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ABSTRACT: 

 

This study investigates the effectiveness of three datasets for the prediction of landslides in the Sajadrood catchment (Babol County, 

Mazandaran Province, Iran). The three datasets (D1, D2 and D3) are constructed based on fourteen conditioning factors (CFs) obtained 

from Digital Elevation Model (DEM) derivatives, topography maps, land use maps and geological maps. Precisely, D1 consists of all 

14 CFs namely altitude, slope, aspect, topographic wetness index (TWI), terrain roughness index (TRI), distance to fault, distance to 

stream, distance to road, total curvature, profile curvatures, plan curvature, land use, steam power index (SPI) and geology. D2, on the 

other hand, is a subset of D1, consisting of eight CFs. This reduction was achieved by exploiting the Variance Inflation Factor, Gini 

Importance Indices and Chi-Square factor optimization methods. Dataset D3 includes only selected factors derived from the DEM. 

Three supervised classification algorithms were trained for landslide prediction namely the Support Vector Machine (SVM), Logistic 

Regression (LR), and Artificial Neural Network (ANN). Experimental results indicate that D2 performed the best for landslide 

prediction with the SVM producing the best overall accuracy at 82.81%, followed by LR (81.71%) and ANN (80.18%). Extensive 

investigations on the results of factor optimization analysis indicate that the CFs distance to road, altitude, and geology were significant 

contributors to the prediction results. Land use map, slope, total-, plan-, and profile curvature and TRI, on the other hand, were deemed 

redundant. The analysis also revealed that sole reliance on Gini Indices could lead to inefficient optimization. 

 

 

1. INTRODUCTION 

Landslides are a type of natural disaster that can have detrimental 

effects on human livelihood, which includes the destruction of 

properties, undesirable changes to the environment as well as 

human casualties (Chen et al. 2018). The damages incurred 

interfere with many economic and social activities. Various 

factors can be linked to the cause of landslides, where many are 

beyond human control. These include melting of glaciers, 

excessive rainfall, mining activities, volcanic eruptions and 

earthquakes (Mousavi et al. 2011; Dou et al. 2015;) Therefore, 

the ability to predict landside occurrences is exceptionally vital, 

especially for disaster mitigation and management. It would also 

be beneficial if the contributing factors could be identified 

according to their importance, which would greatly facilitate and 

expound the benefit of landslide prediction.  

 

Topographical, geological, and hydrological datasets are active 

conditioning factors for landslide prediction, but each carries 

different levels of importance (Mahalingam et al. 2016; 

Afungang et al. 2017). The prioritization of such factors depends 

on the characteristics of the study area; hence there is no 

guideline for any particular factors selection/consideration (Chen 

et al. 2018).  

 
*  Corresponding author 

 

Dou et al. (2015) emphasized the effect of factors optimization 

prior to landslides susceptibility mapping in order to reduce noise 

and uncertainty. Concerning that, Afungang et al. (2017) 

optimized conditioning factors selection using the Information 

Value Model, where they ended up with the six factors that 

include slope, curvature, aspect, land use, geomorphology, and 

lithology, to map landslides prone areas. Mahalingam et al. 

(2016) investigated LiDAR-derived datasets to map landslide-

prone areas using six different machine learning models. Their 

results suggest that slope was the most crucial conditioning factor 

in all models, though the relative contribution of other factors 

varied across each model. Dou et al. (2015) investigated the 

optimal number and types of causative factors in statistical 

models. Their findings indicated that reducing 15 factors to 6 

critical factors (slope angle, slope aspect, drainage density, 

lithology, distance to geological boundary, and distance to faults) 

results in more accurate landslides predictions. In another study, 

Pradhan and Lee (2010) proposed an adaptive neuro-fuzzy 

inference system (ANFIS) to examine the importance of the eight 

landslide conditioning factors of altitude, slope, lithology, 

distance from road, distance from drainage, distance from fault, 

plan curvature and vegetation index or NDVI (study area: 

Cameron Highlands, Malaysia). The authors adopted an 

incremental strategy by beginning with four factors for landslide 

susceptibility mapping and then increasing the number of factors 
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one by one. Their results indicate that distance to fault was least 

influential and curvature was most influential for prediction, 

respectively. The drawback of this work however, is that they did 

not rank the importance of each factor before modelling. In a 

similar work by Sezer et al. (2011), they evaluated ANFIS by 

beginning with three factors and made their way up to 7 factors. 

The Receiver Operating Characteristic (ROC) from the first 

model increased from 67.38% to 98.52% in the 5th model. Again, 

the significance of each factor was not clearly elaborated. The 

authors, however, highlighted that plan curvature was the least 

important factor, while the lithology factor had increased the 

ROC up to 10%.  

 

It is quite apparent from the literature that researchers are striving 

to choose the best factors, along with the suitable modelling 

technique (Al-Najjar et al. 2019; Kalantar et al. 2019, Nguyen et 

al. 2019). The process of finding the optimal factor combination 

and appropriate modelling approach is crucial as different factor 

combinations and model selection can lead to different results. 

For instance, adding or removing conditioning factors can cause 

desirable (or undesirable) prediction accuracy values of the 

selected model (Kalantar et al. 2019). 

 

This study meant to investigate the same theme where we look at 

a total number of 14 landslide conditioning factors to determine 

the best combination that yields the best prediction. In particular, 

the Variance Inflation Factor (VIF), Gini importance, and Chi-

square were used to evaluate the effectiveness of the factors 

under consideration. Consequently, three datasets are created, 

i.e., D1, which includes all 14 conditioning factors; D2, which is 

a dataset (based on D1) that is reduced using factor analysis and 

importance; and D3 containing DEM derivatives (morphometrics 

factors). Different modelling techniques (i.e., supervised 

machine learning) were used namely Support Vector Machine 

(SVM), Artificial Neural Network (ANN), and Logistic 

Regression (LR). 

 

 

2. STUDY AREA AND DATA USED 

 

For this work, the study area chosen is Sajadrood catchment, 

which is located in Babol county within the Mazandaran 

Province of Iran (Figure 1a). The coordinates for this catchment 

are approximately in the north latitudes 36°9′ and 36°10′ and east 

longitudes 52°30′ and 52°40′ with a coverage area of 

approximately 118.8km2. The population is estimated to be 

around 26,809 people (2006 census). The study area consists of 

dense forests, agriculture areas and paddy fields (Figure 1b). 

According to the Iranian Meteorological Organization, 

Sajadrood’s temperature ranges between -3°C (February) to 38°C 

(August) with a long-term average temperature of 17.1°C. The 

climatic condition of the catchment is cold and mild mountainous 

and receives heavy rainfall throughout the year, with an annual 

average precipitation of 680 mm. 

 

The study has various types of geological formations as shown in 

Figure 1c. Using a 1: 25,000-scale topographic map of Sajadrood, 

we generated a 10m Digital Elevation Model (DEM) as the 

primary data source for landslide susceptibility mapping. In this 

study, 227 landslide inventory points were collected from 

satellite imagery and field surveys by the Geological Survey of 

Iran. 70% of the landslide inventories were randomly used to 

train three supervised machine learning models, namely the 

SVM, ANN, and LR. The remaining 30% of the landslide 

inventory points were reserved for testing the machine learning 

models.  

 

In this work, 14 conditioning factors (Figure 1) derived from the 

DEM and topographic databases (using ArcMap 10.3) are 

considered, namely altitude, slope, aspect, topographic wetness 

index (TWI), terrain roughness index (TRI), stream power index 

(SPI), distance to fault, distance to stream, distance to road, land 

use, total curvature, profile curvature, plan curvature and 

geology. These factors are chosen due to their availability and 

also since they were also used in relevant works such as that by 

(Nguyen et al. 2019). 

 

2.1 Landslide Conditioning Factors Preparation 

Selection and preparation of conditioning factors are done 

according to the works of (Kalantar et al. 2018), which are briefly 

explained in this section. A region’s altitude variation has 

considerable influence on landslide susceptibility. We, therefore, 

classified altitude into the five classes using the natural break 

scheme. Resultantly, the altitude factor ranges from the minimum 

height of 74 meters to a maximum of 1500 meters (Figure 1d). A 

crucial factor that triggers landslides as a source of stress and 

instability in steep areas is the slope. The slope angle map is 

hence separated into 5 interval classifications: (i) 0°-8.4°, (ii) 

8.5°-13°, (iii) 14°-17°, (iv) 18°- 23°, and (v) 24°-48° (Figure 1e). 

Slope Aspect influences vegetation growth and moisture level of 

the soil (due to rainfall), wind, and solar radiation. We 

categorized aspect into the 9 classes (i) flat, (ii) north, (iii) 

northeast, (iv) east, (v) southeast, (vi) south, (vii) southwest, (viii) 

west, and (ix) northwest (Figure 1f). 

 

Topographic wetness index (TWI) measures the tendency of 

runoff and the position where water converges. Terrain 

Roughness Index (TRI), on the other hand, indicates slopes that 

are concave and convex upward, while Steam Power Index (SPI) 

measures the intensity and erosive power of slope surface runoff. 

The calculations for these three indices are as follows:  

 

SPI = As tan β     (1) 

TWI = log
e

(
As

tanβ
) ,        (2) 

TRI = √⌊x⌋(max2+min
2
)                               (3) 

where     As = area of catchment in m2  

β  = gradient of the slope in radians  

max, min  = largest and minimum value of a pixel I nine 

rectangular altitude neighbourhoods. 

SPI, TWI, and TRI are then classified into five classes (Figure 

1o, g, h). 

 

Landslides commonly occur along faults, rivers, and roads, 

mainly as a result of soil erosion and human activities. In this 

work, we follow the classification done by Hong et al (2018) and 

Golkarian et al. (2018). The distances to faults, streams, and 

roads were separated into five classes using the Euclidean 

distance function in ArcGIS (Figure li, j, k). Different land use 

types can be a sign of human activities and/or environmental 

changes, which can influence ground shape and stability. In this 

work, it was discovered that the land use map of the study area 

contained six land use categories, namely (i) agriculture, (ii) 

paddy field, (iii) residential land, (iv) orchards, (v) dense forest, 

and (vi) harvested forest. We used supervised classification from 

the Landsat Enhanced Thematic Mapper (2017) image with an 

accuracy of 90%. 

 

While surface curvature reflects the shape of the ground surface 

affecting soil runoff, the profile curvature affects water velocity 

flow that drains the surface, which also influences erosion and 

deposition. Plan curvature reflects slopes steepness (horizontal 
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plane) that influences surface runoff characteristics. Total 

curvature is the surface’s curvature, which is by definition, equals 

to the sum of the profile and plan curvatures. Extra details 

regarding curvatures (which include equations and formulas), 

can be found in the literature (Alkhasawneh et al. 2013). In this 

work, total, profile, and plan curvature maps were classified into 

three categories: (i) concave, (ii) flat, and (iii) convex (Figure 1 

l, m, n). 
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Figure 1. (a) Study area, (b) Land use map, (c) Geology map, (d) 

Altitude, (e) Slope, (f) Aspect, (g) Topographic Wetness Index 

(TWI), (h) Terrain Roughness Index (TRI), (i) Distance to Fault, 

(j) Distance to Stream, (k) Distance to Road, (l) Total Curvature, 

(m) Profile Curvature, (n) Plan Curvature, (o) Stream Power 

Index (SPI). 

 

3. METHODOLOGY 

The datasets used in this research are shown in Table 1. Dataset 

D1 includes 14 conditioning factors, D2 is a reduced-size dataset 

of D1. The eight conditioning factors were derived by applying 

three-factor optimization techniques namely Variance Inflation 

Factor (VIF), Gini importance indices, and Chi-square. Lastly, 

the third dataset D3 includes only DEM-derived factors. Figure 

2 simplifies the methodological flowchart of this research. 

  

Dataset Conditioning Factors 

D1 Altitude, Slope, Curvature, Plan Curvature, 

Profile Curvature, TWI, TRI, SPI, Distance to 

Stream, Distance to Road, Distance to Fault, Land 

use, Lithology, and Aspect 

D2 Altitude, TWI, SPI, Distance to Stream, Distance 

to Road, Distance to Fault, Lithology, Aspect 

D3 Altitude, Slope, Curvature, Plan Curvature, 

Profile Curvature, TWI, TRI, SPI, and Aspect. 

Table 1. Three datasets of conditioning factors. 

3.1. The importance of Factor Analysis  

Selecting suitable conditioning factors is essential to produce 

accurate landslide susceptibility maps. Multicollinearity, 

outliers, and spatial variations of conditioning factors are issues 

that necessitate factor analysis in susceptibility assessment. This 

type of analysis enables the removal of redundant factors, which 

makes constructing and training any model simpler (Kalantar et 

al. 2017). In this work, the highly related features discard 

approach was adopted. Mainly, an estimation of variance-inflated 

factor (VIF) was used: 

 

                           VIF = 
1

1- R'2                                      (4) 

where 𝑅′ =  the multi-correlation coefficient between features. 

VIF values that are 5 or 10 and higher suggest highly correlated 

factors. Such features are deemed unsuitable and are 

consequently removed from consideration (O’Brien 2007). 

In addition to factor analysis, other techniques to handle data 

redundancy are the Chi-Square Factor Optimization and Gini 

Importance methods. A higher Chi-square value is responsible  

Figure 2. Flowchart of this research. 

for the more critical prediction factor to detect the landslides. In 

this work, the p-value was evaluated against a 0.05 level of 

significance, which allows the establishment of the significant 

relationship between landslide occurrence and the particular 

conditioning factors. Also, the Gini coefficient and Cramer’s V 

statistics (both ranging from 0 to 1) are computed for each factor. 

For the Gini coefficient, a value of 0 indicates that all the 

variables are equal. A value of 1, on the other hand, denotes 

inequality among the variables. In contrast, Cramér's measures 

the correlation between landslide conditioning factors. Here, 0 

implies no correlation whereas 1 shows a perfect correlation. 

Therefore, the highest value of Cramer’s reveals the highest 

correlation between the factors while the highest value of the Gini 

coefficient represents a lower correlation. 

 

3.2 Models 

3.2.1 Support Vector Machine (SVM) 

 

The SVM is a machine learning algorithm based on statistical 

learning theory. It was initially meant for binary classification 

problems but can be extended to multi-class classification as 

well. 

 

The SVM operates in a higher dimensional feature space, which  

is obtained by using a specific kernel function. The intuition 

behind the algorithm is to discover an optimal separating 

hyperplane between the positive and negative classes by 

calculating the maximum margin to the nearest training examples 

(Cortes and Vapnik 1995). The positive class is annotated as +1, 

whereas the negative class as -1. 

 

 In this work, intuitively, the positive class refers to landslide 

whereas the negative class to non-landslide. Specifically, the 

algorithm is given a set of n labelled training examples 

{(𝑥1, 𝑦1), … , (𝑥𝑛 , 𝑦𝑛)} with 𝑥𝑖 ∈ R𝑛 (where i=1,…,n) and 

𝑦𝑖 ∈ {+1. −1} . In this work, x_i represents each of the 

abovementioned conditioning factors. Depending on the type of 

data, the SVM’s performance is determined by the choice of the 

kernel function. Commonly used kernels are the RBF (radial 

basis function), polynomial, sigmoid, and linear. In this work, we 

opt for the linear kernel due to its simplicity. Overall, the linear 

separating hyperplane of the SVM can be written as follows 

 
𝑦𝑖(𝜔∙𝑥𝑖+𝑏)

≥1
− 𝛿𝑖                                      (5) 

where 𝜔 = the coefficient vector, which decides the separating 

hyperplane’s final orientation. The variable 𝑏  is hyperplane’s 

offset from the origin and the slack variable   δi  caters for 

penalizing any constraints violation (Cortes and Vapnik 1995). 
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3.2.2 Linear regression (LR) 

 

Similar to the SVM, LR is a binary classifier as well. In the 

context of this research, LR’s main objective is to identify the 

optimal coefficients associated with each independent variable 

(i.e., conditioning factor) by discovering relationships with the 

dependent variables (Ozdemir and Altural 2013), which in this 

work are landslide vs. no-landslide.  

 

The LR does assume a normal distribution (Pradhan and Lee 

2010), and the independent variables are annotated as 0 and 1 to 

reflect landslide and no-landslide, respectively. Since LR 

calculates its output based on the Sigmoid (or Logistic) function, 

the output is a probability value. Specifically, LR determines the 

probability of a class based on the following 

 

                     𝑧 = 𝜃0 + 𝜃1𝑥1 + ⋯ + 𝜃𝑛𝑥𝑛                    (6) 

   𝑔(𝑧) =
1

1−𝑒−𝜃𝑇𝑥
= Pr (𝑦 = 1|𝑥; 𝜃)               (7) 

 

where θ denotes the linear model parameters, which are the 

coefficients representing the weight contribution of each 

conditioning factor 𝑥 in, the function g(z) is the logistic function 

that calculates the probability of whether the input values 

correspond to the positive class y=1, indicating a landslide. In 

this work, g(z)>0.5 is considered to be in a positive class. 

 

3.2.3 Artificial neural network (ANN) 

 

In contrast to statistical models, the ANN is independent of any 

data’s statistical distribution hence does not require the 

calculation of any statistical variable (Pradhan and Lee 2010). 

ANNs also have the ability to generalize even when dealing with 

imperfect/incomplete data for nonlinear problems (Tian et al. 

2019). In this study, a Multi-Layer Perceptron (MLP) ANN was 

trained and learning the weights is achieved using the back-

propagation algorithm. The MLP is a widely used architecture 

that consists of three main components, namely the input layer 

(input data), output layer (provides prediction results), and one or 

more hidden layers that interconnect the input and output 

(Aditian et al. 2018). As with any machine learning model, 

training the MLP-ANN begins with random weight assignments 

for each neuron. Learning occurs by a continuous update of each 

of the weights and stops upon reaching acceptable training 

accuracy. The updating of the weights is basically performed via 

the minimization of a particular error function that calculates the 

difference between the predicted and the actual output values. To 

gain more insight into the algorithm, readers can be directed to 

the following literature (Kim et al. 2014) 

 

3.3 Accuracy Assessment 

The metrics used for classifier evaluation is Overall Accuracy 

(OA), Kappa Statistics, Receiver Operating Characteristics 

(ROC), and Prediction Rate Curve (PRC) area. Overall accuracy 

(OA) determines the proportion of sites that have been correctly 

mapped. It is obtained by dividing the total number of pixels that 

are correctly classified by the total number of pixels. OA is 

expressed as a percentage. According to Shafii and Price (2001) 

and Viera and Garrett (2005), Cohen’s Kappa interprets the 

degree of agreement between observed and predicted values. A 

Kappa of 1 indicates the best agreement in the model. ROC 

stands for the Receiver Operating Characteristics curve. Based 

on Tsangaratos and Ilia (2016), the ROC plots the true positive 

rate (i.e. the rate at which the model correctly predicts landslide) 

against the false positive rate (i.e. the rate at which the model 

predicts landslide as non-landslide). The area under the curve 

(AUC) calculates the area under the ROC, which indicates a 

classifier’s overall accuracy. An area of 0.5 indicates weak, 

whereas one as flawless (Beguería 2006).  The Prediction Rate 

Curve is a plot where the vertical y-axis is the success rate (i.e. 

truly detected landslides), and the horizontal x-axis is the total 

positive landslide-prone areas. It is also used to determine the 

prediction prowess of a classifier (Beguería 2006; Pourghasemi 

and Rossi 2019); they were similar to the ROC, the area varies 

from 0 to 1. 

4. RESULTS  

First of all, the importance of each conditioning factor was 

investigated by analysing the VIF and Gini importance indices. 

The former is shown in Table 2 whereas the latter in Table 3. 

From Table 2, VIF values less than 10 indicate low correlation, 

whereas VIFs above 10 suggest higher correlation. It can also be 

seen that most of the Tolerance values are higher than 0.1, 

indicating less correlation between the factors (exceptions being 

for land use and aspect). 

 

 In Table 3, higher Chi-square values with a p-value less than 

0.05 indicate that the factor is significant for landslide prediction. 

Specifically, Chi-square analysis highlights distance to road, 

altitude, and geology more than any of the other factors. Land use 

is seen as the least important factor. 

 

Variable 

Summary statistics and 

Multicollinearity  

Tolerance VIF 

Altitude 0.67 1.81 

Slope 0.98 23.29 

Total Curvature 1.00 3.02255E+13 

Plan Curvature 1.00 1.11475E+13 

Profile Curvature 1.00 1.18828E+13 

TWI 0.63 1.65 

TRI 0.98 23.51 

SPI 0.30 1.100 

Distance to Stream 0.24 1.06 

Distance to Road 0.39 1.18 

Distance to Fault 0.18 1.03 

Land use 0.07 1.00 

Geology 0.57 1.48 

Aspect 0.03 1.00 

Table 2. Variance Inflation Factor (VIF) analysis results. 

The results of the Gini importance indices include information 

value (IV), Cramér's V and Gini coefficient values. Higher IV 

values can be seen for distance to road, geology and TWI, which 

can be translated to “strong” predictors for mapping landslide-

prone zones. Cramér's V, on the other hand, shows all factors 

expect distance to road, having values less than 0.3. This 

indicates an insignificant correlation (except for distance to the 

road at 0.69). The Gini coefficient values indicate a slight 

correlation between all factors (all values ~ 0.5). The degree of 

correlation, however, was higher for distance to the road (0.26), 

which is a value close to zero.  

 

As previously mentioned, three datasets (D1, D2, and D3) are 

considered in order to see which one would provide the best 

representation for landslide susceptibility mapping. Note that D1 

consists of all the 14 conditioning factors. The intuition behind 

D2 and D3 is to see whether a reduced set of CFs can also achieve 

good accuracies. Hence, for the purpose of optimization, 

redundant factors are removed prior to modelling, which is 

consistent with the work in Mousavi et al. (2017). The differences 

between VIF, Gini, and Chi-square led us to choose the most 
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common factors. Consequently, slope, total curvature, plan 

curvature, profile curvature, TRI, and land use were removed 

from the datasets to create the D2. D3 included only DEM-

derived factors. 

 

The three classification models SVM, ANN, LR, were 

constructed based on the three datasets. In Table 4, it can be seen 

that all three algorithms performed equally well in mapping the 

spatial distribution of landslide-prone areas. It appears that SVM 

performed best with an overall accuracy (OA) of 82.81% using 

dataset D2 as compared with ANN (OA = 80.18%) and LR (OA 

= 81.71%). Dataset D1, which contains all 14 factors, showed 

inferior performance in OA. Additionally, the accuracy for all 

models dropped to the value of 62.55%, 66.96%, and 60.35 for 

SVM, ANN, and LR model, respectively, using D3, which 

indicates that the DEM-generated dataset is not a suitable 

representation. 

 

Generally, the Kappa statistics in Table 4 showed “substantial 

agreement” between the observations (ground truth or inventory 

map) and predictions (landslide susceptibility map) for the three 

models using the D1 and D2 datasets, while the degree of 

agreement abruptly declined to “fair agreement” for all models 

utilizing the D3. This is in line with the explanations provided by 

(Viera and Garrett 2005). This again shows that DEM-derived 

data alone from D3 is insufficient for training the classifiers. The  

AUC (Table 4) shows promising levels for all three models when 

considering D1 and D2.  

 

For instance, using the D1, a maximum AUC of 0.88 was 

obtained by ANN and LR, whereas, LR model performed better 

using D2 at 0.89. Besides, all three models only reported: 

“moderate accuracy” for D3. Likewise, the prediction power and 

success rate for true positives for the three models were evaluated 

by PRC (Table 4) and the results indicated the best performance 

was obtained by ANN (0.88) using D1. Prediction performance, 

however, was for the SVM (0.58) when using D3. Finally, for 

this study, all accuracy assessments and validation techniques 

agreed that applying SVM, ANN and LR using D3 were 

unreliable for accurate landslide susceptibility mapping, while 

almost all three models performed better when using D1 and 

especially D2. When looking at processing time, the LR model 

using D1 performed ~2.67 times faster than when it was exploited 

in the D2 dataset. The LR technique has been implemented 

within 0.03 seconds using optimized factors (D2) and is ranked 

the fastest algorithm to compare with SVM (0.14s) and ANN 

(0.27s). Again, it confirmed the importance of factors 

optimization for a broad set of variables and conditioning factors 

in landslide-prone zones where we are dealing with large sets of 

data and variables. 

 

For a better understanding of each conditioning factor and 

reliability of our predictions, we omitted each factor in time from  

model. Table 5 indicated that just removing the distance to the 

road had a significant effect on the level of agreement between 

the observations and predicted landslide areas so; the final map 

may seem unreliable without this particular factor, this confirmed 

uncertainty associated with Cramér's V and Gini coefficient 

results, as well. 

 

 

 

 

 

 

 

 

 

Accuracy  Factors  Models 

SVM ANN LR 

Overall Accuracy 

(OA) 

D1 82.15 81.05 81.71 

D2 82.81 80.18 81.71 

D3 62.55 66.96 60.35 

Kappa Statistics D1 0.64 0.62 0.63 

D2 0.65 0.60 0.63 

D3 0.25 0.33 0.20 

PRC area D1 0.77 0.88 0.87 

D2 0.78 0.88 0.86 

D3 0.58 0.70 0.63 

ROC area D1 0.82 0.88 0.88 

D2 0.83 0.88 0.89 

D3 0.71 0.71 0.63 

Table 3. Accuracy assessment and validation of SVM, ANN, and 

LR. 

 

5.  DISCUSSION 

The increased measures of VIF for slope, total curvature, plan 

and profile curvature, and TRI has been detected as collinearity 

and redundancy in the datasets. Tolerance values less than 0.1 

also indicated the presence of multicollinearity in land use and 

aspect. The Chi-square method, on the other hand, categorized 

distance to the road and land use as the best and worst factors, 

respectively. In contrast, Gini indices values obtained 

controversy results as Cramér's V and Gini coefficient concluded 

that distance to the road was a redundant variable, whereas IV 

evaluated distance to the road with a higher degree of inequality 

as an influential factor. Bergsma (2013) noted that Cramér's V 

could be biased when Chi-square increases and the result may 

overestimate the degree of association. To ensure that distance to 

the road is essential, we examined its absence in the SVM, ANN 

and LR (Table 5) and computed the Kappa Index. As a result, 

Kappa decreased dramatically when the distance to the road is 

removed. In all, this indicated that distance to the road was indeed 

a very critical factor (in line with Mousavi et al. 2011).  

 

The accuracies of the models were evaluated using the datasets 

D1, D2, and D3. Mainly, all three models performed well using 

D1 and D2 datasets. The SVM, using the optimized factors (i.e. 

D2), outperformed others based on overall accuracy and Kappa. 

This implies that the redundancy removal in factor optimization 

leads to better classification performance. The LR algorithm 

shows identical accuracy and Kappa using D1 and D2 due to the 

corresponding coefficient matrix with data evaluation and 

exclusion of nature during the logistic regression process 

(Mousavi et al. 2017). For this reason, as well, the evaluation 

results for VIF and Chi-square were in agreement with the LR 

coefficient matrix to eliminate data redundancy. Validation of the 

ANN algorithm using PRC shows the highest prediction 

accuracy and performed significantly well compared to SVM and 

LR. Due to this, we foresee ANN to be a reliable alternative when 

dealing with uncertain, noisy and insufficient conditioning 

factors. The AUC finally validated that all three algorithms 

performed well, while LR shows the best overall performance 

using the D2 dataset. 

 

Two experiments by Pradhan and Lee (2010) and Sezer et al. 

(2011), which was discussed earlier in this article, applied the 

ANFIS algorithm with almost the same conditioning factors for 

susceptibility mapping in different study areas. In comparison 

with these works, the significance of conditioning factors was 

diverse, and even the most important factor considered by one 

research was labelled as the least important factor by the other 

one. Although in our study, we had only four practical factors in 

common with this researches, we could obtain a good level of 

accuracy using other conditioning factors, as well. 
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All Conditioning Factors Except 

Method 

SVM ANN LR 

Altitude 0.6564 0.5771 0.652 

Slope 0.6388 0.6476 0.6388 

Curvature 0.6432 0.5859 0.6344 

Clan Curvature 0.6432 0.6123 0.6344 

Profile Curvature 0.6432 0.6123 0.6344 

TWI 0.6476 0.6167 0.6211 

TRI 0.6388 0.6564 0.6388 

SPI 0.6344 0.5595 0.6344 

Distance to Stream 0.6388 0.6211 0.6388 

Distance to Road 0.2423 0.4405 0.1586 

Distance to Fault 0.6432 0.5947 0.6344 

Land use 0.6256 0.6432 0.6432 

Lithology  0.6652 0.5595 0.6476 

Aspect 0.6432 0.5551 0.6476 

Table 5. Cohen's Kappa Index for SVM, ANN, and LR 

techniques of landslide susceptibility by removing one 

conditioning factor in a time. 

Thus, prior factor optimization in our research led to avoiding 

over learning the algorithms, heavy calculation, and modelling, 

especially when dealing with a large area and several 

conditioning factors. 

 

6. CONCLUSION  

Three supervised learning models (SVM, ANN, and LR) were 

constructed based on each dataset. The primary objective was to 

determine which dataset was most representative for landslide 

prediction. The first dataset D1 considered 14 conditioning 

factors; the second dataset D2 had a reduced set of 8 factors, 

while the third dataset D3 included only DEM-derived factors. 

VIF, Chi-square, and IV Gini index firmly prioritized the 

conditioning factors where there is no standard guideline to rank 

these factors, and it is highly subjective to the characteristics of 

the study area. Factor optimization ultimately highlighted 

distance to the road; altitude and geology were significant 

contributing factors, slope, plan and profile curvature that 

seemingly affects erosion process more than other factors in 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

many similar studies (Pradhan and Lee 2010) were found to be 

insignificant factors for this case study. For this particular area, 

the importance of distance to road indicated that most of the 

predictions and landslides had been identified in the areas close 

to the roads. So, road construction may potentially trigger the 

hazards more than other factors. Predominantly, the SVM model 

obtained the best accuracy and kappa of 82.81% and 0.65, 

followed by LR (81.71%) and ANN (80.18%) using D2. The 

same scenario goes with D1, as well, and SVM (82.15%) 

achieved the best result even though LR had a hidden factor 

optimization layer. For this study, SVM was confirmed as the 

best classifier for mapping the susceptible landslides. Again, 

none of the algorithms reached a supportable level of accuracy 

using D3 although ANN behaved more effectively with this 

incomplete dataset. 

 

To put it briefly, the availability of data from different remote 

sensing sources lead to deal with massive data and conditioning 

factors to predict the landslide hazards; therefore, the quality and 

speed of modelling necessitate factor optimization, in advance. 

The outcome of this research emphasized that the importance of 

landslide causative factors differs from one site to another, and it 

could be remarkably changed by human activities (Kalantar et al. 

2019); also, the choice of optimizer could directly affect the 

optimization results. The site dependency of landslide 

conditioning factors and the choice of optimizers emphasize that 

even a pre-used group of conditioning factors for a particular 

zone might not be successfully applied to another region. 

Therefore, for a reliable result, the use of all available datasets in 

a study area is highly beneficial, besides, without proper 

optimization algorithms, one cannot omit a factor even it was 

tagged insignificant by some other researchers. Especially for 

this study, road construction was the main source of improper 

human activities in residential areas with lower altitude. Thus, it 

is recommended to use more than one optimizer prior to 

classification. Moreover, for those governmental organizations 

and private sectors involving in road construction, it is suggested 

that more attention is needed during transport network 

construction and maintenance in Sajadrood due to geology and 

unstable soil type. Lastly, this promoted the importance of 

landslide mitigation and early warning system to decrease 

casualties and losses where construction is inevitable. 

 

all 14 factors and 

calculated kappa for 

SVM, ANN, and LR 

Factors 

Chi-square method Gini Indices method  

Chi-square p-value Gini 

Coefficient 

Information 

value 

Cramer's V 

Distance to Road 217.4873 0.000000 0.261312 2.522338 0.690923 

Altitude 86.5748 0.000000 0.428559 0.240013 0.377996 

Geology 75.3112 0.000000 0.447492 0.436883 0.324061 

TWI 48.0967 0.000146 0.456976 0.415725 0.293340 

TRI 33.7034 0.090079 0.461493 0.320196 0.277514 

Aspect 31.9614 0.059079 0.465126 0.218050 0.264099 

Distance to Fault 30.9730 0.028995 0.470014 0.275576 0.244894 

Plan Curvature 28.7033 0.121309 0.470073 0.082453 0.244651 

Distance to Stream 28.1970 0.134651 0.472638 0.034174 0.233932 

Total Curvature 26.1546 0.345367 0.478608 0.185279 0.206841 

Slope 25.6101 0.373241 0.480964 0.165356 0.195118 

Profile Curvature 20.8180 0.794739 0.482680 0.142213 0.186118 

SPI 16.9545 0.151316 0.487801 0.099749 0.156199 

Land use 7.7209 0.562497 0.492528 0.047146 0.122243 

Table 4. The importance of factors using Gini importance and chi-square techniques. 
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