trained using hierarchical or non-hierarchical
reinforcement learning, supports the use of games
and simulations as environments for multiple- agent
interactions. In this demonstration, we present
hierarchical and non-hierarchical multi-agent
interactions based on Unity rein- forcement learning,
specifically, hierarchical reinforcement learn- ing
that sets different levels of agent’s observations to
achieve the goal. We created four multi-agent
scenarios in the Unity environment, namely, Crawler,
Tennis, Banana Collector, and Soc- cer, to test the
interaction performances of hierarchical and non-
hierarchical reinforcement learning. The simulation-
interaction performances show that hierarchical
reinforcement learning can be applied to multi-
agent environments and can compete with agents
trained via non-hierarchical reinforcement learning.
The demonstration video can be viewed at the
following link: https://youtu.be/YQYQwLPXaL4
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1 INTRODUCTION
Reinforcement learning (RL) typically refers to a
goal-oriented al- gorithm that learns how to achieve
complex tasks with mimicing human performance.
In the agent training process, an agent ob- serves
the environment and takes actions to receive
rewards for accomplishing tasks in the process of
achieving a goal. The agent is punished for making
incorrect decisions and rewarded for making the
right decisions, which makes this approach one of
the most reliable training methods [5]. Many
platforms that enable users to develop and test RL

algorithms are currently available, including
investigate how agents learn complex tasks.
However, the above RL platforms, such as OpenAI
Gym, lack the ability to flexibly con- figure the
simulation for multiple agents; therefore, the
simulation environment is an unmodifiable black box
from the perspective of the learning system.
Recently, the Unity platform released a new open-
source toolkit [4] developed for creating and
interacting with RL simulation environments. The
toolkit enables games and simu- lations to serve as
environments for training and testing intelligent RL
agents, and these trained agents can be used for
multiple pur- poses, including testing game builds
and evaluating different gamedesigns in multi-agent
interactions.
To coordinate and test agent-agent interactions,

we use RL to train agents in a developed
environment to achieve an optimised policy. Some
state-of-art RL algorithms have been developed to
optimise the training performance, such as proximal
policy optimi- sation (PPO) [7], which simplifies the
training implementation to handle complex scenarios.
Furthermore, to accelerate the learning process and
improve generalisation in a multi-agent environment,
hierarchical reinforcement learning (HRL) was
proposed to learn a policy composed of multiple
layers, each of which is responsible for control at a
different level of temporal abstraction [9] [3]. One
recent example of an HRL framework is feudal
networks (FuNs)
[8] proposed by the DeepMind group, which

employ a manager module and a worker module for
hierarchical training. This frame- work was extended
by [2] to a method called hierarchical critics
assignment (HCA), which assigns a virtual manager
that can be added on top of all worker agents in
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the environment to observe the global environment
and provide global critic signal to push worker
agents towards the goal. Each worker agent must
observe the local environment and take actions
based on local and global critics. In our investigation
of existing studies, we did not find any methods that
support different RL types for multi-agent
interaction in flexible environments. This lack of
research motivated us to use RL (non-hierarchical
approach) and HRL (hierarchical approach) for two
agent teams separately to demonstrate the testing
performance with real-time interactions.
In this demonstration, to support interaction

among multiple agents, we train agents separately
via RL (using the PPO algorithm)and HRL (using the
HCA algorithm) approaches while playing a series
of game scenarios in the Unity environment. We
developed four multi-agent simulation scenarios in
the Unity platform, namely, Crawler, Tennis, Banana
Collector and Soccer. The original versions of these
scenarios were designed by Unity: we modified
them to use RL and HRL algorithms for multi-agent
interaction tasks. Our demonstration makes the
following contributions: 1) we develop new game
environments to assist with RL and HRL designs and
interactions for testing multi-agent systems; 2) the
agents trained by HRL achieve better performance
with high scores in competition- based interaction
games; and 3) we consider the potential impact on
applications in multi-agent competitions.

2 DEMONSTRATION SCENARIOS
In the Unity platform with a new open-source
toolkit [4], we de- veloped four multi-agent
scenarios as shown in Fig. 1, namely, Crawler,
Tennis, Banana Collector and Soccer, to simulate
multi- agent competitive interactions 1 . The
experiments in each scenario are defined in terms
of two agent teams: the blue team and the red
team. Agents from the blue team are trained via
HRL (hierarchical approach), whereas agents from
the red team are trained via RL (non-hierarchical
approach). Each agent targets a specific scenario
goal to receive the maximum game score, and
the game scores are recorded for the pre-trained
RL and HRL agents during the interaction stage.

Figure 1: Multi-agent interactions in four
scenarios

2.1 Crawler
The Crawler scenario is a modified scenario that
originally allows a single agent to learn to walk in
Unity. As shown in Fig. 1-A, we initiate a crawler
agent with two arms and two forearms and create
the logic for agents to learn to fight and compete
with each otherduring the training progress. The
agents are required to learn to maintain their
body balance and to not touch the ground while
walking to the opponent’s position and then to
fight against the opponent and cause the
challenger to lose their balance to obtaina reward.
In addition, as shown in the GitHub repository, the
task goal, agent reward function, and behaviour
parameters, including action and observation
spaces, are defined for the crawler agents.

2.2 Tennis
Tennis competition is used as an example to
simulate a sports game of bouncing a ball to an
opponent’s area in a multi-agent
environment. The agents are required to control
the movement of a racket to ensure that the ball
does not drop or fall outside of the boundaries on
their side of the field. As an extension of the
original scenario, as shown in Fig. 1-B, we increased
the number of agents to two each on the blue and
red teams, where the blue team,assigned to the HRL
scenario, has a virtual manager on top of the agents
to observe the global environment. Furthermore, as
shown in the GitHub repository, the task goal, agent
reward function, and behaviour parameters,
including action and observation spaces, aredefined
for the tennis agents.

2.3 Banana Collector
The Banana Collector scenario involves multiple
agents competing to collect target bananas. The
environment consists of two different types of
banana, healthy bananas and toxic bananas. Each



agent must learn how to move and collect as many
healthy (yellow) ba- nanas as possible while
avoiding toxic (purple) bananas. When an agent
touches and collects a toxic banana, the agent is
frozen for 20 s and then continues to collect healthy
bananas. As shown in Fig. 1-C, we create a
manager on top of the blue-team agents trained by
HRL to observe the global environment. We also
define the task goal, agent reward function, and
behaviour parameters, including action and
observation spaces for the collector agents, as
shown in the GitHub repository.

2.4 Soccer
As shown in Fig. 1-D, we create a two agent teams
Soccer scenario in which the agents aim to attack the
other team’s gate and defences without the ball
being kicked into their own gate. Each team has two
types of agents, a goalie and a striker, who aim to
defend their own gate and score by attacking the
opponent’s gate, respectively. For the blue-team
agents, we add a virtual manager to obtain global
observations and give critics of the agents’ actions.
As presented in the GitHub repository, the task goal,
agent reward function, and behaviour parameters,
including action and observation spaces, aredefined
for the soccer agents.

3 CONCLUSION
In summary, our demonstration shows that the
Unity platform can support the development of new
games and simulations for RL andHRL environments
with multi-agent interactions. We created four
scenarios with multiple agents in the Unity
environment, namely, Crawler, Tennis, Banana
Collector, and Soccer. We also presented hi- erarchical
and non-hierarchical multi-agent interactions by
means of RL and HRL algorithms and showed that
the HRL-trained agents with a virtual manager that
can observe global information achieve better
performance with higher game scores as
demonstrating in the video. We believe our
demonstration has a potential impact on high
attentions to HRL and the relevant applications in
multi-agentcompetitions.
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