
AUTHOR'S PROOF JrnlID 11280 ArtID 878 Proof#1 - 20/03/2021

UNCORRECTED
PROOF

World Wide Web
https://doi.org/10.1007/s11280-021-00878-3

1

Binarized graph neural network 2

Hanchen Wang1 · Defu Lian2 · Ying Zhang1 · Lu Qin1 · Xiangjian He3 · 3

Yiguang Lin3 · Xuemin Lin4 4

Received: 2 May 2020 / Revised: 15 March 2021 / Accepted: 16 March 2021
© Springer Science+Business Media, LLC, part of Springer Nature 2021

Abstract 4

Recently, there have been some breakthroughs in graph analysis by applying the graph neu- 5

ral networks (GNNs) following a neighborhood aggregation scheme, which demonstrate 6

outstanding performance in many tasks. However, we observe that the parameters of the 7

network and the embedding of nodes are represented in real-valued matrices in existing 8

GNN-based graph embedding approaches which may limit the efficiency and scalability

Q1

9

of these models. It is well-known that binary vector is usually much more space and time 10

efficient than the real-valued vector. This motivates us to develop a binarized graph neural 11

network to learn the binary representations of the nodes with binary network parameters fol- 12

lowing the GNN-based paradigm. Our proposed method can be seamlessly integrated into 13

the existing GNN-based embedding approaches to binarize the model parameters and learn 14

the compact embedding. Extensive experiments indicate that the proposed binarized graph

Q2

15

neural network, namely BGN, is orders of magnitude more efficient in terms of both time 16

and space while matching the state-of-the-art performance. 17

Keywords Graph neural network · Binarized neural network · Classification 18

1 Introduction 19

Graph analysis provides powerful insights into how to unlock the value graphs hold. Due 20

to this power, techniques for analyzing graphs are becoming an increasingly popular topic 21

of study in both academics and industry. To effectively and efficiently support important 22

analytic tasks on graph data, such as node/graph classification, node clustering, community 23

detection, node recommendation, link prediction and graph visualization, a variety of graph 24

embedding techniques (See [5, 11] for a comprehensive survey) have been developed. Graph 25

data is mapped into low-dimension data such that the proximity relationship among graph 26

nodes (i.e., objects) is preserved and the off-the-shelf machine learning methods, which are 27

designed to handle vector representations, can be immediately applied. 28

� Hanchen Wang
hanchenw.au@gmail.com

Extended author information available on the last page of the article.

http://crossmark.crossref.org/dialog/?doi=10.1007/s11280-021-00878-3&domain=pdf
http://orcid.org/0000-0003-3158-9586
mailto: hanchenw.au@gmail.com

AUTHOR'S PROOF JrnlID 11280 ArtID 878 Proof#1 - 20/03/2021

UNCORRECTED
PROOF

World Wide Web

The existing graph embedding techniques can be roughly classified into three broad cat-29

egories: (1) random walk based embedding (e.g., Deepwalk [26] and Node2vec [9]) ; (2)30

node similarity based embedding (e.g., LINE [38] and NetMF [30]); and (3) graph neural31

networks (GNN) based embedding (e.g., GCN [15], GraphSage [10], GAT [40] and AS-32

GCN [12]). As reported by Leskovec et al. in their tutorial on graph embedding at WWW33

20181, the first two categories of embedding techniques are only able to learn a “shallow”34

representation of the graph nodes due to the simplicity of the models. It is shown in [10,35

15] that the neural network based embedding methods significantly outperform the state-36

of-the-art techniques in the first two categories for the node classification task. Therefore,37

exploring how to use neural network to create a “deep” representation more efficiently is a38

promising direction in graph representation learning. However, most of the existing graph39

neural network models suffer from the scalability issue due to the high time and space cost40

of the real-valued model.41

Recently, there have been some researches on learning binary graph embedding (e.g., [20,42

37, 46]), in which each node is represented by a binary vector (code), instead of a real-valued43

vector. It has been shown that the binarized graph embedding can achieve much better time44

and space efficiency.45

Time efficiency. It is well-known that the distance computation of binary vectors (i.e.,46

Hamming distance) is much more efficient than that of real-valued vectors (e.g., Euclid-47

ian distance). In addition to the specifically tailored search algorithms (e.g., [29]), the48

dot product between binary vectors can also enjoy the hardware support (e.g., xnor and49

build-in CPU instruction popcount).50

As stressed in a recent work [18] from DeepMind, the pairwise dot product of the51

vectors has been intensively used by the model for some specific tasks (e.g., graph simi-52

larity computation in [1]). Thus, the binary vector has been used in their graph matching53

network (GMN) to speedup the computation.54

Space Efficiency. The binary embedding can represent the node in a compact way while55

well preserving the structure information. As shown in [20], INH-MF can achieve com-56

petitive graph node classification performance with 128 bits for each node compared57

to the conventional embedding approaches (e.g., DeepWalk) with 128 dimensions (i.e.,58

128 × 64 bits) per node. This will be a great advantage when we face a large-scale graph59

because the binarized embedding of a graph is more likely to be accommodated in the60

main memory.61

Motivation and Challenges. The existing GNN-based methods have demonstrated out-62

standing performance in various tasks such as classification [10, 12, 15, 40], link63

prediction [14, 48], graph similarity match [1, 18] and graph clustering [41, 49]. How-64

ever, they may suffer from the limitation of the memory and speed due to the use of65

real-valued vectors for node and graph representations and model parameters.66

Given the outstanding embedding quality, various applications of the GNN-based67

approaches and the space and time efficiency of the binarized representation, one may68

wonder if we can design a binarized GNN-based graph embedding approach such that69

we can achieve a good trade-off between embedding quality and time/space efficiency in70

the GNN-based methods.71

We notice that the existing binarized graph embedding methods [20, 37] rely on the72

discretization of the matrix factorization following the node-similarity based approaches.73

1http://snap.stanford.edu/proj/embeddings-www

http://snap.stanford.edu/proj/embeddings-www

AUTHOR'S PROOF JrnlID 11280 ArtID 878 Proof#1 - 20/03/2021

UNCORRECTED
PROOF

World Wide Web

They cannot be extended to binarize the GNN-based embedding due to the inherently 74

different natures of two categories of approaches. 75

As to our best knowledge, the only attempt for the binarization of GNN is from 76

DeepMind in their recent work [18]. Their binarization method converts each learned d- 77

dimensional real-valued vector into a d-dimensional ”nearly” binary vector by applying 78

well-known binarization function tanh to approximate hamming distance for the bina- 79

rization and optimization. However, the output of tanh is not exact binary value and 80

cannot be accelerated by the binary logic operations (e.g., xnor and popcount). As an 81

alternative, one may consider the Binarized Neural Network (BNN) (e.g., [13]) for the 82

graph embedding so that the representation is naturally binarized. However, BNN is 83

not designed for graph data, and as to our best knowledge, there is no existing graph 84

embedding work based on BNN. 85

These issues motivate us to develop a new binarized graph embedding technique which 86

can be integrated into existing GNN-based models to binarize the parameters and produce 87

high-quality binarized graph embeddings. The key challenge is how to generate effec- 88

tive compact embedding vectors with binary network parameters in an effective way. To 89

address the challenge, we design a binarized graph neural network framework to learn 90

the binary parameters and representations efficiently and effectively . 91

Contributions. Our principle contributions are summarized as follows: 92

– To the best of our knowledge, this is the first study on binarized graph neural network 93

(GNN) with binary parameters to generate binary graph representations. The proposed 94

method, namely BGN, can be seamlessly integrated into the existing GNNs. 95

– An end-to-end binarized graph neural network framework is proposed with binary 96

weights and activations. This binarized framework can immediately reduce the mem- 97

ory consumption for the network; the bit-wise operations between the binary vectors 98

can substantially speedup the inference time of the model and the gradient estimator 99

enables our model to effectively process back-propagation through discrete parameters 100

and activations. 101

– Extensive experiments on multiple benchmark networks are conducted for node clas- 102

sification task. The results demonstrate that our proposed method outperforms existing 103

binarized embedding methods with a big margin. Compare to the real-valued GNNs, 104

our BGN model can achieve nearly state-of-the-art performance while consuming much 105

fewer computation resources (up to 1/28 parameter and embedding memory space and 106

1/20 inference time). 107

– Binarization approaches are employed on the GNN-based application GMN to show 108

that, by applying our BGN techniques, GMN model can dramatically reduce the time 109

and space complexity while keeping the performance competitiveness. 110

– Experiments further show that our proposed BGN technique allows users to achieve a 111

trade-off between the space/time and embedding quality in a flexible way by tuning 112

different level and setting of binarization on the parameters and activations. 113

2 Related works 114

Graph Embedding. A key problem in machine learning on graphs is finding a way to 115

incorporate information about the structure of the graph into the desired machine learn- 116

AUTHOR'S PROOF JrnlID 11280 ArtID 878 Proof#1 - 20/03/2021

UNCORRECTED
PROOF

World Wide Web

ing model. Graph embedding is one of the most promising approaches because it maps117

nodes into a low-dimensional space such that the structure of the graph is well preserved.118

Once accomplished, an existing machine learning approach (e.g., k-means clustering)119

can be used to assimilate and analyse the graph in the embedded low-dimensional space.120

Loosely following the seminal graph embedding approach, DeepWalk, three broad cate-121

gories of embedding methods have appeared in the literature: (1) node similarity based122

embedding methods (e.g., LINE, NetMF), which rely on the proximity of the nodes w.r.t123

various similarity metrics. The matrix factorization techniques have been used to learn124

the embedding of the nodes. (2) Random walk based embedding methods (e.g., Deep-125

walk and node2vec) which encode the nodes by applying the Skip-Gram technique [25]126

on the random walks; and (3) graph neural networks (GNN) based embedding methods127

(e.g., GCN, GraphSage and GIN) [10, 12, 15, 40, 42, 45] which apply the neural network128

techniques on graph to learn the representations of the nodes.129

Most of the existing graph embedding studies use the real-valued vector to encode130

the graph nodes following the above three computing paradigms. Recently, three unsu-131

pervised approaches [20, 37, 46] have been proposed to learn the binary embedding of132

the graphs following the node-similarity based embedding methods. Particularly, INH-133

MF [20] and DNE [37] are independently developed for binarized graph embedding134

based on the discretization of the matrix factorization on proximity graphs. BANE pro-135

posed in [46] is a natural extension of DNE by considering both structure and attribute136

similarities on the attributed graphs.137

Binary Hashing. The binary hashing has been widely used to learn the binary vectors138

(codes) of the objects in many applications. The most popular application is the approx-139

imate nearest neighbor search in high dimension space where binary hashing methods140

encode high-dimensional objects (e.g., documents and images) to binary codes, while141

preserving similarity distance in the original space. Many learning to hash approaches142

have been proposed including unsupervised methods (e.g., [22, 33]), supervised meth-143

ods (e.g., [35]), and deep learning based methods (e.g., [21]). Please refer to [43] for a144

comprehensive survey. Recently, three approaches [20, 37, 46] have been proposed to145

learn the binary embedding of the graphs following the node-similarity based embed-146

ding methods. As to our best knowledge, there is no existing work on the binarized graph147

embedding based on GNNs.148

Binarized Neural Networks Binarized neural networks (see [27] for comprehensive sur-149

vey) was first proposed by BNN [4]. The binarization technique proposed in [4] is150

used by most network binarization models. Among them, XNOR-Net [31] and DoReFa-151

Net [50] are the most popular ones because of their great performance on the image152

classification task.153

XNOR-Net was proposed to have high accuracy of classification task on the ImageNet154

dataset while XNOR-Net has 58× faster convolutional operations and 32× memory155

saving. DoReFa-Net replaces the binarization by quantization which allows the model156

to change the bit size for weights, activations and even gradient calculations during157

backpropagation.158

Recently, more binarized neural networks [3, 17, 23, 24, 28, 36, 47] and low bitwidth159

neural networks [8, 51] are proposed to further reduce the time cost of performing the160

machine learning model and apply these networks on the devices with low computation161

resources.162

AUTHOR'S PROOF JrnlID 11280 ArtID 878 Proof#1 - 20/03/2021

UNCORRECTED
PROOF

World Wide Web

However, these methods are all designed for computer vision tasks. Though they per- 163

form well on the image dataset, they cannot be adapted to the graph representation 164

learning and graph analysis task directly. 165

Graph Neural Network Applications There are several applications that are based on 166

the GNN. Such as Graph Matching Network [18] and SimGNN [1]. These models utilize 167

GNN and use the similarity (distance) of graph embedding to approximate the graph edit 168

distance and graph similarity. 169

The Graph Matching Network (i.e., GMN) is a novel GNN-based framework proposed 170

by DeepMind to compute the similarity score between input pairs of graphs. Separate MLPs 171

will first map the input nodes in the graphs into vector space. Then the propagation layer 172

will aggregate the messages of the edges and cross-graph matching vector by MLP or GRU 173

with input concatenation of node representations and edge vectors. Matching function is 174

applied to compute the attention coefficients based on the node information between the 175

input pair of graphs. The matching function is based on the softmax function over node 176

vectors which requires the calculation of vector space similarity like Euclidean, cosine sim- 177

ilarity or dot product between all pairs of node representations. This attention coefficients 178

calculation across two graphs requires a computation cost of O(| V1 || V2 | d), where 179

V1 and V2 indicate the number of vertices of input graph 1 and 2 respectively, and d is 180

the dimension of the node representation. The match vector μj→i is concatenated with the 181

message vector mj→i and the node representation h(t)
i , then the concatenation is fed into 182

MLP or a recurrent neural network core to produce the new node representations. Given 183

the learned node representations of graph, the aggregation module proposed in [19] is used 184

to obtain the graph representations. The similarity score in vector space such as Euclidean 185

similarity, cosine similarity and approximate hamming similarity will be computed between 186

graph representations to approximate the similarity between the input graphs. 187

3 Background and preliminaries 188

Recent studies have revealed that graph neural network can perform excellently on label 189

classification tasks. The existing GNN-based graph embedding approaches share the same 190

computing paradigm. GNNs take graph nodes’ feature and neighborhood information as 191

the input. During the training, the representations of nodes (real-valued vectors) at each 192

layer will be updated by the aggregators and non-linear activation functions. The output 193

representations will be fed into the task-specific layer to calculate the loss of the model. 194

Based on that, the model will be optimized by the optimizer through backpropagation. The 195

main differences among these GNN-based graph embedding approaches are the design of 196

the aggregator which combines the context representations and the loss function designed 197

for different graph analytic tasks. 198

These models have real-valued parameters and learn a real-valued representation for 199

each node in an end-to-end manner for graph node classification. However, the real-valued 200

parameters and representations are space-consuming for storage and time-consuming for 201

multiplication computation, especially for large-scale graphs. To address these issues, in this 202

paper we devise a novel binarized graph neural network, namely BGN, with binary parame- 203

ters in the neural network to learn binary embedding representations for node classification 204

task. 205

The important notations used throughout the paper are summarized in Table 1. 206

AUTHOR'S PROOF JrnlID 11280 ArtID 878 Proof#1 - 20/03/2021

UNCORRECTED
PROOF

World Wide Web

Table 1 Summary of notations

Notation Definition

G The graph dataset

V, E The set for nodes and edges in the graph.

xv The feature information for node v.

ηv The neighborhood nodes of node v.

(·)b Denotes that the vector or matrix is binary-valued.

hv The hidden representation of node v.

W The weight matrix in the neural network.

B(·) The binarization function which is used to transform the real-
valued vector or matrix into binary-valued vector or matrix.

αij The attention coefficient between node i and node j .

4 Binarized graph neural network207

As illustrated in Figure 1, we introduce a new graph neural network with binarized weights208

and activations. Our model BGN (Binarized Graph Neural Network) is based on the atten-209

tion mechanism and can be easily adapted into other graph neural network frameworks. For210

a given graph, BGN takes the nodes and their contexts including feature and neighborhood211

structure information as input. Binarization function will transform the weights, activations212

and even coefficients into binarized vectors to reduce the time and space complexity, while213

the attention mechanism enables the nodes to attend over their neighborhoods’ features. We214

also apply the balance function to ensure that +1 and −1 are almost equal with each other215

in the binarized vectors. Furthermore, the gradient estimator is used for backpropagation of216

gradients through discretization.217

The following subsections present the listed key components of our model:218

– Section 4.1 introduces the framework of our work.219

Graph Structured Data

input L layers

Binary
Weight

ℎ′ ℎ

…
…k a�en�on heads

ℎ

Binary
output

ℎ
−1

Node
Classifier

…

Classifica�on
Result

x
S
+

: XNOR and popcount opera�on between binary-valued tensors.

: Masked summa�on between binary-valued and real-valued tensors.

: Concatena�on of the vectors.

Binary
Weight

ℎ′ ℎℎ
−1

Binary
Weight

Binary
coefficients

ℎ′ ℎ

…
…k a�en�on heads

ℎ

Binary
outputBinary

Weight

ℎ′ ℎ

S

S

S

S

+ +

x

x

Binary
coefficients

Binary
coefficients

Binary
coefficients

S

S

Figure 1 The overall framework of the proposed model BGN. a All input node features are projected into a
unified representation space by binary-valued weights. b Masked summation between binary matrix and real-
valued matrix is employed to speed up the dot product. c Binary attention coefficients are produced based
on the hidden representations. d Output of the layer is calculated via multi-head attention mechanism. e xnor
and popcount are employed to calculate the dot product between binary-valued matrix. f Loss calculation and
end-to-end optimization for the node classification task

AUTHOR'S PROOF JrnlID 11280 ArtID 878 Proof#1 - 20/03/2021

UNCORRECTED
PROOF

World Wide Web

– Section 4.2 introduces the binarization of our model in detail, including the forward 220

propagation and backpropagation. 221

– Section 4.3 describes the optimization objective of our model. 222

– Section 4.4 introduces the techniques we used to reduce the time and space complexity 223

and improve the performance. 224

– Section 4.5 introduces the adaptation of our model to other GNN frameworks. 225

4.1 Framework 226

Algorithm 1 illustrates the framework of our model. We follow the attention mechanism 227

introduced in [39, 40] to involve the importance of the node’s neighborhoods into the graph 228

representation learning process. Given a graph G(V, E), where V and E denote the set of 229

graph nodes and edges respectively, we use nodes features {xv,∀v ∈ V}, xv ∈ R
m and the 230

neighborhood information of nodes {ηv,∀v ∈ V} as inputs. Balance(·) denotes the balance 231

function which is introduced in Section 4.4.3. Our model will first produce the binarized 232

node representations hb
v ∈ {+1,−1}d for each node within the input graph. After that, the 233

binarized node embeddings will be fed into the output layer to compute the loss for some 234

specific tasks like node classification. 235

236

237

Attention Mechanism Our proposed framework is based on the graph attention mecha- 238

nism. The attention layer is utilized in our model to learn the importance of every node 239

to other nodes. The key is to get the importance of one node’s feature to other nodes that 240

is the attention coefficients of the input graph, afterwards, the node’s feature can attend 241

on other nodes. Inspired by [40], we perform masked attention to the model to keep the 242

structural information of the input graph. Only the attention coefficients of one node with 243

its neighborhood nodes i.e., αij , vj ∈ ηi will be computed. 244

In order to obtain the attention coefficients, we use a shared binarized weight matrix 245

W ∈ {+1,−1}m×d ′
to apply the linear transformation to each node. Softmax function is 246

AUTHOR'S PROOF JrnlID 11280 ArtID 878 Proof#1 - 20/03/2021

UNCORRECTED
PROOF

World Wide Web

used to normalize the coefficients, but unlike the model proposed in [40], LeakyRelu acti-247

vation is not employed in our model while the sign function is used to binarize the attention248

coefficients. With the following (1), we will get a binarized attention coefficient matrix249

A ∈ {+1, 0,−1}N×N where αij is the element of the matrix A (0 is contained in the matrix250

since we only compute the attention coefficients between neighbors such that the matrix is251

sparse).252

αij = B′(Sof tmaxj (Wxi , Wxj)) (1)

where B′ is the binarization function for attention coefficients which maps 0 to 0, positive253

values to +1 and negative values to −1.254

Once the attention coefficient matrix is obtained, it will be used to compute the output of255

the attention layer. The attention coefficients will multiply the linear transformed node fea-256

ture. We employ the multi-head attention mechanism to stabilize the learning process. The257

binarization function, which is served as an activation function, is applied to every atten-258

tion head to binarize the pre-activations. And concatenation of the output of K independent259

attention head is the output of the attention layer. Therefore, the output node representation260

will be like following:261

hi = ‖K
k=1B(

∑

j∈ηi

αk
ij Wkxj) (2)

Where ‖ means the concatenation of the vectors and hi is the output binarized node262

representation where hi ∈ {+1,−1}d .263

After several attention layers, the node representation will be fed into the last layer to264

calculate the loss for specific task which is classification in this paper. We will introduce265

the learning objective in the Section 4.3.266

4.2 Binarization267

In this section, we introduce how to obtain a graph neural network with binary parameters268

that can learn binary representations. Section 4.2.1 introduces the binarization function used269

to transform the real-valued parameters and pre-activations into binary space. Section 4.2.2270

introduces the gradient estimators that enable the binarized model to be optimized by the271

off-the-shelf optimizers such as Adam and SGD.272

4.2.1 Forward propagation273

Binarization function is important in our model. Specific binarization function will be274

chosen in the forward propagation calculation process to binarize the weights and the275

activations. In that way the low-bit parameters and activations will help to reduce the276

time and space complexity. In our case, various binarization functions will work, and277

the most straightforward example is the sign function. As mentioned in [4] and [31],278

deterministic and stochastic binarization based sign function are widely applied to the con-279

tinuous pre-activations as well as the real-valued weights to obtain binarized activations and280

weights.281

Bdet (x) =
{ +1 x ≥ 0,

−1 else,
(3)

The above equation is the deterministic binarization function, where x is the real-valued282

variable. The stochastic binarization is the sign function with probability:283

Bstoch(x) =
{ +1 with probability p = σ(x),

−1 with probability 1 − p,
(4)

AUTHOR'S PROOF JrnlID 11280 ArtID 878 Proof#1 - 20/03/2021

UNCORRECTED
PROOF

World Wide Web

where σ denotes the sigmoid function, that is σ(x) = 1/(1 + exp(−x)). The stochastic 284

binarization is more appealing but needs the computer to generates random bits while the 285

deterministic binarization is easier to calculate. Deterministic binarization function(i.e., (3)) 286

is applied for the binarization of weights and activations because the deterministic sign 287

function provides more stable and reproducible results. Please note that we use a variant of 288

deterministic sign function which maps 0 to 0 to binarize the attention coefficients. 289

Other than directly binarize the weights in the graph neural network, we follow the quan- 290

tization process in [31] to add a scaling factor γ ∈ R+ to estimate a real-valued weights 291

such that W ≈ γB, thus achieve better performance. We can find the optimal quantizer by 292

minimizing the quantization error: 293

minJ (γB) = ‖W − γB‖2 (5)

According to results and analysis in [31], for each real-valued weight W , the optimized 294

binary matrix B∗ and scaling factor γ ∗ can be obtained by the following constrained 295

optimization: 296

B∗ = arg min
B

W T B (6)
297

γ ∗ = W T B∗

n
= 1

n
‖W‖L1 (7)

where B is constrained to be a binarized matrix, n is the number of elements within the 298

weight W , if W ∈ Rm×d , then n = m × d . 299

Furthermore, we also adopt the Libra Parameter Binarization (LPB) introduced in IR- 300

net [28] to retain the information and minimize the information loss in forward propagation 301

by jointly considering both quantization error and information loss. LPB also quantify the 302

real-valued weight W using a scaling factor such that W ≈ γB. Suppose each element in 303

B can be viewed as a sample of random variable obeying Bernoulli distribution shown in 304

(4). The entropy of the quantization in the following (8) is also considered as a part of loss 305

function: 306

H(γB) = H(B) = −p ln(p) − (1 − p) ln(1 − p) (8)

Together with the quantization loss described in (5), the objective function of LPB is defined 307

as: 308

minJ (γB) − λH(γB) (9)

We further apply the standardization and balance described in [28]. As a result, the optimal 309

quantization can be obtained by solving: 310

γ ∗B∗
W = Bdet (Ŵ std)
� s∗ (10)

where
� is left or right bit-shift, s∗ and Ŵ std can be calculated by: 311

s∗ = round(log2(

∥∥Ŵ std

∥∥
L1

n
)) (11)

312

Ŵ std = Ŵ

σ(Ŵ)
, Ŵ = W − W̄ (12)

where σ(·) denotes the standard deviation and W̄ is a matrix whose elements are all mean 313

value of weight W . LPB directly binarize the representations using the deterministic bina- 314

rization function, i.e., Bx = Bdet (x). Hence, the operation between the real-valued weights 315

and vectors is reformulated as follows: 316

Wx = (BW � Bx)
� s (13)

where � denotes the XNOR and popcount operation between binary codes. 317

AUTHOR'S PROOF JrnlID 11280 ArtID 878 Proof#1 - 20/03/2021

UNCORRECTED
PROOF

World Wide Web

4.2.2 Backpropagation318

In this part, we describe how to backpropagate the gradients through the binarization319

function. We adapt the gradient estimator into our model for better optimization.320

Propagation gradients through binarization function It is obvious that the binarization321

function has zero derivative almost everywhere, which leads to the zero gradients of the loss

Q3

322

function w.r.t the pre-activations and weights. The trainable variables cannot be updated323

with zero gradient. Therefore, the model cannot be trained by simple backpropagation,324

and the estimation of the gradients should be obtained for optimization. Previous studies325

have investigated how to propagate gradients through stochastic discrete functions. Below326

we investigate two popular unbiased gradient estimators for binarization function: straight327

through estimator and REINFORCE estimator [44].328

Straight through estimator The straight-through estimator is proposed a simple unbiased329

gradient estimator. It estimates the derivative of binarization function B(h) of pre-activation330

or weight h as 1 (a vector or matrix whose elements are all 1). Let hb denote the binarized331

representation and h denote the pre-activation before binarization. The straight-through332

estimation of the gradient of the loss L w.r.t the pre-activation h is thus:333

gh = ∂L

∂h
= ∂L

∂B(h)
· ∂B(h)

∂h
= ∂L

∂hb
1 = ghb 1 (14)

This gradient will then be back-propagated to obtain the gradient of quantities (i.e., pre-334

activations or weights) that influence h.335

REINFORCE estimator The reinforce estimator is proposed in [2] to estimate the expecta-336

tion of the gradient ∂L
∂h of loss L with regard to the pre-activation vector or weight h. When337

binarization function B(·) is stochastic with the probability given by sigmoid, it has been338

proven that:339

E(
∂L

∂h
) = E[(B(h) − σ(h))(L − c)] (15)

where σ is the sigmoid function and c is a constant vector. To minimize the variance of the340

estimation, c can be chosen as:341

c = E[(B(h) − σ(h))2L]
E[(B(h) − σ(h))2] (16)

The reinforce estimator can work directly on the weights and pre-activations without actual342

computation of the gradient. The estimation is obtained by monitoring numerator and343

denominator during the training process.344

Compared with straight through estimator, reinforce estimator is more advanced with345

better performance in many applications. However, we observe that its performance is not346

superior than the straight through estimator. On the other hand, straight through estimator347

helps the model to obtain the gradient faster than the reinforce estimator due to its simplicity.348

The comparison between these two gradient estimators with regards to the performance is349

included in Section 5. In practice, we choose straight through estimator for our model in the350

experiments.351

AUTHOR'S PROOF JrnlID 11280 ArtID 878 Proof#1 - 20/03/2021

UNCORRECTED
PROOF

World Wide Web

4.3 Optimization objectives 352

Existing GNN-based graph embedding approaches provide an end-to-end model, which 353

focuses on the node classification task. Therefore, our model is also learned for the node 354

classification task. Below, we introduce the objective of BGN and the learning process that 355

optimizes the parameters. 356

For the node classification learning, we feed the binarized embedding hb
v into the output 357

layer to predict the class label for the node. The predicting probability of label Ci is written 358

as: 359

p(Cvk | hb
v) = Sof tmaxk

ζ (
∑

u∈ηv

αL
uvWLhb

u) (17)

where ζ denotes the number of labels for each node. After obtaining the classification result 360

in (17), we calculate the cross-entropy as the loss for the node classification task. 361

Lclass = −
∑

v∈Vlabeled

ζ∑

k=1

CL
vk log(Cvk) (18)

where Vlabeled is the set of nodes that have label information which are used for training 362

process, CL
vk is the multi-hot encoding for ground truth classification labels. 363

The gradients will be back propagated via estimator and be applied on the optimization 364

of parameters by the off-the-shelf optimizer during the training process. 365

4.4 Techniques to improve the model 366

Several techniques are used on binarized graph neural network model to reduce the time 367

and space complexity and improve the performance. Logic operation XNOR between binary 368

values, build-in CPU instruction popcount and the masked summation are used to replace 369

the traditional arithmetic operation dot product to reduce time complexity. The Figure 2 is a 370

toy example that introduces the differences between these operations. The balance function 371

is used to make +1 and −1 to be balanced in the embedding vectors which can raise the 372

performance of the GMN. Also, the binary parameters of the neural network and the binary 373

node representations can reduce the space complexity intuitively. 374

4.4.1 XNOR and popcount 375

The logic XNOR and CPU build-in instruction popcount between binary matrices are used 376

to replace the dot product between them. 377

As shown in Table 2, XNOR produces binary value with input of +1 and −1. Instruction 378

popcount is then be employed to count the number of bits that is set to 1. The XNOR can be 379

more than one order of magnitude faster than the dot product which can dramatically reduce 380

the time complexity. As mentioned in [4], a 32-bit floating point multiplier costs about 200 381

Xilinx FPGA slices, whereas a 1-bit XNOR gate costs only 1 slice. 382

4.4.2 Masked summation 383

The masked summation is used to replace the dot product between binary matrix and real- 384

valued matrix. The binary matrix will be transformed into the mask matrix with ”True” and 385

”False”. During the multiplication, the real-valued vector will be masked by the correspond- 386

ing mask vector, then the positive and negative masked vector are produced with only the 387

AUTHOR'S PROOF JrnlID 11280 ArtID 878 Proof#1 - 20/03/2021

UNCORRECTED
PROOF

World Wide Web

Dot Product

. × . + − . × − .3
+ . × − . + − . × .1 = − 6.62

Masked Summa�on

. + − .

− . + − . = .

Mask

XNOR and Popcount

XNOR popcount

+1 -1 +1 -1 T F T F

+1 -1 -1 +1

+1 -1 +1 -1

+1 +1 -1 -1

+5.8 -9.3 -4.6 +5.1 +5.8 -9.3 -4.6 +5.1

+5.8 -9.3 -4.6 +1.1

+3.2 -1.3 +7.6 -2.1

Figure 2 The toy examples of (a) dot product (b) Masked summation and (c) XNOR and popcount instruction

elements at the same position as ”True” and ”False” on the mask vector. The model calcu-388

lates the summations of the positive and negative masked vector separately. The subtraction389

of these two summation results is the result of dot product between the given matrices.390

The masked summation can reduce the time complexity of dot product of two matrix.391

Usually, the time complexity of naive dot product between two real-value matrices M1 ∈392

R
m×n and M2 ∈ R

n×d is O(mnd), while the time complexity of masked summation393

between binary matrix M1 ∈ {−1,+1}m×n and real-valued matrix M2 ∈ R
n×d is O(nd).394

Theoretically and also in practice, the masked summation can significantly reduce the time395

complexity of our proposed binarized graph neural network.396

4.4.3 Balance function397

The distribution of +1 and −1 is sometimes unbalanced in the representation vectors. For398

example, if most pre-activations h have positive elements, the output graph representation399

vector of binarization function hb will be formed mainly by +1. Then the dot product of400

two vectors will be d which is the dimension of the vectors. This unwanted situation should401

be avoid because it dramatically lower the effectiveness of the proposed model, especially402

when the BGN is applied to GMN which requires a great number of dot product between403

Table 2 XNOR calculation

Input A Input B Output

+1 +1 +1

+1 -1 -1

-1 +1 -1

-1 -1 +1

AUTHOR'S PROOF JrnlID 11280 ArtID 878 Proof#1 - 20/03/2021

UNCORRECTED
PROOF

World Wide Web

representations. As a result, we apply the following balance function to the pre-activations 404

before binarization in order to balance the distribution of positive and negative elements of 405

pre-activations: 406

Balance(h) = h − h (19)

Where the h is the vector whose elements are all mean value of the pre-activation vector 407

h. The balance function ensures that the pre-activation vectors contain almost half positive 408

and half negative elements, which leads to the balance distribution of +1 and −1 after 409

binarization. 410

4.5 Adapted to Other GNN based models 411

The proposed binarized graph neural network is a very general framework that can be 412

adapted to other graph neural network-based model to project the real-valued parameters 413

and activations into the binary space to reduce the space and time cost. We introduce how 414

we binarize the state-of-the-art GNN-based model AS-GCN [12] and the graph matching 415

network. 416

4.5.1 Binarization of AS-GCN 417

AS-GCN is a general framework that is designed for fast representation learning based on 418

graph neural networks such as GCN. Therefore, the binarization of AS-GCN is similar to 419

our proposed BGN. We use deterministic binary function to binarize the parameters and pre- 420

activations of AS-GCN. And straight through estimator is employed for back propagation. 421

The binarized model is denoted as BGN-ASGCN in our experiment. 422

4.5.2 Binarization of GMN 423

As mentioned above, the time cost of GMN comes mainly from the pair-wise node similarity 424

computation. We utilize the deterministic binarization function (3) on the preactivations 425

and transform the node and graph representations into binary codes such that the XNOR 426

can be applied to replace the dot product. Straight through estimator (14) is used for the 427

back propagation. Furthermore, we noticed that the distribution of +1 and −1 is usually 428

not symmetric which dramatically lower the performance, hence, balance function (19) is 429

employed on the graph representations. 430

5 Experiment 431

We conduct extensive experiments to evaluate the performance of our model for the node 432

classification task on real-world network datasets. We compare the time and space effi- 433

ciency thoroughly between the proposed model and other baseline models. The case study 434

shows the effectiveness and efficiency brought by our framework on the GNN-based 435

application such as GMN. 436

5.1 Dataset 437

To facilitate the comparison between our model and the relevant baselines, we conduct the 438

classification experiments on three well-known citation network datasets: Cora, Citeseer 439

and Pubmed [34]. Each dataset contains bag-of-words representations of documents and 440

AUTHOR'S PROOF JrnlID 11280 ArtID 878 Proof#1 - 20/03/2021

UNCORRECTED
PROOF

World Wide Web

citation links between the documents. Graph G is constructed based on the citation links.441

In the classification task, we only use 20 labeled instances per class for training. The test442

data contains 1000 nodes as in GCN, GAT and AS-GCN. We also include other types of443

dataset for extensive comparisons. The experiments are also conducted on two social net-444

work datasets: Facebook and wiki-vote [16] and two air-traffic networks [32]: Brazil and445

USA. For social networks, we randomly select 10% and 20% of nodes for training and val-446

idation respectively, and the rest of nodes are used as test set. For air-traffic networks, we447

randomly assign equal number of nodes in training, validation and test sets.448

The details of the datasets are summarized in the Table 3.449

5.2 Baseline methods450

The following GNN-based and binary embedding methods are compared as baselines:451

GCN (Graph Convolutional Network) [40] is a semi-supervised neural network method452

for node classification.453

GAT (Graph Attention Network) [40] is a graph neural network model which first454

exploits the attention mechanism to solve the node classification task.455

AS-GCN (Adaptive Sampling over GCN) [12] is a state-of-the-art method for node clas-456

sification task. AS-GCN aims to increase the scalability of GCN using adaptive sampling.457

The experiments demonstrate that the application of BGN can further reduce the time458

and space complexity of AS-GCN.459

GAT-binary and ASGCN-binary are the models that directly apply sign function on the460

node representations learned by the original version of GAT and AS-GCN. The naively461

binarized representations will be fed into the task-specific layer to learn the classification462

result.463

GAT-tanh and ASGCN-tanh are the models that employ the binarization function tanh464

used by DeepMind’s work. tanh function is used to binarize the parameters and embed-465

ding vectors of GAT and AS-GCN. We clip the value of the parameters and activations466

in both models to make sure that tanh can produce ”exact” binary codes.467

INH-MF [20] is a MF-based information network hashing algorithm that learns binary468

codes as node embedding which can preserve high-order proximity.469

BANE(Binarized Attributed Network Embedding) [46] is an extension of DNE [37]470

which based on the Weisfeiler-Lehman proximity matrix factorization learning function471

to produce binary node representations.472

Besides, we also compared the variants of our proposed BGN with the quantization473

methods introduced in Section 4.2.1:474

Table 3 Citation datasets

Dataset #Nodes #Edges #Classes #Labled Nodes

Cora 2708 5429 7 140

Citeseer 3327 4732 6 120

Pubmed 19717 44338 3 60

Facebook 4039 88234 4 403

wiki-vote 7115 103689 4 711

Brazil 131 1038 4 43

USA 1190 13599 4 396

AUTHOR'S PROOF JrnlID 11280 ArtID 878 Proof#1 - 20/03/2021

UNCORRECTED
PROOF

World Wide Web

BGN-x-GAT and BGN-x-ASGCN are the binarized models of graph attention network 475

and ASGCN using (6) and (7). 476

BGN-lpb-GAT and BGN-lpb-ASGCN are the binarized models of graph attention net- 477

work and ASGCN using Libra Parameter Binarization (LPB). 478

5.3 Experiment setup 479

For the performance experiment, we evaluate the models with the same bit-width represen- 480

tations. For the experiment of inference efficiency, the embedding dimension of our method 481

and other baseline methods are all set to 64. During training process, the whole graph can be 482

seen, but only a few nodes are labeled while most nodes have no label information. We put 483

all nodes information in one training phase due to the need of calculation for graph attention 484

coefficients. 485

For this classification task, we report the average accuracy of the evaluated GNN-based 486

embedding approaches after ten independent runs using the accuracy metric introduced in 487

[15, 40]. Because INH-MF and BANE only produce the binary embedding vectors but have 488

no build-in classifier, we employ the one-vs-rest logic regression implemented by Liblinear 489

[7] to obtain the classification result of the networks, in which 90% nodes are labeled. 490

All the experiments were conducted on the server which is running RHEL 7.5 and has 491

2x 2.4GHz Intel Xeon E5-2680 v4 (14 Cores) CPU, 256GB 2400MHz ECC DDR4-RAM 492

and 2x NIVDIA Quadro P5000 16GB Graphics Card (GPUs) (2560 Cores). The time cost 493

of our trained binarized model is evaluated on the CPUs using the XNOR and popcount 494

instructions. The time cost of other baseline GNN-based methods is evaluated on GPUs. 495

5.4 Classification results 496

Because our model produces the compact representations for vertices, we compare the 497

performance between our model and other baselines with the same bit width. 498

5.4.1 Comparison among binary embedding methods 499

We compare the classification results between our model and other binary-valued embed- 500

ding methods. 501

As shown in the Figure 3, under different embedding dimensions, BGN outperforms all 502

the other binary-valued embedding methods significantly on all three datasets. With the help 503

of the graph neural network, our model can make better use of the graph structured data and 504

feature information and is trained specifically for the node classification task. Therefore, our 505

model outperforms other MF-based binarized graph embedding models by a significantly 506

large margin. In comparison with the naively binarized GAT-binary and ASGCN-binary, our 507

model considers the binary property of parameters and vectors during the training process, 508

hence our model achieves better accuracy. In terms of GAT-tanh and ASGCN-tanh, because 509

tanh function has zero gradient when the output is nearly +1 or −1 and has real-value output 510

when the gradient is not zero. This property determines that tanh function is not suitable for 511

binarizing the neural network. When the input values are clipped to produce exact binary 512

parameters and embeddings via tanh function, the gradient will be zero which results in 513

the insufficient optimization and worse performance than BGN. Furthermore, the models 514

that are binarized by BGN-x and BGN-lpb achieve better performance than other compared 515

methods. 516

AUTHOR'S PROOF JrnlID 11280 ArtID 878 Proof#1 - 20/03/2021

UNCORRECTED
PROOF

World Wide Web

Figure 3 Classification results of three citation network dataset among the binary-valued embedding
methods with different embedding dimensions

5.4.2 Comparison among the GNN-based methods517

We compare our model with other GNN-based methods (GCN, GAT and AS-GCN). All518

baseline methods produce the real-valued embedding vectors each dimension of which is519

encoded by at least 32 bits. Compared with these methods, each dimension of the embedding520

vectors learned by our model is only encoded by 1 bit. As a result, a real-valued 16 dimen-521

sion vector requires at least 256 bits while a binary vector only requires 16 bits. Figure 4522

shows the performance of the models with bit width varies for a single embedding vector.523

Our model significantly outperforms all the baseline methods with low bit width. When524

getting more space for the learned representations, our model can still achieve compet-525

itive classification results compared with the state-of-the-art graph neural network-based526

methods. In conclusion, the performance gap between our model and baselines with large527

AUTHOR'S PROOF JrnlID 11280 ArtID 878 Proof#1 - 20/03/2021

UNCORRECTED
PROOF

World Wide Web

Figure 4 Classification results of three citation network dataset among the GNN-based methods with varied
bit width for embedding vector

bit-width representations is acceptably small while our model’s performance is notably 528

better with the low bit-width representations. 529

5.5 Comparison of time and space efficiency 530

In this section, we report the inference time and space efficiency of our model. The infer- 531

ence is the process that produces the classification result when we have already trained the 532

model. Acceleration is brought by the XNOR and popcount operation with just little sacri- 533

fice on the classification performance. In this experiment, we train the binary parameters 534

and activations of our model, then replace dot product operation between binarized matri- 535

ces by XNOR and popcount and also replace the dot product between binary matrix and 536

real-valued matrix by masked-summation during the inference process. 537

Tables 4 and 5 report the experiment results. GAT-binary, ASGCN-binary, GAT-tanh and 538

ASGCN-tanh require the same size of parameters as their real-valued version since these 539

baslines only binarize the representations of the nodes while keep using the real-valued 540

parameters in the model. Among these models, GAT-binary and ASGCN-binary can be 541

accelerated by applying the mask summation during inference process, while GAT-tanh and 542

ASGCN-tanh have to perform conventional matrix multiplication since these two meth- 543

ods cannot guarantee to produce exact binarized codes as node representations. Our model 544

under the binarized framework is more than one order of magnitude faster than the baseline 545

Table 4 Comparison of performance, inference time and memory space required for the parameters between
the real-valued and binarized models

Dataset GAT AS-GCN GAT-binary ASGCN-binary

Cora Time(s) 1.9 × 10−1 1.0 × 10−1 1.5 × 10−1 8.2 × 10−2

Space(bit) 2.46 × 108 3.04 × 106 2.46 × 108 3.04 × 106

Accuracy 84.0% 87.3% 47.1% 56.1%

Citeseer Time(s) 2.8 × 10−1 2.8 × 10−1 2.4 × 10−1 2.5 × 10−1

Space(bit) 7.60 × 106 7.83 × 106 7.60 × 106 7.83 × 106

Accuracy 72.1% 78.9% 45.3% 55.3%

Pubmed Time(s) 3.8 × 101 4.54 × 100 3.5 × 101 3.97 × 100

Space(bit) 1.03 × 106 1.06 × 106 1.03 × 106 1.06 × 106

Accuracy 78.2% 89.0% 53.4% 60.0%

AUTHOR'S PROOF JrnlID 11280 ArtID 878 Proof#1 - 20/03/2021

UNCORRECTED
PROOF

World Wide Web

Table 5 Comparison of performance, inference time and memory space required for the parameters between
the tanh-based and BGN-based models

Dataset GAT-tanh ASGCN-tanh BGN-GAT BGN-ASGCN

Cora Time(s) 1.8 × 10−1 8.2 × 10−2 1.0 × 10−2 8.0 × 10−3

Space(bit) 2.46 × 108 3.04 × 106 1.32 × 107 1.97 × 105

Accuracy 24.2% 52.3% 77.7% 84.1%

Citeseer Time(s) 2.5 × 10−1 2.9 × 10−1 1.4 × 10−2 1.8 × 10−2

Space(bit) 7.60 × 106 7.83 × 106 2.49 × 105 4.86 × 105

Accuracy 34.2% 49.5% 63.7% 77.2%

Pubmed Time(s) 4.1 × 101 4.47 × 100 1.1 × 100 2.1 × 10−1

Space(bit) 1.03 × 106 1.06 × 106 3.85 × 104 7.01 × 104

Accuracy 33.6% 57.9% 75.7% 82.0%

methods GAT and AS-GCN with regards to the inference time. The proposed model can be546

up to 29× faster and save up to 28× space compared with the baseline methods.547

5.6 Analysis of binarization548

In this section, we introduce the effect of the estimator and binarization level with regard to549

the space, time and performance. We compare the space, inference time and performance550

between BGN-GAT and GAT on the Cora dataset. We fix the dimension of embedding551

vector to 64 for both methods and change the setting of BGN to show the space and time552

saving compared with the baseline GAT.553

Result is shown in Table 6 where BGNw , BGNe, BGNwe and BGNwec mean that the554

BGN is with weights binarized, embedding vectors binarized, weights and embedding vec-555

tors binarized, weights, embedding vectors and attention coefficients binarized based on the556

graph attention mechanism respectively. We can conclude from the Table 6 that (1) when557

the weights, activations and attention coefficients are all binarized, the BGN-GAT can save558

largest space for parameters and the output vectors while holding acceptable classification559

accuracy. (2) Straight through estimator and reinforce estimator have similar accuracy on560

Table 6 Trade-off between time/space efficiency and classification accuracy of proposed BGN w.r.t the level
and setting of binarization

Method Estimator Param space Vec space Speed up Accuracy

GAT N/A 1× 1× 1× 84.0%

BGNw STE 1/28 1× 3.7× 80.5%

BGNw Reinforce 1/28 1× 3.8× 80.3%

BGNe STE 1× 1/1.02 1.3× 81.2%

BGNe Reinforce 1× 1/1.02 1.2× 81.3%

BGNwe STE 1/28 1/1.02 5.7× 77.2%

BGNwe Reinforce 1/28 1/1.02 6.1× 77.5%

BGNwec STE 1/28 1/19 18.7× 77.7%

BGNwec Reinforce 1/28 1/19 19.1× 76.9%

AUTHOR'S PROOF JrnlID 11280 ArtID 878 Proof#1 - 20/03/2021

UNCORRECTED
PROOF

World Wide Web

the node classification task. Therefore, we choose the STE for our model in the above exper- 561

iments because of its simplicity and certainty. (3) Compared with original GAT, BGN-GAT 562

can save 28× space for model parameters, 19× space for activations and achieve 19× speed 563

up. 564

5.7 Case study 565

In this section, we investigate how binarized graph neural network improve the time effi- 566

ciency of the GNN-based applications such as GMN. Because GMN needs to compute the 567

pair-wise dot product between node and graph embedding vectors, the time consumption is 568

extremely high when the number of nodes in each graph goes up. However, with the binary 569

representations, we can apply XNOR between binary vectors to replace the dot product, 570

which will alleviate the time complexity problem significantly. The following experiment 571

results will introduce the performance and time complexity of GMN with binary node and 572

graph representations compared with the origin version. The graph similarity will then be 573

used for the graph matching task. 574

Experiment Setup We follow the experiment setting of [18] to test the performance of 575

Binarized GMN. The training data is generated by sampling binomial graphs G1 with n 576

nodes and edge probability p [6]. Then the positive example G2 is generated by randomly 577

substituting kp edges from G1 with new edges and negative example G3 is generated by 578

substituting kn edges from G1, where kp < kn. In the experiment, we set kp = 1, kn = 2 579

and p = 0.2. We also set the hamming similarity between vectors as loss function, which 580

is more suitable for the binary-valued vectors as the loss function to train the model. The 581

model needs to predict a higher similarity score for positive pair (G1,G2) than negative 582

pair (G1,G3). The evaluation metric remains the same: (1) pair AUC - the area under 583

the ROC curve for classifying pairs of graphs as similar or not on a fixed set of 1000 584

pairs and (2) triplet accuracy - the accuracy of correctly assigning higher similarity to the 585

positive pair in a triplet than the negative pair on a fixed set of 1000 triplets. 586

Inference time and Graph Matching Performance We report the graph matching 587

accuracy and inference time of the binarized and original GMN with regards to the num- 588

ber of nodes in each graph. The default setting in GMN is 20 nodes per graph, which is 589

quite small for real-world networks. We set the number of nodes in one graph from 20 590

to 160 and keep other settings the same as described above to evaluate the performance 591

and inference time. The dimensions of node and graph representations are set to 32 and 592

64 respectively. 593

As shown in Figure 5, the inference of BGN-GMN is significantly faster. This is 594

because of the fact that the similarity computation (pair-wise dot product) between node 595

representations of two graphs mainly accounts for the time complexity of GMN. Under 596

the same dimension of node and graph embedding vectors, BGN-GMN is up to 21× 597

faster than the baseline model in terms of the inference time with the help of the replace- 598

ment of dot product by fast operations such as XNOR and popcount between binary 599

vectors. 600

In terms of graph matching task, the original version of GMN has better performance 601

when the number of nodes in each graph is small. However, when the number of nodes 602

gets larger, the pair AUC and triplet accuracy will both decay. When the number of 603

AUTHOR'S PROOF JrnlID 11280 ArtID 878 Proof#1 - 20/03/2021

UNCORRECTED
PROOF

World Wide Web

Figure 5 The performance of graph matching and inference time for GMN and BGN-GMN w.r.t the number
of nodes per graph

nodes is more than 60, the real-valued representations cannot tell the similarity difference604

between the graphs. Hence, the model is not able to learn the different similarity scores605

for positive and negative pairs of graphs with the hamming similarity metric. However,606

with the help of binarization and balance function, the binary representations still hold607

an acceptable and more robust performance for the graph matching task. This is due to608

the fact that the binarized model produces true binary representations for the calculation609

of hamming loss and is designed for the graph matching task specifically on hamming610

space.611

Parameter Sensitivity Analysis We compare the performance of binarized and original612

version GMN to show the effect of dimension for node and graph embedding vectors.613

We set the number of nodes in each graph n = 30 for this comparison. We change the614

dimension of graph embeddings produced by two models to ensure them to produce the615

same bit-width embedding vectors and keep the other settings as the same to compare616

the performance of two models.617

The result is included in Figure 6a. We can find that the binary graph representations tend618

to have better performance when they are low bit-width and have similar accuracy when the619

bit-width for the representations getting larger. The binary representations have more robust620

performance compared with the baseline model when the dimension of embedding varied.621

The node representations’ binarization is more important than the graph representations’622

because the dot product operation is mainly conducted between the node representations623

which costs plenty of time. The performances of GMN and BGN-GMN are compared under624

different bit-width for the node embedding vectors by varying the dimensions.625

As shown in Figure 6b, the result for the pair-wise AUC is similar between the binary626

and the real-valued node embedding vectors, but BGN-GMN holds a better performance627

with low bit-width representations. As for the triplet graph accuracy, the binary embed-628

ding vector achieves better performance with short code length and similar accuracy as629

real-valued node embedding with long code length. These results indicate that the binary630

representations are much better for the comparison between two graphs under low bit-width631

circumstances. In line with the result of the binary graph embedding vectors, the binary632

node embedding vectors also have more robust performance compared with the real-valued633

node representations.634

AUTHOR'S PROOF JrnlID 11280 ArtID 878 Proof#1 - 20/03/2021

UNCORRECTED
PROOF

World Wide Web

a

b

Figure 6 The performance comparison of graph matching task between original version of GMN and the
BGN-GMN with a graph representations binarized and b node representations binarized

6 Conclusion 635

We present a model focused on the challenging problem of seeking binary representations of 636

network embeddings using a compact neural network structure. We proposed a novel bina- 637

rized graph embedding method, namely BGN, that has binarized parameters and enables 638

GNNs to learn discrete embedding. The binarized neural network can reduce the memory 639

and time cost of the GNN such that increases the scalability of GNNs. BGN can be naturally 640

integrated into other GNN models to enhance the performance of the model such as graph 641

matching network in terms of the inference time and space consumption. External experi- 642

ment also illustrates that BGN can increase the time efficiency while holding competitive 643

accuracy. 644

References 645

1. Bai, Y., Ding, H., Bian, S., Chen, T., Sun, Y., Wang, W.: Simgnn: a neural network approach to fast graph 646
similarity computation. In: Proceedings of the Twelfth ACM International Conference on Web Search 647
and Data Mining, WSDM 2019, Melbourne, VIC, Australia, February 11-15, 2019, pp. 384–392 (2019) 648

2. Bengio, Y., Léonard, N., Courville, A.: Estimating or propagating gradients through stochastic neurons 649
for conditional computation. arXiv preprint arXiv:1308.3432 (2013) 650

http://arxiv.org/abs/1308.3432

AUTHOR'S PROOF JrnlID 11280 ArtID 878 Proof#1 - 20/03/2021

UNCORRECTED
PROOF

World Wide Web

3. Chen, G., He, S., Meng, H., Huang, K.: Phonebit: Efficient Gpu-Accelerated binary neural network infer-651
ence engine for mobile phones. In: 2020 Design, Automation & Test in Europe Conference & Exhibition652
(DATE), pp. 786–791. IEEE (2020)653

4. Courbariaux, M., Hubara, I., Soudry, D., El-Yaniv, R., Bengio, Y.: Binarized neural networks: Training654
deep neural networks with weights and activations constrained to+ 1 or-1. Neural Information Processing655
Systems neurIPS (2016)656

5. Cui, P., Wang, X., Pei, J., Zhu, W.: A survey on network embedding. IEEE Trans. Knowl. Data Eng.657
(TKDE) 31(5), 833–852 (2019)658

6. Erdös, P., Rényi, A.: On the evolution of random graphs. Publ. Math. Inst. Hung. Acad. Sci 5(1), 17–60659
(1960)660

7. Fan, R., Chang, K., Hsieh, C., Wang, X., Lin, C.: LIBLINEAR: A library for large linear classification.661
JMLR 9, 1871–1874 (2008)662

8. Gong, R., Liu, X., Jiang, S., Li, T., Hu, P., Lin, J., Yu, F., Yan, J.: Differentiable soft quantization: Bridg-663
ing full-precision and low-bit neural networks. In: Proceedings of the IEEE International Conference on664
Computer Vision (ICCV), pp. 4852–4861 (2019)665

9. Grover, A., Leskovec, J.: Node2vec: Scalable feature learning for networks. In: ACM SIGKDD, pp.666
855–864 (2016)667

10. Hamilton, W., Ying, Z., Leskovec, J.: Inductive representation learning on large graphs. In: Neural668
Information Processing Systems NeurIPS, pp. 1024–1034 (2017)669

11. Hamilton, W.L., Ying, R., Leskovec, J.: Representation learning on graphs: Methods and applications.670
IEEE Data Eng. Bull. 40(3), 52–74 (2017)671

12. Huang, W., Zhang, T., Rong, Y., Huang, J.: Adaptive sampling towards fast graph representation learning.672
In: Neural Information Processing Systems NeurIPS, pp. 4563–4572 (2018)673

13. Hubara, I., Courbariaux, M., Soudry, D., El-yaniv, R., Bengio, Y.: Binarized neural networks. In: Neural674
Information Processing Systems NeurIPS, pp. 4107–4115 (2016)675

14. Kazemi, S.M., Poole, D.: Simple embedding for link prediction in knowledge graphs. In: Neural676
Information Processing Systems NeurIPS, pp. 4289–4300 (2018)677

15. Kipf, T.N., Welling, M.: Semi-Supervised classification with graph convolutional networks. In: ICLR678
(2017)679

16. Leskovec, J., Krevl, A.: SNAP Datasets: Stanford large network dataset collection http://snap.stanford.680
edu/data (2014)681

17. Li, Y., Gong, R., Yu, F., Dong, X., Liu, X.: Dms: Differentiable dimension search for binary neural682
networks683

18. Li, Y., Gu, C., Dullien, T., Vinyals, O., Kohli, P.: Graph matching networks for learning the similarity684
of graph structured objects. In: Proceedings of the 36th International Conference on Machine Learning,685
ICML 2019, 9-15 June 2019, Long Beach, California, USA, pp. 3835–3845 (2019)686

19. Li, Y., Tarlow, D., Brockschmidt, M., Zemel, R.: Gated graph sequence neural networks. arXiv preprint687
arXiv:1511.05493 (2015)688

20. Lian, D., Zheng, K., Zheng, V.W., Ge, Y., Cao, L., Tsang, I.W., Xie, X.: High-Order proximity preserving689
information network hashing. In: ACM SIGKDD, pp. 1744–1753 (2018)690

21. Liu, H., Wang, R., Shan, S., Chen, X.: Deep supervised hashing for fast image retrieval. In: CVPR, pp.691
2064–2072 (2016)692

22. Liu, W., Mu, C., Kumar, S., Chang, S.: Discrete graph hashing. In: Neural Information Processing693
Systems NeurIPS, pp. 3419–3427 (2014)694

23. Liu, Z., Shen, Z., Savvides, M., Cheng, K.: Reactnet: Towards precise binary neural network with gen-695
eralized activation functions. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J. (eds.) Computer Vision -696
ECCV 2020 - 16th European Conference, Glasgow, UK, August 23-28, 2020, Proceedings, Part XIV,697
Lecture Notes in Computer Science, vol. 12359, pp. 143–159. Springer (2020)698

24. Martı́nez, B., Yang, J., Bulat, A., Tzimiropoulos, G.: Training binary neural networks with real-to-binary699
convolutions. In: 8Th International Conference on Learning Representations, ICLR 2020, Addis Ababa,700
Ethiopia, April 26-30, 2020. Openreview.Net (2020)701

25. Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and702
phrases and their compositionality. In: Neural Information Processing Systems NeurIPS, pp. 3111–3119703
(2013)704

26. Perozzi, B., Al-Rfou, R., Skiena, S.: Deepwalk: Online learning of social representations. In: ACM705
SIGKDD, pp. 701–710. ACM (2014)706

27. Qin, H., Gong, R., Liu, X., Bai, X., Song, J., Sebe, N.: Binary neural networks: A survey. Pattern707
Recognition, pp. 107281 (2020)708

http://snap.stanford.edu/data
http://snap.stanford.edu/data
http://arxiv.org/abs/1511.05493

AUTHOR'S PROOF JrnlID 11280 ArtID 878 Proof#1 - 20/03/2021

UNCORRECTED
PROOF

World Wide Web

28. Qin, H., Gong, R., Liu, X., Shen, M., Wei, Z., Yu, F., Song, J.: Forward and backward information reten- 709
tion for accurate binary neural networks. In: Proceedings of the IEEE/CVF Conference on Computer 710
Vision and Pattern Recognition CVPR, pp. 2250–2259 (2020) 711

29. Qin, J., Wang, Y., Xiao, C., Wang, W., Lin, X., Ishikawa, Y.: GPH: Similarity search in hamming space. 712
In: IEEE ICDE, pp. 29–40 (2018) 713

30. Qiu, J., Dong, Y., Ma, H., Li, J., Wang, K., Tang, J.: Network embedding as matrix factorization: 714
Unifying deepwalk, Line, Pte, and Node2vec. In: ACM WSDM, pp. 459–467 (2018) 715

31. Rastegari, M., Ordonez, V., Redmon, J., Farhadi, A.: Xnor-Net: Imagenet classification using binary 716
convolutional neural networks. In: European Conference on Computer Vision, pp. 525–542. Springer 717
(2016) 718

32. Ribeiro, L.F., Saverese, P.H., Figueiredo, D.R.: Struc2vec: Learning node representations from structural 719
identity. In: Proceedings of the 23rd ACM SIGKDD international conference on knowledge discovery 720
and data mining, pp. 385–394 (2017) 721

33. Salakhutdinov, R., Hinton, G.E.: Semantic hashing. Int. J. Approx. Reasoning 50(7), 969–978 (2009) 722
34. Sen, P., Namata, G., Bilgic, M., Getoor, L., Galligher, B., Eliassi-Rad, T.: Collective classification in 723

network data. AI Magazine 29(3), 93–93 (2008) 724
35. Shen, F., Shen, C., Liu, W., Shen, H.T.: Supervised discrete hashing. In: CVPR, pp. 37–45 (2015) 725
36. Shen, M., Liu, X., Gong, R., Han, K.: Balanced binary neural networks with gated residual. In: ICASSP 726

2020-2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 727
4197–4201. IEEE (2020) 728

37. Shen, X., Pan, S., Liu, W., Ong, Y., Sun, Q.: Discrete network embedding. In: IJCAI, pp. 3549–3555 729
(2018) 730

38. Tang, J., Qu, M., Wang, M., Zhang, M., Yan, J., Mei, Q.: LINE: Large-scale information network 731
embedding. In: WWW, pp. 1067–1077 (2015) 732

39. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: 733
Attention is all you need. In: Neural Information Processing Systems NeurIPS, pp. 5998–6008 (2017) 734

40. Veličković, P., Cucurull, G., Casanova, A., Romero, A., Lio, P., Bengio, Y.: Graph attention networks. 735
arXiv preprint arXiv:1710.10903 (2017) 736

41. Wang, C., Pan, S., Hu, R., Long, G., Jiang, J., Zhang, C.: Attributed graph clustering: a deep attentional 737
embedding approach. In: Proceedings of the Twenty-Eighth International Joint Conference on Artificial 738
Intelligence, IJCAI 2019, Macao, China, August 10-16, 2019, pp. 3670–3676 (2019) 739

42. Wang, H., Lian, D., Zhang, Y., Qin, L., Lin, X.: Gognn: Graph of graphs neural network for predicting 740
structured entity interactions. In: Bessiere, C. (ed.) Proceedings of the Twenty-Ninth International Joint 741
Conference on Artificial Intelligence, IJCAI 2020, pp. 1317–1323. ijcai.org (2020) 742

43. Wang, J., Zhang, T., Song, J., Sebe, N., Shen, H.T.: A survey on learning to hash. IEEE Trans. Pattern 743
Anal. Mach. Intell. TPAMI. 40(4), 769–790 (2018) 744

44. Williams, R.J.: Simple statistical gradient-following algorithms for connectionist reinforcement learning. 745
Mach. Learn. 8, 229–256 (1992) 746

45. Xu, K., Hu, W., Leskovec, J., Jegelka, S.: How Powerful are Graph Neural Networks?. In: 7Th Inter- 747
national Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 748
(2019) 749

46. Yang, H., Pan, S., Zhang, P., Chen, L., Lian, D., Zhang, C.: Binarized Attributed Network Embedding. 750
In: IEEE ICDM, pp. 1476–1481 (2018) 751

47. Zhang, J., Pan, Y., Yao, T., Zhao, H.: Mei, t.: dabnn: a super fast inference framework for binary neural 752
networks on arm devices. In: Proceedings of the 27th ACM International Conference on Multimedia, pp. 753
2272–2275 (2019) 754

48. Zhang, M., Chen, Y.: Link prediction based on graph neural networks. In: Neural Information Processing 755
Systems NeurIPS, pp. 5171–5181 (2018) 756

49. Zhang, X., Liu, H., Li, Q., Wu, X.: Attributed graph clustering via adaptive graph convolution. In: Pro- 757
ceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence, IJCAI 2019, 758
Macao, China, August 10-16, 2019, pp. 4327–4333 (2019) 759

50. Zhou, S., Ni, Z., Zhou, X., Wen, H., Wu, Y., Zou, Y.: Dorefa-net: Training low bitwidth convolutional 760
neural networks with low bitwidth gradients. CoRR arXiv:abs/1606.06160 (2016) 761

51. Zhu, F., Gong, R., Yu, F., Liu, X., Wang, Y., Li, Z., Yang, X., Yan, J.: Towards unified int8 training for 762
convolutional neural network. In: Proceedings of the IEEE/CVF Conference on Computer Vision and 763
Pattern Recognition CVPR, pp. 1969–1979 (2020) 764

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps 765
and institutional affiliations. 766

http://arxiv.org/abs/1710.10903
http://arxiv.org/abs/abs/1606.06160

AUTHOR'S PROOF JrnlID 11280 ArtID 878 Proof#1 - 20/03/2021

UNCORRECTED
PROOF

World Wide Web

Affiliations767

Hanchen Wang1 · Defu Lian2 · Ying Zhang1 · Lu Qin1 · Xiangjian He3 ·768

Yiguang Lin3 · Xuemin Lin4769

Defu Lian770
liandefu@ustc.edu.cn771

Ying Zhang772
Ying.Zhang@uts.edu.au773

Lu Qin774
Lu.Qin@uts.edu.au775

Xiangjian He776
Xiangjian.He@uts.edu.au777

Yiguang Lin778
Yiguang.Lin@uts.edu.au779

Xuemin Lin780
lxue@cse.unsw.edu.au781

1 CAI, University of Technology, Sydney, Australia782
2 University of Science and Technology of China, Anhui, China783
3 University of Technology, Sydney, Australia784
4 University of New South Wales, Sydney, Australia785

http://orcid.org/0000-0003-3158-9586
mailto: liandefu@ustc.edu.cn
mailto: Ying.Zhang@uts.edu.au
mailto: Lu.Qin@uts.edu.au
mailto: Xiangjian.He@uts.edu.au
mailto: Yiguang.Lin@uts.edu.au
mailto: lxue@cse.unsw.edu.au

AUTHOR'S PROOF JrnlID 11280 ArtID 878 Proof#1 - 20/03/2021

AUTHOR QUERIES

AUTHOR PLEASE ANSWER ALL QUERIES:

Q1. Hanchen Wang has been set as the corresponding author. Please
check and advise if correct.

Q2. Please check author’s affiliation if captured and presented correctly.
Q3. Please check if the section headings are assigned to appropriate

levels.

	Binarized graph neural network
	Abstract
	Introduction
	Related works
	Background and preliminaries
	Binarized graph neural network
	Framework
	Binarization
	Forward propagation
	Backpropagation
	Propagation gradients through binarization function
	Straight through estimator
	REINFORCE estimator

	Optimization objectives
	Techniques to improve the model
	XNOR and popcount
	Masked summation
	Balance function

	Adapted to Other GNN based models
	Binarization of AS-GCN
	Binarization of GMN

	Experiment
	Dataset
	Baseline methods
	Experiment setup
	Classification results
	Comparison among binary embedding methods
	Comparison among the GNN-based methods

	Comparison of time and space efficiency
	Analysis of binarization
	Case study

	Conclusion
	References
	Affiliations

