
Deep Spatial-Temporal Sequence Modeling for

Multi-Step Passenger Demand Prediction

Lei Baia, Lina Yaoa, Xianzhi Wangb, Can Lia, Xiang Zhangc

aUniversity of New South Wales, Sydney, NSW, Australia
bUniversity of Technology Sydney, Sydney, NSW, Australia

cHarvard University, Boston, Massachusetts, America

Abstract

Supply-demand imbalance poses significant challenges to transportation sys-

tems such as taxis and shared vehicles (cars and bikes) and leads to excessive

delays, income loss, and energy consumption. Accurate prediction of passen-

ger demands is an essential step towards rescheduling resources to resolve

the above challenges. However, existing work cannot fully capture and lever-

age the complex nonlinear spatial-temporal relationships within multi-modal

data. They either include excessive data from weakly-correlated regions or

oversight the correlations among those similar yet geographically distant re-

gions. Moreover, these methods mainly focus on predicting the passenger

demand for one future time step, whereas predictions over longer time scales

are more valuable for developing efficient vehicle deployment strategies. We

propose an end-to-end deep learning based framework to solve the above chal-

lenges. Our model comprises three parts: 1) a cascade graph convolutional

recurrent neural network to extract spatial-temporal correlations within city-

wide historical vehicle demand data; 2) two multi-layer LSTM networks to

represent the external meteorological data and time meta separately; 3) an

encoder-decoder module to fuse the above two parts and decode the rep-

1



resentation to achieve prediction over a longer time period into the future.

We evaluate our framework on three real-world datasets and show that our

model can better capture the spatial-temporal relationships and outperform

the most discriminative state-of-the-art methods.

Keywords: Passenger Demand Prediction, Spatial-Temporal Correlations,

Graph Convolutional Network, Long-Short Term Memory.

1. Introduction

With the accelerated urbanization, around 70% of the world’s population

is expected to live in cities by 2050 [1]. This rapid progress has engendered

significant challenges, such as increased energy consumption and traffic short-

age, to transportation systems. Transforming cities to smart cities with IoT

and machine learning solutions will allow for the better use of public trans-

port and energy resources. A good example is on-demand vehicle sharing

services (e.g., Didi, Uber, Mobike), which allow customers to book a shared

ride through mobile apps. Such services serve massive passengers on a daily

basis and have already become a critical part of the smart transportation

ecosystem.

However, such services often experience a supply-demand imbalance prob-

lem. One the one hand, drivers often have to drive a long way before they can

find passengers due to low demand volumes in their proximity; on the other

hand, passengers may experience long delays in obtaining rides due to high

demands around their locations [2, 3]. Such an imbalance leads to excessive

waiting time, income loss, and energy waste [4]. Therefore, it becomes an

essential step towards better resource (e.g., cars, bikes) dispatch strategies

2



to accurately predict passenger demands based on heterogeneous data col-

lected on citywide deployments [5], to address the above imbalance problem.

Predicting passenger demand is challenging due to the high dynamic data,

complex dependencies along temporal and spatial dimensions, and sensitivity

to multiple external factors (e.g., meteorological data and time meta).

Traditional methods [6] [7] employ time series models such as Auto-

Regressive Integrated Moving Average (ARIMA) and its variants to predict

passenger volume [2]. Such methods can only capture the temporal correla-

tions in the target region and often incur large prediction errors. In recent

years, as passenger demand datasets become abundant, researchers are start-

ing to apply deep learning techniques for demand prediction. These studies

typically use Recurrent Neural Network (RNN) and its variants (e.g., Long-

Short Term Memory (LSTM) [8] and Gated Recurrent Unit (GRU) [9] net-

works) to capture temporal correlations, and Convolutional Neural Network

(CNN) [10] to extract spatial relationships from the whole city or geograph-

ically nearest regions [11] [12] [13][14] . More recently, Convolutional LSTM

(ConvLSTM) [15] is proposed to extract spatial-temporal correlations.

Despite the extensive research in passenger demand prediction, existing

methods suffer from the following drawbacks:

• While spatial correlations of passenger demands have shown to boost

the prediction accuracy, it is still under-explored. Recent CNN-based

methods consider passenger demand in one region to be influenced by

all the regions of the city [12] [13][16][14] or by its local neighbour-

ing regions [11]. These methods either introduce irrelevant information

by including excessive data from weakly correlated regions or fail to

3



(a) (b)

Figure 1: (a): None-Euclidean spatial correlations in the citywide passenger demand; (b):

An illustration of partitioning a city into irregular regions.

capture the global spatial correlations (e.g., hidden correlations of geo-

graphically distant regions) precisely. Take the regions in Figure 1.(a)

as an example, although Region A is geographically close to Region B

and Region C, they have totally different points of interests. On the

other hand, Region A has similar points of interests (i.e., university

and shopping centers) with Region D. Thus, the passenger demand in

region A shows a stronger relationship with D rather than B and C.

• Many existing studies focus on predicting passenger demands for the

immediate future, i.e., next time step. However, predicting the passen-

ger demand over a longer time scale (i.e., multi-step ahead prediction)

is more valuable for transportation service operators to design better

vehicle deployment strategies.

• Existing methods are specific to the way that the target city is parti-

tioned. In particular, the majority of current approaches use an ab-

straction wherein the city is divided into small grids (such as 1km ×

4



1km area) [14, 17] and ignore the semantic information such as road

networks and city administrative zones [2, 3]. Figure 1.(b) gives an illus-

tration about partitioning a city into small regions by postcode, which

provides convenience to extract the semantic representation about the

area such as the population and income.

To address these problems, we develop an end-to-end deep learning method

for multi-step citywide passenger demand forecasting based on the historical

demand and the heterogeneous external data. The framework consists of

three parts. Firstly, we use a cascade graph convolutional recurrent neural

network module to extract the spatial-temporal correlations from the city-

wide historical demand. To model the spatial correlations, we treat a city

as a graph where each region is a specific node. Next, an adjacency matrix

of the graph is pre-defined according to the similarities between historical

passenger demands of different regions. At the same time, an learnable con-

nectivity matrix is integrated for capturing more comprehensive spatial cor-

relations. Then, we apply Graph Convolutional Network (GCN) to the graph

to extract the shared patterns only within closely related regions based on

the predefined and learned graph structure jointly in a multi-graph manner

[18, 19]. Our method can accurately capture spatial correlations by em-

phasizing regions with similar demand patterns and ignoring the noise from

weakly related regions, regardless of the geographic locations. In addition,

our approach does not presuppose one particular abstraction of the city, be

it grid based or road network based. Secondly, we use two multi-layer LSTM

networks to extract representations of the external meteorological data and

time meta, respectively. Thirdly, we fuse the aforementioned components

5



into a joint hidden representation and decode it under an encoder-decoder

structure to generate the multi-step prediction. We have evaluated our ap-

proach with three real-world passenger demand datasets of different scales:

DidiSY, TaxiBJ and BikeNYC, covering different service types ranging from

car sharing, regular taxis and bike sharing, respectively. The experimental

results demonstrate that our method consistently outperforms a set of base-

lines and state-of-the-art methods. Overall, the main contributions of this

work are:

• We proposed an end-to-end deep learning framework for multi-step

passenger demand prediction considering the joint influence of both

historical demand and heterogeneous external data.

• We propose to capture the spatial correlations in the citywide pas-

senger demand by graph convolutional networks and infer the spatial

connectivity from data directly.

• We conduct extensive experiments on three real-world datasets and

demonstrate the effectiveness of our approach on both grid regions and

irregular regions for both next-step demand prediction and multi-step

demand prediction.

2. Related Works

Passenger demand prediction has attracted a lot of attentions due to its

significance in improving citizens’ quality of life. A traditional approach is

considering the passenger demand as time series data [20, 21] and apply

widely used time series algorithms. Li et al. [6] developed an improved

6



ARIMI model to forecast the citywide passenger variations in the hotspot

areas. Moreira-Matias et al. [7] integrated three time-series analysis tech-

niques (i.e., Time-Varying Poisson Model, ARIMA model, and Weighted

Time-Varying Poisson Model) to make a prediction. Other traditional ap-

proaches use classical machine learning algorithms such as support vector

machine (SVM) and k-nearest neighbors (KNN). Li et al. [22] proposed a

short-term traffic demand prediction model with the least squares support

vector machine (LS-SVM). These traditional methods neither model the non-

linear spatial-temporal correlations accurately nor do they take into account

external features such as meteorological data, resulting in large predicting

errors.

In recent years, deep learning techniques, which have been successfully

used in various application domains, have also been used for passenger de-

mand prediction. Liu et al. [23] designed a hybrid model using stacked

auto-encoder. They first pre-train a Stacked Auto-Encoder (SAE) with all

input features. Next, the pre-trained SAE is used to initialize the supervised

fully connected layers to generate the prediction. Wang et al. [24] proposed

a deep learning framework based on the fully-connected layers and the resid-

ual networks to forecast the gap between taxi supply and passenger demand.

However, these two methods, both of which consist of fully connected lay-

ers, cannot accurately model the complex spatial-temporal relationships. Yu

et al. [25] use LSTM networks to learn the temporal correlations in the

traffic data and use the auto-encoders to represent static features. Lai et.al

[26] combine the skip connection with LSTM to learn both long and short

temporal correlations. However, none of these methods consider the spatial

7



correlations explicitly.

To jointly capture the spatial-temporal relationships within the citywide

historical demand, Ke et al. [16] proposed to use ConvLSTM. Their method

stacks multiple ConvLSTM layers and CNN layers to process historical de-

mand data and travel time data, respectively. Similarity, Zhu et.al. [27] also

deploy ConvLSTM for learning spatial-temporal correlations. They further

integrate the attention mechanism to emphasize the effects of latent mobility

regularities. Zhang et al. [12] come up with a spatial-temporal model to

forecast the crowd flow. They organize the historical crowd flow as three

Segments denoting “recent time data”, “near history data”, and “distant

history data”. Based on these fragments, they represent citywide crowd flow

as a multi-dimensional image and use CNN and residual networks to extract

spatial relationships [2]. One disadvantage of these two methods is that they

take excessive weakly correlated regions into account, which introduces noise

in capturing spatial correlations and thus decreases the prediction accuracy.

To solve the above problem, Yao et al. [11] proposed “local CNN” for captur-

ing spatial correlations only within the geographically near regions and build

a weighted graph to serve as the similarity among different regions. Instead

of using the data from the entire city, this method can filter weakly correlated

remote regions. Their method needs to extract information about neighbour-

ing regions and generate predictions for each region separately, which is not

computationally efficient in practice. Wang et.al [14] further extend [11] with

Generative Adversarial Network (GAN) to model the stochastic characteris-

tics in the traffic demand data. However, all of these CNN-based models are

limited to the grid-partitioned regions, where a city is partitioned to smaller

8



structured regions with grid partition method. Bai et.al. [2] further extend

the scaleability of CNN-based methods to unstructured regions by organiz-

ing the demand data by region similarity and extract the spatial-temporal

correlations with cascade CNN-LSTM networks.

To facilitate the process of capturing more accurate and non-Euclidean

spatial correlations, graph convolutional network is introduced to the passen-

ger demand prediction area due to its’ ability in dealing with unstructured

data in various applications (e.g., knowledge graph [28, 29], traffic speed fore-

casting [30, 31], and social recommendation [32, 33]). Geng et.al. propose

ST-MGCN [18] and deploy graph convolutional network to extract the spatial

correlations among different regions. They define three region graphs accord-

ing to regions geographic distance, Point-of-Interest (PoI) distributions and

road network connectivity, which contains more comprehensive and accurate

spatial correlations. However, PoI distributions and road network connec-

tivity data are not always available, which limits the model’s generalization

ability. Our work also models the passenger demand on graph. Different

to ST-MGCN, we propose to infer the graph connectivity from passenger

demand data itself (as depicted in Section 4.1).

3. Preliminary

3.1. Notations and the Problem Statement

Suppose a city is partitioned into N small regions, regardless of whether

grid-based or road network based partitioning is employed. We represent

the region sets as {r1, r2, ..., ri, ...rN}. At each time step t, a scalar Dt(ri)

represents the passenger demand of region ri in time step t. Respectively, a

9



vector Dt ∈ RN represents the passenger demand of all regions in time step

t. Another vector Et represent the external features in time step t. In this

work, external features include the meteorological data (e.g. weather state,

temperature, wind speed) and time meta (e.g., time of day, day of week,

holidays), which are represented as EMt and ETt, respectively.

Given the citywide historical passenger demand {D0,D1, ...,Dt} and ex-

ternal features {E0,E1, ...,Et}, the purpose is learning a forecasting func-

tion Γ(·) that predicts the citywide passenger demand in the following τ time

steps. Specially, instead of using all the historical passenger demand, we se-

lectively consider the most recent q time steps historical data as input, which

is a common practice in time series data analysis [3]. Thus, our work can be

formulated as:

(Dt+1,Dt+2, ...,Dt+τ ) =

Γ(Dt−q+1,Dt−q+2, ...,Dt;Et−q+1,Et−q+2, ...,Et)
(1)

3.2. Graph Convolutional Network

In this work, we use the Graph Convolution Network (GCN) defined in

the spectral domain with graph Fourier Transform [34][35]. Taking the graph

signal X and the corresponding adjacency matrix A as inputs, the spectral

graph convolutional operation with kernel Θ is defined as follows:

Θ ?Dt = Θ(L)Dt = Θ(UΛUT )Dt = UΘ(Λ)UTDt (2)

where L is the normalized graph Laplacian, U = [u1, u2, ..., uN ] ∈ RN×N

is the corresponding matrix of eigenvectors and Λ ∈ RN×N is the diagonal

matrix of eigenvalues of L [3]. According to [35], the filter Θ can be restricted

10



to a polynomial of Λ as:

Θ(Λ) ≈
K∑
k=0

θkΛ
k (3)

where θk ∈ RK is a vector of Chebyshev coefficients and K is a parameter

that determines the maximum radius of the convolution from central nodes

[36]. Equation 3 can be further approximated in linear time when set K = 1

and the largest eigenvalue of L to 2:

Θ ?Dt ≈ θ0Dt − θ1(P− 1
2AP− 1

2 )Dt (4)

where θ0, θ1 are free parameters of the kernel, P ∈ RN×N is the diagonal

degree matrix of the graph with Pii =
∑

j Aij. In practice, the parameters

in Equation. 4 can be further constrained to avoid overfitting and explod-

ing/vanishing gradients by setting θ0 = −θ1 = θ. By generalizing the cal-

culation to multiple dimensions, the first-order GCN layer is finally defined

as:

Z l+1 = (IN + P− 1
2AP− 1

2 )Z lΘ (5)

where Z l ∈ RN×C with C dimensions, Θ ∈ RC×F and Z l+1 ∈ RN×F with

F dimensions are input, learnable parameters and output of the GCN layer,

respectively. This formulation can be efficiently implemented. As K is sim-

plified to 1, successively applying k GCN layers can capture correlations from

kth-order neighbours of a node.

4. Model

Figure 2 illustrates the framework of our proposed method based on the

encoder-decoder architecture. The encoder encodes all inputs to a joint rep-

resentation, and the decoder subsequently decodes the representation into

11



Figure 2: Proposed Framework. The framework is based on the encoder-decoder archi-

tecture. The encoder consists of a graph spatial-temporal network and two multi-layer

LSTM network to generate representations for citywide historical demand, meteorological

data and time meta (i.e., time of day, day of week, and holidays information), separately.

The decoder is another multi-layer LSTM network decoding the fused joint representation

into multi-step predictions.

a sequence of predictions. Specifically, the encoder module includes three

parts: 1) a graph spatial-temporal Network that extracts from the citywide

historical passenger demand. It can extract shared patterns exclusively from

similar regions and avoid the negative influence of weakly related regions.

2) two multi-layer LSTM networks that learn a better representation for

meteorological data and time meta, respectively. This design considers the

independence between meteorological data and time meta. 3) A Hadamard

fusion method that fuses the final state of the three networks above into a

joint representation. In the decoder, we use another multi-layer LSTM net-

work to decode the joint representation and to achieve multi-step prediction.

We will elaborate on these modules in the following.

12



4.1. Learning Spatial Correlations

We first introduce how to capture the spatial correlations among different

regions. Previous works assume that the passenger demand in one region is

influenced by other regions. They either apply CNN to capture global spatial

influences over the entire city [16] [12] [13] or local influences from geographic

near regions [11]. Distinct from these existing studies, we assume that spatial

correlations only depend on regions with similar demand patterns, while in-

dependent of geographic locations. Passenger demand of remote regions with

similar attributes (such as PoIs, functions) could also share similar demand

patterns, and vice versa. Thus, existing methods overstate the globality and

proximity in passenger demand. They either introduces excessive noise from

weakly related regions or neglect the correlations from remote similar regions.

Therefore, we treat the city as a graph G = (ν, ξ, A), where ν is the set

of regions ν = {ri|i = 1, 2, ...N} in the city, ξ is a set of edges and A is

an adjacent matrix defining the spatial connectivity between different nodes

(i.e, regions). Different with the works in the traffic forecasting domain where

the adjacency can be directly obtained from the road network, the adjacency

among different regions is unknown in passenger demand forecasting. To

solve the issue, we propose to infer the connectivity of the graph from the

passenger demand data in two ways. First, we pre-define the connectivity

of the graph according to the historical passenger demand similarity among

regions because similar regions normally have similar passenger demand.

Ai,j =

1, if Pearson(D0∼t(ri), D0∼t(rj)) > β

0, otherwise

(6)

where β is a threshold to control the sparsity of the pre-defined adjacent

13



Figure 3: Graph Spatial-Temporal Network (GSTN).

matrix A, Pearson(·) represents the Pearson Coefficient of two data streams,

D0∼t(ri) and D0∼t(rj) denote the historical passenger demand sequence of

region ri and rj from time step 0 to t in the training data, respectively.

Second, we adaptively learn the adjacency among nodes during training

based on the correlations of regions representation as proposed in [37]. Take

E1 ∈ RN×k as the learnable source nodes embedding matrix and E2 ∈ RN×k

as the learnable target nodes embedding matrix (where k is the embedding

dimension), then:

Ãadp = SoftMax
(
ReLU

(
E1E

T
2

))
(7)

Instead of using Ãadp as the adjacent matrix of the passenger demand graph,

we directly set Ãadp to P− 1
2AP− 1

2 , which help avoid the repetitive Laplacian

transformation during training. Both E1 and E2 are randomly initialized and

updated in the training process.

14



Based on the pre-defined adjacent matrix A and the learnable Ãadp,

the spatial correlations among different regions can be captured by multi-

ple stacked GCN layers in our Graph Spatial-Temporal Network (GSTN)

module. As shown in Fig. 4.1, the inputs of the GSTN are citywide pas-

senger demand for the past q time steps, the pre-defined adjacent matrix

A of the city region graph, and the learnable Ãadp. At each time step, we

feed the citywide passenger demand of the current time step into a set of

connected GCN layers. Following Equation. 5, the calculation for each GCN

layer combining A and Ãadp is:

Z l+1 = (IN + P− 1
2AP− 1

2 )Z lΘ1 + (IN + Ãadp)Z
lΘ2 (8)

Considering that the adjacency concludes both historical passenger demand

similarity and regions representation similarity, our design can accurately

capture spatial correlations from most related regions and exclude weakly

correlated regions, regardless of their geographic locations.

4.2. Learning Temporal Correlations

The representations extracted from the GCN layers are then fed into a

multi-layer LSTM network to capture the temporal relationships and encode

citywide passenger demand of the previous q time steps into a joint repre-

sentation. Notice that, we use passenger demand from the previous q time

steps as input to GCN and extract the representation for each time interval

separately. Correspondingly, we get q distinct representations. In Figure

4, we use a one-layer LSTM as an example to elaborate, where q outputs

of GCN layers are shown as Xt−q+1,Xt−q+2, ...,Xt. Each LSTM cell has

15



three inputs: Xi, the cell state from last cell Ci−1, and the output last cell

Hi−1, where i ∈ [t− q + 1, t]. The calculation of each LSTM cell follows [8]:

fi = σ(Wf · [Hi−1,Xi] + bf )

f̂i = σ(Wf̂ · [Hi−1,Xi] + bf̂ )

Ĉi = σ(WĈ · [Hi−1,Xi] + bĈ)

Ci = fi ∗Ci−1 + f̂i ∗ Ĉi

oi = σ(Wo · [Hi−1,Xi] + bo)

Hi = oi ∗ tanh(Ci)

(9)

where Wf , Wf̂ , WĈ , Wo, bf , bf̂ , bĈ , and bo are parameters to be

learned. The cell state Ci are transferred and updated in all LSTM cells and

can be regarded as an accumulation of all previous information. So the cell

state Ct generated by the last (qth) LSTM cell contains all spatial-temporal

information from the passenger demand of the previous q time steps. We use

Ct together with Ht as the output of the LSTM network. When stacking

multiple LSTM layers, the outputs are Ct and Ht of the last LSTM cell in

all layers. We represent them as (ShD,S
c
D) in Figure 2.

4.3. Representing External Features

In addition to the spatial-temporal correlations hidden in historical city-

wide demand sequence, many external factors such as time meta (e.g., time

of day, day of week, holidays) and meteorological data (e.g., weather, temper-

ature, wind speed) also influence the passenger demand [21]. For example,

passenger demand tends to be very high in the morning rush hour and low

at midnight. Moreover, the influence of time meta and meteorological data

16



Figure 4: Illustration of one layer LSTM

on passenger demand is independent of each other [16][12]. Based on these

observations, we feed the meteorological data sequence and time meta se-

quence of past q time steps into two separate multi-layer LSTM networks to

obtain their representation. Similar to Section 4.2, we only get the state and

output of the last LSTM cell in the multi-layer LSTM networks as the output

and representation of inputs because they integrate all the information in the

input data.

In addition, we use a fully-connected layer to map the final state of time

meta part to N times the higher dimension to make it match the number

of regions, based on the fact that time meta is the same among all regions.

This way, we can represent meteorological data and time meta as (ShM ,S
c
M )

and (ShT ,S
c
T ).

4.4. Fusion and Prediction

In the previous parts, we introduced our design of three distinct neural

networks to obtain representations of historical citywide passenger demand,

meteorological data and time meta, separately. Before feeding these repre-

sentations into the decoder module, they should be fused together:

Sh = ShD �W h
D + ShT �W h

T + ShM �W h
M (10)

17



Sc = ScD �W c
D + ScT �W c

T + ScM �W c
M (11)

where Sh and Sc are joint representation of all inputs to our model, W h
D, W h

T ,

W h
M , W c

D, W c
T , W c

M are learnable parameters, � is element-wise hadamard

product operation, which can simultaneously learn a joint representation of

each region from historical passenger demand, meteorological data and time

meta separately.

To predict the passenger demand in the next τ time steps, we use another

LSTM networks to decode the joint representation (Sh, SC). Similar to the

methods in [9] and [38], the inputs of the decoder are comprised of two parts:

the encoded representation of encoder, and an initial variable. The encoded

representation (Sh, SC) is fed into the decoder as the initial state of LSTM

network (as shown in Figure 4), and the initial variable is served as the

first input of LSTM network to start the decoding. In machine translation

research, the most commonly used initial variable is the ’End-of-sentence”

token. In our work, we use the first part of the joint representation Sh as

the initial variable as it contains more information than zero variable. The

inputs to the subsequent cells of the decoder are the output of the last LSTM

cell, as shown in the right part of Figure 2.

4.5. Optimization and Training

The outputs of all LSTM cells in the decoder constitute the predicted

passenger demand (D′t+1,D
′
t+2, ...,D

′
t+τ ). In the training process, our tar-

get is minimizing the error between the predicted passenger demand and the

actual passenger demand. We deploy the mean squared error (MSE) of the

predicted passenger demand and the true passenger demand for τ time steps

18



as the loss function, written as:

L(Wθ) =
i=τ∑
i=1

‖Dt+i −D′t+i‖22 (12)

where Wθ denotes all the learnable parameters in our network. These param-

eters can be obtained through the back-propagation algorithm and Adam

optimizer [39]. Furthermore, we use the teacher forcing strategy in the

decoder to achieve efficiency in training [3]. Specifically, we directly use

the true value Dt+i when training the model, instead of feeding predicted

D′t+i(i ∈ [1, τ − 1]) to i+ 1th LSTM cells in the decoder.

5. Experiments

In this part, we first introduce the datasets used for evaluating our model.

Then, the experimental settings and evaluation metrics are outlined. Finally,

we evaluate our methods from three perspectives, focusing on the three draw-

backs in previous works (see Section 1), which demonstrates that our model

can effectively solve these problems.

5.1. Datasets

We use three real-world datasets in our experiments, as detailed below:

• DidiSY: A self-collected dataset which consists of three parts: 1) the

ride-sharing demand data from Didi, which is the biggest online ride-

sharing company in China; 2) Time meta, which includes the time

of day, day of week and holidays; 3) Meteorological data, including

weather, temperature, wind speed, and visibility. The dataset is col-

lected in Shenyang, which is a large city of China, from 05/Dec/2016

19



to 04/Feb/2017. Each time slot is one hour. We deploy the last six

days demand as testing data and previous data as training data.

• BikeNYC [12]: The public BikeNYC dataset only consists of two parts:

the bike demand part and the time meta part. This dataset covers the

shared bike hire and returns data of CityBike in New York from 1 Apr

2014 to 30th Sept 2014. Each time step is one hour. To be consistent

with previous work using this dataset. [12][13], the last ten days data

are chosen as testing data.

• TaxiBJ [12]: The public TaxiBJ dataset contains taxi demand in Bei-

jing from 1 Mar 2015 to 30th Jun 2015. Similar to the DidiSY dataset,

TaxiBJ contains passenger demand, time meta, and meteorological

data. Each time step is 30 minutes in this dataset. Last ten days

data are chosen as testing data.

5.2. Experiment Settings

Before feeding the dataset into the model, we transform the categorical

features (e.g., hour of day, day of week, holiday, and weather) with one-hot

encoding. Besides, the continuous features including visibility, wind speed,

and temperature, are scaled by the Min-Max normalization method. The

passenger demand data is also normalized by the Min-Max normalization

and reversed back to the actual value for evaluating the prediction accuracy.

We implemented our model in Python with Pytorch 1.1. After parameter-

tuning, the final model of our method employs two GCN layers followed by

two LSTM layers for encoding the historical passenger demand data and

three LSTM layers for representing the historical external data (i.e., time

20



meta and metrological data). The order of GCN is set 2 and the historical

window size q is set to 8 following DMVST [11]. In the decoder, we only use

one LSTM layer to generate the prediction. The batch size is set to 64 for all

datasets, and the learning rate is set to 0.0001, 0.0007, and 0.001 for DidiSY,

BikeNYC, and TaxiBJ, respectively. For the comparison methods, we tuned

them carefully and chose the best parameters for them.

The batch size is set to 64. Historical windows size q is set to 8. For the

multi-layer LSTM netowrks, we use a two-layer LSTM network for Graph

Spatial-temporal correlations extraction and a three-layer LSTM network

for external features representation.

At each prediction step, we deploy three evaluation metrics to evaluate

the performance of our model, i.e., Root Mean Square Error (RMSE), Mean

Absolute Error (MAE) and the Mean Absolute Percentage Error (MAPE).

RMSE =

√
1

ε

∑
i

(D̂t+1(ri)−Dt+1(ri))2

MAE =
1

ε

∑
i

‖D̂t+1(ri)−Dt+1(ri)‖

MAPE =
1

ε

∑
i

‖D̂t+1(ri)−Dt+1(ri)

Dt+1(ri)
‖

where ε is the total number of predicted values.

5.3. Evaluation on next-step prediction

We first compare our method with two representative traditional baselines

and eight discriminative state-of-the-arts methods to evaluate the ability of

our model in capturing the spatial-temporal correlations. Considering the

21



fact that most state-of-the-art methods can only achieve next-step prediction,

we use our prediction in the first time step as our result in this part. The

comparison methods we used are:

• HA: The historical average model forecasts the future passenger de-

mand by calculating the averaged value of previous passenger demand

in the corresponding time interval of the same region. For example,

prediction of 10:00am-11:00am on Friday is made by averaging all de-

mand from 10:00am-11:00am on historical Friday.

• OLSR: The Ordinary Least Square Regression model is a type of linear

regression model, which can estimate the correlations between multiple

variables.

• XGBoost [40]: XGBoost is a boosting tree-based machine learning

method, which has been shown to achieve good accuracy for a wide

range of applications.

• DeepST [13]: DeepST is a CNN based method which organizes histori-

cal data to three components (temporal “closeness”, “period”, “trend”)

and uses CNN to capture spatial-temporal dependencies.

• ResST-Net [12]: ResST-Net is an extension to DeepST, which further

integrates residual networks to stack more CNN layers. This model

captures spatial correlations from the entire city.

• DMVST-Net [11]: DMVST-Net is composed of three views: spatial

view, temporal view, and semantic view. It can efficiently capture

both the spatial and temporal dependencies.

22



• ConvLSTM [15]: ConvLSTM is deep learning method specially de-

signed for spatial-temporal analysis. It extends LSTM by using convo-

lutional structures in both the input-to-state and state-to-state tran-

sitions. ConvLSTM achieves multi-step prediction by integrating with

encoder-decoder framework.

• FCL-Net [16]: FCL-Net combines several ConvLSTM layers and CNN

to extract spatial-temporal relationships from past passenger demand

sequence and average travel time.

• FlowFlexDP [41]: FlowFlexDP is a deep learning method that extracts

spatial correlations from historical passenger demand and crowd out-

flow, it also uses GCN.

• DCRNN [42]: Similar with ConvLSTM, DCRNN extends LSTM by

using diffusion convolutional operation for calculating the reset gate

the update gate. This model considers multi-step prediction with inte-

grating to encoder-decoder framework.

As can be observed from Table 1, our method consistently achieves the

best performance with all three datasets, which demonstrates the superiority

of our model in accurately capturing the citywide spatial-temporal corre-

lations. More specifically, performance gains of our model over the base-

line Historical Average are: 21.81% (RMSE), 20.74% (MAE) and 26.99%

(MAPE) relative improvement in DidiSY dataset, 45.13% (RMSE), 40.05%

(MAE) and 52.63% (MAPE) relative improvement in BikeNYC dataset,

56.47% (RMSE), 49.28% (MAE) and 48.13% (MAPE) relative improvement

in TaxiBJ dataset. When comparing to the best state-of-the-art methods,

23



Table 1: The experimental results of next-step prediction over three datasets (the best

performance is displayed in bold).

Index Method
DidiSY BikeNYC TaxiBJ

RMSE MAE MAPE RMSE MAE MAPE RMSE MAE MAPE

1 HA 4.112 2.646 0.426 8.541 3.695 0.437 40.439 20.696 0.268

2 OLSR 3.713 2.528 0.379 8.502 4.652 0.391 23.921 14.937 0.276

3 XGBoost [40] 3.612 2.394 0.402 6.914 3.423 0.367 22.927 13.687 0.212

4 DeepST [13] 3.362 2.221 0.337 6.603 2.549 0.242 18.305 11.264 0.157

5 ResST-Net [12] 3.449 2.331 0.318 6.159 2.432 0.228 17.649 10.599 0.141

6 DMVST-Net [11] 3.440 2.232 0.373 4.766 2.318 0.224 18.206 11.085 0.153

7 ConvLSTM [15] 3.399 2.278 0.379 4.881 2.561 0.230 19.487 12.006 0.171

8 FCL-Net [16] 3.364 2.172 0.381 4.959 2.362 0.275 18.176 10.756 0.169

9 FlowFLexDP [41] 3.292 2.143 0.336 6.003 2.801 0.271 19.538 11.945 0.160

10 DCRNN [42] 3.465 2.284 0.371 5.016 2.661 0.232 20.495 12.521 0.178

11 Ours 3.219 2.098 0.311 4.697 2.223 0.214 17.601 10.492 0.139

our model still achieves 2.21% (RMSE), 2.10% (MAE) and 2.20% (MAPE)

relative improvement in DidiSY dataset, 1.44% (RMSE), 4.09% (MAE) and

4.46% (MAPE) relative improvement in BikeNYC dataset, 0.27% (RMSE),

1.01% (MAE) and 1.42% (MAPE) relative improvement in TaxiBJ dataset.

Besides, we can also observe that the RMSE and MAE is the largest in

TaxiBj dataset for all methods. This is because the passenger demand is

extremely high in this dataset. Although these three datasets are of totally

different scale, our method can adapt well to all of them. At the same time,

some methods such as ResST-Net can not achieve good prediction with the

small dataset while FlowFlexDP performs poorly with the large dataset.

5.4. Evaluation on multi-step prediction

Next, we evaluate the ability of our model in conducting long-term fore-

casting, e.g., multi-step prediction. We predict the passenger demand of next

24



(a) (b)

(c) (d)

(e) (f)

Figure 5: Evaluation on multi-step prediction. (a) - (c) RMSE of six steps prediction on

the DidiSY, BikeNYC and TaxiBJ dataset, (d) - (e) MAE of six steps prediction on the

DidiSY, BikeNYC and TaxiBJ dataset

25



six time steps and compare it to three methods: HA, DCRNN and ConvL-

STM. RMSE and MAE are used as comparison metrics. As can be observed

from Figure 5, the prediction results of HA remains the same for all time

steps, this is reasonable as HA relies on previous days corresponding passen-

ger demands, which are readily available for all six steps. At the same time,

the prediction of other three methods deteriorate with bigger time steps, the

reason is that their predictions depend on the prediction of last step(s), which

would accumulate the prediction errors. Besides, DCRNN, ConvLSTM, and

our model achieve the biggest relative improvement on the TaxiBJ dataset

and the least relative improvement on the DidiSY dataset over HA, which

demonstrates that the ability of deep learning models in modeling spatial-

temporal correlations is more superior on more complex and larger dataset.

Moreover, the overall performance of DCRNN and ConvLSTM is better than

HA, although their long-term prediction performance (i.g., at the sixth step)

would be worse than HA (e.g., on the DidiSY dataset as shown in Figure

5.(d)). In summary, it can be observed that our model performs the best

consistently, and the trends of prediction degradation over three datasets

are small, with a certain degree of stability compared with state-of-the-art

methods.

5.5. Evaluation on prediction with irregular regions

We also evaluate the performance of our model under the situation that

a city is partitioned into irregular regions with the road-network based par-

titioning method. The DidiSY dataset is use to conduct this experiment

because it retains the geographic location (GPS) of each service request. We

re-partition the city (Shengyang) to sub-regions based on the road network

26



Table 2: Prediction results on irregular regions

Index Method RMSE MAE

1 HA 4.231 2.714

2 ARIMA 4.001 2.681

3 SARIMA 3.937 2.619

4 OLSR 3.719 2.496

5 MLP 3.699 2.436

6 XGBoost 3.533 2.341

7 FlowFLexDP 3.518 2.322

8 DCRNN 3.526 2.332

9 Ours 3.294 2.117

and re-organize our demand data to corresponding regions according to the

GPS information.

Our approach is flexible and can be applied to the new dataset with-

out modification. On the other hand, as described in Section 1 and shown

in Section 5.3, most existing state-of-the-art methods use CNN to capture

spatial correlations and thus cannot be applied in such circumstance. To

better evaluate our method, we further add three new comparison meth-

ods: Auto-Regressive Integrated Moving Average model (ARIMA), Seasonal

Auto-Regressive Integrated Moving model (SARIMA) and Multiple Layer

Perceptron (MLP). The experimental results of these methods are listed in

Table 2. We can observe that prediction results of this re-organized dataset

are slightly higher than the results in Sec 5.3. This is because the city is

partitioned into fewer regions. Besides, our model still outperforms all other

27



methods in these irrgular regions. The experimental results demonstrate

that our approach is not constrained by the region partition methods and

can achieve superior performance consistently.

6. Conclusions

Accurate prediction of future passenger demand is important for smart

transportation systems. In this work, we develop a novel deep learning ap-

proach for passenger demand forecasting with historical passenger demand

and external data. Our method can capture both spatial and temporal rela-

tionships among the citywide historical demand data and integrate the influ-

ence of external data into prediction effectively. By formulating the demand

on graph and inferring inter-connectivity from data, our model can capture

more accurate spatial relationships among regions than existing work and

is irrespective to the region partition methods. Moreover, our method can

produce predictions for multiple steps in one execution based on the encoder-

decoder framework. Experimental results on three real-world datasets show

that our approach outperforms a set of baselines and state-of-the-arts.

While our method achieves promising results by explicitly modeling the

influence of both spatial dependencies, temporal correlations and external

factors, one potential limitation is the infeasibility of capturing the spatio-

temporal dynamics in the passenger demand data. For example, the spa-

tial correlations among different regions may be different during the week-

days and weekends. The graph infered in our method is static and thus

cannot model the dynamics accurately. In the future, we will further take

spatio-temporal dynamics into consideration and capture more comprehen-

28



sive spatio-temporal correlations.

[1] A. K. Debnath, H. C. Chin, M. M. Haque, B. Yuen, A methodological

framework for benchmarking smart transport cities, Cities 37 (2014)

47–56.

[2] L. Bai, L. Yao, S. S. Kanhere, Z. Yang, J. Chu, X. Wang, Passenger

demand forecasting with multi-task convolutional recurrent neural net-

works, in: Pacific-Asia Conference on Knowledge Discovery and Data

Mining, Springer, 2019, pp. 29–42.

[3] L. Bai, L. Yao, S. Kanhere, X. Wang, Q. Sheng, et al., Stg2seq: Spatial-

temporal graph to sequence model for multi-step passenger demand fore-

casting, arXiv preprint arXiv:1905.10069 (2019).

[4] R. Jia, P. Jiang, L. Liu, L. Cui, Y. Shi, Data driven congestion trends

prediction of urban transportation, IEEE Internet of Things Journal

5 (2) (2018) 581–591.

[5] P. M. Santos, J. G. Rodrigues, S. B. Cruz, T. Lourenço, P. M. d’Orey,

Y. Luis, C. Rocha, S. Sousa, S. Crisóstomo, C. Queirós, et al., Portoliv-

inglab: An iot-based sensing platform for smart cities, IEEE Internet of

Things Journal 5 (2) (2018) 523–532.

[6] X. Li, G. Pan, Z. Wu, G. Qi, S. Li, D. Zhang, W. Zhang, Z. Wang,

Prediction of urban human mobility using large-scale taxi traces and its

applications, Frontiers of Computer Science 6 (1) (2012) 111–121.

29



[7] L. Moreira-Matias, J. Gama, M. Ferreira, J. Mendes-Moreira, L. Damas,

Predicting taxi–passenger demand using streaming data, IEEE Trans-

actions on Intelligent Transportation Systems 14 (3) (2013) 1393–1402.

[8] S. Hochreiter, J. Schmidhuber, Long short-term memory, Neural com-

putation 9 (8) (1997) 1735–1780.

[9] K. Cho, B. Van Merriënboer, C. Gulcehre, D. Bahdanau, F. Bougares,

H. Schwenk, Y. Bengio, Learning phrase representations using rnn

encoder-decoder for statistical machine translation, arXiv preprint

arXiv:1406.1078 (2014).

[10] Y. LeCun, Y. Bengio, G. Hinton, Deep learning, nature 521 (7553)

(2015) 436–444.

[11] H. Yao, F. Wu, J. Ke, X. Tang, Y. Jia, S. Lu, P. Gong, J. Ye, Z. Li,

Deep multi-view spatial-temporal network for taxi demand prediction,

in: 32nd AAAI Conference on Artificial Intelligence, AAAI 2018, AAAI

press, 2018, pp. 2588–2595.

[12] J. Zhang, Y. Zheng, D. Qi, Deep spatio-temporal residual networks for

citywide crowd flows prediction, in: Proceedings of the Thirty-First

AAAI Conference on Artificial Intelligence, AAAI press, 2017, pp. 1655–

1661.

[13] J. Zhang, Y. Zheng, D. Qi, R. Li, X. Yi, Dnn-based prediction model

for spatio-temporal data, in: Proceedings of the 24th ACM SIGSPA-

TIAL International Conference on Advances in Geographic Information

Systems, 2016, pp. 1–4.

30



[14] S. Wang, J. Cao, H. Chen, H. Peng, Z. Huang, Seqst-gan: Seq2seq

generative adversarial nets for multi-step urban crowd flow prediction,

ACM Transactions on Spatial Algorithms and Systems (TSAS) 6 (4)

(2020) 1–24.

[15] S. Xingjian, Z. Chen, H. Wang, D.-Y. Yeung, W.-K. Wong, W.-c. Woo,

Convolutional lstm network: A machine learning approach for precipita-

tion nowcasting, in: Advances in neural information processing systems,

2015, pp. 802–810.

[16] J. Ke, H. Zheng, H. Yang, X. M. Chen, Short-term forecasting of pas-

senger demand under on-demand ride services: A spatio-temporal deep

learning approach, Transportation Research Part C: Emerging Tech-

nologies 85 (2017) 591–608.

[17] H. Yao, X. Tang, H. Wei, G. Zheng, Z. Li, Revisiting spatial-temporal

similarity: A deep learning framework for traffic prediction, in: Proceed-

ings of the AAAI Conference on Artificial Intelligence, Vol. 33, 2019, pp.

5668–5675.

[18] X. Geng, Y. Li, L. Wang, L. Zhang, Q. Yang, J. Ye, Y. Liu, Spatiotem-

poral multi-graph convolution network for ride-hailing demand forecast-

ing, in: Proceedings of the AAAI Conference on Artificial Intelligence,

Vol. 33, 2019, pp. 3656–3663.

[19] G. Wan, B. Du, S. Pan, J. Wu, Adaptive knowledge subgraph ensemble

for robust and trustworthy knowledge graph completion, World Wide

Web 23 (1) (2020) 471–490.

31



[20] H. Wang, Q. Zhang, J. Wu, S. Pan, Y. Chen, Time series feature learning

with labeled and unlabeled data, Pattern Recognition 89 (2019) 55–66.

[21] Y. Liang, S. Ke, J. Zhang, X. Yi, Y. Zheng, Geoman: multi-level atten-

tion networks for geo-sensory time series prediction, in: Proceedings of

the 27th International Joint Conference on Artificial Intelligence, 2018,

pp. 3428–3434.

[22] Y. Li, J. Lu, L. Zhang, Y. Zhao, Taxi booking mobile app order de-

mand prediction based on short-term traffic forecasting, Transportation

Research Record 2634 (1) (2017) 57–68.

[23] L. Liu, R.-C. Chen, A novel passenger flow prediction model using deep

learning methods, Transportation Research Part C: Emerging Technolo-

gies 84 (2017) 74–91.

[24] D. Wang, W. Cao, J. Li, J. Ye, Deepsd: Supply-demand prediction for

online car-hailing services using deep neural networks, in: 2017 IEEE

33rd international conference on data engineering (ICDE), IEEE, 2017,

pp. 243–254.

[25] R. Yu, Y. Li, C. Shahabi, U. Demiryurek, Y. Liu, Deep learning: A

generic approach for extreme condition traffic forecasting, in: Proceed-

ings of the 2017 SIAM international Conference on Data Mining, SIAM,

2017, pp. 777–785.

[26] G. Lai, W.-C. Chang, Y. Yang, H. Liu, Modeling long-and short-term

temporal patterns with deep neural networks, in: The 41st International

32



ACM SIGIR Conference on Research & Development in Information

Retrieval, 2018, pp. 95–104.

[27] X. Zhou, Y. Shen, Y. Zhu, L. Huang, Predicting multi-step citywide

passenger demands using attention-based neural networks, in: Proceed-

ings of the Eleventh ACM International Conference on Web Search and

Data Mining, 2018, pp. 736–744.

[28] S. Ji, S. Pan, E. Cambria, P. Marttinen, P. S. Yu, A survey on knowledge

graphs: Representation, acquisition and applications, arXiv preprint

arXiv:2002.00388 (2020).

[29] T. Guo, S. Pan, X. Zhu, C. Zhang, Cfond: consensus factorization for co-

clustering networked data, IEEE Transactions on Knowledge and Data

Engineering 31 (4) (2018) 706–719.

[30] Z. Pan, Y. Liang, W. Wang, Y. Yu, Y. Zheng, J. Zhang, Urban traf-

fic prediction from spatio-temporal data using deep meta learning, in:

Proceedings of the 25th ACM SIGKDD International Conference on

Knowledge Discovery & Data Mining, 2019, pp. 1720–1730.

[31] Z. Wu, S. Pan, G. Long, J. Jiang, X. Chang, C. Zhang, Connecting the

dots: Multivariate time series forecasting with graph neural networks,

arXiv preprint arXiv:2005.11650 (2020).

[32] F. Xiong, W. Shen, H. Chen, S. Pan, X. Wang, Z. Yan, Exploiting im-

plicit influence from information propagation for social recommendation,

IEEE Transactions on Cybernetics (2019).

33



[33] F. Xiong, X. Wang, S. Pan, H. Yang, H. Wang, C. Zhang, Social rec-

ommendation with evolutionary opinion dynamics, IEEE Transactions

on Systems, Man, and Cybernetics: Systems (2018).

[34] J. Bruna, W. Zaremba, A. Szlam, Y. LeCun, Spectral networks and

locally connected networks on graphs, arXiv preprint arXiv:1312.6203

(2013).

[35] T. N. Kipf, M. Welling, Semi-supervised classification with graph con-

volutional networks, arXiv preprint arXiv:1609.02907 (2016).

[36] B. Yu, H. Yin, Z. Zhu, Spatio-temporal graph convolutional net-

works: A deep learning framework for traffic forecasting, arXiv preprint

arXiv:1709.04875 (2017).

[37] Z. Wu, S. Pan, G. Long, J. Jiang, C. Zhang, Graph wavenet for deep

spatial-temporal graph modeling, in: Proceedings of the 28th Interna-

tional Joint Conference on Artificial Intelligence, AAAI Press, 2019, pp.

1907–1913.

[38] I. Sutskever, O. Vinyals, Q. V. Le, Sequence to sequence learning with

neural networks, in: Advances in neural information processing systems,

2014, pp. 3104–3112.

[39] D. P. Kingma, J. Ba, Adam: A method for stochastic optimization,

arXiv preprint arXiv:1412.6980 (2014).

[40] T. Chen, C. Guestrin, Xgboost: A scalable tree boosting system, in:

Proceedings of the 22nd acm sigkdd international conference on knowl-

edge discovery and data mining, 2016, pp. 785–794.

34



[41] J. Chu, K. Qian, X. Wang, L. Yao, F. Xiao, J. Li, X. Miao, Z. Yang,

Passenger demand prediction with cellular footprints, in: 2018 15th An-

nual IEEE International Conference on Sensing, Communication, and

Networking (SECON), IEEE, 2018, pp. 1–9.

[42] Y. Li, R. Yu, C. Shahabi, Y. Liu, Diffusion convolutional recur-

rent neural network: Data-driven traffic forecasting, arXiv preprint

arXiv:1707.01926 (2017).

35


