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Abstract

We present the second generation of a rule-based language called Biochemical Space Language (BCSL) that
combines the advantages of different approaches and thus makes an effort to overcome several problems with
existing solutions. The key aspect of the language is the level of abstraction it uses, which allows scalable
and compact hierarchical specification of biochemical entities. This abstraction enables unique analysis
techniques to reason about properties of models written in the language on the semantic and syntactic
level.
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1 Introduction

Modelling complex systems in systems biology has to be conducted at several lev-

els of abstraction that reflect well the known information [14]. At every level, the

system has to be described rigorously in a formal language that allows avoiding

misunderstood and ambiguous interpretations. The more complex the system is,

the harder it is to describe it rigorously while not losing human-readability and

compactness of the description at the same time. A modern biochemical system

specification language that can be sufficiently employed in systems biology practice

has to be hierarchical and executable. Hierarchical description allows expressing
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individual system components at different levels of detail. Since not all biochem-

ical structures are known in detail, the language has to support the expression of

partial knowledge. On the other end, executability allows automatic assigning the

description with appropriate formal (mathematical or programming) structures that

enable simulation and exhaustive analysis of desired properties or revealing bugs in

the description.

Traditional approaches used to describe biochemical systems are: (i) a chem-

istry approach employing “mechanical” descriptions by chemical reactions or (ii) a

mathematical approach using ordinary differential equations or other mathematical

formalisms. The problem of both approaches is scalability in the description of the

model and in its execution: even when the formulation of a model does not run into

scalability issues, the execution or simulation might still be infeasible [24]. To that

end, computer science offers a computational approach based on abstract languages

with a variety of rigorous executable semantics. Relations among these approaches

have been discussed in [4] and [12].

A promising computational approach is provided by rule-based modelling [7,9]

and process-algebraic frameworks [4,5,23]. Rule-based models make a natural ex-

tension of the mechanical reaction-based models used in chemistry. Instead of op-

erating with objects, rule-based frameworks operate with types that allow avoiding

the combinatorial explosion that occurs when underlying objects are specified di-

rectly. The semantics of the model is given in terms of rules defined on given types.

An important advantage of rule-based approach is that mathematical models can

be automatically generated from them. In particular, instead of relying on a single

mathematical formalism, different mathematical models can thus be obtained for a

given model (e.g., ODEs [3], PDEs [1], chemical master equation or continuous-time

Markov chains [19,25], reaction-diffusion systems [26], etc.).

Although rule-based models make a great alternative to mathematical models,

they are not yet sufficiently used in practice. The reason is that existing formalisms

rely on cryptic (symbolic) syntax and they are limited to a specific subset of inter-

actions or are too abstract: BNGL [9] and Kappa [7] target protein-protein binding;

BioSPI [23] and SPiM [22] use very elemental asymmetric binary synchronisation

primitives; BioPEPA [5] adapts process-algebraic framework to chemical reactions

while relaxing the compactness of combinatorial interactions; Chromar [13] utilises

functional programming. These languages can be thus understood as low-level for-

malisms that allow precise formal description and analysis of biological processes.

Several high-level frameworks have been developed based on principles of these for-

malisms: rxncon [24] focuses on regulatory interactions and allows construction

of rules from experimental evidence, LBS [21] and LBS-κ [20] enrich rule-based

framework with modularity, PySB [17] embeds Kappa and BNGL into Python,

MetaKappa [6] extends Kappa language by hierarchical inheritance of agent sites,

BioCHAM [2] explicitly separates rules from their mathematical semantics. None

of these frameworks provides a sufficiently universal solution for description and

annotation of heterogeneous biophysical processes integrated at the cellular level.

Apparently, different approaches need to be combined accordingly to make a uni-
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versal hierarchical modelling and annotation base that supports executability. The

work presented in [18] targets bringing annotation standards into rule-based frame-

works.

On the other end, SBML multi [29] transfers rule-based description into a uni-

versal XML format that fixes the hierarchical structure of objects and modularity

of rules. It moves the rule-based paradigm towards a standard technique of describ-

ing biological systems. However, it does not directly solve the executability and

advanced analysis issues that make an important aspect of rule-based frameworks.

Our long-term aim is the development of a general modelling framework [16,27].

Together with general annotation format Biochemical Space [15], it respects the

need for maintaining existing ODE models but allows to align them with a mecha-

nistic rule-based description that is understandable by biologists, compact in size,

executable in terms of allowing basic analysis tasks ensuring consistency of the de-

scription, and provides links to existing bioinformatics annotation databases. Such a

comprehensive solution allows supporting modellers effort in building mathematical

models that have clear biochemical meaning and can be easily integrated. More-

over, mechanistic descriptions can be later used as computational models having

all advantages of rule-based modelling. To that end, we have pioneered an idea of

combining advantages of rule-based modelling with the simplicity of chemical reac-

tions by introducing the first prototype of a high-level rule-based language called

Biochemical Space Language (BCSL), introduced in [8]. The language has been de-

fined at the top of Kappa. BCSL aims at higher-level abstraction than Kappa that

focuses on morphisms between protein binding sites. Therefore the Kappa-based

formulation of BCSL has limited expressiveness and does not fit well the aims of our

framework. Additionally, Kappa does not provide hierarchical description which is

one of the key aspects of BCSL.

In this paper, BCSL is redefined and significantly improved with respect to the

primary prototype presented in [8]: (i) hierarchical and composable object types

and rules are defined without the need to encode them in an existing rule-based

framework thus avoiding any loss of information, (ii) executable semantics of rules

is defined directly at the level of the language thus making a base for unique analysis

tasks specific for the considered level of abstraction, (iii) software tool is available to

maintain and analyse BCSL specifications – BCSgen 1 . The new version of BCSL

emphasises the following aspects: (i) human-readability (easy to read, write, and

maintain), (ii) executability (formal executable semantics is defined allowing efficient

static analysis and consistency checking), (iii) universality (principally different cel-

lular processes can be sufficiently combined in a single specification), (iv) scalabil-

ity (combinatorial explosion of the description is avoided), (v) hierarchy (object

types are described hierarchically allowing compositional assembly from simpler

structures). Moreover, we provide several static analysis techniques which take the

advantage from the specific level of abstraction. They are aimed primarily at consis-

tency checking, model reduction and reachability analysis. Particularly, rule redun-

dancy elimination allows detecting unnecessary rules in the models, context-based

1 https://github.com/sybila/BCSgen
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reduction and static non-reachability analysis uniquely deal with non-reachability

in terms of preventing expensive transition system enumeration in cases when it is

not necessarily needed. These techniques are demonstrated on a model of fibroblast

growth factor (FGF) signalling pathway and show practical impact in the field of

static analysis.

2 Formal definition of Biochemical Space Language

In this section, we formally define Biochemical Space Language. At first, we define

all the required objects (so called agents) and interactions among them (so called

rules ; for an example, see Figure 1), then we define syntax of the language and

semantics of the BCSL models.

S{u}::KaiC :: KaiBC ::cyt

Serine residue

(unphosphorylated)

KaiC protein

⇒ S{p}::KaiC :: KaiBC ::cyt

Serine residue

(phosphorylated)

KaiBC dimer

cytosol

Fig. 1. An example of a rule. The rule describes the change of serine (S) amino acid residue from an
unphosphorylated to phosphorylated state. Additionally, such phosphorylation can happen only when the
serine is part of a KaiC protein, which occurs inside a protein complex of KaiC and KaiB proteins. The
entire process is allowed only inside of cytosol (cyt) compartment.

2.1 Formal preliminaries

Before we proceed, we provide some basic definitions and notations in order to build

the formal definition for the language.

Definition 2.1 (Multiset) Multiset Ω is a pair (A, m) where A is a set and m : A →
N is a function from A to the set of natural numbers. The set A is called the

reference set of elements. For each element a in A the multiplicity (that is, number

of occurrences) of a is the number m(a).

Notation 2.2

• Let S be a set. By ΩS we denote the set of all possible finite multisets (A, m)

such that A ⊆ S.
• Let O = (o1, . . . , on) be a tuple.

· By Ω(O) we denote a multiset constructed from tuple O.

· By σ(O) we denote a set of all possible permutations of length n of the

tuple O.

• By |Y | we denote (i) dimension of tuple Y or (ii) cardinality of (multi)set Y .
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Definition 2.3 (Labelled transition system) Labelled transition system (LTS) L is

a quadruple (S,A, T, s0) where S is a set of states, A is a set of labels, T ⊆ S×A×S

is a transition relation, and s0 ∈ S is an initial state.

Definition 2.4 (Path in LTS ) Let L = (S,A, T, s0) be an LTS. We define path as

a sequence of states s1s2s3 . . . such that ∀si, si+1 : (si, a, si+1) ∈ T for some a ∈ A.

Definition 2.5 (Tuples concatenation) Let X = (x1, . . . , xn), Y = (y1, . . . , ym) be

two tuples for some n,m ∈ N. Concatenation of two tuples, written X ++ Y , is

defined as: X ++ Y = (x1, . . . , xn, y1, . . . , ym).

Definition 2.6 (Sum of concatenations) Let T = (T1, T2, . . . , Tn) be sequence of

tuples for some n ∈ N. Concatenation of sequence of tuples ++n
i=1Ti is defined as:

++n
i=1Ti = T1 ++ T2 ++ . . .++ Tn

2.2 Objects definition

Let NA,NT ,Nδ,Nc be mutually exclusive finite sets of atomic names, structure

names, states, and compartments respectively. Moreover, ε is a reserved symbol

and does not belong to any of these sets.

For better readability, we provide examples of syntax for the most important

objects with their definitions. The formal definition of syntax and the relation to

the objects are given below (Sections 2.3 and 2.4).

2.2.1 Signature

Definition 2.7 (Signature) Atomic signature is a function ΣA : NA → 2Nδ that

associates each atomic name to a set of state names. Similarly, structure signature

is a function ΣT : NT → 2NA that associates each structure name to a set of atomic

names.

Signatures define a set of allowed states for an atomic name and an allowed set

of atomic names for a structure name. For example,
{
S → {u, p}, Q → {a, i} }

is

an atomic signature and
{
KaiC → {S,Q},KaiB → ∅ }

is a structure signature.

2.2.2 Atomic agent

Definition 2.8 (Atomic agent) An atomic agent A is a pair (η, δ) where η ∈ NA

is a name and δ ∈ Nδ ∪ {ε} is a state. The name and the state of the agent A is

usually denoted by η(A) and δ(A), respectively.

Atomic agents are the simplest objects used for describing biological entities.

Each atomic agent has its name and state. Allowed set of admissible states for the

atomic agent (with additional empty ε state) is given by signature ΣA(η).

Definition 2.9 (Equality relation of atomic agents) Let A, A′ be atomic agents. A

is equal to A′, written A = A′, iff η(A) = η(A′) ∧ δ(A) = δ(A′).
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Intuitively, the defined equality on atomic agents is an equivalence relation.

Notation 2.10 We use the symbol A to denote the universe of all possible atomic

agents.

Atomic agents are usually used to express small biological entities which can

change their state, for example, amino acids, small inorganic molecules, etc. Ex-

amples of atomic agents are A1 = (S, u), written as S{u}, and A2 = (Q, ε), written

as Q{ε}. Note the meaning of ε is the state is unknown or not important to be

considered in a given context.

Definition 2.11 (Compatibility of atomic agents) Let A1, A2 be atomic agents.

The agent A1 is compatible with agent A2, written A1 � A2, if either A1 = A2 or

η(A1) = η(A2) ∧ δ(A1) = ε.

Compatibility of atomic agents is a key property defined between agents. An

agent is compatible with anothet agent if they have the same name and they are in

the same state or the first agent is in the unknown state. It provides a formal way

to compare which agent is more detailed, i.e. its state is more specified.

Definition 2.12 (Fully specified atomic agent) Let A ∈ A be an atomic agent. We

say the agent A is fully specified, written 
A, iff ∀A′ ∈ A such that A′ �= A : ¬(A′�A).

2.2.3 Structure agent

Definition 2.13 (Structure agent) We define a structure agent T as a pair (η, γ)

where η ∈ NT is a name and γ ⊆ A is a set of atomic agents called partial compo-

sition such that ∀A, A′ ∈ γ : η(A) �= η(A′). The name and the partial composition of

the agent T is usually denoted by η(T) and γ(A), respectively.

A structure agent represents a biochemical object that is composed of several

known atomic agents while we know that a composition is abstract and not necessar-

ily complete. To incorporate this kind of abstraction into our language, a structure

agent is defined to be labelled with a unique name and a set of atomic agents. This

set is restricted according to the given structure signature with the same name as

the structure agent.

Definition 2.14 (Equality relation of structure agents) Let T, T′ be structure agents.
T is equal to T′, written T = T′, iff η(T) = η(T′) ∧ γ(T) = γ(T′).

Intuitively, the defined equality on structure agents is an equivalence relation.

The key construct of a structure agent is partial composition defined as a set of

atomic agents which are considered to be relevant parts of the structure agent. We

allow this set to be empty with the meaning of a biological structure for which we

do not know its composition.

Notation 2.15 We use symbol T to denote the universe of all possible structure

agents.
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A typical example of a structure agent is a protein where the atomic agents

are amino acids that are of interest in the particular setting. Imagine that in our

modelled system only three out of a few hundred amino acids are able to undergo

some post-translational modifications, such as phosphorylation, metylation etc. It

is suitable to model only these three amino acids instead of entire primary structure

of the protein. Examples of structure agent are T1 = (K, {(S, p), (Q, i)}), written
as K(S{p}, Q{i}), and T2 = (K, {(Q, a)}), written as K(Q{a}).

We define difference on the level of partial compositions of structure agents,

which is necessary for definition of semantics below.

Definition 2.16 (Difference of partial compositions) Let γ, γ′ be partial composi-

tions. We define difference of partial compositions γ � γ′ = {A | A ∈ γ ∧ A �∈ γ ∩ γ′}
where γ ∩ γ′ = {A | A ∈ γ ∧ ∃A′ ∈ γ′ : η(A′) = η(A)}.
Definition 2.17 (Compatibility of structure agents) Let T1, T2 be structure agents.

The agent T1 is compatible with agent T2, written T1 � T2, iff either T1 = T2 or

η(T1) = η(T2) ∧ ∀A1 ∈ γ(T1) ∃A2 ∈ γ(T2) : A1 � A2.

Structure agents are compatible if it is possible to create pairs from atomic

agents of composition of the first agent with the second ones such that these atomic

agents are all unique. For such pairs, the agents in each pair must be compatible.

It provides a formal way to compare which agent is more specified, i.e. particular

states of atomic agents in partial composition are given or not.

Definition 2.18 (Fully specified structure agent) Let T ∈ T be a complex agent.

We say the agent T is fully specified, written 
T, iff ∀T′ ∈ T such that T′ �= T :

¬(T′ � T).

2.2.4 Complex agent

A complex agent represents a non-trivial composite biochemical object that is induc-

tively constructed from already known biological objects. In rule-based languages,

this is usually defined by introducing bonds between individual biochemical objects.

In BCSL we abstract from the detailed specification of bonds and we rather assume

a complex as a coexistence of certain objects in a particular group. Moreover, a

complex agent resides in a compartment which gives it a spatial position.

Definition 2.19 (Complex agent) We define a complex agent X as a pair (μ, com)

where μ ∈ (A∪T)n is a sequence of agents, com ∈ Nc is a compartment, and n ∈ N.

The sequence and the compartment of the agent X is usually denoted by μ(X) and

com(X), respectively.

The key element of a complex agent is sequence inductively constructed from

existing agents. In contrast to partial composition in structure agent, we allow

replication at the level of sequence (an agent of a certain name can appear more

than once in a sequence). The order in the sequence is necessary to uniquely identify

agents which are equal. On the other hand, when comparing two sequences, we do

it regardless the order.
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Definition 2.20 (Equality relation of complex agents) Let X, X′ be complex agents.

X is equal to X′, written X = X′, iff com(X) = com(X′) ∧ Ω(μ(X)) = Ω(μ(X′)).

Intuitively, the defined equality on complex agents is an equivalence relation.

Example of a complex agent is X =
(
((K, {(S, p), (Q, i)}), (S, p)), cell), written as

K(S{p}, Q{i}).S{p} :: cell.

Notation 2.21 We use the symbol X to denote the universe of all possible complex

agents.

The complex agents encapsulate other agents – an atomic or a structure agent

cannot exist on its own (the case when only one item is in its sequence can occur).

This guarantees each atomic and structure agent has indirectly given spatial location

– the compartment.

Definition 2.22 (Compatibility of complex agents) Let X1, X2 be complex agents.

The complex agent X1 is compatible with complex agent X2, written X1�X2, iff either

X1 = X2 or com(X1) = com(X2) ∧ ∃μ′ ∈ σ(μ(X2)) such that ∀i ∈ [1, n] : μi(X) � μ′
i,

where n is length of sequence which is the same for both sequences.

Complex agents are compatible if there exists a permutation of the sequence of

the first agent such that individual agents on the same position in both sequences

are compatible. It provides a formal way to compare which agent is more specified.

Definition 2.23 (Fully specified complex agent) Let X ∈ X be a complex agent. We

say the agent X is fully specified, written 
X, iff ∀X′ ∈ X such that X′ �= X : ¬(X′�X).

It worth noting that the complexes have no binding topology. While it provides

many advantages, specifically when it comes to combinatorial explosion, it also has

several drawbacks. The most important one is that we are not able to express

structural modifications on the level of complexes. These have to be encoded using

states.

2.2.5 Rule

Let us have a simple example of a rule:

K(S{u}).B(∅) :: cyt ⇒ K(S{p}) :: cyt+B(∅) :: cyt.

This rule dissociates a complex of K and B (both structure agents) to two separate

agents while the structure agent K is changing the state of its atomic agent S from u

to p. In order to describe the rule formally, we need to capture the relation between

so-called left-hand side (the part before ⇒ symbol) and right-hand side (the part

after ⇒ symbol). It is achieved by indexing the individual positions in the rule and

creating index maps between them.

Definition 2.24 (Rule) We define a rule R as a quintuple (χ, ω, ι, ϕ, ψ) where:

• χ ∈ Xn is a sequence of complex agents,

• ω ∈ (A ∪T)m is a sequence of atomic and structure agents,
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• ι ∈ {0, . . . , n} is an index determining the end of the left-hand side (LHS ) of

χ,

• ϕ ∈ N
m is an index map from ω to χ,

• ψ ∈ (({−} ∪ N)2)n is an index map from LHS to RHS

where n,m ∈ N, LHS = (χ1, . . . , χι) is the left-hand side, and RHS = (χι+1, . . . , χn)

is the right-hand side.

The reason for this particular definition is that it is necessary to capture the

relationship between the left-hand side and the right-hand side of the rule. This is

done by enumerating all atomic and structure agents ω from sequence of complex

agents χ. The index map ψ between the agents in ω determines pairs of agents

from the left-hand side and the right-hand side which correspond to each other.

It is possible that there are agents which do not have a pair (denoted by −) in

the situation when the rule is modelling inflow from (resp. outflow to) the system.

Another index map ϕ serves for relating agents from ω back to the original sequence

of complexes χ. Finally, by index ι we determine the end of the left-hand side of

the rule. Note the index is zero in the situation when there are no agents on the

left-hand side.

Notation 2.25 We use symbol R to denote the universe of all possible rules.

Example of a rule is R = (χ, ω, ι, ϕ, ψ) where:
• χ =⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(
((K, {(S, u)}), (B, ∅)), cyt),(

((C, ∅), (D, i)), cyt
)
,(

((A, ε)), cyt
)
,(

((K, {(S, p)}), (B, ∅), (C, ∅)), cyt),(
((D, a), (A, ε)), cyt

)
,(

((H,u)), cyt
)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

• ω =⎡⎢⎢⎢⎣
(K, {(S, u)}), (B, ∅), (C, ∅),
(D, i), (A, ε), (K, {(S, p)}),

(B, ∅), (C, ∅), (D, a), (A, ε), (H,u)

⎤⎥⎥⎥⎦
• ι = 3

• ϕ = (2, 4, 5, 8, 10, 11)

• ψ =

[(1, 6); (2, 7); (3, 8); (4, 9); (5, 10); (−, 11)]
written as:

K(S{u}).B(∅) :: cyt+ C(∅).D{i} :: cyt+A{ε} :: cyt ⇒ K(S{p}).B(∅).C(∅) :: cyt+D{a}.A{ε} ::

cyt+H{u} :: cyt

Not every rule makes sense. For example, a rule where not a single agent is

changed or a rule where the relation between the left-hand and the right-hand side

would not be clear. In order to avoid such cases we need to specify when a rule is

well-formed, i.e. it makes sense semantically.

Definition 2.26 (Well-formed rule) Let R be a rule and i, j ∈ N. We say the rule

R = (χ, ω, ι, ϕ, ψ) is well-formed if all the following conditions hold:

(i) at least one of conditions holds:

(a) ∃(i, j) ∈ ψ : ωi �= ωj ,

(b) |LHS (R)| �= |RHS (R)|,
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(c) ∃i ∈ [1, ι] : com(χi) �= com(χι+i);

(ii) ∀(i, j) ∈ ψ : η(ωi) = η(ωj);

(iii) ∀(−, i) ∈ ψ : 
ωi.

A rule is well-formed if it holds conditions given in Definition 2.26. The condi-

tions basically claim that an agent has to change during the rule application. This is

ensured by condition (i), where there are three options: (a) at least one pair of agents

from LHS and RHS of the rule is different; (b) the lengths of the LHS and RHS

are different, i.e. either a new agent is created or complex is formed/dissociated;

(c) a compartment is changed. Any combination of these sub-conditions is allowed.

The second condition (ii) guarantees that the pairs of structure and atomic agents

in ω of the rule have the same name. Please note the conditions (i) and (ii) do

not apply to those agents in ω which do not have a pair on the other side of the

rule. Finally, the condition (iii) claims that if there is an agent which does not have

defined a pair via index map ψ (denoted by −), it is required to be a fully specified

agent (but only in case of agent creation, it is not necessary for agent degradation).

2.3 Syntax

In this section, we define the syntax for the language, i.e. how we usually write it

in order to make the notation easily writeable and readable. It corresponds to the

examples given while defining agents and rules above.

Definition 2.27 (Grammar)

Atomic expressionStructure expression Complex expression

α ::= η{s} | η{ε} τ ::= η(γ) | η(∅) Γ ::= β1 . . . . . βk :: c

η ::= n ∈ NA γ ::= α1, . . . , αk βi ::= α | τ
s ::= n ∈ Nδ η ::= n ∈ NT c ::= n ∈ Nc

Rule expression � ::= Γ1 + . . .+ Γn ⇒ Γn+1 + . . .+ Γm

where m,n ∈ N0 ∧m > n and k ∈ N.

2.4 Translation function

Once we defined BCSL agents and rules and syntax for the language, we need to

connect them in order to give semantic meaning to a model written in the syntax.

For this purpose, we define translation function F (Definition 2.28). It is defined

recursively according to the expression given as an argument.
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Definition 2.28 (Translation function) We define translation function F according

to the expression given in double square brackets � . . . � as follows:

F� η{ε} � = (η, ε) ∈ A

F� η{s} � = (η, s) ∈ A

F� η(∅) � = (η, ∅) ∈ T

F� η(a1, . . . , ak) � =
(
η, { F�a1�, . . . , F�ak� }) ∈ T

F� α1 . . . . . αk :: c � =
(
(F� α1 �, . . . , F� αk �), c

) ∈ X

F� Γ1 + . . .+ Γn ⇒ Γn+1 + . . .+ Γm � = (χ, ω, ι, ϕ, ψ) ∈ R such that:

• χ =
(
F� Γ1 �, . . . , F� Γn �, F� Γn+1 �, . . . , F� Γm �

)
,

• ω = ++
|χ|
i=1μ(χi),

• ι = n,

• ϕ = (J1, . . . , Jm) where Jk =
k∑

i=1
|μ(χi)|,

•

ψ =

⎧⎪⎨⎪⎩
{ (i, j) | i ∈ [1, ϕι] ∧ j ∈ [ϕι + 1, |ω|] ∧ |i− j| = ϕι } ∪
{ (i,−) | i ∈ [k, ϕι] ∧ k = |ω| − ϕι + 1 | } ∪
{ (−, j) | j ∈ [k, |ω|] ∧ k = 2× ϕι + 1 }

where ψ is defined together with an ordering such that symbol ′−′ > k for

every k ∈ N and all descending intervals in definition of ψ are ignored.

Note that the translation function works only on expressions defined in Defini-

tion 2.27. The function recursively creates objects from given expressions. Every

rule expression is first decomposed to LHS and RHS, and consequently each agent

expression is translated to an object. The appropriate index maps are created from

sequence of complexes χ and sequence of atomic and structure agents ω.

2.5 BCSL model

We proceed to the BCSL model definition. We always consider an initialised model,

which means the definition contains an initial state of the system (a solution, Defi-

nition 2.29). The definition of BCSL model also contains rules and signatures.

Definition 2.29 (Solution) Solution is a multiset S ∈ ΩX such that A is the

reference set of S and ∀X ∈ A : 
X.

Definition 2.30 (BCSL model) We define BCSL model M as a quadruple (R,ΣA,ΣT,S)
where R is a set of rules, ΣA is an atomic signature, ΣT is a structure signature, and

S is an initial solution.

A BCSL model is formed by a set of rules R, which define the behaviour of

the model. The initial solution S defines the state of the model in the beginning.
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Atomic signature ΣA defines allowed states for all atomic agents used in the rules.

Finally, structure signature ΣT defines allowed atomic agents for all structure agents

used in the rules.

2.6 Matching

At this point, we define matching, which will be used in the definition of semantics

for a BCSL model M.

Definition 2.31 (Matching) Let R = (χ, ω, ι, ϕ, ψ), r = (χ′, ω′, ι′, ϕ′, ψ′) be two

rules, S ∈ ΩX be a solution, and i, j ∈ N. Let |= ⊆ R × ΩX × R be the matching

relation such that a tuple (R,S, r) ∈ |=, written R |=r S, iff
(i) ι = ι′ ∧ ϕ = ϕ′ ∧ ψ = ψ′,

(ii) |χ| = |χ′| ∧ |ω| = |ω′|,
(iii) ∀i ∈ [1, |χ|] : χ′

i � χi,

(iv) Ω(LHS (r)) = S,
(v) ∀(i, j) ∈ ψ :

(a) ωi ∈ A ⇒
{
ω′
i = ω′

j if ωi = ωj

ωi = ω′
i ∧ ωj = ω′

j if ωi �= ωj

(b) ωi ∈ T ⇒ γ(ω′
i)� γ(ωi) = γ(ω′

j)� γ(ωj).

Remark 2.32 Note the rule r from the tuple (R,S, r) ∈ |= is so-called reaction,

which is characterised as an instance of the rule R. For every rule in a model, it

is possible to enumerate all potential reactions and this way convert a rule-based

model to a reaction-based model.

2.7 Semantics

Definition 2.33 (Replacement) Let → ⊆ ΩX×R×ΩX be the replacement relation

s.t. a tuple (S, R,S ′) ∈ →, written S →R S ′, iff ∃r ∈ R ∃x ⊆ S such that R |=r

x ∧ S ′ \ (S \ x) = Ω(RHS (r)).

Replacement relation defines how a solution is transformed according to a given

rule. For a BCSL model M, rules yield a labelled transition system LTS(M)

between solutions containing an edge S →R S ′. Note that we can achieve the

equivalent behaviour if we first generate all possible reactions from the rules and

apply replacement with them instead (a rule is just a generalised set of reactions).

3 Syntactic extensions

In this section, we define several syntactic extensions which increase the readability

of the rule expressions. Note that each rule expression in an extended form can

always be translated to basic form defined above (Section 2.3). All rule expressions

containing the following extensions must be converted to basic form before the

semantics can be applied. For better demonstration, we provide a running example,
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which will go through all syntactic extensions (Running example 3.1). Please note

there is no biological sense of the example model, its only purpose is to effectively

demonstrate all defined syntactic extensions.

Running example 3.1 (The example model M)

(i) KaiC(S{u}, T{ε}).KaiC(S{ε}, T{ε}).KaiC(S{ε}, T{ε}) :: cyt ⇒
⇒ KaiC(S{p}, T{ε}).KaiC(S{ε}, T{ε}).KaiC(S{ε}, T{ε}) :: cyt

(ii) KaiC(S{u}, T{ε}).KaiB(∅) :: cyt ⇒ KaiC(S{p}, T{ε}).KaiB(∅) :: cyt

(iii) KaiC(S{ε}, T{ε}) :: cyt+KaiC(S{ε}, T{ε}) :: cyt+KaiC(S{ε}, T{ε}) :: cyt ⇒
⇒ KaiC(S{ε}, T{ε}).KaiC(S{ε}, T{ε}).KaiC(S{ε}, T{ε}) :: cyt

(iv) KaiC(S{ε}, T{ε}).KaiC(S{ε}, T{ε}).KaiC(S{ε}, T{ε}) :: cyt ⇒
⇒ KaiC(S{ε}, T{ε}) :: cyt+KaiC(S{ε}, T{ε}) :: cyt+KaiC(S{ε}, T{ε}) ::

cyt

ΣA =
{
S → {u, p}, T → {a, i} }

ΣT =
{
KaiC → {S, T},KaiB → ∅ }

We omit the initial state definition just for simplicity of the example since all the

extensions concern only rule expressions.

3.1 Partial composition context elimination

It is possible to omit all atomic expressions with unspecified state ε from partial

compositions of structure agents (Running example 3.2). Such agent expressions

do not give any additional information and whole partial composition can be recon-

structed from the given signature.

Running example 3.2 (The example model M)

(i) KaiC(S{u}).KaiC(∅).KaiC(∅) :: cyt ⇒ KaiC(S{p}).KaiC(∅).KaiC(∅) ::

cyt

(ii) KaiC(S{u}).KaiB(∅) :: cyt ⇒ KaiC(S{p}).KaiB(∅) :: cyt

(iii) KaiC(∅) :: cyt+KaiC(∅) :: cyt+KaiC(∅) :: cyt

⇒ KaiC(∅).KaiC(∅).KaiC(∅) :: cyt

(iv) KaiC(∅).KaiC(∅).KaiC(∅) :: cyt ⇒ KaiC(∅) :: cyt + KaiC(∅) :: cyt +

KaiC(∅) :: cyt

Additionally, this extension can go even further by omitting the (∅) part from

structure agents completely (Running example 3.3). Since we have the structure

signature ΣT defined, we can unambiguously determine which names belong to struc-

ture agents and this syntactic part can be easily reconstructed.

Running example 3.3 (The example model M)

(i) KaiC(S{u}).KaiC.KaiC :: cyt ⇒ KaiC(S{p}).KaiC.KaiC :: cyt

(ii) KaiC(S{u}).KaiB :: cyt ⇒ KaiC(S{p}).KaiB :: cyt

(iii) KaiC :: cyt+KaiC :: cyt+KaiC :: cyt ⇒ KaiC.KaiC.KaiC :: cyt
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(iv) KaiC.KaiC.KaiC :: cyt ⇒ KaiC :: cyt+KaiC :: cyt+KaiC :: cyt

This syntactic extension brings a lot of readability to the syntax while preserving

all information in the context of the model M.

3.2 Complex signature

We extend the model definition by complex signature ΣX (Running example 3.4).

In this signature, there are defined aliases for valid complex expressions. Then, the

original complex expressions are substituted by the aliases.

Running example 3.4 (The example model M)

Definition of complex signature ΣX =

⎧⎨⎩ KaiC3 :: cyt → KaiC.KaiC.KaiC :: cyt,

KaiBC :: cyt → KaiC.KaiB :: cyt

⎫⎬⎭
(i) KaiC(S{u}).KaiC.KaiC :: cyt ⇒ KaiC(S{p}).KaiC.KaiC :: cyt

(ii) KaiC(S{u}).KaiB :: cyt ⇒ KaiC(S{p}).KaiB :: cyt

(iii) KaiC :: cyt+KaiC :: cyt+KaiC :: cyt ⇒ KaiC3 :: cyt

(iv) KaiC3 :: cyt ⇒ KaiC :: cyt+KaiC :: cyt+KaiC :: cyt

The usage of the complex signature has its limitations. Once a context is spec-

ified, the alias cannot be used. We will resolve this problem in the following exten-

sions.

3.3 Directions

We allow rule expressions to be bi-directional – it is just a shortcut for two rule

expressions and it can be converted to the basic rule expression form. A rule

expression � : l ⇔ r can be written as two rule expressions �1 : l ⇒ r and

�2 : r ⇒ l (Running example 3.5).

Running example 3.5 (The example model M)

(i) KaiC(S{u}).KaiC.KaiC :: cyt ⇒ KaiC(S{p}).KaiC.KaiC :: cyt

(ii) KaiC(S{u}).KaiB :: cyt ⇒ KaiC(S{p}).KaiB :: cyt

(iii) KaiC :: cyt+KaiC :: cyt+KaiC :: cyt ⇔ KaiC3 :: cyt

Definition of rules (iii) and (iv) from Running example 3.4 was replaced by one

bi-directional rule (iii) in Running example 3.5.

3.4 Stoichiometry

For a rule expression of form:

β1 :: c+ β2 :: c+ . . .+ βn :: c ⇒ β1.β2. . . . .βn :: c

we can reorder both sides such that we get non-crossing partition P = B1/B2/ . . . /Bk
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with k ≤ n from its indices [1, . . . , n] such that: ∀B ∈ P ∀β, β′ ∈ B : β = β′ and
∀B,B′ ∈ P ∀β ∈ B ∀β′ ∈ B′ : β �= β′ such that B �= B′.

For the left-hand side β1 :: c+β2 :: c+. . .+βn :: c of the reordered rule expression

we can replace all rule expressions [βi, . . . , βj ] which belong to the same non-crossing

partition B by notation ‘k β′, where β is a representative from βi, . . . , βj (they are

all equivalent) and k is the number of the expressions in partition B (Running

example 3.6). Note that this process is fully reversible – we can simply enumerate

all expressions for each partition.

Running example 3.6 (The example model M)

Definition of rule expressions:

(i) KaiC(S{u}).KaiC.KaiC :: cyt ⇒ KaiC(S{p}).KaiC.KaiC :: cyt

(ii) KaiC(S{u}).KaiB :: cyt ⇒ KaiC(S{p}).KaiB :: cyt

(iii) 3 KaiC :: cyt ⇔ KaiC3 :: cyt

Definition of rule expression (iii) from Running example 3.5 was replaced by a new

rule expression using stoichiometry.

3.5 Locations

The localisation operator is intended for allowing an alternative way of expressing

the hierarchically constructed agent expressions (Running example 3.8). The main

idea is to allow zooming into individual parts of complex and structure expressions.

For this purpose, we use a :: b notation such that a, b are arbitrary agents which

satisfy one of the conditions given in Definition 3.7.

Definition 3.7 (Location conditions)

(i) A :: T ⇔ there exists A′ ∈ γ(T) such that A� A′,

(ii) A :: X ⇔ there exists A′ ∈ μ(X) such that A� A′,

(iii) T :: X ⇔ there exists T′ ∈ μ(X) such that T� T′.

For each pair of agents (α, β) with allowed ‘::’ operator between them, we can

construct just one agent β′ without the operator by taking the most left agent α′

from full (resp. partial) composition of the agent β such that it is compatible with

the agent α. Then, agent α′ is merged with agent α and agent β′ is constructed.

Running example 3.8 (The example model M)

(i) S{u} :: KaiC :: KaiC3 :: cyt ⇒ S{p} :: KaiC :: KaiC3 :: cyt

(ii) S{u} :: KaiC :: KaiBC :: cyt ⇒ S{p} :: KaiC :: KaiBC :: cyt

(iii) 3 KaiC :: cyt ⇔ KaiC3 :: cyt

Definition of rule expressions (i) and (ii) from Running example 3.6 was replaced

using locations. The localisation operator allowed us to additionally use the complex

signatures.
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3.6 Variables

Rule expressions (i) and (ii) from Running example 3.8 are very similar except for

the context of complex expression they take place in. We can substitute this context

with a variable with a given domain.

In a rule expression, one agent expression might be referenced using a variable

as a set of rule agent expressions it can be replaced with (Running example 3.9).

Such an agent expression is referenced as ?X. Moreover, in the case when a ?X is

used in a location, it must hold conditions from Definition 3.7.

Each rule expression associated with a variable can be easily written as several

rule expressions where the variable is replaced with agent expression from the set

of agent expressions attached to the variable. For simplicity, only one variable can

be used per rule expression.

Running example 3.9 (The example model M)

(i) S{u} :: KaiC :: ?X :: cyt ⇒ S{p} :: KaiC :: ?X :: cyt ; ?X = {KaiC3,KaiBC}
(ii) 3 KaiC :: cyt ⇔ KaiC3 :: cyt

Definition of rule expressions (i) and (ii) from Running example 3.8 was replaced

as a single rule expression with a variable.

This is the final syntactic extension. Compared to the original model (Running

example 3.1), the resulting model is more concise and readable.

4 Static analysis

The BCS language offers interesting capabilities to provide several static analysis

techniques of given models. These techniques are based on defined compatibility

operator �, which formulates suitable properties for each type of agent.

Definition 4.1 (Ordering of agents) Let x1, x2 be two arbitrary agents. The com-

patibility relation induces partial ordering of agents x1 and x2, written x1 ≤ x2, iff

x1 � x2.

Notation 4.2 The universe of complex agents X with partial order ≤ is a partially

ordered set X≤.

The compatibility operator defines a partial order on A,T, and X sets. For our

purposes, only partially ordered set X≤ is relevant. The reason is that complex

agents actually encapsulate all the other agent types. However, partial order of the

entire universe of complex agents is not very useful, since most of the agents cannot

be compared by compatibility operator. We are interested in particular subsets

where every two complex agents can be either compared directly or there exists an

agent compatible with both of them.

Definition 4.3 (Compatible set) A finite set X ⊆ X is a compatible set if:

(i) ∀X1, X2 ∈ X ∃X′ ∈ X : X1 � X′ ∧ X2 � X′,
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(ii) and for each finite set X ′ ⊆ X such that X ∩ X ′ = ∅ holds: ∀X ∈ X ∀X′ ∈ X ′ :
¬(X� X′ ∨ X′ � X).

Remark 4.4 The compatible set X inherits partial order ofX≤ since it is its subset.

A compatible set X contains partially ordered complex agents such that they all

have the same sequences in terms of agent names. Example of a compatible set is

given in Figure 2.

Fig. 2. An example of a compatible set X . The set is formed by a complex in cyt compartment, which has
only one structure agent K in its sequence. The structure agent K has allowed atomic agents T and S in
its partial composition. These two atomic agents might occur in two states – u and p. The set is complete
– there are all relevant agents bounded by compatibility operator.

Lemma 4.5 In every compatible set X , there always exists a global supremum

sup(X ).

Proof. The lemma follows from Definition 4.3 condition (i) which claims that there

is a supremum (in terms of compatibility) for every two complex agents in the com-

patible set X . Since there exists a supremum for every two items in the set and the

set is finite, there must exist a global supremum for the entire set. �

Lemma 4.6 For every complex agent X there exists exactly one compatible set X ⊆
X such that X ∈ X .

Proof. Let us assume a complex agent X belongs to two compatible sets, namely

X ∈ X1,X2. From Definition 4.3 condition (i) follows that there exists a X1 ∈ X1

such that X� X1.

Next, the condition (ii) claims that no complex agent from X1 and no complex

agent from X2 can be compatible. Namely, X1 ∈ X1 cannot be compatible with

X ∈ X2. However, X and X1 are compatible (X � X1). It follows X �∈ X2, which is a

contradiction. �

In practise, compatible sets can be used for finding non-trivial relationships

between the rules (Section 4.1) and for static analysis on the level of complexes

(Section 4.2).

Definition 4.7 (Compatible subset) Let X ⊆ X be a compatible set and X ∈ X a

complex agent. A setX ⊆ X is called compatible subset of X w.r.t. X if the following

conditions hold:

(i) ∀X′ ∈X : X′ � X ∧
X′,
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(ii) � ∃X′′ ∈ X \X : X′′ � X ∧
X′′.

Compatible subset formally defines all fully specified agents from the compatible

set which are compatible with a given member of the set (i.e. there are no compatible

agents with them in the set). Note that for any complex agent X there exists just

one compatible subset. The reason follows from Lemma 4.6 and Definition 4.7.

4.1 Rule redundancy elimination

There might be cases where there are redundant rules in a model (Definition 4.8).

These rules do not cause any semantic difference, only increase the size of the model.

We provide a static method how to detect such rules and eventually delete them

from the model. Please note the redundancy is relevant only in the qualitative

context. In the quantitative context, the same rules with different kinetics might

have their relevance, yet it is still useful to detect potential redundancies.

Definition 4.8 (Redundant rule) Let M1 = (R∪{R},ΣA,ΣT,S) and M2 = (R,ΣA,

ΣT,S) be BCSL models where R is a rule such that R �∈ R. The rule R is redundant

if LTS(M1) = LTS(M2).

The redundant rule R does not add any semantic information to the model. It

generally means the LTSs produced from the models with and without the rule are

equal.

Theorem 4.9 Let R = (χ, ω, ι, ϕ, ψ) and R′ = (χ′, ω′, ι′, ϕ′, ψ′) be two rules such

that |χ| = |χ′| = n for some n ∈ N. The rule R′ is redundant if ∀i ∈ [1, n] : χ′
i � χi.

Proof. The problem whether the elimination of a redundant rule preserves seman-

tics can be reduced to a simple question – if it holds for a single pair of complex

agents for a position k in the appropriate rules, then it generally holds for entire

rule, because the condition of redundancy holds for each pair of complexes indepen-

dently.

Assume the complex agents Xk and X′k both belong to the same compatible set

X since Xk � X′k, which follows from the condition of the theorem. We can create

subsets X , X ′ ⊆ X for both complex agents respectively (Definition 4.7). Since the

agents are compatible (Xk � X′k), the compatible subset X w.r.t. agent Xk is subset

of the compatible subset X ′ w.r.t. agent X′k ( X ⊆ X ′).
Applied generally on the entire rule, the produced set of reactions (using matching

relation – Definition 2.31) from the redundant rule is actually a subset of reactions

produced from the non-redundant rule. �

In the proof, we used compatible sets of complex agents and the fact that we

can generate reactions from the rules, while we are actually enumerating all agents

from the compatible set which are compatible with original agent in the rule. This

is demonstrated in Example 4.10.

Example 4.10 Redundant rule. Let us consider two rules:
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(i) K(S{u}).K :: cell ⇒ K(S{p}).K :: cell

(ii) K(S{u}, T{i}).K :: cell ⇒
K(S{p}, T{i}).K :: cell

Considering structure signature ΣT(K) = {S, T} and atomic signatures ΣA(S) =

{u, p} and ΣA(T ) = {a, i}, the rule (i) produces following set of eight reactions:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

K(S{u}, T{a}).K(S{u}, T{a}) :: cell ⇒ K(S{p}, T{a}).K(S{u}, T{a}) :: cell,
K(S{u}, T{a}).K(S{u}, T{i}) :: cell ⇒ K(S{p}, T{a}).K(S{u}, T{i}) :: cell,
K(S{u}, T{a}).K(S{p}, T{a}) :: cell ⇒ K(S{p}, T{a}).K(S{p}, T{a}) :: cell,
K(S{u}, T{a}).K(S{p}, T{i}) :: cell ⇒ K(S{p}, T{a}).K(S{p}, T{i}) :: cell,
K(S{u}, T{i}).K(S{u}, T{a}) :: cell ⇒ K(S{p}, T{i}).K(S{u}, T{a}) :: cell,
K(S{u}, T{i}).K(S{u}, T{i}) :: cell ⇒ K(S{p}, T{i}).K(S{u}, T{i}) :: cell,
K(S{u}, T{i}).K(S{p}, T{a}) :: cell ⇒ K(S{p}, T{i}).K(S{p}, T{a}) :: cell,
K(S{u}, T{i}).K(S{p}, T{i}) :: cell ⇒ K(S{p}, T{i}).K(S{p}, T{i}) :: cell

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
while the rule (ii) produces set of four reactions:

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

K(S{u}, T{i}).K(S{u}, T{a}) :: cell ⇒ K(S{p}, T{i}).K(S{u}, T{a}) :: cell,
K(S{u}, T{i}).K(S{u}, T{i}) :: cell ⇒ K(S{p}, T{i}).K(S{u}, T{i}) :: cell,
K(S{u}, T{i}).K(S{p}, T{a}) :: cell ⇒ K(S{p}, T{i}).K(S{p}, T{a}) :: cell,
K(S{u}, T{i}).K(S{p}, T{i}) :: cell ⇒ K(S{p}, T{i}).K(S{p}, T{i}) :: cell

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
which is a subset of the previous one. It follows the rule (ii) is redundant.

4.2 Context-based reduction

There might be cases when simplifying some details of the given BCSL model pre-

serves some properties while making the analysis of the model simpler. This is

particularly the case of dynamic analysis, where a minor change in the model speci-

fication can dramatically affect the behaviour. To address the model simplification,

we first define a function that simplifies rules and then define the notion of a reduced

model and show what kind of information does it preserve.

Definition 4.11 (Rule reduction) Let R = (χ, ω, ι, ϕ, ψ) be a rule. We define a

reduced rule R′ = (χ′, ω′, ι′, ϕ′, ψ′) as a function θ(R) such that ∀i ∈ [1, k] : χ′
i =

sup(X ) where X is a compatible set such that χi ∈ X , length k = |χ′| = |χ| (i.e.
the number of complex agents in both rules is the same), and ι = ι′.

Definition 4.12 (Reduced model) Let M = (R,ΣA,ΣT,S) be an initial BCSL

model. We define reduced model M̃ = (R̃,ΣA,ΣT, I) such that the following condi-

tions hold:
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(i) for every rule R ∈ R, θ(R) ∈ R̃ and every rule in the reduced model is the

image by θ of a rule of the initial model;

(ii) for every complex agent X ∈ S, sup(X ) ∈ I where X is a compatible set such

that X ∈ X and every complex agent in the reduced model is the image by

sup(X ) of a complex agent of the initial model.

Reduced model M̃ is created from the given BCSL model by reducing the con-

text of complexes in the rules to the maximum level. This is achieved by taking

supremum from compatible set X . This procedure can produce some not well-

formed rules – such rules are omitted (Figure 3). Consequently, only rules cre-

ating/destroying agents and complex formation/dissociation should remain. Since

we are reducing context, the number of rules in the resulting model is equal to or

smaller than the number of rules in the initial model.

Fig. 3. Examples of rule reductions. (left) A rule of complex formation is reduced to a version where none
of the states is specified. (right) A rule of state change inside of a complex is reduced to a rule which is
not well-formed. It violates the condition (i) of Definition 2.26 – an agent has to change during the rule
application. Therefore it is removed from the reduced model.

Definition 4.13 (Compatibility of states) Let M be a BCSL model and s1, s2 two

states from its LTS. The state s1 is compatible with state s2, written s1 � s2, iff

there exists a bijective function f : s1 → s2 such that ∀X ∈ s1 : sup(X ) = f(X)

where X ⊆ X is a compatible set w.r.t. X.

Definition 4.14 (Over-approximation of LTS ) Let LTS(M), LTS(M′) be labelled
transition systems of some BCSL models M,M′. The LTS(M′) is an over-approxi-

mation of LTS(M) if for every path . . . s′1s′2s′3 . . . s′n . . . in LTS(M′) there exists a

path . . . s1s2s3 . . . sm . . . in LTS(M) such that ∀s′i, s′i+1 ∃sk, sl : (l > k ∧ sk � s′i ∧
sl � s′i+1).

A reduced model M̃ is actually an over-approximation of a BCSL model M in

the context of their LTSs (Definition 4.14). It can be used for some types of analyses

which avoid combinatorial explosion of the initial model M.

Theorem 4.15 Let X be a complex agent, X be a compatible set w.r.t. X, M be

a given BCSL model, and M̃ be an appropriate reduced model of model M. If

supremum sup(X ) is non-reachable in LTS(M̃), then agent X is also non-reachable

in the LTS(M).

Proof. Let us assume a complex agent sup(X ) is non-reachable in LTS(M̃), but

X ∈ X is reachable in LTS(M). Generally, there is a path formed from rules in
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the LTS(M) such that we transform complex agents from initial agents to desired

complex agent X. When we move to context of LTS(M̃), there is no such path for

sup(X ).

According to Definition 4.12, for every such rule there exists a reduced rule, such

that all interacting complexes are reduced to their suprema. Therefore, if we could

apply an initial rule on a complex agent, we can do the same with reduced rule

and its supremum. It follows there must exist such path also in LTS(M̃) and the

complex agent sup(X ) is reachable, which is a contradiction. �

When we are checking whether an agent is reachable in LTS(M) for given model

M, we might first check whether the respective abstract agent (the supremum) is

reachable in LTS(M̃) of the reduced model M̃. If this holds then we are still not

certain about reachability of the agent in its initial form. This has to be checked

in LTS(M). However, Theorem 4.15 states that agent which is not reachable in

LTS(M̃) is also not reachable in LTS(M). The usage of the theorem is demon-

strated in Section 5.

4.3 Static non-reachability analysis

Since we have defined the compatibility operator for agents, we can apply static

non-reachability analysis before enumerating the entire transition system of the

model M. We can use the fact that there has to exist a compatible agent on the

right-hand side of a rule with the desired agent in order to construct it eventually.

This analysis is independent of the initial state of the model. However, it is worth

noting that we do not consider the trivial case when the desired agent is already in

the initial state.

Theorem 4.16 Let M be a BCSL model and R its set of rules. Let X be a complex

agent. The complex agent X is non-reachable w.r.t. set of rules R if the following

holds: ∀ R ∈ R ∀i ∈ RHS (R) : ¬(χi � X), where R = (χ, ω, ι, ϕ, ψ).

Proof. Let us assume we have a path of states constructed by applying correspond-

ing rules from R where X is reachable. At some point on the path, we inevitably

have to create a complex agent X2 � X from a complex agent X1 applying a rule R.

It requires there has to be a complex agent X′2 in the rule which is compatible

with the complex agent X2. If there is no such agent, the agent X is non-reachable.�

Compared to dynamic non-reachability analysis, Theorem 4.16 completely avoids

any combinatorial explosion and gives an answer only by checking structural prop-

erties of rules. The usage of the theorem is demonstrated in Section 5.
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5 Case study

We want to demonstrate practical purposes of static analysis defined in this paper.

Yamada et al. model [28] is a model of fibroblast growth factor (FGF) signalling

pathway. The model represents a signalling pathway, which is typically a cascade of

signal transduction. It means that incorrect behaviour on a particular point in the

cascade will influence the rest of the pathway. The entire model written in BCSL

syntax consists of 20 types of agents interacting in 57 rules. Most of proteins can

undergo phosphorylation (state change from u to p on some amino acid residues).

We consider initial conditions such that there are all required agents in one or two

repetitions (in cases when there are required multiple agents to create complexes,

e.g. FGF ). In such case, the number of reachable states can grow up to 272, which

is too high to be effectively enumerated. In Figure 4, there is a fragment of the

model required for our purposes, the whole model is available in Appendix A.

For example, we want to check whether agent

FRS (Thr{u},Tyr{u}).FGF (Thr{u}).R.FGF (Thr{u}).R::cyt

is reachable for the given model. The agent is formed from FGF proteins which are

unphosphorylated (u) on threonine residues (Thr). With the traditional approach,

we have to enumerate entire transition system of the model and then use model

checking method to check it. In our case, we can check if it is non-reachable using

static reachability analysis (Theorem 4.16). The conclusion is that there is no

compatible agent on any right-hand side of the rules. It follows that the given

complex agent is non-reachable.

Demonstration of context-based reduction (Theorem 4.15) is provided on the

same model as in the previous case. We can compute with the entire model since we

will reduce its context to the minimum. Applying the reduction, there are created

16 bidirectional rules (Figure 5). The size of transition system has significantly

decreased – it has approximately six hundreds of states and two thousands of edges.

(i) FGF +R ⇔ FGF .R

(ii) 2 FGF .R ⇔ FGF .R.FGF .R

(iii) FGF (Thr{u}).R.FGF .R ⇔
FGF (Thr{p}).R.FGF .R

(iv) FRS (Thr{u}) +

FGF (Thr{p}).R.FGF (Thr{p}).R ⇒
⇒ FRS (Thr{u}).FGF (Thr{p}).R.FGF (Thr{p}).R

(v) FRS (Thr{u}).FGF .R.FGF .R ⇒
⇒

FRS (Thr{p}).FGF .R.FGF .R
...

Initial conditions:

2 FGF (Thr{u})
2 R

1 FRS (Thr{u}, T yr{u})
...

Fig. 4. A fragment of Yamada et al. model [28] of FGF signalling pathway written in BCSL. All agents
are residing in a cytosol cyt compartment, which are omitted for simplicity. The rule (iv) requires both
threonine residues (Thr) on FGF proteins to be phosphorylated (p). Basically, it is not possible to create
a complex from FRS and unphosphorylated (u) FGF proteins. Full model is available in Appendix A.
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For instance, we want check reachability of a complex agent

Raf (Thr{p}).ERK (Tyr{p}, Thr{p})::cyt
in the initial model. We can first check whether its corresponding least specified

agent Raf .ERK ::cyt is non-reachable in the reduced model. Since the transition

system of the model is relatively small, it can be quite easily checked using dynamical

model checking. The answer in this case is non-reachable, which means the original

agent in non-reachable too.

FGF + R ⇔ FGF .R

FGF .R + FGF .R ⇔ FGF .R.FGF .R

FGF .R.FGF .R + FRS ⇔ FGF .R.FGF .R.FRS

FRS + SHP ⇔ FRS .SHP

GS + GPP ⇔ GS .GPP

GS + ERK ⇔ GS .ERK

FRS + GS ⇔ FRS .GS

FRS .GS + Ras ⇔ FRS .GS .Ras

GAP + Ras ⇔ GAP .Ras

Ras + Raf ⇔ Ras.Raf

PP + Raf ⇔ PP .Raf

Raf + MEK ⇔ Raf .MEK

XPP + MEK ⇔ XPP .MEK

MEK + ERK ⇔ MEK .ERK

MKP + ERK ⇔ MKP .ERK

ERK + FRS ⇔ ERK .FRS

Fig. 5. Yamada et al. model [28] after context-based reduction was applied. All agents are residing in a
cytosol cyt compartment, which are omitted for simplicity. Original model is available in Appendix A.

6 Conclusions

We have presented the second generation of Biochemical Space Language, a novel

high-level language for the hierarchical description of biological structures and mech-

anistic description of chemical reactions by means of compact rules. With respect

to the previous prototype [8] the language fully utilises the specific view on the

biochemical structures and reactions and the level of abstraction is not lost by

translating the language into a low-level formalism not capable of maintaining a

hierarchy of object types at the adequate level of abstraction.

We have defined and consequently demonstrated on several case studies static

analysis techniques that are unique for the level of abstraction the language uses.

We have shown it is possible to detect redundant rules and answer some reachabil-

ity queries statically. The potential of the language provides the basis for further

static analysis that is enabled by the specific abstraction and rule-based approach.

Compared to low-level languages, we can take advantage of the hierarchy and rela-

tionships built among agents, as demonstrated in provided analysis techniques.

We are aware of necessity to deeply compare these defined relations with the

concepts of other formalisms. Our notion of compatible sets has a relation to or-

thogonal fragments in Kappa [11]. Despite the fact that on our level of abstraction

we do not have binding sites, the compatible sets can be seen as a simplified ver-

sion of orthogonal fragments operating only on the level of states. Similarly, the

reduction of models (and consequently reachability analysis) can be related to de-

contextualisation in Kappa [10]. The formulation of exact relationships is left for

the future work.

We are planning to extend the language by quantitative aspects such that we

enable simulations of the models. However, this is quite a challenging task since
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writing a rate of the rule requires to express how particular agents from the rule

participate in the rate while keeping the syntax readable and concise. We are also

developing the tool BCSgen that is able to maintain and analyse BCSL specifications

with its online version eBCSgen.
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A Web-based Platform for Systems Biology of Cyanobacteria, in: Computational Methods in Systems
Biology, LNBI 9859 (2016), pp. 316–322.

[28] Yamada, S., T. Taketomi and A. Yoshimura, Model Analysis of Difference Between EGF Pathway and
FGF Pathway, Biochemical and Biophysical Research Communications 314 (2004), pp. 1113–1120.

[29] Zhang, F. and M. Meier-Schellersheim, SBML Level 3 Package: Multistate, Multicomponent and
Multicompartment Species, Version 1, Release 1, Journal of Integrative Bioinformatics 15 (2018).

A Model Yamada et al. 2004

FGF :: cyt+R :: cyt ⇔ FGF .R :: cyt

2 FGF .R :: cyt ⇔ FGF .R.FGF .R :: cyt

FGF (Thr{u}).R.FGF .R :: cyt ⇔ FGF (Thr{p}).R.FGF .R :: cyt

FRS(Thr{u}).FGF .R.FGF .R :: cyt ⇒ FRS(Thr{p}).FGF .R.FGF .R :: cyt

FRS(Thr{p}).FGF .R.FGF .R :: cyt ⇒ FRS(Thr{p}) :: cyt+ FGF .R.FGF .R :: cyt

SHP :: cyt+ FRS(Thr{p}) :: cyt ⇒ SHP .FRS(Thr{p}) :: cyt
FRS(Thr{p}).SHP :: cyt ⇒ FRS(Thr{u}).SHP :: cyt

FRS(Thr{u}).SHP :: cyt ⇒ FRS(Thr{u}) :: cyt+ SHP :: cyt

GPP :: cyt+GS(Thr{p}) :: cyt ⇒ GPP .GS(Thr{p}) :: cyt
GS(Thr{p}).GPP :: cyt ⇒ GS(Thr{u}).GPP :: cyt

GS(Thr{u}).GPP :: cyt ⇒ GS(Thr{u}) :: cyt+GPP :: cyt

ERK (Tyr{p}, Thr{p}) :: cyt+GS(Thr{u}) :: cyt ⇒ ERK (Tyr{p}, Thr{p}).GS(Thr{u}) :: cyt
GS(Thr{u}).ERK :: cyt ⇒ GS(Thr{p}).ERK :: cyt

GS(Thr{p}).ERK :: cyt ⇒ GS(Thr{p}) :: cyt+ ERK :: cyt

FRS(Thr{p}, T yr{u}) :: cyt+GS(Thr{u}) :: cyt ⇔ FRS(Thr{p}, T yr{u}).GS(Thr{u}) :: cyt
Ras(Thr{u}).FRS .GS :: cyt ⇒ Ras(Thr{p}).FRS .GS :: cyt

Ras(Thr{p}).FRS .GS :: cyt ⇒ Ras(Thr{p}) :: cyt+ FRS .GS :: cyt

GAP :: cyt+ Ras(Thr{p}) :: cyt ⇒ GAP .Ras(Thr{p}) :: cyt
Ras(Thr{p}).GAP :: cyt ⇒ Ras(Thr{u}).GAP :: cyt

Ras(Thr{u}).GAP :: cyt ⇒ Ras(Thr{u}) :: cyt+GAP :: cyt

Ras(Thr{p}) :: cyt+ Raf (Thr{u}) :: cyt ⇒ Ras(Thr{p}).Raf (Thr{u}) :: cyt
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Raf (Thr{u}).Ras :: cyt ⇒ Raf (Thr{p}).Ras :: cyt

Raf (Thr{p}).Ras :: cyt ⇒ Raf (Thr{p}) :: cyt+ Ras :: cyt

PP :: cyt+ Raf (Thr{p}) :: cyt ⇒ PP .Raf (Thr{p}) :: cyt
Raf (Thr{p}).PP :: cyt ⇒ Raf (Thr{u}).PP :: cyt

Raf (Thr{u}).PP :: cyt ⇒ Raf (Thr{u}) :: cyt+ PP :: cyt

Raf (Thr{p}) :: cyt+MEK (Ser212{u}) :: cyt ⇒ Raf (Thr{p}).MEK (Ser212{u}) :: cyt
MEK (Ser212{u}).Raf :: cyt ⇒ MEK (Ser212{p}).Raf :: cyt

MEK (Ser212{p}).Raf :: cyt ⇒ MEK (Ser212{p}) :: cyt+ Raf :: cyt

Raf (Thr{p}) :: cyt+MEK (Ser298{u}) :: cyt ⇒ Raf (Thr{p}).MEK (Ser298{u}) :: cyt
MEK (Ser298{u}).Raf :: cyt ⇒ MEK (Ser298{p}).Raf :: cyt

MEK (Ser298{p}).Raf :: cyt ⇒ MEK (Ser298{p}) :: cyt+ Raf :: cyt

XPP :: cyt+MEK (Ser212{p}) :: cyt ⇒ XPP .MEK (Ser212{p}) :: cyt
MEK (Ser212{p}).XPP :: cyt ⇒ MEK (Ser212{u}).XPP :: cyt

MEK (Ser212{u}).XPP :: cyt ⇒ MEK (Ser212{u}) :: cyt+XPP :: cyt

XPP :: cyt+MEK (Ser298{p}) :: cyt ⇒ XPP .MEK (Ser298{p}) :: cyt
MEK (Ser298{p}).XPP :: cyt ⇒ MEK (Ser298{u}).XPP :: cyt

MEK (Ser298{u}).XPP :: cyt ⇒ MEK (Ser298{u}) :: cyt+XPP :: cyt

ERK (Thr{u}).MEK :: cyt ⇒ ERK (Thr{p}).MEK :: cyt

ERK (Thr{p}).MEK :: cyt ⇒ ERK (Thr{p}) :: cyt+MEK :: cyt

ERK (Tyr{u}).MEK :: cyt ⇒ ERK (Tyr{p}).MEK :: cyt

ERK (Tyr{p}).MEK :: cyt ⇒ ERK (Tyr{p}) :: cyt+MEK :: cyt

MKP :: cyt+ ERK (Thr{p}) :: cyt ⇒ MKP .ERK (Thr{p}) :: cyt
ERK (Thr{p}).MKP :: cyt ⇒ ERK (Thr{u}).MKP :: cyt

ERK (Thr{u}).MKP :: cyt ⇒ ERK (Thr{u}) :: cyt+MKP :: cyt

MKP :: cyt+ ERK (Tyr{p}) :: cyt ⇒ MKP .ERK (Tyr{p}) :: cyt
ERK (Tyr{p}).MKP :: cyt ⇒ ERK (Tyr{u}).MKP :: cyt

ERK (Tyr{u}).MKP :: cyt ⇒ ERK (Tyr{u}) :: cyt+MKP :: cyt

FRS(Tyr{u}).ERK :: cyt ⇒ FRS(Thr{u}, T yr{p}).ERK :: cyt

FRS(Thr{u}, T yr{p}).ERK :: cyt ⇒ FRS(Thr{u}, T yr{p}) :: cyt+ ERK :: cyt

FRS(Tyr{p}) :: cyt ⇒ FRS(Tyr{u}) :: cyt
ERK (Thr{u}) :: cyt + MEK (Ser212{p}, Ser298{p}) :: cyt ⇒

⇒ ERK (Thr{u}).MEK (Ser212{p}, Ser298{p}) :: cyt
Ras(Thr{u}) :: cyt + FRS(Thr{p}, T yr{u}).GS(Thr{u}) :: cyt ⇒

⇒ Ras(Thr{u}).FRS(Thr{p}, T yr{u}).GS(Thr{u}) :: cyt
FRS(Thr{u}) :: cyt + FGF (Thr{p}).R.FGF (Thr{p}).R :: cyt ⇒

⇒ FRS(Thr{u}).FGF (Thr{p}).R.FGF (Thr{p}).R :: cyt

ERK (Tyr{u}) :: cyt + MEK (Ser212{p}, Ser298{p}) :: cyt ⇒
⇒ ERK (Tyr{u}).MEK (Ser212{p}, Ser298{p}) :: cyt

FRS(Tyr{u}) :: cyt + ERK (Tyr{p}, Thr{p}) :: cyt ⇒
⇒ FRS(Tyr{u}).ERK (Tyr{p}, Thr{p}) :: cyt
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