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Abstract—The rapid adoption of electric or hybrid vehicles
(EVs) has called for wide deployment of charging stations. These
stations can be launched/owned by different owners, referred
to as charging station providers (CSPs), which make energy
contracts with a smart grid provider (SGP). However, there exists
a shortage of mutual economic strategy between the SGP and
CSPs in an energy request/transfer competition due to the selfish
nature among them. In this paper, we propose an economic
model leveraging a multi-principal single-agent (referred to as
common agency) contract policy, aiming at maximizing the
utilities of multiple CSPs while optimizing the utility of the
SGP in an EV network. In particular, we first develop the
common agency-based contract problem as a non-cooperative
energy contract optimization problem, in which each SP can
maximize its utility given the common constraints from the SGP
and the contracts of other CSPs. To deal with this problem,
we develop an iterative energy contract algorithm to find an
equilibrium contract solution where the contracts from the CSPs
can produce maximum utilities of the CSPs and satisfy the
constraints of the SGP. Through numerical results, we show that
our proposed model can improve the social welfare of the EV
network up to 54% and the utilities of CSPs up to 60% compared
with the baseline method in which each CSP obtains the amount
of energy that is proportional to its energy request.

Keywords- Energy demand, electric vehicle, charging sta-
tion, common agency, and contract theory.

I. INTRODUCTION

As one of the green solutions, electric vehicles (EVs)
have revolutionized transportation systems thanks to their high
energy efficiency and gas emission reduction. Referring to a
global EV viewpoint from International Energy Agency, the
predicted number of EVs including battery EVs and plug-
in hybrid EVs worldwide will reach up to 255 millions in
2030 [1]. This outlook will trigger a plethora of electricity
demand for EVs in the power market and wide deployment of
charging stations (CSs) for both public and private usages.

Commonly, CSs are launched/owned by different providers,
referred to as CS providers (CSPs). In this case, the CSPs con-
trol their CSs to transfer energy (from a smart grid provider,
SGP, through the power grid system) to EVs once they charge
their batteries at the CSs in the real-time. However, there exists
a problem when the CSs receive high charging demands from
the EVs simultaneously during peak hour, e.g., before and
after working time. As such, the SGP and CSPs may suffer
from a heavy energy transfer congestion and overload in the
distribution network, and high energy transfer cost from the
SGP, respectively [2]. For that, CSPs may also reserve/store
the energy from the SGP at their CSs’ energy storage in

advance during a certain period [3], [4]. In this way, the SGP
can stabilize the energy transfer in the power grid system
when a large number of EVs require to charge energy at CSs
simultaneously. Moreover, the CSPs can minimize the energy
cost to serve the EVs as the energy stored in advance may have
lower price [5]. Nonetheless, the above energy reservation is
still lack of mutual economic strategy due to the selfish nature
between the SGP and CSPs. Hence, it is still challenging to
maximize the profits for both the SGP and CSPs concurrently.

To concurrently maximize the profits/utilities of both SGP
and CSPs, it is critical to study the strategic self-interest
interaction among them. In [8], the authors propose a Stackel-
berg game model to study the interaction between the energy
provider (as a leader which sets the apropriate energy price)
and the energy buyers (as followers which adjust their energy
demands based on the announced energy price). Likewise, the
authors in [9] propose a multi-stage Stackelberg game to op-
timize EV charging considering the energy trading interaction
among the SGP (as a leader), CSPs (as followers), and EVs (as
followers). Nonetheless, both approaches, i.e., [8] and [9], only
work well if the SGP and CSPs have full information from
each other. However, in practice, SGPs and CSPs usually have
some private information, e.g., energy capacity and demands,
which may not be available for optimization in advance, and
thus other appropriate economic models should be studied.

To address the problems, the contract theory-based approach
can be a promising solution. This approach focuses on the mu-
tual agreements between the principals which offer contracts
and the agents which accept/reject the contracts [10]. In this
way, the principals can maximize the utility under the individ-
ual rationality (IR) and incentive compatibility (IC) constraints
from the agents. The former constraint is to guarantee that the
agents can obtain a non-negative utility while the latter one is
to maximize the utility when the appropriate contracts from
the principals are applied. For example, a contract game-based
approach in which an energy consumer (as the principal) offers
contracts, i.e., the amount of energy and the corresponding
payment, to the multi-type energy providers (as the agents)
is introduced in [11]. In [12], the authors propose a contract-
based method on power trading between a mobile CSP and
multiple EVs under complete and incomplete information,
e.g., remaining battery life, of EVs. Alternatively, the authors
in [13] introduce a contract-based charging strategy for EV
clusters along with an iterative algorithm to optimize a CSP’s
utility. Nevertheless, the above approaches only consider a sin-
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Fig. 1: System model of an EV network.

gle principal optimization where energy contracts are offered
to the multiple agents. In fact, a competition among multiple
principals to attract the agent and maximize their utilities is
more challenging and general in practice. Furthermore, they
only consider the contract interaction between a CSP and EVs
(or an EV and CSPs), where the aggrement between the SGP
and CSPs to stabilize energy transfer in the power grid system
are usually left out.

To address the above challenges, in this paper, we introduce
a new economic model for an EV network using a multi-
principal single-agent (referred to as common agency) con-
tract [15] where the CSPs operate as the principals which offer
contracts containing energy demand and payment, while the
SGP works as the agent which optimizes the offered contracts
correspondingly. The aim of this model is to maximize the
utilities of CSPs and improve the social welfare, i.e., overall
utilities of the SGP and CSPs in the EV network, given that the
SGP and CSPs have private information. Specifically, we for-
mulate the contract model as a non-cooperative energy contract
optimization problem in which each CSP maximizes its utility
under common IR and IC constraints from the SGP and other
CSPs’ contracts. To do so, we develop an iterative algorithm at
the SGP to not only achieve the optimal contracts but also find
the equilibrium contract solution. This solution can achieve
the social welfare less than 10% compared with that of the
cooperative contract, i.e., when all the CSPs collaborate to
share their energy demands and offer only one contract to
the SGP. Through numerical results, we demonstrate that our
proposed model can enhance the social welfare of the EV
network, i.e., up to 54%, and the utilities of participating CSPs
up to 60% compared with the baseline method.

II. SYSTEM MODEL

The system model of the considered EV network is illus-
trated in Fig. 1. We consider J CSs belonging to J different
CSPs. Each CSP can store the energy from the power sources
through the power grid system at its CS’s energy storage prior
to EV charging. To monitor all charging transactions of EVs,
each CSP uses a log file containing consumed energy of the
EVs’ transactions for a certain period. Based on the total

energy usage transactions at particular period, each CSP can
send an initial energy contract, i.e., energy demand and offered
payment, to the SGP at different time before optimal contract
optimization process at the SGP. For example, the SGP can
collect all initial contracts from the CSPs on the weekdays
and send final optimal contracts to them on the weekend.

Let J = {1, . . . , j, . . . , J} denote the set of CSPs in the
considered area which request energy from the SGP. The
SGP can supply an amount of energy with the capacity of
A for the CSPs at a particular period. We set ζ to be the
SGP’s energy transfer price unit for the CSPs. Additionally,
the energy charging price per MWh for EVs at CSP-j is
denoted by αj . We define ψ to be the possible type of the
SGP which represents the willingness to transfer energy for
the CSPs [7] based on the SGP’s energy capacity, where ψ
is between the minimum type ψ and the maximum type ψ.
In practice, the types of SGP can be expressed as its energy
capacities, and thus an SGP with higher type is usually willing
to transfer more energy due to its larger energy capacity [11].
The type of SGP is usually a private information which the
SGP does not want to share with the CSPs due to its economic
benefit. Hence, in practice, the CSPs only can observe the
distribution of the SGP’s type, i.e., ρ(ψ) [11]–[13], e.g.,
through observations about public transactions of the SGP in
the energy trading market.

By observing ρ(ψ), each CSP may offer different energy
contract to the SGP. Then, based on energy demand requests
from the CSPs, the SGP can determine the optimal propor-
tions for the CSPs according to its capacity. Specifically, we
denote ω = [ω1, . . . , ωj , . . . , ωJ ] (because the SGP exactly
knows its own type) as a vector of real proportions that
the SGP with type ψ will transfer the requested energy to
all the CSPs, where 0 ≤ ωj ≤ 1. In addition, we define
δ(ψ) = [δ1(ψ), . . . , δj(ψ), . . . , δJ(ψ)] as a vector of energy
amount requested by the CSPs, given the possible SGP’s
types ψ,∀ψ ∈ [ψ,ψ]. Each CSP-j may also offer various
payments for different types of the SGP. In this case, we
denote β(ψ) = [β1(ψ), . . . , βj(ψ), . . . , βJ(ψ)] as a vector of
offered payments from the CSPs for the possible SGP’s types
ψ,∀ψ ∈ [ψ,ψ]. To this end, when the SGP has a higher type,
the CSPs can try to request more energy (and offer higher
payments correspondingly) to the SGP and vice versa [7].
Otherwise, if a CSP requests more energy demand to a lower
type SGP, the SGP may provide even lower energy proportion
to that CSP to ensure that the SGP can still maximize the
utilities of all CSPs fairly given its energy capacity.

III. UTILITY FUNCTIONS FOR THE SGP AND CSPS

In this section, we elaborate the utility functions for the SGP
and CSPs. Given the energy demand δ(ψ) and the payment
β(ψ), the utility function of the SGP with type ψ can be
determined as follows:

ψS(ω,β(ψ))− C(ω, δ(ψ)), (1)
where ψ in the first component is to characterize the weight
of the S(ω,β(ψ)) of the SGP with type ψ. The SGP
with a higher type should have a higher weight due to



its willingness to transfer more energy [14]. Additionally,
S(ω,β(ψ)) and C(ω, δ(ψ)) refer to the satisfaction and cost
functions of the SGP, respectively. In particular, we adopt
a natural logarithm function that is widely used to quantify
the satisfaction of energy sellers [11]–[13], which can be

expressed by S(ω,β(ψ)) = ln

(
1 +

∑J
j=1 ωjβj(ψ)

)
. This

equation specifies that the satisfaction function follows the law
of diminishing returns, i.e., the satisfaction increases as the
payments from the CSPs increase. However, the SGP may
have less interest to enhance the satisfaction when the current
amount of energy in its energy storage becomes smaller due to
energy transfer. Moreover, the cost function of SGP is imposed
when the SGP acquires energy to serve the CSPs’ requests [7].
Thus, it can be calculated by C(ω, δ(ψ)) = γ

∑J
j=1 ωjδj(ψ),

where γ > 0 is the energy transfer cost per energy unit through
the power grid system, i.e., the distribution network between
the SGP and the CSPs including power flow and voltage
usages. From (1), the SGP with type ψ needs to maximize
its own utility as the optimization problem (Q1) below:

(Q1) max
ω

ψS(ω,β(ψ))− C(ω, δ(ψ)), (2)

s.t.
J∑
j=1

ωjδj(ψ) ≤ A(ψ), (3)

0 ≤ ωj ≤ 1,∀j ∈ J , (4)
where A(ψ) indicates the energy capacity for the SGP with
type ψ. From (Q1), we can obtain the optimal proportion
ω̂, where ω̂ = [ω̂1, . . . , ω̂j , . . . , ω̂J ], straightforwardly. The
reason is that the objective function in (2) is convex due
to the concavity of satisfaction function and the linearity of
cost function in the first and second component, respectively.
Additionally, the constraints (3) and (4) are linear, and thus
we can obtain the optimal ω̂ using some well-known tools
such as CPLEX [16]. Taking into account ω̂j ,∀j ∈ J , each
CSP can obtain a certain amount of energy from the SGP with
the expense of energy transfer payment. Hence, the expected
utility function of CSP-j can be written as follows [10]:

µj(β(ψ), δ(ψ)) =

∫ ψ

ψ

(
αjω̂jδj(ψ)− ω̂jβj(ψ)

)
ρ(ψ)dψ,

(5)
where αj > 0 is the energy price unit per MWh for EVs at
CSP-j. The (5) implies the expected profit of CSP-j obtained
from its EVs given the distribution of the SGP’s possible types.

In the contract design, the CSPs send contracts(
βj(ψ), δj(ψ)

)
,∀j ∈ J ,∀ψ ∈ [ψ,ψ], to the SGP, to

maximize their utility functions under the following two
contraints from the SGP, i.e., individual rationality (IR) and
incentive compatibility (IC) [10]. These constraints must be
satisfied to guarantee the feasibility of the contracts.

Definition 1. Individual Rationality (IR): The utility function
of the SGP must be equal or greater than its utility level
tolerance µ̂SGP = 0, to satisfy a non-negative utility, i.e.,

ψS(ω̂,β(ψ))− C(ω̂, δ(ψ)) ≥ µ̂SGP ,∀ψ ∈ [ψ,ψ]. (6)

Definition 2. Incentive Compatibility (IC): The SGP with type
ψ will prefer to select a contract design for its own type ψ
rather than that with another type ψ̂, i.e.,

ψS(ω̂,β(ψ))− C(ω̂, δ(ψ)) ≥ ψS(ω̂,β(ψ̂))−
C(ω̂, δ(ψ̂)), ψ 6= ψ̂,∀ψ, ψ̂ ∈ [ψ,ψ].

(7)

Based on Definition 1 and 2, the IR constraints in (6) guar-
antee that the SGP with a certain type will always participate
in the energy transfer process. Furthermore, the IC constraints
in (7) ensure that the SGP can always obtain the maximum
utility if an appropriate contract, i.e., the contract designed for
that type of the SGP, is employed [10].

IV. ENERGY CONTRACT FORMULATION

From (1)-(7), we can formulate and simplify the energy
contract optimization in the following sections.

A. Non-Cooperative Energy Contract

We design a non-cooperative energy contract model where
multiple CSPs offer contracts independently to the SGP. Given
the (5), the energy contract optimization problem (Q2) to
maximize the utility for each CSP-j independently at the SGP
is described as follows:

(Q2) max
β(ψ),δ(ψ)

µj(β(ψ), δ(ψ)),∀j ∈ J , (8)

s.t.
J∑
j=1

ω̂jδj(ψ) ≤ A(ψ), (9)

ψS(ω̂,β(ψ))− C(ω̂, δ(ψ)) ≥ 0,∀ψ ∈ [ψ,ψ], (10)

ψS(ω̂,β(ψ))− C(ω̂, δ(ψ)) ≥ ψS(ω̂,β(ψ̂))−
C(ω̂, δ(ψ̂)), ψ 6= ψ̂,∀ψ, ψ̂ ∈ [ψ,ψ], (11)

where constraints (9) indicate that the total actual energy
allocation from CSPs must not exceed the energy capacity
of the SGP with type ψ. Moreover, the constraints (10) and
(11) refer to the IR and IC constraints from the SGP. From
(Q2), the optimal contract of CSP-j is influenced by the SGP’s
choice of ω̂j . In this case, each CSP-j will compete with other
CSPs in a competition strategy to attract the SGP and find an
equilibrium solution as defined in Definition 3.

Definition 3. Equilibrium solution for non-cooperative en-
ergy contract: The optimal contracts (β∗(ψ), δ∗(ψ)) or(
β∗
j (ψ), δ∗j (ψ)

)
, ∀j ∈ J ,∀ψ ∈ [ψ,ψ], are called the equi-

librium solutions of the (Q2) if and only if the following
conditions satisfy
µj(β

∗(ψ), δ∗(ψ)) ≥ µj(βj(ψ), δj(ψ),β∗
−j(ψ), δ∗−j(ψ)),

∀j ∈ J ,∀ψ ∈ [ψ,ψ], (12)
for all

(
βj(ψ), δj(ψ)

)
6=
(
β∗
j (ψ), δ∗j (ψ)

)
that meets the

constraints (10) and (11).

Particularly, given the equilibrium contract selections of
other CSPs, i.e., (β∗

−j(ψ), δ∗−j(ψ)),∀ψ ∈ [ψ,ψ], the util-
ity function of CSP-j with the equilibrium contract choice(
β∗
j (ψ), δ∗j (ψ)

)
,∀ψ ∈ [ψ,ψ], has to be the highest utility

among other utilities of the CSP-j. In other words, the
conditions in (12) imply that there is no CSP-j which can



improve its utility by unilaterally deviating from its optimal
contracts

(
β∗
j (ψ), δ∗j (ψ)

)
,∀ψ ∈ [ψ,ψ].

B. Energy Contract Simplification
From (Q2), we can observe that the computational com-

plexity of solving (Q2) grows quadratically when the number
of possible types increases in the iterative process. To address
this problem, we can simplify the (Q2) by reducing the num-
ber of IR constraints in (10) and IC constraints in (11) [10].
For that, we first state Lemma 1 as follows.

Lemma 1. Let (β, δ) denote any feasible contracts from CSPs
to the SGP such that if ψ ≥ ψ̂, then β(ψ) ≥ β(ψ̂), where ψ
and ψ̂ ∈ [ψ,ψ].

Proof. Due to limited space, we provide high-level ideas to
prove Lemma 1 as follows. In particular, we can use IC
constraints from the Definition 2. As such, we first prove that
β(ψ) ≥ β(ψ̂) if and only if ψ ≥ ψ̂. Then, we can show that
ψ ≥ ψ̂ if and only if β(ψ) ≥ β(ψ̂).

Based on Lemma 1, intuitively, we can further state that the
contract requires a higher energy demand if the SGP obtains a
higher payment, i.e., if β(ψ) ≥ β(ψ̂), then δ(ψ) ≥ δ(ψ̂) [7].
As a result, the following Proposition 1 can be achieved.

Proposition 1. For any feasible contract (β, δ) with ψ ≥ ψ̂,
ψ and ψ̂ ∈ [ψ,ψ], the utility of the SGP must satisfy

ψS(ω̂,β(ψ))− C(ω̂, δ(ψ)) ≥
ψ̂S(ω̂,β(ψ̂))− C(ω̂, δ(ψ̂)).

(13)

Proof. Due to limited space, we provide high-level ideas to
prove. Specifically, from Lemma 1, if β(ψ) ≥ β(ψ̂), then
δ(ψ) ≥ δ(ψ̂). Thus, if ψ ≥ ψ̂, we have ψS(ω̂,β(ψ)) −
C(ω̂, δ(ψ)) ≥ ψ̂S(ω̂,β(ψ̂))− C(ω̂, δ(ψ̂)).

From Proposition 1, we can reduce the number of IR
constraints using the ψ. In particular, as the IC constraints
hold, we have
ψS(ω̂,β(ψ))− C(ω̂, δ(ψ)) ≥ ψS(ω̂,β(ψ))− C(ω̂, δ(ψ))

≥ ψS(ω̂,β(ψ))− C(ω̂, δ(ψ)). (14)
Equation (14) specifies that the utility function of the SGP
is monotonically increasing function of ψ. Hence, the IR
constraints for other ψ, where ψ 6= ψ, will hold if and only if
the IR constraint for ψ is satisfied, i.e., the utility function of
the SGP for ψ is non-negative. As such, we can replace the
IR constraints in (10) into

ψS(ω̂,β(ψ))− C(ω̂, δ(ψ)) ≥ 0. (15)
In addition to the IR constraint reduction, we can further re-

duce the IC constraints by replacing them using the following
conditions described in Lemma 2.

Lemma 2. The IC constraints in (11) of (Q2) are equivalent
to the following monotonicity, i.e.,

dβ(ψ)

dψ
≥ 0,∀ψ ∈ [ψ,ψ], (16)

and local IC conditions, i.e.,

ψ
dS(ω̂,β(ψ))

dψ
− dC(ω̂, δ(ψ))

dψ
≥ 0,∀ψ ∈ [ψ,ψ]. (17)

Proof. Due to limited space, we provide high-level ideas to
prove Lemma 2 as follows. Particularly, the monotonicity
conditions can be easily derived from Lemma 1. Then, the
local IC conditions can be proved using the contradiction such
that the IC constraints cannot be satisfied.

Based on the aforementioned constraint simplification, we
can rewrite the optimization problem (Q2) into

(Q3) max
β(ψ),δ(ψ)

µj(β(ψ), δ(ψ)),∀j ∈ J , (18)

s.t. (9) and,
ψS(ω̂,β(ψ))− C(ω̂, δ(ψ)) ≥ 0, (19)

ψ
dS(ω̂,β(ψ))

dψ
− dC(ω̂, δ(ψ))

dψ
≥ 0,∀ψ ∈ [ψ,ψ], (20)

dβ(ψ)

dψ
≥ 0,∀ψ ∈ [ψ,ψ]. (21)

Practically, an agent may have finite number of types [7].
Thus, we can assume that the SGP has discrete number of pos-
sible types (e.g., the SGP with low, medium, and large energy
capacity correspond to three different levels of willingness to
transfer energy). Subsequently, we can transform (Q3) into
discrete forms by first rewriting the (5) as follows:

µ̂j(β(ψ), δ(ψ)) =

ψ∑
ψ=ψ

(
αjω̂jδj(ψ)− ω̂jβj(ψ)

)
ρ(ψ), (22)

where
ψ∑

ψ=ψ

ρ(ψ) = 1. We then modify the left side of the

constraints (20) as follows:

ψ
dS(ω̂,β(ψ))

dψ
− dC(ω̂, δ(ψ))

dψ

= ψ

J∑
j=1

ω̂j

(
βj(ψ)− βj(ψ −∆ψ)

)
−(

1 +

J∑
j=1

ω̂jβj(ψ)

)(
γ

J∑
j=1

ω̂j

(
δj(ψ)− δj(ψ −∆ψ)

))
,

(23)
where ∆ψ = ψ − ψ∗, and ψ∗ refers to the type of the SGP
which is one type smaller than the type ψ. As a result, the
simplified version of (Q3) is

(Q4) max
β(ψ),δ(ψ)

µ̂j(β(ψ), δ(ψ)),∀j ∈ J , (24)

s.t. (9), (19) and,

ψ

J∑
j=1

ω̂j

(
βj(ψ)− βj(ψ −∆ψ)

)
−(

1 +

J∑
j=1

ω̂jβj(ψ)

)(
γ

J∑
j=1

ω̂j

(
δj(ψ)− δj(ψ −∆ψ)

))
≥ 0,∀ψ ∈ [ψ,ψ], (25)

βj(ψ)− βj(ψ −∆ψ) ≥ 0,∀j ∈ J ,∀ψ ∈ [ψ,ψ]. (26)
To find the optimal contracts from (Q4), we propose an

iterative algorithm in Algorithm 1. In particular, we first find
the optimal values of ω̂ which maximize (Q1). Then, we
perform the iterative algorithm in which the SGP can update



the possible contracts of each CSP to maximize the CSP’s
utility, given other CSPs’ current contracts remain fixed [18].
In each iteration, the SGP tries to find the optimal contract of
each CSP which maximizes the CSP’s utility. The algorithm
stops when the differences between the previous and current
iterations’ utilities of all CSPs reach the optimality tolerance
η, and thus the equilibrium contract solution can be achieved.

Algorithm 1 Iterative Energy Contract Algorithm

1: The SGP informs the current ζ (MWh) to all CSPs
2: Each CSP sends

(
β
(0)
j (ψ), δ

(0)
j (ψ)

)
,∀ψ ∈ [ψ,ψ]

3: Set η, θ = 0, and µ̂j
(
β(0)(ψ), δ(0)(ψ),

)
,∀j ∈ J

4: repeat
5: Find ω̂(θ) which maximize (Q1)
6: for ∀j ∈ J do
7: Find the contracts

(
β
(θ+1)
j (ψ), δ

(θ+1)
j (ψ)

)
,∀ψ ∈

[ψ,ψ], which maximize (Q4)

8: Compute µ̂j
(
β
(θ+1)
j (ψ), δ

(θ+1)
j (ψ),β

(θ)
−j (ψ), δ

(θ)
−j (ψ)

)
9: if

[
µ̂j

(
β
(θ+1)
j (ψ), δ

(θ+1)
j (ψ),β

(θ)
−j (ψ), δ

(θ)
−j (ψ)

)
−

µ̂j

(
β(θ)(ψ), δ(θ)(ψ)

)]
> η then

10: Set β
(θ)
j (ψ) = β

(θ+1)
j (ψ), δ

(θ)
j (ψ) =

δ
(θ+1)
j (ψ),∀ψ ∈ [ψ,ψ]

11: end if
12: end for
13: until µ̂j

(
β(θ)(ψ), δ(θ)(ψ)

)
,∀j ∈ J do not change

14: Obtain
(
β∗(ψ), δ∗(ψ)

)
,∀ψ ∈ [ψ,ψ]

V. PERFORMANCE EVALUATION

A. Simulation Setup

We evaluate the proposed method using the following sim-
ulation settings. Specifically, we set the SGP’s energy transfer
price unit at 200AUD/MWh. We also set the energy charging
price unit from the CSPs to the EVs at 220AUD/MWh [19].
Moreover, the initial energy demands for all CSPs are ran-
domly generated using a uniform distribution between 0 and
3 MWh for a week. We consider 10 possible types of the
SGP, i.e., ψ = 1 and ψ = 10, with the same distribution of
the types, i.e., ρ(ψ) = 0.1. We set the energy capacity for
the SGP with type ψ at 10ψ MWh. We also set γ = 0.3.
Then, we compare the performance of the proposed economic
model with that of the cooperative contract and the baseline
method (i.e., each CSP obtains the amount of energy that is
proportional to its energy request, given the SGP’s energy
capacity). To obtain various simulation results, we consider
various number of principals, i.e., J = 5 to J = 50 CSPs.

B. Simulation Results

Fig. 2 shows the validity of IR and IC constraints of the
SGP in the case with 20 CSPs considered. We first can observe
in Fig. 2(a) that the utility of the SGP for all possible types

(a) IR constraint (b) IC constraint

Fig. 2: The validation of IR and IC constraints of the SGP for
the proposed method.

(a) CSP-1 (b) CSP-2

Fig. 3: The actual utilities of several CSPs.

achieves non-negative values, thereby satisfying IR constraints.
In particular, the utility of the SGP follows non-decreasing
trend with the type. The reason is that higher type of the SGP
can store larger amount of energy, and thus it triggers the
willingness to transfer more energy to CSPs and get higher
payments from the CSPs. Then, from Fig. 2(b), we can show
that IC constraints are also satisfied. Particularly, the SGP
achieves the highest utility when it pretends to be its own
type, instead of pretending to be the other types. For example,
the SGP with the type 2, type 5, and type 8 reach the highest
utility when it applies the exact contracts for the type 2, type
5, and type 8, respectively. If the SGP does not pretend to be
its own type, the utility will be lower or equal to that of its
true type. Because the IR and IC constraints of the SGP are
guaranteed, we can find the feasible contracts for all CSPs.

We then vary the type of SGP to evaluate the actual utility
of representative low- and high-demand CSPs as well as
social welfare, i.e., the accumulated utilities of all the parties
(including the SGP and all the CSPs) in the considered system,
in Fig. 3 and Fig. 4, respectively. Specifically, the proposed
method can improve the actual utility up to 48% for both low-
demand CSP, i.e., CSP-1, and high-demand CSP, i.e., CSP-2,
compared with that of the baseline method. In this case, we
do not apply the utility of cooperative contract due to one
utility optimization for all CSPs. For the social welfare, this
is of importance to observe the efficiency of the whole EV



Fig. 4: Overall social welfare between the SGP and all CSPs
for non-cooperative (proposed) and cooperative contracts.

Fig. 5: The CSPs’ expected utility under different methods as
the number of CSPs increases.

network [10]. Align with the trend of the SGP’s utility in
Fig. 2(a), the social welfare can be improved when the type
gets higher. As such, compared with the baseline method, the
proposed method can enhance the social welfare up to 54%.
In addition, compared with the scenario in which all the CSPs
are cooperative, its social welfare can achieve less than 10%
gap. Note that, although the cooperative contract can achieve
better social welfare, it requires that all CSPs belong to the
same provider or accept to share the information and join in
the same contract without any competition among them.

In Fig. 5, we present the expected utilities of some CSPs,
i.e., CSP-1, CSP-3, and CSP-2 (in ascending order based on
their energy demands), when the number of CSPs increases.
As such, we observe that the utility of each CSP gets lower
as the number of CSPs increases due to the lower proportion
influenced by the SGP’s limited energy capacity. Compared
with the baseline method, all CSPs can improve their utilities
by 60% for small number of CSPs in the network. When
there exists a high number of CSPs, the utility gap between
the proposed and baseline methods can reach up to 636%.
This implies that all CSPs can balance among their utility
optimizations based on their energy request proportions.

VI. CONCLUSION

In this paper, we have proposed the economic model using
the common agency-based contract strategy to maximize the
utilities of all CSPs. First, we have formulated the common

agency-based contract problem as the non-cooperative energy
contract optimization problem. Then, we have developed the
iterative energy contract algorithm to achieve the equilibrium
contract solution for all CSPs. Through numerical results, we
have shown that compared with the baseline method, our
proposed method can improve the utilities of the CSPs as
well as the social welfare of the EV network significantly.
This is because the proposed method can help to balance
the utility optimizations of all participating CSPs based on
their optimal energy request proportions and contracts. In the
future work, we will investigate the utility performance when
communication constraints are considered.
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