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ABSTRACT Drone imagery is increasingly used in automated inspection for infrastructure surface defects,
especially in hazardous or unreachable environments. In machine vision, the key to crack detection rests
with robust and accurate algorithms for image processing. To this end, this paper proposes a deep learning
approach using hierarchical convolutional neural networks with feature preservation (HCNNFP) and an
intercontrast iterative thresholding algorithm for image binarization. First, a set of branch networks is
proposed, wherein the output of previous convolutional blocks is half-sizedly concatenated to the current
ones to reduce the obscuration in the down-sampling stage taking into account the overall information loss.
Next, to extract the feature map generated from the enhanced HCNN, a binary contrast-based autotuned
thresholding (CBAT) approach is developed at the post-processing step, where patterns of interest are
clustered within the probability map of the identified features. The proposed technique is then applied
to identify surface cracks on the surface of roads, bridges or pavements. An extensive comparison with
existing techniques is conducted on various datasets and subject to a number of evaluation criteria including
the average F-measure (AFβ) introduced here for dynamic quantification of the performance. Experiments
on crack images, including those captured by unmanned aerial vehicles inspecting a monorail bridge. The
proposed technique outperforms the existing methods on various tested datasets especially for GAPs dataset
with an increase of about 1.4% in terms of AFβ while the mean percentage error drops by 2.2%. Such
performance demonstrates the merits of the proposed HCNNFP architecture for surface defect inspection.

INDEX TERMS deep learning, crack detection, hierarchical convolutional neural network, feature
preserving, thresholding.

I. INTRODUCTION

Surface inspection plays an important role in the health
surveillance and hazard control of roads, bridges, pavements
or tunnels. Effective maintenance and damage prevention of
transport infrastructure rely on prompt detection for defects
in transportation infrastructure such as cracks, edge failures,
potholes, rutting, subsidence, or any surface deterioration
[1]. For this, the inspection conducted manually by pro-
fessional practitioners, wherein dangerous and unattainable
sites would limit the effectiveness of human inspection.
With advances in unmanned aerial vehicles (UAVs) and field
robotics, machine vision-based systems are introduced to

fulfill those inspection tasks [2]. For automatic inspection,
successful identification of defect features on infrastructure
surface requires the development of feasible, robust and
effective detection algorithms.

In visual inspection from captured images, an intensity
shift indicates a contrast between defective spots and their
surrounding pixels in the color space. Based on the referred
source of information, various methods for crack detection
have been proposed. Initially, thresholding approaches are
employed to execute fast detection by solely exploiting the
statistics of intensity. Based on thresholding, early trials for
surface imperfectness detection have been conducted with
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hybrid utilization of intensity and geometrics [3]. Other
methods roughly classify the image according to the dis-
tribution of pixel intensity [4]. To alleviate the interference
from noisy textures, a scanning kernel like the Gabor fil-
ter has been developed in the frequency domain [5]. This
scanning kernel can be used for pixel-wise extraction of the
local geometric information about crack pixels and sharing
the similarity to current convolutional kernels. To judge on
surface defect, a probability model is usually formulated to
determine the presence of cracks. An entropy formulation
is introduced to guide the pavement crack detection based
on saliency and statistical features [6]. Alternatively, Min-
imal Path Selection (MPS) on a single scale image [7] or
multi-scale fusion [3] can be used in searching crack seeds.
Promising results have suggested the formation of a trainable
framework with improved robustness for crack detection.

With the increasing interest in artificial intelligence, ma-
chine learning (ML) approaches are introduced for heuristic
abnormality detection. To this end, several ML techniques
using shallow linear regression models like support vector
machine (SVM) [8] and random forests [9] have been applied
for crack detection. Such learning approaches provide an
adaptive solution in disposing of a variety of crack pat-
terns. However, the prediction accuracy may be limited by
the model simplification and the available computational
capacity in practice. On the other hand, deep convolutional
neural networks (DCNN) [10] have been proposed as a
probabilistic learning framework with a modest processing
time that becomes very attractive for real-time applications.
This technique provides an effective solution to challenges
in semantic segmentation [11] owing to the capability of
multiple-level abstraction and deep breakdown for identified
features. Such promising results suggest the use of DCNN to
identify a surface defect with binary segmentation.

In deep learning, often, the network is sequentially struc-
tured and finalized by fully-connected layers. Such structures
may be computationally ineffective and cause blurred repre-
sentation [12], leading to a drop in the prediction accuracy.
Recently, the emerging hierarchical structure [13] has been
applied to deal with the blurry problem. The potential of
this framework in crack detection has been verified in [14].
In addition, a well-designed filter can be incorporated in
the hierarchical convolutional learning process to extract the
probability map of features [12]. Accordingly, it is promising
to seek a suitable post-processing approach that can offer a
more effective determination of crack and background with
hierarchical DCNN.

Here, a hybrid approach is proposed, integrating a hier-
archical convolutional neural network with feature preserv-
ing and the contrast-based autotuned thresholding (CBAT)
technique to identify surface cracks of roads, bridges or
pavements via aerial photography, obtained by a formation of
unmanned aerial vehicles (UAV) [15]. The collected images
are processed by the proposed neural network first for a
probability map of a potential defect and then its features are
further extracted by CBAT binarization for identification. Ex-

periments on different datasets from [9] and on images cap-
tured by our UAVs during the inspection of a monorail bridge
indicate the advantage of the hierarchical convolutional neu-
ral network with feature preservation (HCNNFP) proposed
in comparison with some crack detection approaches avail-
able in the existing literature. Various frameworks for crack
detection and specific datasets are considered in a number
of experiments for comprehensive assessment on the merits
of our HCNNFP as well as its improvement over other post-
processing methods.

The paper is organized as follows. After the introduction,
Section II discusses the relevant work for deep-learning-
based crack detection. Section III describes the architec-
ture of the proposed framework for crack detection. Section
IV presents our thresholding technique for post-processing.
Section V introduces our UAV system for image capturing,
the datasets, the setup of two experiments respectively for
comparison with relevant deep learning techniques and for
post-processing with binarization. Section VI demonstrates
the experimental results along with their discussion. Finally,
a conclusion is drawn in Section VII.

II. RELEVANT WORK
In this section, key technologies using convolutional neural
networks (CNN) in crack detection tasks are briefly dis-
cussed. Judging on a pipeline structure, CNN methods can be
divided into sequential and hierarchical models. In sequen-
tial models, only the final output is involved in benchmark
matching. For hierarchical models, features from multiple
processing branches and the ground-truth can be utilized
to collectively contribute to improving the fitness of the
detection result.

Current CNN models for crack detection are listed in
Table I, showing also the various methods that have been
used to enhance the extracted features of the crack pattern.
The sequential models include basic CNN [16], CNN with
metaheuristics (CNN-M) [17], deep fully CNN (FCN) [18],
Cracknet [19], Cracknet-V [20], and densely-connected CNN
[21]. Those hierarchical CNN models relevant to this work
are DeepCrack [14], feature pyramid and hierarchical boost-
ing network (FPHBN) [22], U-Net [23], CNN with naïve
Bayesian data fusion (NB-CNN) [24], weakly-supervised
DCNN (WS-ConvNet) [25], PGA-Net [26] and SDD-Net
[27]. Methods used for feature enhancement include decon-
volutional decoders (D), residual modules (RM), probabilis-
tic representation (PR), and statistic post-processing (SP). In
the encoder-decoder structure, the crack patterns are to be
rescaled with key indices recorded. With the preservation of
those coordinates, the detailed patterns of crack features can
be reasonably refilled with deconvolutional decoding. In RM,
a combination of the original and processed features can be
used to provide a residual effect like with human eyes, i.e.,
remembering the silhouette of the object that has previously
been observed. The following step is to compensate for
missing patterns using this residual effect. Alternatively, the
feature maps are converted into a representation in the proba-
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bilistic space PR. In this case, every pixel will be assigned
a possibility score in the range of (0, 1) to evaluate the
likelihood of a crack. As a result, the prediction of the model
becomes less overconfident on uncertainty and mislabels,
contributing positively to the reduction of false-positive rate.
The last approach SP using a global optimizer with statistic
post-processing tools to extract the result from CNN. The
accuracy of the detection can be improved by filtering out
outliner labels with a total threshold or some verification
mechanism.

Models Type of
architecture D RM PR SP

Basic CNN [16] Sequential
CNN-M [17] Sequential X
FCN [18] Sequential X
CrackNet [19] Sequential
CrackNet-V [20] Sequential X
Densely connected CNN [21] Sequential X X
DeepCrack [14] Hierarchical X X X
FPHBN [22] Hierarchical X X X
U-Net [23] Hierarchical X
NB - CNN [24] Hierarchical X
WS-ConvNet [25] Hierarchical X X
PGA-Net [26] Hierarchical X X
SDD-Net [27] Sequential X

TABLE I: Summary of CNN models with different
architecture and different feature enhancement methods.

In this paper, the above enhancement methods are inte-
grated to create a new processing pipeline for crack detec-
tion. The contributions of this paper can be summarized as
follows:
• Among hierarchical architectures, the HCNNFP net-

work proposed in this paper is different from the Deep-
crack by a feature preserving branch. As such, it is more
comprehensive in surface crack detection by using the
combination of geometrical and statistic information,
whereby feature abstraction is enhanced by an addi-
tional side branch in the encoder to reduce estimation
error caused by redundant nonlinearity.

• An iterative approach is proposed to automatically
search for an optimized threshold of the probability
map for features generated from the proposed DCNN,
and as a result, to avoid the time consumption in the
search while increasing the accuracy of generated fea-
ture maps.

• A dynamic measure to evaluate the fitness of defect
detection, assessing the average performance under a
range of weights in conjunction with the commonly-
used F-measure using a single pre-determined weight.

III. HIERARCHICAL CONVOLUTIONAL NEURAL
NETWORK WITH FEATURE PRESERVATION
In this section, a novel DCNN approach called the hierarchi-
cal convolutional neural network with feature preservation
(HCNNFP) is proposed to obtain a probability map of sur-
face defects from the input image. Here, unlike the original
hierarchical CNN, a feature preserving branch is augmented

to adjust the weights of the abstraction from upper-layers,
and hence, resolving the nonlinearity trade-off to improve the
network performance.

A. CONVOLUTIONAL NEURAL NETWORKS
Our detection method is based on the inference in a con-
volutional neural network (CNN). To formulate the clas-
sification problem, let us first define a training sample as
D = {(X,Y )}, where X = {xij |i, j ∈ (I × J)} and Y =
{yij |i, j ∈ (I × J)} respectively represent the pixel values
of the original image of size I × J and its corresponding
annotated mask of cracks, both containing I × J pixels. In
the context of defect identification, the ground-truth mask yij
can take a binary value determined as,

yij =

{
1, xij - abnormal pixel in the mask,
0 otherwise. (1)

In a network model, the judgment on crack candidates is
made from a layer-by-layer inference. Such inference is
deduced from the basic structure of multilayer perceptrons
(MLP) [28]. Suppose we have a L-layer MLP to predict the
possibility map of defect candidates. For crack detection, the
learning process targets at the best fitness to the annotated
crack map. For an input matrix X l in l-th layer, the learning
process is an optimization problem formulated as

min{W l},{bl}
∥∥P (XL)− Y

∥∥
F
+ λ

∑
l

∥∥W l
∥∥2
F

subject to X l = a
(
X l−1W l + bl

)
, l = 1, . . . , L− 1

XL = XL−1WL + bL,
(2)

where W l and bl represent the weights and bias at the l-
th layer, a(·) is the nonlinear activation function, λ is the
coefficient for controlling the scale of regularization, and
P (·) is an arbitrary statistic function to express the possibility
of crack candidates.

While CNN shares a similar architecture with that of MLP,
it introduces the convolution to biologically stimulate the
visual perception of cortex cells within a receptive field. By
using the convolution operation (∗), the feature map of CNN
can be expressed as a set of features:

f lij = a
((
W l ∗X

)
ij
+ bl

)
. (3)

Then the target possibility P (fij) stimulates the condi-
tional distribution p(yij |xij), the real possibility to indicate
the confidence level of a pixel looking like a crack. However,
it would be impractical for the neurons to be fully connected
pixel-wisely due to the exponential increase of computational
load. In this application, the non-zero weights are actually re-
strained within a certain kernel to present the logistic relation
between a pixel and its limited neighborhood. The smallest
kernel size that can provide the abstraction of the image is
3×3 (a 1×1 kernel can just output the original information).
For a larger receptive field, the size of the kernel can be
extended appropriately. Within the receptive field, the values
of neighboring pixels collectively determine the intensity of
a particular pixel on the feature map. As a result, the output
can be a highly dependent abstraction of the crack patterns.
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B. NETWORK STRUCTURE
The proposed symmetric network architecture is shown in
Fig. 1, based on the framework of DeepCrack [14] with the
same structural parameters such as the kernel size and the
number of channels. The encoder consists of 5 convolutional
blocks with 13 convolutional layers. Each convolutional layer
contains a standard size-invariant convolution operation for
the abstraction of crack features. With the combination of
several convolutional layers, each feature map of the current
scale is created at the end of each block. For downsampling,
a max-pooling layer after each block compresses the image
into quarter-size, preserving the values and indices of the
local maxima. The shrinkage of the image consequently
yields an increase in the size of the receptive field (RF) for
the following layer, leading to a sparser feature map in the
next block.

In the first two blocks, the convolutional kernels are rela-
tively small compared to the size of the input. Accordingly,
the first two blocks mainly preserve the detailed features
of the original image. However, unlike the early CNNs
aiming at small-size images as 28 × 28 in the Modified
NIST dataset [29], the current deep learning approaches are
designed to segment images with a size of at least hundreds
by hundreds. Hence, the basic kernel in 3 × 3 is insufficient
for abstraction, and as such, two convolutional layers are
combined to stimulate the receptive field of a 5 × 5 ker-
nel but with fewer parameters involved. The outputs from
the third block are equal or less than the 1/16 size of the
original image. Therefore, the receptive field of those blocks
should be extended for preserving features. Consequently,
an additional convolutional layer is added in each of those
blocks. Here, a feature preserving branch is augmented at the
output of the convolutional blocks in the encoder to adjust
the level of abstraction from upper-layers by concatenation
with the downsampling layer. Here, unlike the pipeline of the
DeepCrack [14], which inherits the auto-encoder structure of
SegNet [11], the proposed preserving branch is to maintain
the image features by alleviating nonlinear redundancy, as
explained at the end of this Section.

In our network, the decoder mirrors the structure of the
encoder, with five corresponding upsampling layers to sym-
metrically retrieve the size of the image via the reference
of saved indices. The sparse image generated from the last
upsampling is refilled and reconstructed in the next blocks.
With the index propagation throughout the entire pipeline,
the network can restore key information of boundaries on the
original image.

C. INFORMATION LOSS
Since the task of identifying a surface crack on a bridge,
road or pavement can be rendered to a binary segmentation
problem with two semantic groups, abnormal and intact
features, the labeling error in the prediction can be evaluated
by a binary entropy loss function. For the computation of a
measure for information loss, let us define F k = {fkij |k =
1, . . . , 5} as the feature map under the zooming scale k and

F fused = {ffusedij } as the fused map accordingly. The
red modules depicted in Fig. 1 illustrates the formation of
those feature maps. For an arbitrary feature fij , its pixel-wise
probability P (fij) can be expressed by a sigmoidal function
as,

P (fij) =
1

1 + e−fij
. (4)

In terms of binary entropy, a pixel-wise feature at a con-
volutional block is either abnormal or intact. By considering
it as a random variable, the associated information loss for
feature fkij at the kth convolutional block can be expressed
via its entropy as,

l(fkij) = −yij ln(P (fkij))− (1− yij) ln(1− P (fkij)). (5)

Since the ground-truth mask contains only logical values 0
and 1, the information loss or entropy of Eq. (5) is rewritten
as,

l(fkij) =

{
− lnP (fkij), yij = 1
− ln(1− P (fkij)), yij = 0.

(6)

The accuracy of the prediction relies on the fitness of ev-
ery feature map in comparison with the ground-truth mask.
Hence, all the corresponding probability maps are responsi-
ble for the loss function, including for all fused pixels and
all convolutional blocks. Accordingly, the total loss L of an
image should represent the superposition of the pixel-wise
losses for each convolutional block for all feature maps and
the fused map for all pixels, i.e.

L =

I∑
i=1

J∑
j=1

(
l(ffusedij ) +

5∑
k=1

l(fkij)

)
. (7)

D. PERFORMANCE ENHANCEMENT
For U-shape networks like the U-net [23], enhancement of
features can be achieved with a comprehensive design to
avoid ambiguously stacking additional channels. Here, a fea-
sible structure is implemented with an alternative allocation
inside the network. To analyze the performance improvement
of the proposed HCNNFP, we consider the nonlinear nature
of the network and then adjust its structure to simultaneously
reduce nonlinearity while preserving the image features by
resolving the trade-off between them.

1) Feature preservation versus nonlinearity
From the probabilistic view, the attribution of a pixel can
be properly described by either an abnormal or intact pixel
member corresponding to two random events EV1 and EV0,
respectively. Specifically, EV1 is the event that the sampled
pixel belongs to the abnormal group and EV0 is when it
belongs to the intact area. Accordingly, given an observation
on the pixel xij , two conditional probabilities are defined,
namely the probability P (EV1|xij) or P (EV0|xij) that xij
belongs to surface abnormality such as a crack or not. To
identify a potential defect, let us consider the probability
P (EV1|xij). From Bayes’s rule, the conditional probability
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FIGURE 1: HCNNFP- network architecture

of a crack on a road, pavement or bridge, given pixel xij is
expressed as

P (EV1|xij) =
P (EV1, xij)

P (xij)
,

or

P (EV1|xij) =
P (xij |EV1)P (EV1)

P (xij |EV1)P (EV1) + P (xij |EV0)P (EV0)

=
1

1 +
P (xij |EV0)P (EV0)
P (xij |EV1)P (EV1)

=
1

1 + e−a(xij)
,

(8)
where

a(xij) = ln
P (xij |EV1)P (EV1)

P (xij |EV0)P (EV0)
. (9)

Now, it is assumed that those conditional probabilities follow
the Gaussian process N (µ0,1, σ

2) with the same variance σ
[30] and means µ1 and µ0, respectively for the two abnormal
and intact cases, we have:

P (xij |EV0,1) =
1

σ
√
2π

exp

[
− (xij − µ0,1)

2

2σ2

]
, (10)

in association with the random events EV0 and EV1. By
substituting Eq. (10) into Eq. (9), the exponent a(xi) can be
explicitly derived in the following form:

a(xij) = lnP (xij |EV1)− lnP (xij |EV0) + ln
P (EV1)

P (EV0)

=
µ1 − µ0

σ2
xij +

µ2
0 − µ2

1

2σ2
+ ln

P (EV1)

P (EV0)

= wxij + w0,
(11)

where w = µ1−µ0

σ2 and w0 =
µ2
0−µ

2
1

2σ2 + ln P (EV1)
P (EV0)

.

Therefore, by comparing Eq. (4) and Eq. (11), elements fij
of an abnormal feature as of a crack can be expressed as,

fij = wxij + w0, (12)

which is linearly-dependent on the pixel values xij of the
image captured on the surface under monitoring.

In a deep learning CNN framework, it is known that the
hidden layers contain inevitable nonlinearity to facilitate the
information processing capacity of the network. However,
when using the sigmoidal function for probabilistic represen-
tation, the linear dependence of image features on the input
appears to limit the amount of feature information throughout
the processing. This requires a compromise between feature
preserving and information handling. Due to the nonlinear
activation employed in each convolutional layer, the overall
nonlinearity accumulates largely in the forward propagation.
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Therefore, the outputs from the deeper encoder network tend
to depart further from the linear hypothesis, unfavorably in-
fluencing the accuracy of the probability maps as per Eqs. (8-
12). Hence, some measures of compensation for nonlinearity
is required to balance the trade-off between nonlinearity
and the network capacity of information processing. This
motivated us to develop a feature preserving branch(FPB) for
the network architecture, for which a rationale is given in the
following.

2) Feature preserving branch
By considering the benefits in the alleviation of redundant
nonlinearity, here a side branch is created in the original
HCNN to adjust the abstraction weights from the upper-
layer by concatenation with the downsampling layer. As
can be seen from the proposed network architecture of
Fig. 1, a part of the encoder output passes by convolu-
tion, batch normalization and ReLU through an extra path
and is half-sizedly concatenated with max-pooling in the
downsampling. Furthermore, the concatenation takes place
recursively between the output from the shallower encoder
block and the output at the next deeper block. The input
from each encoder block keeps semi-inherited in the feature
merging routine to increase the possession of shallower-level
features in merging channels along with the propagation
in the convolutional network. A comparison of Deepcrack
architecture and our proposed one is shown in Fig. 2, wherein
learning performance can be significantly improved from
resized concatenations in FPB so as not to increase the
computational latency.

Feature map

Input image

Side output

Fused crack map

Merging

D
ee

pC
ra

ck
H

C
N

N
FP

Feature
preserving 

branch

Resized concatenation

FIGURE 2: Architecture comparison

Notably, in our proposed enhanced HCNN network, the
encoder outputs place higher weights on the feature maps
from shallow layers, which result in (i) feature preservation
via reduced nonlinearity as per Eq. (12), (ii) maintenance of
the performance of information processing via deep learn-
ing, and (iii) assurance of the same level of computational
complexity via half-sized concatenation. Under the premise
of overall nonlinearity reduction and merits of the proposed
approach, this adjustment can enhance the quality of the

probability maps, and as such, increase the accuracy of crack
detection for automatic monitoring of built infrastructure for
transportation.

IV. CONTRAST-BASED AUTOTUNED THRESHOLDING
The output of the proposed pipeline is a probability map
represented by a sigmoidal function. To obtain the binary
map of images captured for surface inspection, it is required
a suitable threshold for a fitting match to the image ground
truth. The threshold, used to categorize the probability map
into two classes, should be adaptable to various scenarios of
surface imagery for accurate detection of cracks. To this end,
an autotuning iterative thresholding technique is proposed to
obtain the best threshold based on image contrast and subject
to various thresholding criteria.

A. PROBABILITY MAP THRESHOLDING CRITERIA
In this paper, the following criteria are used for evaluation.

F-measure (Fβ): The probability map is binarized by a
threshold T ∈ (0, 1), where pixels with a probability greater
(smaller) than T are categorized as imperfect or intact re-
gions. For a single image, the score Fβ [31] is often used as
a fitness criterion to justify the chosen threshold. For a well-
selected threshold, such F-measure is expected to reach the
maximum. It is calculated as

Fβ = (1 + β2) · pT × rT
β2 × pT + rT

, (13)

where pT and rT are respectively the precision and recall,
based on the correctly-reported and falsely-reported positive
or negative results; and β denotes the weight between preci-
sion pT and recall rT . A larger F-measure indicates a higher
performance of the thresholding. In industrial practice, pre-
cision plays an important role in further disposal since pT
score represents the ratio between the identified defect over
and the return features. Such information is quite valuable to
the decision on the scope of maintenance or repair work to
remedy the identified defect.

Average F-measure (AFβ): To emphasize the precision
over recall rT , the weight β2 should be chosen less than
1. Especially, when β2 = 1, Fβ becomes the standard F-
measure with equal weighting on the precision and recall
[31], which can be expressed as F1 = 2×IoU/(1+IoU) and
considered as mathematically alternative to the Intersection-
over-Union (IoU) metric itself [32]. As recommended in
[33], coefficient β2 could be selected at 0.3. On other hand,
β2 = 0.25 is also frequently used to evaluate the quality
of image processing [34]. However, no strong evidence is
demonstrated in the literature to prove the priority of 0.25
or 0.3 among other adjacent values. For a fairer comparison
through the F-measure, we propose a new evaluation metric
to calculate the average F-measure AFβ over a given range
of β2. Here, the average F-measure, AFβ , is formulated by:

AFβ =
1

β2
2 − β2

1

∫ β2
2

β2
1

Fβdβ
2, (14)
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where β2
1 and β2

2 represent are respectively the lower and
upper limit for the interested range of weight β2. Substituting
Eq. (13) to Eq. (14), AFβ can be explicitly obtained as

AFβ = rT +
rT
pT
× pT − rT
β2
2 − β2

1

× ln
pTβ

2
2 + rT

pTβ2
1 + rT

. (15)

Notably, this metric is considered as robust over any range
of interest for weight β2. Here, β2 is nonzero while the
condition that β2 < 1 should be kept as in common practice.
In terms of evaluation judgment, similarly to Fβ , a higher
AFβ represents better quality of a thresholding technique.

MAE: For a binary map S = {sij}, the mean absolute error
(MAE) can be obtained from the post-processing step as,

MAE =
1

I × J

I∑
i=1

J∑
j=1

|sij − yij |. (16)

A smaller MAE indicates a better match to the ground truth
(GT). Complementarily to the weighted F-measure, this met-
ric rewards predictions with a high recall rate due to its
preference for false-positive samples [35]. Alternatively, one
can also use the mean absolute percentage error (MAPE) [36]
with the total number of pixels in the image being replaced
by the number of true-positive pixels Ntp in the denominator
of MAE as,

MAPE =
1

Ntp

I∑
i=1

J∑
j=1

|sij − yij | (17)

to make the results more salient.

B. INTERCONTRAST ITERATIVE THRESHOLDING
An even threshold T = 0.5 is usually considered as a reason-
able value for good thresholding. However, this may cause
mislabeling in the case with an unbalanced ratio between a
faulty feature and an intact background. To obtain a better
result, it is worth seeking a mechanism for autotuning of
the threshold. To this end, we propose the contrast-based
autotuned thresholding (CBAT), a contrast-based approach
refined from Otsu’s thresholding [37], to improve the accu-
racy of binarization. A flowchart for obtaining the binary
map is depicted in Fig. 3, wherein Otsu’s thresholding is only
implemented in the region of interest (ROI) that encompasses
a cluster of high-probability defect candidates during the
iteration process rather than a large background region.

In the initial iteration, the whole histogram is predefined
as the original ROI R0

ROI . Generally, in the mth iteration,
Otsu’s algorithm otsu(.) obtains a threshold TmROI for the
previous ROI Rm−1ROI such that

otsu(Rm−1ROI ) = TmROI . (18)

Threshold TmROI is expected to segment Rm−1ROI into region of
interest RmROI and background Rmb , i.e.

Rm−1ROI = RmROI ∪Rmb , (19)

where RmROI is the current ROI containing the pixels with a
probability higher than TmROI , and Rmb is the corresponding

Generate threshold of ROI via
Otsu and calculate contrast

Contrast is
 bigger than

 stop condition?

Update right region of ROI as
ROI for next round

Define whole histogram as
initial ROI

Binarize the
probability map by the

selected threshold

 Histogram of probability map

Y

N

Binary crack map

Choose the current
threshold as the final

threshold

FIGURE 3: Binarization flowchart using CBAT

background region for pixels whose probability is between
TmROI and Tm−1ROI .

The interclass contrast [38] is a criterion for the assessment
of segmentation quality, under the hypothesis that the inten-
sity of homogenous pixels is close to the average intensity
of their class. Referred to the probability histogram, the
interclass contrast CmROI for region Rm−1ROI is expressed as,

CmROI =
| µmROI − µmb |
µmROI + µmb

, (20)

where µmROI and µmb are respectively the mean probability
in RmROI and Rmb . Due to a significant reduction of the ROI
pixel number, the sum µmROI + µmb remains decreasing with
iterations. Consequently, CmROI keeps increasing until the
iteration terminates. A strong contrast implies an obvious
difference between the two classes within the probability
map, resulting in a distinction between abnormal features and
the intact region on the image captured.

Since our target is to highlight an imperfect region as a
crack from its neighborhood, a proper interclass contrast is
required to preserve the discernibility of defect candidates.
For a particular surface type, the termination condition for
contrast Cs is set so that the loop will stop when CmROI > Cs
to yield the ultimate threshold Tu. The pseudo-code for the
proposed CBAT approach is demonstrated in Algorithm 1.

The ROI, initially the whole histogram, is reduced after
running the Otsu’s algorithm for the first time at threshold
T1, then keeps shrinking iteratively with an updated interclass
contrast (CmROI to result in a new region of interest during the
next searches for T2, T3, ... until reaching the termination
condition for the ultimate value Tu. The probability region
with a threshold T greater than Tu will be assigned to defect
candidates, and the remaining pixels will be categorized as
the background.

, 7
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Algorithm 1 Intercontrast Iterative Thresholding

Require: R0
i : whole histogram

Ensure: Tu: ultimate threshold
1: m← 0
2: repeat
3: m++
4: TmROI ← otsu(Rm−1ROI )
5: RmROI ← Rm−1i (Rm−1ROI > TmROI)
6: Rmb ← Rm−1ROI (T

m−1
ROI ≤ R

m−1
ROI < TmROI)

7: µmROI ← Average(RmROI), µ
m
b ← Average(Rmb )

8: CmROI ← | µmROI − µmb |/(µmROI + µmb )
9: until (CmROI > Cs)

10: Tu ← TmROI

V. EXPERIMENTS AND EVALUATION
The UAV inspection system used for collecting images in-
cludes two subsystems: Skynet for flying drones and captur-
ing images, and the ground center for data processing. The
quadcopters are controlled to follow an IoT-communicated
formation [39] to inspect a monorail bridge, as depicted in
Fig. 4. Here, all the trainable parameters are initialized by
He Normal initialization [40]. The training is conducted at
a learning rate of 1e-5 and optimized by Adaptive Moment
Estimation (Adam) [41] with the default setting of two hy-
perparameters, (0.9, 0.999). For performance improvement
from using the proposed loss function, the maximum training
epoch is set as 30, which is adequately large for the sake of
convergence. An early stop is applied when the reduction of
the loss between two adjacent epochs is under 0.01%. The
training process is conducted on NVIDIA Tesla T4 GPUs
16Gb.

1) Datasets
Four datasets used in our experiments include:

• Crack500 [22]: containing 500 images of pavement
cracks with granular backgrounds in a unified size of
2560 × 1440 with a few samples under uneven illumi-
nation. Due to the limitation in GPU memory and com-
putation power, all the images are resized to 256× 256.

• CrackForest [9]: containing 118 images of road cracks
with labeled masks in a size of 600 × 800 with a
part of samples with the interference of shadow and
painted marks. We rotate the images with a range from
0 to 90 degrees, flip them vertically and horizontally,
and randomly crop the flipped images with a size of
256 × 256. Ten thousands augmented images are split
into the training and the validation set with a ratio of
9:1. The rest 1180 images are preserved for testing.

• DCD [42]: containing 521 images of infrastructure
cracks with texture and misleading marks under various
light condition.

• GAPs [43]: containing 509 images of pavement cracks
with densely granular backgrounds under poor light
conditions. DCD and GAPs are both integrated into an

unified size of 448× 448, following [44].

Here, the original annotation of public datasets is kept for a
fair comparison with peer methods. For images with larger
sizes, a sliding window can be used to process the image clip
by clip [45]. Our original dataset is also included for testing:

• SYDCrack [12]: With the inspection system introduced
above, an image dataset is collected for some surface
cracks on a monorail bridge with regularly textured
backgrounds under a good illumination. Those images
are collected at 15 locations where crack patterns are
located. The integrated dataset contains 170 images,
cropped into 850 pitches with a size of 224× 224.

FIGURE 4: Bridge inspection

2) Benchmarking

In the first experiment, a comparative analysis is conducted
between our proposed one and the recent state-of-the-art
crack detection methods using deep learning. The frame-
works for comparison are listed in the following:

• HED [46]: Retaining the encoder part of SegNet, the
holistically nested edge detection (HED) merges feature
maps from five different levels in the encoder. The last
feature map is used for computation of the loss function.

• RCF [47]: Another edge detection technique for richer
convolutional features (RCF) delivers a merged output
from each convolutional layer in the encoder block
while HED just outputs the final layer.

• SegNet [11]: This framework represents a standard end-
to-end model with an auto-encoder.

• DeepCrack [14]: An end-to-end hierarchical network
for crack extraction using the typical architecture of
SegNet with symmetrical concatenation in the side
branch.

• FPHBN [22]: The feature pyramid and hierarchical
boosting network (FPHBN) is a recently proposed
framework for crack detection and constructed on the
main structure of HED.

• FCN [18]: A simplified hourglass shape network for
crack detection with only 6 blocks.
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• U-Net [23]: An U-shape auto-encoder network with
scale-invariant merging between outputs from the en-
coder and the decoder.

In the second experiment, the methods to compare with are
listed as follows:

• ITTT [48]: An iterative thresholding method controlled
by the distance between current and previous thresholds.

• CAT [49]: A modified Otsu’s thresholding method [37]
with the enhancement of contrast via resizing the his-
togram.

VI. RESULTS AND DISCUSSION
A. COMPARISON WITH RESULTS FROM DIFFERENT
FRAMEWORKS
The visual results of those DCNN frameworks for crack
detection are depicted in Fig. 5, wherein autoencoder models
such as SegNet, FPBHN, DeepCrack, and HCNNFP are ca-
pable of resisting the interference caused by texture, painted
boundaries, and uneven lighting conditions. Notably, in addi-
tion effectively preserving completed contour of cracks better
than other methods, including DeepCrack and FPHBN, the
proposed HCNNFP is also able to remove those confusing
patterns, as shown in the last five columns for DCD-7 dataset.
The complexity of crack-like patterns actively contributes to
a better F-measure with our method. Besides, although the
results of DeepCrack and HCNNFP reach a similar level of
sophistication, HCNNFP outputs a thinner outline of cracks.
All these lead to less false-positive labeling around the con-
tour and more accurate prediction. This advantage can be
confirmed quantitatively by the measures AFβ and MAPE
as shown in the charts of Fig. 6 and 7.

For further comparison in the first experiment, the average
measures for 6 DCNN approaches are listed in Table II
and Table III. It can be seen that our HCNNFP obtains
the highest AFβ and the lowest MAPE for CrackForest,
SydCrack, DCD, and GAPs datasets, and performs as the
second-best in Crack500. The processing time of all the
compared models is demonstrated in Table IV. Since all the
tested networks are fed with the same data for testing and data
loader, the difference of processing time can be considered
as a relative comparison of computational consumption. As
shown in Table IV, among the top three approaches in terms
of crack detection accuracy, namely HCNNFP, DeepCrack,
and FPHBN, our proposed approach ranked second in com-
putational efficiency. More importantly, its ability to pro-
cess cropped images at approximately 60 frames per second
has demonstrated the capability of our method in real-time
application. It is noted that the augmentation method used
for SYDcrack and CrackForest is by cropping rather than
resizing as in Crack500. Since resizing can generally weaken
the representation of features with fewer details, DCD and
GAPs are used here in the original size from the source
provided by [44] with a higher fidelity level.

The feature preserving capability and high performance
in crack detection as evaluated by those measures indicate

the effectiveness of our approach overall. It is also worth
noting that the top three models are all U-shape autoencoder
while the fourth is also based on the first model architecture.
This indicates the advantage of the proposed feature preser-
vation branch applied to existing hierarchical architectures
for vision-based monitoring. Specifically, recent autoencoder
models such as DeepCrack, FPHBN and our HCNNFP per-
forms better than the prototype autoencoders like SegNet.
The main difference between them is that those updated mod-
els has an independent branch to integrate the output from
different scales into a unified scale after resizing and refilling.
This branch can be the key to the improvement of accuracy.
Notably, the robustness of our proposed method over the
range of interest for value β2. Indeed, the relationship of
Fβ versus β2 for the CrackForest dataset is shown in Fig. 9,
where it can be seen that the fitness Fβ of HCNNFP remains
the highest for β2 ≤ 1 as compared to other existing deep
learning techniques. In particular, the evaluation using the
standard F-measure can also be seen in Fig. 9, where, at
the point β = 1, the proposed HCNNFP gives the maximal
value at around 0.88. This merit is also preserved if taking
the arithmetic mean of Fβ for the five datasets.

(a) (b)

(c) (d)

FIGURE 6: Quantitative results of the first five samples on
crack images: (a) Fβ |β2 = 0.25, (b) Fβ |β2 = 0.3, (c) AFβ ,

(d) MAPE.

B. COMPARISON IN POST-PROCESSING
The binarization results are shown in Fig. 8. It can be seen
that all the approaches can provide a high level of fitness
to the ground truth. However, among them, CBAT presents
a prediction map with the fewest crack labels. Moreover, as
shown in the second row, although both thresholding methods
are misled by the trace of insignificant dents, our CBAT
can reduce the error by removing some false-positive pixels,
and thus enhancing the precision rate. This improvement
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Crack500-1

Crack500-2

CrackForest-3

CrackForest-4

SYDCrack-5

SYDCrack-6

DCD-7

DCD-8

GAPs-9

GAPs-10

Original GT HED RCF SegNet DeepCrack FPHBN U-Net FCN HCNNFP

FIGURE 5: Detection results by six DCNN approaches with even threshold T = 0.5.

Crack500 CrackForest SYDCrack DCD GAPsMethods
β2=0.25 β2=0.3 β2=0.25 β2=0.3 β2=0.25 β2=0.3 β2=0.25 β2=0.3 β2=0.25 β2=0.3

HED 0.7877 0.7868 0.8699 0.8697 0.8414 0.8417 0.8350 0.8327 0.6664 0.6626
RCF 0.8034 0.8024 0.8612 0.8602 0.8462 0.8473 0.8542 0.8509 0.6568 0.6515
SegNet 0.8024 0.8021 0.8654 0.8642 0.8507 0.8509 0.8588 0.8570 0.7536 0.7530
DeepCrack 0.8068 0.8083 0.8765 0.8765 0.8514 0.8514 0.8667 0.8656 0.7642 0.7657
FPHBN 0.8211 0.8207 0.8773 0.8771 0.8510 0.8517 0.8671 0.8653 0.7890 0.7816
U-Net 0.7510 0.7542 0.7839 0.7853 0.7730 0.7778 0.7849 0.7897 0.6770 0.6831
FCN 0.8030 0.8042 0.8417 0.8452 0.8243 0.8274 0.8005 0.8049 0.7562 0.7619
HCNNFP 0.8179 0.8181 0.8805 0.8797 0.8552 0.8551 0.8700 0.8688 0.7949 0.7933

TABLE II: Comparison of F-measure Fβ among eight DCNN approaches on five datasets.

is explained by the high credibility of CBAT in favor of
crack features, and by its low credibility in shadow dents
due to fewer rounds in the repetition of similar patterns

in the training set. As such patterns are excluded by using
CBAT, the prediction is closer to the ground truth. This has
resulted in the highest values of AFβ and the lowest MAE
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Crack500 CrackForest SYDCrack DCD GAPsMethods
AFβ MAPE AFβ MAPE AFβ MAPE AFβ MAPE AFβ MAPE

HED 0.7849 0.9038 0.8692 0.5095 0.8432 0.7358 0.8277 0.9856 0.6542 1.2491
RCF 0.8005 0.8325 0.8579 0.5498 0.8508 0.7360 0.8434 0.9558 0.6511 1.1798
SegNet 0.8016 0.9619 0.8616 0.5430 0.8523 0.7156 0.8505 0.8602 0.7322 1.2090
DeepCrack 0.8122 0.8946 0.8767 0.4870 0.8522 0.6994 0.8632 0.7649 0.7538 0.9617
FPHBN 0.8202 0.7782 0.8768 0.4843 0.8542 0.6863 0.8615 0.7604 0.7662 0.8723
U-Net 0.7629 1.3783 0.7887 0.8330 0.7907 1.2924 0.8062 1.6089 0.6927 1.8614
FCN 0.8076 0.9251 0.8542 0.6225 0.8358 0.8500 0.8170 1.4950 0.7685 1.1841
HCNNFP 0.8188 0.8081 0.8780 0.4807 0.8558 0.6725 0.8662 0.7520 0.7807 0.8503

TABLE III: Comparison of average measures among eight DCNN approaches on five datasets.

Crack500-11

CrackForest-12

SYDCrack-13

Original GT Fixed 0.5 ITTT CAT CBAT

FIGURE 8: Binarization results of the probability map.

Methods HED RCF SegNet DeepCrack FPHBN U-Net FCN HCNNFP
Processing time(ms) 7.44 9.47 14.49 15.24 18.15 15.12 12.71 16.01

TABLE IV: Comparison of the processing time among eight DCNN approaches.

as shown in the chart of Fig. 10. The quantitative results of
the four binarization approaches are presented in Table V
and Table VI for the three data sets CrackForest, SYDCrack
and Crack500. Among the tests on three datasets, almost all
metrics are better after applying CBAT to the post-processing
step.

Crack500 CrackForest SYDCrackThresholds
β=0.25 β=0.3 β=0.25 β=0.3 β=0.25 β=0.3

Fixed 0.5 0.8179 0.8181 0.8805 0.8797 0.8552 0.8551
ITTT 0.8167 0.8171 0.8789 0.8785 0.8541 0.8543
CAT 0.7456 0.7506 0.7777 0.7837 0.8007 0.8054
CBAT 0.8279 0.8258 0.8865 0.8858 0.8643 0.8619

TABLE V: Comparison of F-measure Fβ among
binarization approaches: thresholding with fixed T=0.5,

ITTT, CAT and CBAT.

Notably, for an ablation analysis, in addition to the com-
parison of DeepCrack and HCNNFP for the cases without
and with our feature preserving branch as shown in Fig.
5 in the case of even binarization, the effect of autotuned
thresholding is also presented in this comparison with our
proposed CBAT. Indeed, as indicated in Table III, the AFβ
are improved on all the datasets, especially on GAPs, with

Thresholds Crack500 CrackForest SYDCrack
AFβ MAPE AFβ MAPE AFβ MAPE

Fixed 0.5 0.8188 0.8081 0.8780 0.4807 0.8558 0.6725
ITTT 0.8183 0.8188 0.8777 0.4855 0.8554 0.6790
CAT 0.7642 1.6535 0.8001 1.1365 0.8181 1.1509
CBAT 0.8211 0.7431 0.8836 0.4757 0.8569 0.6366

TABLE VI: Comparison of average measures among
binarization approaches: thresholding with fixed T=0.5,

ITTT, CAT and CBAT

an increase of 2.69%, while MAPE drops by 11.14%. With
the proposed feature preserving branch, more false-negative
samples are rectified due to its robust mechanism in dealing
with the nonlinearity. Also, a similar improvement can be
seen in the comparison between our autotuned thresholding
and raw binarization as quantified in Table VI. Those results
verify the effectiveness and robustness of the proposed HC-
NNFP with feature preserving and autotuned thresholding.

C. DISCUSSION

Experimental results have demonstrated performance en-
hancements from the proposed hierarchical convolutional
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(a) (b)

(c) (d)

FIGURE 7: Quantitative results of the last five samples on
crack images: (a) Fβ |β2 = 0.25, (b) Fβ |β2 = 0.3, (c) AFβ ,

(d) MAPE.
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FIGURE 9: Distribution of Fβ with respect to β2

neural network with feature preserving for crack detection
towards intelligent monitoring of transportation infrastruc-
ture. In the post-processing stage, the proposed intercontrast
iterative thresholding also significantly contributes to im-
proving binarization results for accurate feature extraction.
Experimental results in crack detection on different datasets
have shown the influences of redundant nonlinearity on the
level of detail abstraction and the need for high credibility
and scalability for reliable assessment of the surface defects
and its attributes. These issues can be effectively dealt with
by using the proposed feature preserving branch and inter-
contrast iterative thresholding algorithm. Moreover, errors
in vision-based defect detection are often not fully reflected

(a) (b)

(c) (d)

FIGURE 10: Quantitative results of fixed thresholding and
CBAT on crack images: (a) Fβ |β2 = 0.25, (b) Fβ |β2 = 0.3,

(c) AFβ , (d) MAPE.

by the currently used evaluation with Fβ . As indicated in
Fig. 5, the shift in evaluation results is rather small where
some parts of features may be missing. Here, a more com-
prehensive metric like the average F-measure AFβ offers
a complementary criterion to consider also the effect of
mislabeling due to unmatched labels. Future work will look
at the incorporation of more information in post-processing
with geometric filters to accommodate different shapes when
classifying the probability with high credibility.

VII. CONCLUSION
This paper has presented a hybrid framework for detection
of surface cracks in roads, tunnels or bridges. The proposed
hierarchical convolutional neural network is equipped with a
feature preserving branch to deal with the trade-off between
nonlinearity and information loss. Moreover, the credibility
of the features at the network output is further improved
with a new intercontrast iterative algorithm based on Otsu
thresholding to increase the detection accuracy. From the raw
prediction, our enhanced hierarchical neural network can al-
leviate deviations caused by nonlinearity accumulated along
with the network depth such that the upper-layer features
become more linear and worth more weighting in labeling. At
the post-processing stage, the contrast-based iterative thresh-
olding can automatically search for a suitable boundary value
in the probability map for accurate binarization, subject to a
robustAFβ over a range of weighting between prediction and
recall. As a result, the developed framework can successfully
detect surface cracks of five different datasets for a road,
a pavement, and a bridge subject to various texture levels.
Extensive comparisons with the existing state-of-the-art deep
learning convolutional neural networks for crack detection
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has demonstrated the merits of the proposed approach.
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