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Koala cathelicidin PhciCath5 has antimicrobial activity, 1 

including against Chlamydia pecorum 2 
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Abstract 22 

Devastating fires in Australia over 2019-20 decimated native fauna and flora, including koalas. 23 

The resulting population bottleneck, combined with significant loss of habitat, increases the 24 

vulnerability of remaining koala populations to threats which include such as disease. 25 

Chlamydia is one disease which causes significant morbidity and mortality in koalas. The 26 

predominant pathogenic species in koalas, Chlamydia pecorum, causes severe ocular, 27 

urogenital and reproductive tract disease. In marsupials, including the koala, gene expansions 28 

of an antimicrobial peptide family known as cathelicidins have enabled protection of 29 

immunologically naïve pouch young during early development. We propose that koala 30 

cathelicidins are active against Chlamydia and other bacteria and fungi. Here we describe ten 31 

koala cathelicidins, five of which contained full length coding sequences that were widely 32 

expressed in tissues throughout the body. Focusing on these five, we investigate their 33 

antimicrobial activity against two koala C. pecorum isolates from distinct serovars; MarsBar 34 

and IPTaLE, as well as other bacteria and fungi. One cathelicidin, PhciCath5, rapidly 35 

inactivated C. pecorum IPTaLE and MarsBar elementary bodies and significantly reduced the 36 

number of inclusions compared to the control (p<0.0001). Despite evidence of cathelicidin 37 

expression within tissues known to be infected by Chlamydia, natural PhciCath5 38 

concentrations may be inadequate in vivo to prevent or control C. pecorum infections in koalas. 39 

PhciCath5 also displayed antimicrobial activity against fungi and Gram negative and positive 40 

bacteria, including methicillin-resistant Staphylococcus aureus (MRSA). Electrostatic 41 

interactions likely drive PhciCath5 adherence to the pathogen cell membrane, followed by 42 

membrane permeabilisation leading to cell death. Although, Aactivity against E. coli  was 43 

reduced in the presence of 10% serum and 20% whole blood. Future modification of the 44 

PhciCath5 peptide to enhance activity, including in the presence of serum/blood, may provide 45 

a novel solution to Chlamydia infection in koalas and other species.  46 
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Introduction 47 

The koala (Phascolarctos cinereus) is an iconic Australian marsupial and the last surviving 48 

member of the Phascolarctidae. Marsupials are one of three mammalian lineages, the others 49 

being eutherian mammals such as humans, and monotremes such as the platypus. Marsupials 50 

differ from other mammals in a number of key anatomical and physiological traits, many of 51 

which are involved in reproduction and development [1]. Koalas are mostly arboreal 52 

marsupials that subsist on a strict diet of Eucalyptus leaves [1]. Typical of marsupials, koalas 53 

have a short gestation period of up to 35 days and give birth to altricial young that remain in 54 

the pouch for 9 months [1].  55 

 56 

Fires devastated large swathes of Australia in 2019-20, burning through at least 11 million 57 

hectares (1.1x1011 m2), destroying crucial habitat of already vulnerable and threatened species, 58 

and driving many to the brink of extinction [2, 3]. Estimates suggest nearly three billion animals 59 

were killed or impacted by the fires [4]. In response, the Australian Government identified 119 60 

priority species severely impacted by the fires which require urgent management intervention, 61 

one of which was the koala [3]. Prior to this catastrophic event, koala populations were already 62 

in decline along the east coast of Australia due to multiple threats including habitat loss, climate 63 

change, and disease [5, 6]. The 2019-20 fires further decimated these populations; with at least 64 

3.5 million hectares(3.5 x 1010 m2), or 25%, of koala suitable habitat in eastern NSW affected 65 

by fire [7]. The resulting genetic bottleneck, combined with substantial habitat destruction by 66 

the fires, leaves remaining populations especially vulnerable to new and existing threats, 67 

including such as disease [5, 8] 68 

 69 

Three main diseases infect koalas; koala retrovirus [9], the fungus,i Cryptococcus [10], and the 70 

higher bacterium Chlamydia [5]. Chlamydiosis, the disease resulting from Chlamydia 71 
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infection, is a major contributing factor to the decline and long-term viability of koala 72 

populations [5]. Chlamydia are intracellular, bi-phasic, Gram-negative bacteria which infect a 73 

wide range of hosts including humans, livestock, and wildlife [11]. Chlamydia pecorum is 74 

principally responsible for chlamydiosis in koalas, and causes both mild and severe disease [6, 75 

12]. Clinical manifestations include ocular disease leading to blindness, urogenital disease 76 

resulting in cystitis and infertility, and respiratory disease [5]. The prevalence of infection 77 

varies, but is as high ascan reach 90% in koala populations in Queensland, New South Wales, 78 

and Victoria [5, 6].  79 

 80 

Significant research over the past decade has culminated in a promising C. pecorum vaccine 81 

for koalas (reviewed in [13]). However, limitations remain regarding long-term protection 82 

against reinfection [14], hence research is ongoing and. As such, treatment remains an essential 83 

component of the response to chlamydiosis in koalas. Treating chlamydiosis in koalas can be 84 

difficult as macrolide and tetracycline antibiotics commonly used in humans cause 85 

gastrointestinal dysbiosis, which can be fatal [15, 16]. Chloramphenicol and enrofloxacin are 86 

commonly used in koalas, and pharmacokinetic studies have aided in developing koala-specific 87 

dosage regimes [17-19]. However, koalas continue to shed the pathogen after treatment with 88 

enrofloxacin [20]. Chloramphenicol is the mainstay of current treatment regimens, although 89 

adverse negative side-effects have been observed [19, 21]. Use of chloramphenicol is further 90 

confounded by its decreasing availability [6], driving the search for alternative antibiotics.  91 

 92 

Florfenicol, a derivative of chloramphenicol, has yielded mixed results as the highest tolerated 93 

dose produced suboptimal plasma concentrations, and the majority of infections required 94 

additional treatments or did not resolve [22]. Doxycycline effectively cleared the infection, but 95 

only a single study of five koalas has been conducted [23]. Natural innate defence mechanisms 96 
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of the koala, including antimicrobial peptides (AMPs), may play a role in reducing chlamydial 97 

infection and provide avenues for new treatment options in the future.   98 

 99 

There are two main families of AMPs in mammals; cathelicidins and defensins [24]. 100 

Cathelicidins are small, cationic antimicrobial peptides expressed within neutrophils and 101 

epithelial cells, and are features of the innate immune system [24]. They have both 102 

immunomodulatory and antimicrobial functions, and display activity against a range of 103 

bacteria, fungi and viruses [24]. Throughout evolution cathelicidins have expanded in 104 

marsupials, compared to eutherian mammals, resulting in a high number of diverse peptides 105 

[25-28]. For example, the gray short-tailed opossum has 19 cathelicidin genes [27, 28], while 106 

humans have only one [29]. Expansions within marsupials are likely driven by the need to 107 

protect immunologically naive young during pouch life [25, 30]. Marsupials have a very short 108 

gestation period of up to 35 days and give birth to altricial young which are immunologically 109 

naïve at birth [1, 31] . During immunological development the young encounter a diverse range 110 

of microbial flora within the pouch [32], and are protected by products of innate immune 111 

mechanisms such as cathelicidins expressed in the milk [30, 33] and pouch lining [25, 34]. 112 

Previous work has shown that tammar wallaby and Tasmanian devil cathelicidins have potent 113 

broad spectrum antimicrobial activity and kill drug resistant bacteria such as methicillin-114 

resistant S. aureus (MRSA) [30] and multidrug-resistant isolates of Klebsiella pneumoniae, 115 

Pseudomonas aeruginosa and Acinetobacter baumannii [35]. However, activity against 116 

intracellular bacteria such as Chlamydia has not been tested. Cathelicidins from humans and 117 

livestock inactivated a number of Chlamydia species,  but were ineffective against C. pecorum 118 

[36-39]. 119 

 120 
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Our aim was to characterise cathelicidins in the koala genome [40] and transcriptomes [41, 42], 121 

and determine the activity of five synthetic cathelicidins against two koala C. pecorum strains; 122 

IPTaLE and MarsBar, as well as other bacteria and fungi from humans and animals. To further 123 

understand the mechanism of antimicrobial activity, we assessed membrane permeabilisation 124 

and activity in the presence of inhibitors. Cathelicidin transcripts within a range of koala tissue 125 

transcriptomes were examined to determine if cathelicidins are present at the site of chlamydia 126 

infection, and hence may be involved in natural defence against Chlamydia.   127 

Methods 128 

Bioinformatics 129 

Koala cathelicidins were identified in the koala genome [40] and transcriptomes [41, 42] using 130 

BLAST with default parameters, and previously characterised marsupial, monotreme and 131 

eutherian cathelicidins as query sequences (S3 Table). Multiple sequence alignments of 132 

putative koala cathelicidins with sequences from other marsupial, monotreme and eutherian 133 

cathelicidins  (S3 Table) were constructed using ClustalW [43] in BioEdit [44] to identify 134 

conserved peptide domains and motifs. Signal peptide sequences were predicted using SignalP 135 

4.1[45]. To examine phylogenetic relationships, amino acid alignments of full-length 136 

sequences, and cathelin domain only, were used to construct individual phylogenetic trees in 137 

MEGA7 [46] using the neighbour-joining method with p-distance, pairwise deletion and 500 138 

bootstrap replicates, as well as maximum likelihood method, with the Jones Taylor-Thornton 139 

model and 500 bootstrap replicates. Both neighbour-joining and maximum likelihood methods 140 

produced the same tree topology for alignments of full-length sequences and cathelin domain 141 

only, hence only the maximum likelihood trees are displayed here.  142 

 143 
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Only full-length sequences with complete open reading frames were included in subsequent 144 

analyses. The relative transcription levels of full-length koala cathelicidins were examined in 145 

liver, spleen, bone marrow, lymph, lung, kidney, testis, uterus, brain, salivary gland, adrenal 146 

gland, and mammary gland transcriptomes from one koala euthanized due to unsuccessful 147 

treatment for severe chlamydiosis and one koala euthanized due to dog attack [41, 42]. RNAseq 148 

reads (SRR1106690, SRR1106707, SRR1121764, SRR1122141, SRR1203868, SRR1205138, 149 

SRR1205176, SRR1205218, SRR1205222-SRR1205224, SRR1205998, SRR1207974, 150 

SRR1207975, SRR3724381) were mapped against the koala assembly (GCF_002099425.1) 151 

using STAR [47] and abundance estimated using Stringtie [48] as transcripts per million 152 

(TPM). 153 

 154 

Mature peptide cleavage sites were predicted using ExPasy peptide cutter 155 

(http://web.expasy.org/peptide_cutter/) with neutrophil elastase. Molecular weight of mature 156 

peptides and charge at pH7 was calculated using Protein Calculator v3.4 157 

(http://protcalc.sourceforge.net/, May 2013). Hydrophobicity percentage was calculated using 158 

Peptide 2.0 hydrophobicity/hydrophilicity analysis 159 

(http://peptide2.cpm/N_peptide_hydrophobicity_hydrophilicity.php, 2016). Kyte and Dolittle 160 

hydropathicity plots [49] and Deleage and Roux alpha helicity plots [50], both with a window 161 

size of n = 7, were created using ProtScale through the ExPasy server [51]. Grand average of 162 

hydropathicity (GRAVY) scores were calculated using ProtParam through the ExPasy server 163 

[51]. Mature peptide amino acid similarity scores were calculated in BioEdit [44] using the 164 

BLOSUM62 matrix. Mature peptides were synthesised by ChinaPeptides Co. Ltd. to >95% 165 

purity.  166 

http://web.expasy.org/peptide_cutter/
http://protcalc.sourceforge.net/
http://peptide2.cpm/N_peptide_hydrophobicity_hydrophilicity.php
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Antimicrobial susceptibility 167 

Antimicrobial activity was determined against a range of bacteria and fungi from humans and 168 

animals using a broth microdilution susceptibility assay according to clinical laboratory 169 

standards institute (CLSI) guidelines in 96 well polypropylene plates as described previously 170 

[30]. Bacterial and fungal isolates tested are summarised in Table 2. Briefly, cathelicidins were 171 

dissolved in DMSO and serially diluted, in cation- adjusted Mueller Hinton Broth (MH II B) 172 

with or without 10% lysed horse blood for bacteria, and yeast nitrogen base (YNB) for fungi. 173 

Cathelicidin concentrations ranged between 64μg/mL and 0.125µg/mL in a final volume of 174 

100μL. For all bacteria and fungi tested, ampicillin, tetracycline and fluconazole were included 175 

as positive controls, in addition to a media-only control and growth control (no inhibitor). 176 

Bacteria and fungi were sub-cultured 20-24 hours prior to the test, suspended in saline and their 177 

concentration adjusted to a 0.5 McFarland standard. Microorganisms were then diluted to a 178 

concentration of 0.5-1.0x106 cells/mL, with colony counts performed to confirm 179 

microorganism density, and 100µL was dispensed into the wells of the cathelicidin dilution 180 

plate. All plates were incubated at 35oC for 20-48 hours depending on the strain. Antimicrobial 181 

activity was expressed as minimum inhibitory concentration (MIC), which was defined as the 182 

lowest concentration of cathelicidin preventing visible bacterial growth, relative to the no-drug 183 

control. The same microdilution susceptibility assay was performed using Mueller Hinton 184 

Broth without the addition of the divalent cations calcium and magnesium (MHB), to test the 185 

effect of the cations on PhciCath5 activity against the ATCC strains E. coli 25922 and S. aureus 186 

29213.  187 

 188 

Effect of serum and blood on antibacterial activity 189 

The potential inhibitory effect of serum and blood on PhciCath5 antibacterial activity was 190 

investigated determined using a broth microdilution susceptibility assay as described above 191 
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with the following modifications. PhciCath5 was solubilized in water for cell culture containing 192 

0.01% acetic acid and serial two-fold dilutions were prepared from 50mM to 0.78mM. E. coli 193 

ATCC25922 was sub-cultured onto sheep blood agar (SAB) and incubated at 35oC for 24 hours 194 

prior to the test. Colonies were suspended in saline and the concentration adjusted to a 0.5 195 

McFarland standard. The bacterial suspension was then diluted 1/250 with MHB containing 196 

10% bovine serum albumin (BSA) or 20% whole mouse blood. The cathelicidin serial dilutions 197 

were further diluted 1/10 with bacterial suspension in a 96-well polypropylene plate, to give a 198 

final cathelicidin concentration ranging between 50 and 0.78µM. A growth control (no 199 

inhibitor) was also included. The plates were incubated for 24 hours at 37oC and the MIC 200 

recorded as the lowest concentration of cathelicidin preventing visible bacterial growth, 201 

relative to the no-drug control. 202 

 203 

Bacterial membrane permeability 204 

Membrane permeabilisation of E. coli ATCC25922 by PhciCath5 was assessed using the 205 

Promega CellTox green cytotoxicity assay. E.coli ATCC25922 was sub-cultured onto TSA II 206 

blood agar and incubated at 35oc for 24 hours prior to the test. A bacterial suspension was 207 

prepared in RPMI to give an OD600 reading of 0.2. PhciCath5 was dissolved in water for cell 208 

culture containing 0.01% acetic acid and serial two-fold dilutions prepared in a black 384-well 209 

polypropylene plate. The plate was then innoculated with E. coli ATCC25922, producing a 210 

total well volume of 30uL and final peptide concentration of 50 to 0.05uM. Fluorescence was 211 

then measured at 512nm using the Perkin Elmer Envision multilabel plate reader (0 hours). The 212 

plate was then incubated at room temperature and additional fluorescence measurements were 213 

recorded at 1, 2, 3 and 4hrs. Membrane permeability was calculated as a percentage relative to 214 

the “no inhibitor” control. PhciCath5 concentration which resulted in greater than or equal to 215 

5% E. coli ATCC25922 membrane permeability was reported.  216 

Commented [EP1]: Julie I did this work with Zoetis using 

their protocols, hence the different diluent. 
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 217 

Chlamydia pecorum antimicrobial susceptibility 218 

C. pecorum IPTaLE and MarsBar [11, 52] were cultured in mouse McCoy B cells, on DMEM 219 

supplemented with 10% foetal calf serum (FCS), 0.1mg/mL streptomycin and 0.05mg/mL 220 

gentamicin at 37oC in a 5% CO2 atmosphere. Cell lines were routinely tested for mycoplasma 221 

contamination every 2 months. Prior to performing antimicrobial susceptibility assays, 96-well 222 

microtitre plates seeded with 30,000 host cells per well 24 hours prior to chlamydial infection 223 

as described previously [53, 54]. For the antimicrobial assays, koala cathelicidin mature 224 

peptides, PhciCath1, 2, 3, 5 and 6, were solubilized in water for cell culture with 0.01% acetic 225 

acid, and two-fold dilutions were made in sucrose-phosphate-glutamic acid (SPG) media from 226 

1mg to 250μg/mL, in triplicate. Cathelicidin containing wells were diluted one in two with C. 227 

pecorum IPTaLE and MarsBar and incubated for 2 hours at 37oC, giving a final cathelicidin 228 

concentration of 500, 250 and 125μg/mL. A negative SPG only control was included. To 229 

exclude the possibility of cathelicidin toxicity to McCoy cells, cathelicidin dilutions were 230 

removed by centrifugation and C. pecorum re-suspended in DMEM supplemented with10% 231 

FCS, 0.1mg/mL streptomycin and 0.05mg/mL gentamycin. The suspension was used to infect 232 

a McCoy B ATCC CRL-1696 cell monolayer at a Multiplicity of Infection (MOI) of 0.6 as 233 

described previously [53, 54]. At 44 hours post infection, host cells were lysed by vigorous 234 

pipetting and Chlamydia harvested by centrifugation. Following one freeze-thaw passage of 235 

the supernatant, Chlamydia were serially diluted onto fresh McCoy cell monolayers, and fixed 236 

and stained at 40hrs post infection for enumeration of Chlamydia inclusion forming units (IFU) 237 

per mL. This approach involving two rounds of infection essentially provides the minimum 238 

chlamydicidal concentration, or the minimum concentration of cathelicidin required to kill the 239 

EB. Monolayers were stained with DAPI, a polyclonal HtrA antibody and secondary antirabbit 240 

antibody which stains chlamydial inclusion bodies [52-54], and visualised on the InCell 2200. 241 
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Statistical analysis was performed on the Prism GraphPad software [55]. A one-way ANOVA 242 

followed by a Holm-Sidak’s multiple comparisons test was performed relative to the control.  243 

 244 

Results and Discussion 245 

Characterisation of koala cathelicidins expressed in different 246 

tissues 247 

Ten cathelicidins were identified within a 1.3Mb region on scaffold 76 of the koala genome, 248 

and were named in order of identification (S1 Table). Five cathelicidins, PhciCath1, 2, 3, 5 and 249 

6, were full-length and contained complete open reading frames. One cathelicidin, PhciCath4, 250 

contained a premature stop codon in exon 3 and hence is likely to be a pseudogene. Only partial 251 

sequences could be identified for four cathelicidins, PhciCath7, 8, 9 and 10. 252 

 253 

All koala cathelicidins contained sequence features characteristic of the cathelicidin family (S1 254 

Fig) [24]. Koala cathelicidin genes contained four exons, which encode a prepropeptide 255 

consisting of three domains. The signal peptide and cathelin domain contained conserved 256 

stretches of sequence, including four cysteine residues in the latter which are a distinguishing 257 

feature of the family and provide structure to the prepropeptide (S1 Fig) [24]. For PhciCath1, 258 

2, 3, 5 and 6 with full-length sequences, the antimicrobial domain which encodes the mature 259 

peptide was variable in length and composition (Table 1), with a maximum 30% amino acid 260 

similarity amongst the five predicted mature peptide sequences (S1 Table). Tasmanian devil 261 

cathelicidins also display a similar level of variability in this domain, however in eutherian 262 

mammals such as pigs, amino acid similarity can be as high as 94% [30].  263 
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Table 1. Physiochemical properties of predicted mature peptides from full-length koala 264 

cathelicidins.  265 

 

Cathelicidi

n 
Sequence 

Molecular 

weight 

(g/mol) 

Charge 

at pH7 

Hydrophobi

c % 

GRAVY 

score 

PhciCath1 
LFPRRRKGSNKPGKYSVLF

AAKPSVGKTPHILTI 
3765.49 8.1 44.12 -0.424 

PhciCath2 
NFIHQKYRILLDKYRKLQD

IFSGSGDKV 
3382.90 3.2 32.14 -0.682 

PhciCath3 
PPEPLRFKRIRCLNGRKCN

YHNLLLTIVPHWRIPKGK 
4465.38 8.3 43.24 -0.695 

PhciCath5 
KRGGIWKLIRPLGRGAGRI

LRHFHIDFCGNC 
3548.23 6.3 38.71 -0.219 

PhciCath6 
ASSGIIDTSSLPPKIRQIYNQ

AVYDTLVGILRNF 
3751.71 0.9 44.12 0.106 

 

Koala cathelicidins cluster with other marsupial cathelicidins in the phylogenetic tree, as 266 

expected (Fig 1). PhciCath1, 3 and 6 form direct orthologs with MaeuCath8, SahaCath1 and 267 

ModoCath8 respectively, indicating that these genes arose prior to speciation and have been 268 

conserved throughout evolution. PhciCath2 and 5 cluster within a marsupial-specific clade, 269 

sister to that containing eutherian cathelicidins (Fig 1). Interestingly, PhciCath5 is located in 270 

the clade containing SahaCath3, 5 and 6, ModoCath4, and MaeuCath1 and 7 (Fig 1), all of 271 

which display antimicrobial activity [30, 35, 56]. Focusing on the conserved cathelin domain, 272 

the inclusion of partial koala sequences PhciCath7p to 10p does not influence the clustering of 273 

koala cathelicidins (S2 Fig). Although, PhciCath5 now clusters with PhciCath7p to 10p within 274 

the marsupial clade, forming a koala-specific expansion. The short branch lengths of 275 

PhciCath5 and PhciCath7p to 10p indicate that these genes likely arose through more recent 276 

duplications, compared to PhciCath1, 2, 3 and 6 (S2 Fig). Although, PhciCath7 to 10 may 277 

represent pseudogenes and hence not accurately portray phylogeny of functional koala 278 

cathelicidins.  279 

 

 

Commented [TS2]: Does everyone know what a GRAVY 
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Fig 1.  Full-length koala cathelicidins cluster with other marsupials in the phylogenetic 280 

tree, particularly PhciCath5 which clusters with other marsupial cathelicidins that 281 

display antimicrobial activity. Sequences are coloured according to antimicrobial activity 282 

against bacteria and/or fungi; green indicates active, red indicates inactive and black indicates 283 

the peptide has not been tested. Only bootstrap values greater than 50% are shown. Accession 284 

numbers for published sequences used in this tree are available in S3 Table.   285 
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 286 

Only full-length cathelicidins PhciCath1, 2, 3, 5 and 6 were included in subsequent analyses 287 

as without the full coding sequence, partial sequences of PhciCath7 to 10 could represent 288 

pseudogenes. Koala cathelicidins were transcribed in numerous tissues, similar to other 289 

marsupial [30, 35] and eutherian cathelicidins [57]. Cathelicidin transcripts were detected in 290 

respiratory, cardiovascular, immune, reproductive and excretory tissues from two wild koalas 291 

(Fig 2) [42]. PhciCath1 had the greatest expression of any cathelicidin and the greatest 292 

breadth, with transcripts present in all fifteen tissue transcriptomes (Fig 2). This broad 293 

expression of cathelicidins within multiple organ systems is likely derived from epithelial 294 

cells, which in humans constitutively express cathelicidins [57]. Here they likely provide 295 

rapid defence against infection, without the lag imposed by the recruitment and activation of 296 

neutrophils.  297 
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Fig 2. Expression of full-length koala cathelicidins in twelve tissue transcriptomes from 298 

two individuals [41, 42]. Expressed as transcripts per million (TPM).  299 

 300 

With the exception of PhciCath1, cathelicidin expression is favoured in immune tissues over 301 

non-immune tissues, although variation between the two individuals is marked (Fig 2). All five 302 

cathelicidins PhciCath1, 2, 3, 5 and 6 were expressed in the bone marrow, likely due to the 303 

presence of neutrophil precursors as observed in humans [58] and guinea pigs [59]. Expression 304 

of cathelicidins within neutrophils changes throughout cell development, and peaks during the 305 

myelocyte and metamyelocyte stage within the bone marrow [58, 59]. Tammar wallaby 306 

MaeuCath1 was also expressed in the bone marrow, and peak expression coincided with 307 

maturation of immune organs in pouch young [25]. All koala cathelicidins except PhciCath2 308 

were expressed in the lymph node, and a high number of PhciCath3 transcripts were present 309 

in the spleen (Fig 2). A high level of cathelicidin expression within koala immune tissues is not 310 

surprising given their localised expression within neutrophils and epithelial cells, and similar 311 

results observed in other marsupials [25, 30]. 312 

 313 
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 PhciCath1 and 6 proteins were present in the koala milk proteome, along with PhciCath3 314 

transcripts in the mammary gland [41], and hence may provide a direct source of immune 315 

compounds to developing young. Similar findings were reported by Morris et al. (2016) where 316 

cathelicidins were detected in a koala early lactation mammary gland transcriptome and late 317 

lactation milk proteome [41]. Cathelicidins were relatively abundant in late lactation, 318 

comprising 1.1% of peptides [41]. Tasmanian devil milk also contained cathelicidins [30], 319 

similarly tammar wallaby cathelicidins were expressed in the mammary gland throughout 320 

lactation [35]. The presence of cathelicidins within the milk of three marsupial species suggests 321 

this feature is well conserved across different marsupial lineages, indicating these peptides may 322 

play an essential role in pouch young protection and development [25, 30].  323 

 324 

Koala cathelicidin PhciCath5 shows direct antimicrobial activity 325 

Koala cathelicidin PhciCath5 was the only peptide to display antimicrobial activity when 326 

screened against representative Gram negative and positive bacterial strains, with the most 327 

potent activity detected against E. coli (MIC 16μg/mL) and S. aureus (8μg/mL) isolates (Table 328 

2). PhciCath5 also displayed antifungal activity against the ATCC strains Candida parapsilosis 329 

22019 and Candida krusei 6258. The spectrum of activity was similar to that of other marsupial 330 

[30, 35, 60] and monotreme  [35, 60] cathelicidins. PhciCath5 was also active against the test 331 

strain of methicillin-resistant Staphylococcus aureus (MRSA) with an MIC of 16μg/mL. This 332 

MIC value is more potent than Tasmanian devil SahaCath5 against the same MRSA isolate 333 

[30], and within the range of MICs reported for human, bovine and rabbit cathelicidins against 334 

different MRSA isolates [61]. MRSA is a pathogen of major concern to human health [62], and 335 

antimicrobials such as cathelicidins provide novel alternatives for development as they 336 

generally do notn’t induce strong resistance as observed with traditional antibiotics [61, 63].  337 
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Table 2. Koala cathelicidin mature peptide PhciCath5 displays antimicrobial activity 338 

against bacteria and fungi from humans and animals, expressed as the minimum 339 

inhibitory concentration (MIC). The MIC of PhciCath1, 2, 3 and 6 was >64ug/mL for all 340 

bacteria and fungi tested. *denotes animal isolate, otherwise human clinical isolates and 341 

ATCC strains were tested. MICs were obtained using MH II B that contains magnesium and 342 

calcium divalent cations. MICs in brackets were obtained using MHB without the additional 343 

of aforementioned divalent cations. a denotes MICs obtained using MHB with 10% foetal 344 

bovine serum. b denotes MICs obtained using MHB with 20% whole mouse blood. 345 

 

 

Strain 
PhciCath5 

MIC (μg/mL) 

P. aeruginosa* >64 

P. aeruginosa ATCC27853 >64 

E. coli* 16 

E. coli ATCC25922 64 (11) 

22a 

>175b 

S. aureus* 8 

S. aureus ATCC29213 16 (11) 

MRSA* 16 

S. pneumoniae ATCC49619 >64 

S. pyogenes ATCC19615 64 

S. agalactiae ATCC12386 64 

S. agalactiae* 64 

S. dysgalactiae >64 

S. lutetiensis >64 

S. equi* >64 

S. oralis >64 

S. salivarius 64 

S. mutans >64 

L. monocytogenes* 64 

P. multocida* >64 

K. pneumoniae* >64 

C. parapsilosis ATCC 22019 32 

C. krusei ATCC 6258 64 

C. glabrata >64 

C. albicans >64 
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Despite this promising activity profile in vitro, multiple inhibitors present within the in vivo 346 

environment are known to influence antimicrobial activity. Indeed, antibacterial activity of 347 

PhicCath5 against the E. coli ATCC strain was neutralised in 20% whole blood, resulting in an 348 

increase in the MIC from 64 μg/mL  to >175μg/mL, and a reduction in the MIC in 10% FCS 349 

from 22μg/mL to 11μg/mL (Table 2). This indicates that PhciCath5 binds non-specifically to 350 

proteins within the blood, sequestering the peptides, or is enzymatically degraded, both of 351 

which have been documented within human [64], rabbit and sheep cathelicidins [65]. 352 

 353 

As observed in eutherian cathelicidins [66, 67], adherence of PhciCath5 to pathogens was 354 

facilitated by electrostatic interactions between positively charged cathelicidins and negatively 355 

charged head groups on the surface of bacterial cell membranes . Divalent cations bind to the 356 

negatively charged head groups, thereby preventing interaction with positively charged 357 

cathelicidins [68]. This is evidenced by a reduction in antimicrobial activity following the 358 

addition of magnesium and calcium divalent cations to the media. The MIC of PhciCath5 359 

against E. coli increased five-fold in the presence of divalent cations, while the effect on the 360 

MIC against S. aureus was less pronounced (Table 2). . Given that electrostatic interaction 361 

enables pathogen adherence, a high cationic charge often correlates with antimicrobial activity 362 

amongst many eutherian cathelicidins [69], however we found no such association amongst 363 

koala cathelicidins.  364 

 365 

Following electrostatic attachment, PhciCath5 rapidly permeabilised bacterial cell membranes 366 

at high concentrations. At 44μg/mL, four times the MIC of 11μg/mL, PhciCath5 permeabilised 367 

5% of the E. coli cell membrane, leading to cell death within an hour of treatment. However 368 

at the MIC, PhciCath5 is slow-acting, as the same level of membrane permeabilisation was 369 

only observed after three hours. This activity profile differs to tammar wallaby MaeuCath1 370 
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which rapidly killed bacteria at the MIC within 15 minutes [35]. The ability of eutherian 371 

cathelicidins to permeabilise bacterial cell membranes has been linked to an amphipathic alpha 372 

helical peptide structure [29, 64, 69]. The potent MaeuCath1 also forms an amphipathic alpha 373 

helix according to the predictive algorithms of Kyte and Doolittle, and Deleage and Roux [33, 374 

35]. Both algorithms suggest the same structure for PhciCath5 as observed in Fig 3, with two 375 

alpha helical regions indicated by the scores rising above the 0.99 cutoff. While the negative 376 

GRAVY score suggests PhciCath5 is hydrophilic (Table 1), the Kyte and Doolittle 377 

hydropathicity plot reveals that PhciCath5 is amphipathic (Fig 3). Hydrophilic residues span 378 

the middle of PhciCath5, with hydrophobic regions at the N and C-terminus. While PhciCath5 379 

and MaeuCath1 both contain amphipathic alpha helical regions, additional physiochemical 380 

properties such as cationicity and sequence composition influence antimicrobial activity, and 381 

may explain the difference in activity and rate of permeabilisation between the two 382 

cathelicidins [69, 70].  383 
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Fig 3. PhciCath5 contains two predicted alpha helical regions (A) and is amphipathic, 384 

with hydrophilic residues spanning the middle of the peptide and hydrophobic residues 385 

at the N- and C-terminus (B).  386 

 387 

Permeabilisation of bacterial membranes by amphipathic alpha helical cathelicidins can be 388 

described by two models; the barrel stave model and the carpet model [66]. In the barrel stave 389 

model, aggregates of cathelicidins insert into the membrane and form transmembrane pores, 390 

thereby enabling leakage of essential molecules and disrupting transmembrane potential. 391 

Amphipathicity facilitates membrane insertion, as the hydrophobic surface of the peptide 392 

interacts with the lipid core of the bacterial cell membrane, and the hydrophilic surface forms 393 

the lining of the pore [66]. Alternatively, the carpet model does not involve peptide insertion. 394 
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Instead cathelicidins bind to the surface of the membrane until a threshold concentration is 395 

reached, which disrupts the curvature of the membrane leading to destabilisation [66]. These 396 

results are speculative, and lipid membrane models would be required to confirm the 397 

mechanism of PhciCath5 membrane permeabilisation.   398 

 399 

Koala cathelicidins PhciCath1, 2, 3 and 6 were inactive against all bacteria and fungi included 400 

in our assays at the concentrations tested. However, given the diversity and complexity of 401 

marsupial microbiomes known to contain novel and uncharacterised taxa [71-73], it is possible 402 

that they may have activity against specific bacteria and fungi not tested in this study. Some 403 

marsupial cathelicidins have shown been found to show selective activity, such as Tasmanian 404 

devil SahaCath3 which was only active against Cryptococcus neoformans [30]. However, 405 

PhciCath1, 3 and 6 are orthologous to marsupial cathelicidins which do not display 406 

antimicrobial activity (Fig 1) [26, 60]. Conservation of PhciCath1, 2, 3 and 6 suggests an 407 

essential function that has been conserved throughout marsupial evolution. The high level of 408 

expression in immune tissues (Fig 2) supports a role in modulating the immune response. While 409 

the immunomodulatory functions of marsupial cathelicidins remain to be tested, eutherian 410 

cathelicidins are chemotactic to various immune cells, modulate immune cell development and 411 

alter cytokine expression profiles [24].  412 

 413 

PhciCath5 is active against Chlamydia pecorum  414 

Koala cathelicidin PhciCath5 inactivated C. pecorum MarsBar and IPTaLE elementary bodies 415 

(EB) and was the only peptide tested that caused biologically and statistically significant 416 

reductions in chlamydial inclusions. Treatment with 125μg/mL of PhciCath5 resulted in a more 417 

than 2 orders of magnitude decrease in infectious progeny of both C. pecorum serovars, 418 

compared with the control (Fig 4). PhciCath1, 2, 3 and 6 were inactive at concentrations up to 419 



 

22 

 

500μg/mL, with less than half an order of magnitude difference in chlamydial inclusions 420 

compared with the control. Other marsupial cathelicidins have not been tested for anti-421 

chlamydial activity and only a handful of studies have tested eutherian cathelicidins. They 422 

revealed a wide variation in activity between chlamydial species and serovars [36, 37, 74, 75].  423 

Cathelicidins from humans and livestock inactivated a number of C. trachomatis isolates [36-424 

39, 74, 75], especially pig protegrin PG-1 which reduced the infectivity of C. trachomatis at 425 

1.25μg/mL [75]. Comparison of these results with koala cathelicidins presented in this study 426 

indicate the anti-chlamydial activity of PhciCath5 against C. pecorum is moderate at most, 427 

given PhciCath5 was active at over 100-fold higher concentration than PG-1, albeit against 428 

different Chlamydia species. However, experimental conditions used by Yasin et al 1996 429 

differed from our study, as only a single round of infection was performed, and the reduction 430 

in inclusions or change in inclusion morphology measured. This is effectively a MIC, or the 431 

minimum cathelicidin concentration required to inhibit formation of chalmydial inclusions, but 432 

may not have killed the EB. In this study we conducted two rounds of infection, then measured 433 

the reduction in chlalmydial infectivity. As such, our results effectively represent the minimum 434 

chalmydicidal concentration (MCC), or the minimum concentration of PhciCath5 which killed 435 

EB and hence reduced chalmydial infectivity [74]. Furthermore, the same eutherian 436 

cathelicidins which have activity against C. trachomatis were ineffective against one C. 437 

pecorum isolate at a maximum concentration of 80ug/mL [37]., Hhowever, eutherian 438 

cathelicidins have not been extensively tested against this Chlamydia species. Despite this, it 439 

is possible that koala cathelicidins evolved anti-chlamydial activity in response to host-440 

pathogen co-evolution, and form part of the rapid innate defence at the mucosal surface.  441 
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Fig 4. Activity of koala cathelicidins PhciCath1, 2, 3, 5 and 6 against C. pecorum MarsBar 442 

(A) and IPTaLE (B) at 125μg/mL. Expressed as inclusion forming units (IFU) per mL.  **** 443 

indicates p<0.0001 significance was identified.  444 

 445 

Koala PhciCath5 acted directly upon, and rapidly inactivated C. pecorum MarsBar and IPTaLE 446 

EB. Removal of cathelicidins through centrifugation prior to chlamydial infection of the cell 447 

monolayer suggests PhciCath5 most likely induces permanent damage to the EBs within 2 448 

hours, rather than preventing EB uptake into the host cell. Similar results were observed for 449 

pig protegrin-1 (PG-1) against three C. trachomatis serovars after a single round of infection 450 

[75]. This study revealed that PG-1 interacted directly with EBs and caused significant 451 

morphological changes, including membrane damage, loss of cytoplasm and nucleus [75]. 452 

Given that Chlamydia is a Gram-negative bacterium, PhciCath5 may affect membrane 453 

permeability as it did in E. coli. However, Chlamydia EB have a strong, cross-linked outer 454 

membrane which differs substantially from the outer membrane of E. coli [75]. Given 455 

PhciCath5 is a small peptide, only 31 residues in length, it may be able to penetrate through 456 

these structures and bind to the outer membrane of C. pecorum.  457 

 458 
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Given these results, why are koalas with chlamydiosis unable to clear C. pecorum infection 459 

naturally? PhciCath5 and other koala cathelicidins may be present at the site of Chlamydia 460 

infection, secreted from epithelial cells or infiltrating immune cells. This is evidenced by 461 

expression in immune tissues such as the bone marrow, lymph node and spleen (Fig 1). 462 

Cathelicidins are expressed within neutrophils, lymphocytes and macrophages [76], all of 463 

which infiltrate the submucosa of the conjunctiva, urogenital and reproductive tract of the koala 464 

during infection [77]. However, it is unlikely that PhciCath5 reaches the effective concentration 465 

of 125μg/mL in vivo which inactivated EB in vitro. The human cathelicidin LL-37 is present 466 

in plasma at a concentration of 1.2μg/mL [78] and bronchioalveolar lavage fluid up to 15μg/mL 467 

[79]. As PhciCath5 was effective in vitro at up to 100 times this concentration, cathelicidin 468 

expression at the site of infection in vivo may not be adequate to influence the progression of 469 

Chlamydia infection. Further work is required to quantify cathelicidin concentration at the site 470 

of infection in order to determine susceptibility in vitro at a representative concentration.  471 

 472 

Our results show PhciCath5 has activity against extracellular EB. Timing of cathelicidin release 473 

from immune and epithelial cells within the host may not enable direct interaction with EB. 474 

Intracellular Chlamydia may be more resistant to cathelicidin attack, as treatment of 475 

intracellular C. trachomatis with PG-1 resulted in a 67% reduction in infectivity, compared to 476 

almost 100% reduction following treatment of extracellular EBs [74]. Indeed, proteases 477 

secreted by this C. trachomatis neutralise LL-37 anti-chlamydial activity, thereby evading 478 

AMP attack and ensuring extracellular EB survival. Chlamydia protease-like factor (CPAF) 479 

[38] and Chlamydia high temperature requirement protein A (cHtrA) [39] both specifically 480 

degrade LL-37. Whereas the plasmid encoded virulence factor pgp3 binds to, and forms stable 481 

complexes with LL-37, neutralising anti-chlamydial activity [80]. Interestingly, pgp3 also 482 

blocks LL-37 pro-inflammatory functions, which delays the inflammatory response and 483 
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promotes Chlamydia survival [81]. Pgp3 also uses LL-37 to enhance its own pro-inflammatory 484 

activity on neutrophils, which may aid Chlamydia spreading [81]. CPAF, cHtrA and pgp3 are 485 

secreted into the cytoplasm of infected host cells and released upon host cell lysis, degrading 486 

or neutralising extracellular LL-37 before exposure of intra-inclusion EB [38, 39, 81]. Similar 487 

AMP evasion strategies have not been investigated in C. pecorum. However, given results in 488 

C. trachomatis, there is potential for the anti-chlamydial activity of PhciCath5 to be inactivated 489 

in vivo.  490 

 491 

Drug development potential 492 

The broad- spectrum activity of PhciCath5 against bacteria and fungi, including drug-resistant 493 

MRSA, as well as C. pecorum suggests that it shows promise for development as a therapeutic. 494 

Peptide modification is required to identify pinpoint residues responsible for antimicrobial 495 

activity, and those involved in non-specific binding to blood proteins, similar to the alanine 496 

scans performed for LL-37 and derivatives [82, 83]. Additional assays are required to assess 497 

mammalian cell toxicity, one of the main barriers to cationic peptide development. A number 498 

of marsupial cathelicidins are cytotoxic, although mainly at concentrations far above the MIC 499 

[26, 60]. Many eutherian cathelicidins are currently under pharmaceutical development as 500 

topical agents because they were associated with toxicity, low tissue penetration and peptide 501 

degradation when trialled for systemic use [84]. Derivatives of LL-37 and bovine indolicidin 502 

are currently in development as topical agents, while a topical formulation of PG-1 derivative 503 

known as Iseganan has reached phase III clinical trials for the treatment of oral mucositis [84]. 504 

Topical antibiotics are commonly used for the treatment of ocular chlamydiosis in koalas due 505 

to ease of application [85], hence topical cathelicidin formulations may provide alternative 506 

treatment options in the future. 507 
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Synergy between cathelicidins and traditional antibiotics has resulted in increased 508 

antimicrobial activity [24]. Perhaps the same is true for PhciCath5 and chloramphenicol, which 509 

is commonly used to treat chlamydiosis in koalas [21]. Given its broad-spectrum activity, 510 

topical application of PhciCath5 may also prevent or reduce secondary infections involving 511 

Gram-negative and Gram-positive bacteria or fungi, which have been reported in koala 512 

chlamydiosis [85].   513 

Conclusions 514 

We characterised ten cathelicidins in the koala, five of which were full-length sequences that 515 

were widely expressed in tissues throughout the body. One cathelicidin, PhciCath5 displayed 516 

broad-spectrum antimicrobial activity against representative bacteria and fungi, including drug 517 

resistant strains. The activity of the remaining four cathelicidins may be highly specific or 518 

immunomodulatory. When tested against Chlamydia, PhciCath5 significantly reduced the 519 

infectivity of C. pecorum IPTaLE and MarsBar by rapidly inactivating elementary bodies prior 520 

to infection. Despite this, PhciCath5 may be unable to prevent or control C. pecorum infections 521 

in koalas due to inadequate peptide concentration at the site of infection, timing of peptide 522 

release or production of AMP-degrading proteases by Chlamydia. PhciCath5 represents a lead 523 

for antimicrobial development, with additional work required to confirm the absence of 524 

toxicity, explore potential synergistic effects with current antibiotics, and introduce peptide 525 

modifications to enhance antimicrobial activity. 526 
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Supporting information 768 

 769 

S1 Fig. Multiple sequence alignment of koala cathelicidins with other marsupial and 770 

eutherian cathelicidins. PhciCath4 was not included in the alignment as it contains a 771 

premature stop codon and hence is a likely a pseudogene. PhciCath7p to 10p are partial 772 

sequences only, as the mature peptide could not be identified. The predicted signal peptide 773 

sequence is underlined, followed by two domains; the cathelin domain which contains 774 

conserved cysteine residues (boxed), and the antimicrobial domain which encodes the mature 775 

peptide and is of variable length and composition. The predicted mature peptide cleavage site 776 

is denoted by a star. 777 

 778 

S2 Fig. Koala cathelicidins cluster with other marsupials in the phylogenetic tree. The 779 

koala-specific expansion containing PhciCath5, and 7p to 10p, clusters with other 780 

marsupial cathelicidins this display antimicrobial activity. Sequences are coloured 781 

according to antimicrobial activity against bacteria and/or fungi; green indicates active, red 782 

indicates inactive, black indicates peptide has not been tested. Only bootstrap values greater 783 

than 70% are shown. Accession numbers for sequences used are available in S3 Table. 784 

 785 

S1 Table. Amino acid similarity amongst koala cathelicidin mature peptide sequences.   786 

 787 

S2 Table. Genomic coordinates of koala cathelicidin sequences. 788 
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S3 Table. Sequence accession numbers used in BLAST searches and phylogenetic trees. 790 

See Fig. 3 and S2 Fig.   791 


