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Abstract— In robust design optimization (RDO) of electrical 

machines, the cases with random uncertainty and interval 

uncertainty are generally investigated separately. The uncertainty 

quantification is based on the random method and interval 

method, respectively. For problems with hybrid uncertainties, the 

uncertainty analysis methods for a single type of uncertainties may 

no longer be applicable as both the random and interval methods 

are required for the uncertainty qualification. This poses 

considerable challenges to the hybrid uncertainty modeling, 

numerical calculation, and design optimization. This paper 

proposes an efficient robust optimizer based on the evolutionary 

algorithms and the polynomial chaos Chebyshev interval (PCCI) 

method for RDO of electrical machines with hybrid uncertainties. 

With the potential candidate filtering in the population of each 

iteration and effective robustness assessment by the PCCI method, 

the optimization can be conducted efficiently. A design example of 

a brushless DC motor considering hybrid uncertainties is analyzed 

and optimized. The results confirm the feasibility of the proposed 

method. 

 

Index Terms— Robust design optimization, electrical machines, 

random-interval hybrid uncertainty, evolutionary algorithms, 

PCCI.  

I.  INTRODUCTION 

In practical design optimization of electrical machines, 

uncertainties widely exist in the design dimensions, material 

properties, operation environment, and so on. The deterministic 

optimization method ignores the uncertainties, and aggressively 

optimizes the parameters for the best objectives. The optimal 

design obtained without robustness assessment may have a risk 

of high performance-diversity and faults [1, 2]. A robust design 

should be insensitive to the unavoidable tolerances and satisfy 

the reliability requirements [3, 4]. As an example, Fig. 1 

illustrates a one-dimensional problem, where the dash lines are 

used to demonstrate the fluctuation intervals of points A and B. 

As shown, point A is the minimum objective. However, the 

sharp variation of the objective value in the uncertain interval 

means high-performance diversity of the same nominal design, 

which should be avoided in the design. On the other hand, the 

suboptimal point B shows a lower performance fluctuation or 
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higher robustness to uncertainties. How to obtain efficiently the 

optimal design with both high performance and reliability 

becomes a strong motivation to develop new effective robust 

optimization approaches taking into account the uncertainties. 

For uncertain parameters with sufficient data points, e.g. 

dimension parameters of a product in mass production, they can 

be described by a specific probabilistic distribution. Under this 

condition, random methods can be applied to evaluate the 

robustness by the probabilistic properties such as the mean and 

variance of the structural performance. In some circumstance, 

the uncertain parameters can only be described by their interval 

bounds since there are not enough samples for achieving the 

probability distributions. For example, in the early stage of a 

design process, the designers can hardly obtain the distributions 

of uncertain parameters, but the bound information such as the 

dimension tolerances may be available. In this case, the interval 

methods can be applied to calculate the upper and lower bounds 

of performance fluctuation, which reflect the extreme 

conditions. Then, the worst case is utilized as the indicator of 

robustness. 

 
Fig. 1.  Schematic diagram of the optimization problem with uncertainty. 

The classical uncertainty quantification methods for 

problems with one type of uncertainties, such as the scanning 

approach (scanning the samples within the variation interval to 

determine the performance variation range) for the interval 
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uncertainty and the Monte Carlo method for the random 

uncertainty, are frequently used for performance perturbation 

quantification. Due to the large number of sampling points, the 

computation burden is heavy, especially for time-consuming 

models. For the robust optimization of electrical machines, the 

calculation cost would increase further due to the required large 

design population and optimization iterations to apply the 

intelligent algorithms [5, 6]. To handle the uncertainty 

quantification efficiently, various methods have been proposed, 

such as the polynomial chaos expansion method for the 

stochastic uncertainty [7, 8], the Taylor extension and 

Chebyshev expansion for interval uncertainty [9, 10], and the 

convergence accelerating techniques of optimization 

algorithms [11]. 

However, the scenario with both random and interval 

variables in the robust electrical machine optimization is rarely 

investigated. The above-mentioned approaches applied in the 

situation of a single type of uncertainty cannot estimate the 

reliability properly for problems with both random and interval 

uncertainties [12]-[14]. The computational burden is extremely 

heavy if the scanning and Monte Carlo approach (SMCA) is 

applied sequentially for the hybrid uncertainty analysis. Hence, 

some hybrid uncertainty qualification methods based on 

orthogonal polynomials have been proposed and proved to be 

very efficient for the uncertainty analysis. In this work, a robust 

optimizer based on the PCCI method and evolutionary 

algorithms is proposed for the robust optimization of electrical 

machines with hybrid uncertainties. In this optimizer, the PCCI 

method is applied to replace the SMCA for fast uncertainty 

quantification. For the intelligent algorithms of huge population 

and iteration amount, the filtering with deterministic constraints 

is proposed to reduce the individuals in each that require 

robustness analysis in each iteration and accelerate the 

optimization further. 

In this paper, Section II introduces the classification of 

optimization models with different uncertainties, the theory of 

PCCI method, and the optimization framework. Section III 

presents a benchmark design example of a brushless DC motor, 

and Section IV the optimization results and a discussion of the 

mono-objective and multi-objective problems. Finally, Section 

V draws the conclusions. 

II.  ROBUST OPTIMIZATION WITH PCCI 

A. Robust optimization model with uncertainties 

In the deterministic optimization, the model usually can be 

defined as  

   

min : ( )

s. t g 0,

1,2, ,

k

f f

k q







d

d  (1)  

where d is a vector of design variables, f(d) the objective 

function, and gk(d) the kth constraint. 

 
Fig. 2.  Sigma level and its equivalent probability for the standard normal 

distribution. 

In the robust optimization, considering the uncertainties, the 

problem can be defined as 

   

min : ( , )
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where  is a vector of independent uncertainty variables, and 

the design variables, d, can have uncertainties as well. 

When there exist only the random uncertainties, the robust 

optimization model can be described as 
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where X is the random uncertainty vector, nf the weighting 

factor for the diversity of objectives, ng is the sigma level, and 

μ and σ are the calculated mean and standard deviation, 

respectively. 

For robust design optimization problems, the design for six 

sigma (DFSS) approach is commonly used, i.e. by setting the 

factor ng=6 [15, 16]. Fig. 2 illustrates the sigma level and its 

equivalent probability for the standard normal distribution. In 

the case of DFSS optimization, a large probability of the 

product in mass production can be promised without violating 

the constraints. 

When there exist only the interval uncertainties, the robust 

optimization is modeled by the worst case, i.e. the upper bounds 

of the objective function and constraints expressed as 
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min : max ( , )
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 (4)  

where Y is the interval uncertainty vector with nominal λ and 

bound δ. 

In the case of the hybrid uncertainties, the objective functions 

and constraints have the characteristics of both the random and 

interval uncertainties. The robust optimization considering the 
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hybrid uncertainties can then be expressed as 
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To estimate the extreme values of objectives and constraints, 

the mean and standard deviation are calculated separately as 

illustrated in Fig. 3. Then, the worst-case under this situation 

can be estimated as the sum of the upper bounds of mean and 

standard deviation multiplied by the sigma level factor, and (5) 

can be rewritten as 
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Fig. 3. Estimation process of extreme values of mean and standard deviation 

for a problem with hybrid uncertainty. 

B. Uncertainty analysis based on the PCCI method  

This section introduces the PCCI method [17] in which the 

random uncertainties are accounted for by the polynomial chaos 

(PC) method and the interval uncertainties are quantified by the 

Chebyshev interval (CI) functions. 

The random and interval uncertainty vectors are noted as X 

and Y in a performance function P(X,Y). If the uncertainty 

variables are non-standard, they should be firstly transformed 

into the standard normal variables, ξi (i=1,2,…,n), that belongs 

to N(0,1) and the standard interval variables, ηj (j=1,2,…,m), 

that belongs to [-1,1]. For convenience without losing any 

generality, the uncertainty variables are assumed as standard. 

As the first step, by considering only the random uncertainty 

parameters, the performance function P(ξ, η) can be expanded 

by the pth order polynomial as the following 

       
,

,
n p

P c H
 

 
N

χ χ

χ χ
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where χ is the index vector  1 2 n, , ,    while 

0,1, ,

1, 2, ,

i p

i m

 


                                    (8) 

   
1 2 n     χ            (9) 

According to this condition, the term number, i.e. the 

coefficient number can be obtained as 

Cp

n pk             (10)
 

 H
χ
ξ  and  c

χ
η    and nN p χ χ  are the multivariate 

Hermite polynomial and coefficients, respectively, and  c
χ
η

can be obtained by the least square method as 
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k is the number of terms in (7), and l denotes the number of 

samples for the random variables. 

From (7), the performance function with hybrid random and 

interval uncertainties can be expressed by the coefficients, 

which are functions of the interval uncertainties, and the 

multivariate polynomials, which are functions of the random 

variables. The intervals are regarded as fixed values. 

The second step takes into account the interval uncertainties. 

By the pth order Chebyshev inclusion function, the interval 

coefficient can be approximated as 

     ,

,m p

c c
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N

χ χ γ γ

γ γ

η η  (13) 

where γ is a vector of multiple indices consisting of 

  
j 0,1, ,

1,2, ,

p

j m

 


 (14) 

indicating the components of the multivariate Chebyshev 

polynomial, 
,cχ γ

are the coefficients, and 

     
1

j

m

j

j

 


 γ
η  (15) 

is the multivariate Chebyshev polynomial built from the 

univariate polynomial 

    cos( [ ])
j j j j      (16) 

    arccos 0,j j        (17) 

Similar to (9) and (10), the coefficients 
,cχ γ

can be obtained by 

the least square method. 

In the above analysis, (7) and (11) can be considered in one 

framework, termed as the PCCI method, and the coefficients 

,χ γc as the PCCI expansion coefficients. The performance 

function with hybrid uncertainties can be approximated by 
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n m
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and the PCCI expansion coefficients can be calculated by using 

the least square method twice as 

     
1 1

T T T T

,

 


χ γ
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where A and B are the sample matrices with components 
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ξ , 
 

  s

r

rsB  
γ

η , and ξ(r) and η(r) the 

collocation points of random and interval variables selected 

from the zeros of the one dimensional higher Hermite 

polynomials and Chebyshev polynomials, respectively. P(ξ, η) 

is the output vector at the collocation points. In order to ensure 

the numerical stability, the number of sampling points is 

recommended to twice the number of coefficients for obtaining 

a robust estimation. 

Finally, based on the orthonormal properties of the 

polynomials, the mean and interval variance of the performance 

function can be obtained by 
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The mean and variance in (18) and (19) are functions of the 

interval uncertainties, and they have intervals with lower and 

upper bounds. Based on the characteristics of the trigonometric 

functions, we know that  0 0 η  and    
,

1,1m 
  

0Nγ γ
η . 

The bounds of the mean and standard variance can thus be 

easily approximated, as the following 
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where 1( )k
γ  and 2( )k

γ  are two realizations of the index γ . 

These two equations provide two efficient and convenient 

approximations for the interval bounds. Since all the Chebyshev 

polynomials are not possible to achieve -1 or 1 at the same time, 

the estimations by (20) and (21) inevitably involve over-

estimations. Proper algorithms, e.g. the scanning method, can 

be used to better control the overestimation and obtain the 

bounds of the interval mean and standard variance, as follows: 
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   (25) 

C. Optimization framework 

With the proposed hybrid uncertainty analysis approach and 

intelligent algorithms, the robust optimization flowchart is 

established as shown in Fig. 4. It mainly includes the following 

seven steps. 
 

Step 1: Specify the design variables, uncertain parameter of 

the initial design. deterministic and robust objectives 

and constraints of the design optimization problem. 

Determine the algorithm parameters and stop criterion. 

 

 

Fig. 4.  Flowchart of the optimization approach. 
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Step 2: Generate a population for the intelligent optimization 

algorithm. 

Step 3: If the solution in the population cannot meet the 

requirements of the deterministic constraints, there is 

no need for this solution to do the reliability analysis 

with the PCCI. Therefore, to accelerate the algorithm, 

the constraint of the population is evaluated in this 

step. Only if the constraints are satisfied, the reliability 

analysis is conducted in the following steps for the 

solution. 

Step 4: Generate samples according to the uncertain variables 

for the solution to calculate the coefficients of the 

PCCI model by the least square method. 

Step 5: Estimate the upper and lower bounds of the mean and 

standard deviation values for the objective function 

and constrains by the established PCCI model. 

Step 6: Evaluate the robustness of the solutions according to 

specified reliability settings. 

Step 7: Check the convergence of the current optimal solution. 

If the results meet the requirement of the iteration, 

output the design. Otherwise, go to step 2 to continue 

the iteration. 

III. NUMERICAL EXAMPLE 

To investigate the effectiveness of the proposed robust 

optimizer, a brushless DC wheel motor benchmark is selected 

as the design example [18]. The motor is designed for 

propelling a solar vehicle to meet the specifications of 20Nm 

torque at 721rpm while the maximal speed reached at no-load 

is specified also is 1442. The initial design is an outer rotor 

brushless DC motor with surface mounted magnets, 

concentrated windings, 18 slots and 12 poles. Fig. 5 shows the 

topology of the brushless DC motor. 

As a design benchmark, the example shows characteristics in 

explicit equations, scaled design variables, and objectives, etc. 

As well, it includes highly constrained multidisciplinary and 

multimodal features. The analytical design model consists of 78 

nonlinear equations of the electromagnetic and thermal 

performances. 

e

Dext

Dint

Ds

 
Fig. 5.  Topology of the brushless DC motor.  

The benchmark can be used for problems of both single and 

multiple objectives. When it is optimized as a single objective 

problem to achieve the highest efficiency under certain 

technical constraints, it can be defined as 

  

1

tot int max

ext a
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15 , 76 , 125
. .

340 , 120 , 0
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   

 (26) 

where Mtot is the total mass of the motor, Dext the external 

diameter of the motor, Dint the inner diameter of the stator, Imax 

the maximum demagnetization current, Ta the temperature of 

the magnets, and discr the determinant used for the calculation 

of slot height. 

While sharing the same constraints, for multiple optimization 

objectives of the highest efficiency and the lowest total mass, 

the problem can be expressed as 

  
1

2

max
.

min tot

f
obj

f M



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 (27) 

The optimization problem contains five-design parameters, 

as listed in Table I. It is assumed that the two stochastic 

parameters obey the Gaussian distribution and the three interval 

parameters are hypothesized.  Specifically, the design variable 

Ds also has random uncertain property. The uncertainty 

variables of the two uncertainty types and their properties are 

presented in Tables II and III below, respectively. 

For this design example, the weighting factor nf and sigma 

level ng are set as 6. In order to prove the feasibility of the 

proposed optimizer, the deterministic and robust optimizations 

based on SMCA are also conducted. SMCA is also utilized to 

analyze the robustness of the optimization results. The robust 

optimization objectives can be expressed as 

  
   

   

1

2

min : 6

min : 6

ub ub

ub tot ub tot
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F M M
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 (28) 

while the constraints share the same format as (6). 

 
TABLE I 

DESIGN PARAMETERS  

Par. Description Unit lower upper 

Be 
Maximum magnetic flux 

density in the air gap 
T 0.5 0.76 

Bd 
Average magnetic flux 

density in the teeth 
T 0.9 1.8 

Bcs 
Average magnetic flux 

density in stator back iron 
T 0.6 1.6 

Ds Stator outer diameter mm 150 330 

J Current density A/mm2 2 5 

 

TABLE II 

PARAMETERS WITH INTERVAL UNCERTAINTY 

Par. Description Unit λ δ 

α Width of stator tooth deg. 30 0.08 

e Length of air gap mm 0.8 0.02 

β 
Width of intermediate 

tooth 
deg. 6 0.08 

 

 

TABLE III 
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PARAMETERS WITH RANDOM UNCERTAINTY 

Par. Description Unit μ σ 

Ds Stator outer diameter mm - 0.1 

Lm Length of the motor mm 45 0.1 

IV. RESULTS AND DISCUSSION  

A. Optimization results of the single objective problem 

Table IV lists the optimization results of the benchmark 

obtained by the deterministic and robust optimization methods 

with PCCI and SMCA. The two robust optimization approaches 

yield the same objective values, which are very close to those 

obtained by the deterministic design optimization approaches. 

 

(a) 

 
(b) 

Fig. 6. Demagnetization current distribution: (a) deterministic solution, and (b) 

robust solution with PCCI. 

 

(a) 

 

(b)  

Fig. 7.  Total weight distribution: (a) deterministic solution, and (b) robust 

solution with PCCI. 

TABLE IV 

OPTIMAL DESIGN PARAMETERS AND OBJECTIVES 

Par. Unit Deter PCCI SMCA 

Bd T 1.8 1.8 1.8 

Be T 0.650 0.655 0.655 

Bcs T 0.950 0.975 0.99 

Ds mm 202.5 201.0 201.0 

J A/mm2 2.0499 2.0736 2.0661 

f1  0.9531   

-F1   0.9526 0.9526 

 

 

TABLE V 

UPPER BOUND MEAN VALUE OF THE PERFORMANCES 

 Unit SMCA PCCI   

η  0.9530 0.9530 1.9560E-5 1.9438E-5 

Dint mm 80.80 80.82 3.7310E-1 3.6175E-1 

Dext mm 239.3 239.0 1.2029E-1 1.1569E-1 

discr  0.0252 0.0255 3.5492E-4 3.4305E-4 



 

 

7 

 Imax A 134.0420 132.5106 0.3012 0.2904 

Ta ℃ 95.6889 95.6889 0.0769 0.0751 

Mtot kg 14.8964 14.8776 0.0170 0.0167 

 

TABLE VI 

UPPER BOUND STANDARD DEVIATION OF THE PERFORMANCES 

 Unit SMCA PCCI 

η  1.9560E-5 1.9438E-5 

Dint mm 3.7310E-1 3.6175E-1 

Dext mm 1.2029E-1 1.1569E-1 

discr  3.5492E-4 3.4305E-4 

 Imax A 0.3012 0.2904 

Ta ℃ 0.0769 0.0751 

Mtot kg 0.0170 0.0167 

From the aspect of robustness, each solution is evaluated 

according to the maximum upper bounds of the mean and 

standard values obtained by SMCA. The verification results 

show that the sigma levels of the constraints are no less than the 

pre-set value of 6 for the PCCI solution. On the contrary, since 

there is no reliability assessor in the deterministic optimization, 

the robustness of the deterministic solution is not guaranteed. 

Particularly, the demagnetization current that the permanent 

magnets can tolerate should be larger than 125 A, while the total 

weight is limited no more than 15 kg.  Figs. 6 and 7 illustrate 

the upper and lower bound distributions of the demagnetization 

current and weight for the deterministic and robust solutions 

with PCCI.  The results show that the possibility of the 

deterministic solution violates the constraints, while the 

robustness of solution with PCCI is well promised. 

To illustrate the accuracy of the PCCI method, Tables V and 

VI list the upper bounds of the mean and standard deviation of 

the performances included in the objective and constraints. The 

comparison results demonstrate the high precision of the PCCI 

approach in the estimation of robustness information. From the 

perspective of efficiency, for the interval and random 

parameters, the number of scanning and Monte Carlo sampling 

points is 1,000 respectively, which means that the number of 

total sampling points is 106 while only 60 samples are required 

for the second-order PCCI modeling. For the robustness 

estimation of one potential design, the SMCA takes 1.95 s while 

the PCCI method requires only 0.25 s, which is 7 times faster 

than the SMCA. Furthermore, the calling time of robustness 

assessment by PCCI method was reduced from 104 (iteration 

step  population size i.e. 20050) to 2073, which means the 

potential solutions required for the robustness calculation are 

decreased to about 20 percent for this case. 

When the time-consuming model is utilized such as the finite 

element model, the merits of the PCCI will be more prominent.  

 

B. Optimization Results of the Multi-objective Problem 

Fig. 8 illustrates the Pareto diagram of the deterministic and 

robust optimizations. As shown, the robust solutions are more 

conservative than the deterministic solutions for achieving the 

optimal efficiency and total weight. Meanwhile, the robust 

solutions achieved by the two optimizers are close to each other, 

confirming the accuracy of the proposed method. 

 

Fig. 8.  Pareto diagram of the deterministic and robust optimizations.  

As a further proof of the robustness of the solutions obtained 

by the PCCI optimizer, their sigma levels verified by the SMCA 

are present in Fig. 9. Particularly, the sigma level used is the 

minimum one among all constraints. In contrast to the 

deterministic solutions, the sigma levels of robust solutions are 

higher than the set value of 6. 

 

Fig. 9.  Sigma level of the solutions. 

 
(a) 
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(b) 

Fig. 10.  Demagnetization current of the deterministic and robust solutions. 

Fig. 10 shows the error bar diagrams of the demagnetization 

current of the solutions where the middle points of the yellow 

and purple bars are the upper- and lower-bound mean values, 

respectively. The lengths of each error bar above and below the 

mean values are  max6 ub I , i.e. six times the upper bound of 

demagnetization current standard deviation. The 

demagnetization current between the upper bound of the yellow 

bar and the lower bound of the purple bar are regarded as the 

performance value that the solution may have. As shown, 

various deterministic solutions violate the demagnetization 

current constraints, while the lower bounds of robust solutions 

are larger than 125 A. 

V. CONCLUSION 

The effectiveness and robustness of the proposed approach 

were confirmed by comparing with the deterministic 

optimization of a brushless DC motor benchmark design 

problem. Meanwhile, compared with the classical SMCA based 

robust optimization process, the optimization efficiency can be 

improved by using the PCCI method. The robustness 

verification of the solution obtained by the proposed approach 

with SMCA also shows the accuracy of PCCI in the uncertainty 

quantification. From the above analysis, the feasibility of the 

proposed optimization methodology was validated for robust 

optimization of electrical machines with hybrid uncertainties. 
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