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In recent studies, vapour transfer is reported to lead to remarkable frost heave in unsaturated soils, but how to better model this
process has not been answered. In order to avoid the great uncertainty caused by the phase change term of vapour-water-ice in the
numerical iteration process, a new numerical model is developed based on the coupled thermal and hydrological processes. The
new model avoids using the local equilibrium assumption and the hydraulic relations that accounts for liquid water flow, which
provides a new way for the water-heat coupling movement problem. The model is established by using COMSOL Multiphysics,
which is a multiphysics simulation software through finite element analysis. The model is evaluated by comparing simulated
results with data from column freezing experiments for unsaturated coarse-grained soils. Simulated values of the total water
content compare well with experimental values. The model is proved to be applicable and numerically stable for a high-speed
railway subgrade involving simultaneous heat and moisture transport. An agreement can be found between the predicted and
measured frost/thawed depth and soil moisture profiles, demonstrating that the model is able to simulate rapidly changing

boundary conditions and nonlinear water content profiles in the soil.

1. Introduction

Many engineering problems, including cracking of pave-
ments, damage to the foundation of structures, and fracture
of pipelines, are caused by the freezing and thawing process
in cold regions. [1-3]. Previous studies mostly focused on
the problem of frost heave caused by the liquid water transfer
from warm to cold side in freezing soils [4-7]. In recent
studies, it is shown that vapour transfer can result in ice
accumulation in unsaturated freezing soil and, thus, cause
frost damage to infrastructures. For example, Eigenbrod and
Kennepohl [8] contended that vapour flow led to water
accumulation at the base of pavements in the northern parts
of Canada and the United States. Severe frost heave prob-
lems were reported to occur at an airport in Northwestern
China with 20 m-deep groundwater table and limited annual
rainfall. The specific phenomenon was named as the canopy
effect by Zhang et al. [9]. The researchers attributed the water
accumulation beneath the impervious cover to the vapour

transfer in unsaturated freezing soils. Niu et al. [10] per-
formed field monitoring of soil temperature, water content,
and deformation in the railway embankment and concluded
that water vapour diffusion might be an essential influence
factor to the formation of near-surface ice.

The study on frozen soil models began in the 1970s,
which aims to solve the coupled heat and mass conservative
equation, for example, the works of Harlan [11] and Talyor
and Luthin [12]. In the earlier studies, vapour flow is usually
neglected comparing to the liquid water transfer in freezing
soil. This assumption is made on the basis of the cognition
that (1) neglecting the vapour flow could largely simplify the
numerical computation and (2) it is truly insignificant for
the vapour flow in the soil of having a continuous liquid
phase. Considering that more evidence has revealed the
complexity in soil freezing process, a large number of so-
phisticated models or parameterizations have been pre-
sented during the following several decades [13-17]. Some of
these studies take the contribution of vapour flow and its
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phase change into account, while others choose to neglect
yet. The proposed models have laid a good foundation for
understanding the soil freezing process.

In the most popular models for frozen soils, it is com-
mon to set up two governing equations with four unde-
termined variables, i.e., soil temperature, matric suction of
soil, liquid water content, and ice content. In order to nu-
merically solve the governing equations, another two rela-
tions are required. The one is a relationship between matric
suction and liquid water content called the Soil Water
Characteristic Curve (SWCC), such as the VG model [18]
and BC model [19]. The other is a formula that relates liquid
water content and ice content to temperature, which is
referred to as the Soil Freezing Characteristic Curve (SFCC)
[20, 21]. The differences in the existing models are the form
of governing equations and the functions for the SWCC and
SECC. It is noted that the studies that take vapour flow into
account usually relate soil vapour content (or vapour
density) to temperate and matric suction on the basis of a
local equilibrium theory, which was initially proposed by
Philip and de Vries [22]. But, here, the characterising pa-
rameter for vapour flow is a nonindependent variable.

When applying the pervious models to analyse the frost
heave in unsaturated soils, it is found they are incapable to
reveal the mechanism of vapour flow, due to the following
reasons. Firstly, when soil water content is relatively low,
specifically near to the residual water content, it is inaccurate
to describe liquid water flow by using the SWCC and the
derived unsaturated permeability function [23, 24]. Besides,
liquid water flow may be smaller several magnitude orders
than vapour flow at this stage. The vapour flow may
dominate the mass transfer when the soil is relatively dry
[25]. Secondly, the theory proposed by Philip and de Vries
[22] assumes that vapour concentration in air is always in
equilibrium with liquid water, i.e., the vapour concentration
is determined by the curved liquid/vapour interface. But, the
recent study suggests that the equilibrium assumption works
at the low water content in soil because the equilibrium
establishment is not instantaneous at that time [26-28].
Moreover, when the soil temperature reaches to the freezing
point, the formation of ice phase in the soil will change the
liquid/vapour interface. Thus, the local equilibrium theory
would be challenged in case of being used to describe the
moisture transfer in frozen soil. Thirdly, the mechanism of
multiphase transfer in unsaturated freezing soils has been
less studied. They remain unknown, for example, the phase
changes among pore ice, vapour, and liquid water and the
influence of ice phase on vapour and liquid water flow [29].
The existing model introduced a few empirical equations in
their models to clarify the role of ice phase in unsaturated
soil while these fitting parameters are hard to be determined
by laboratory experiment. Therefore, although many dif-
ferent simulations are dealing with freezing soil issue, few
works have been reported to model the vapour flow in
unsaturated freezing soil.

Aiming to better understand the mechanism of vapour
flow and phase change in unsaturated freezing soils, this
study presents a theoretical framework to formulate the
coupled thermal and hydrological process. In the new
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model, vapour flow governs the mass transfer process, and
liquid water flow is neglective. The coupled model is solved
numerically by the finite element method. A series of lab-
oratory test results are used to validate the numerical for-
mulations/codes. Finally, some conclusions are drawn based
on the results and discussion.

2. Mathematical Model

Figure 1 depicts the physical system which is a vertical, one-
dimensional soil profile covered by an impermeable plate.
The plate represents the infrastructures that covered on the
soil surface. The soil is considered as a homogeneous porous
medium, where vapour diffuses from the warm and moisture
side to the cold and dry side. Ice lens is formed beneath the
impervious cover where the soil temperature is below the 0
°C due to vapour-ice desublimation. It is noted that some
experimental research has reported the generation of the ice
lens zone [8, 9, 30]; however, less attention has been paid
from the theoretical approach to model this phenomenon.
As shown in Figure 1, beyond the ice lens zone, the vapour
flow is governed by the vapour concentration in soil and will
condense into liquid water. The condensed water will
continue freezing into pore ice in the soil where the tem-
perature drops below 0°C. The transient profiles of soil
temperature (solid line in Figure 1) and total water satu-
ration (dashed line) are the outcomes of this problem.

Some assumptions are made to simplify the quantitative
description of the coupled heat and moisture process, as
follows:

(a) The deformation of the soil matrix due to variations
of temperature and pore water pressure or ice for-
mation can be neglected, which is consistent with the
assumption in the work of Sheng et al. [3] and Teng
et al. [31].

(b) The freezing front is the depth where the soil tem-
perature is 0°C.

(c) The ice lens zone is the region where the soil is
saturated. The soil cannot be oversaturated, i.e., the
total amount of water in the ice lens zone can be
represented by the thickness of the ice lens zone,
which can be supported by the experimental ob-
servation in the work of Teng et al. [32].

2.1. Governing Equations for the Vapour Transfer Zone.
The one-dimensional governing equation for vapour flow in
the unsaturated freezing soil is given by the following mass
conservation equation:

a(n(l_s)pv)_ aqv_a(nspw) (1)
ot - 0z or

where z(m) and t(s) represent the position and time, re-
spectively, n is the porosity of soil (unitless), and p is the
density in soil (kg m ). The subscripts w, v, and i denote the
liquid water, vapour, and pore ice, respectively. g, is vapour
flux (kg m 2s™"), and S is the total saturation of liquid water
and pore ice (unitless); here, S=S§,, + Sipi/p,,-
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FIGURE 1: (a) Schematic diagram of the vapour-ice desublimation process in soil; (b) the transient profiles of water content and soil

temperature.

The vapour movement in unsaturated freezing soil is
recognised to be driven by both the pressure gradient and
vapour concertation gradient [33]. The vapour mass flux in
this region according to Darcy’s law and Fick’s law is

p,K @_ (1 —S)HD%’

Y, 0z T 0z @

v

where K is the air permeability of soil (m?), 4, is the dynamic
viscosity of vapour (kg m~'s™"), P is the vapour pressure
(kPa), D is the vapour diffusivity in soil (m®s™'), and 7 is the
tortuosity factor (unitless). The parameter 7 is the ratio of
real length of transfer path to apparent length, which is
assigned to be 1.2 in this study [34].

The vapour phase in unsaturated freezing soil can be
considered as ideal gas. It follows the ideal gas law, P=p RT.
Substituting this equation into equation (2) leads to

q, = _KT?)—: - ng_j’ (33)
K _ 5
K; =~ Rpl, (3b)
K -
K= | Kror+ L2 p %P (5

oS’

v

where Kg and Kp are the effective diffusivity by the satu-
ration gradient (kg m ™' s™") and effective mass conductivity

by the temperature gradient (kg m™'s™' K™"), respectively.
R is the specific gas constant of water vapour
(461.89Tkg 'K ™).

The mass transfer equation can be obtained by
substituting equation (3a) into equation (1):

a(n(l—S)pv)+a(nSpw)_3<Ka_T %) @

= + .
ot o8 0z\ oz ‘oz
It has been revealed that the heat conduction is two orders
of magnitude larger than the sensible heat of vapour flow [35].
Thus, the heat conservative equation neglects the term of the
sensible heat of vapour flow in the soil and is written as

pca—T = i |:(A + KTLiv) a—T] + 3 <KSL1' v?) _ Liwa(nSwPW),
A Yoz g

ot o0z 0z | oz ot
(52)
PC =(1- n)PsCs + nSiPiCi + nSwaCw
o, (5b)
+n(l-98)p,C, +n(l- S)Li,va—T,
A=(1-nA,+nSA; +nS, A, +n(l-S)A,, (5¢)

where p is the total density of soil and C is the volumetric
heat capacity and is given in equation (5b). A is the thermal
conductivity (W m~' K™") that is defined in equation (5c). L
donates the latent heat between different phases. The



subscripts s in the abovementioned equations indicate the
solid phase of soil particles.

The saturation of the unfrozen water is an empirical
function of temperature in the unsaturated freezing soil.
Anderson and Tice [36] and Anderson and Morgenstern
[37] found a reasonable approximate equation with a power
law:

:&(l—n)

S
e p, 100n

a(Ty-T), T<T, (6)

where T is 273.15 K, the freezing point of free water, and
« and f are empirical fitting parameters that relate to the
specific surface area of soil. Anderson and Tice [36];
Anderson and Morgenstern [37]; and Blanchard and
Fremond [38] tested the empirical formulas of parameters
a and f for different types of soils and listed their rec-
ommended values. Although the power relationship as
equation (6) has been proposed several decades ago, it is
still commonly given in reference texts as a valid approach
to estimating the unfrozen water content in freezing soils
[39, 40].

S.w in equation (6) presents the maximum liquid water
content that will not freeze at a subzero temperature T. Based
on the computed values of S and S,,,,, the criteria for de-
termining the saturation of pore ice and liquid water can be
obtained [7], as follows:

(0, T>T,,
< <

5, =1 0, T<T,andS<S,,, (72)

S-S

Pu(S=Sw) 1 7 andss<s,.,
Pi

Pi
S, =8-St 7b

Pw (70)

In the hygroscopic porous material, the three phases of
water, i.e., unfrozen liquid water, ice, and vapour coexist in
the freezing material pores. The presence of unfrozen liquid
water complicates the process of phase change. In this case,
the thermodynamic equilibrium relationship (the Clapeyron
equation) fails to describe the truth because the Clapeyron
equation is a way only for characterising the discontinuous
phase transition between two phases of matter of a single
constituent [41, 42]. It has been recognised from chemical
engineering that an adsorption-desorption equilibrium re-
lationship should be replaced to describe the desublimation
or sublimation process of a hygroscopic porous media with
bound moisture [43, 44]. Such a relation is used to describe
the equilibrium state among vapour, liquid water, and pore
ice in unsaturated freezing soil. Wang et al. [45] tested serval
kinds of adsorption-desorption equilibrium relations in the
literature and found that Kelvin’s style in the exponential
form proposed by Rajniak and Yang [46] could generate a
better performance. The equation is expressed as
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P(T,S (-
(T.S) _ oY1= 9)ISRT) (8)
P, (T)

where P,,(T) is the saturated vapour pressure at temperature
T (Pa), given in Table 1. P(T, S) is the vapour pressure in
unsaturated freezing soil (Pa), which is a function of tem-
perature T and saturation S. y is an empirical parameter, a
suggested value is 5000 according to Wang et al. [45].

The simulated model consists of mass conservation
equation (4) and energy balance equation (5), which are
highly nonlinear and coupled. There are four unknown
variables in the two equations, S,,, S;, T, and p,. Equations
(6)-(8) provide the other two additional relations by adding
the saturation of unfrozen water S,,,, such that the simul-
taneous equations can be solved mathematically.

2.2. Governing Equations for the Ice Lens Zone. It is as-
sumed that there is no moisture movement in the ice lens
zone, i.e., the density of the frost layer is uniform. The mass
balance at this region can be expressed by

p=p» 0<z<zs(t), 9)
where zj, (¢) represents the position of the frost surface of the
ice lens, which is a function of time.
The governing equation for heat transfer in the ice lens
zone can be written as
or T
1

lg, 0<Z<Zfs (t), (10)

Pitigs =
where C; is the specific heat of ice lens (] kg’1 K1 and ) is
the effective thermal conductivity of the frost layer (W
m K.

2.3. Heat and Mass Balance at the Frost Surface. 'The heat and
moisture mass balance at the moving front can be expressed

by
oT oT
fs s

The water vapour on the frost surface is assumed to be
saturated.

Pu(T5s)

Pv=Pvs = >
RT,,

atz =z, (12)

Two new parameters are added into the model, z4 at the
frost surface and T at the ice lens zone, and p,; is the sat-
urated vapour density, which is a function of temperature
[53].

2.4. Soil Hydraulic Properties. In complete dry soil, the air
permeability K is equal to inherent permeability k. As for the
unsaturated freezing soil, an impedance factor is added to
the air permeability function [9, 12, 19].
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TaBLE 1: The parameters used in computation.
Symbol Value and equations Reference
Po (kg m™) 1000 [47]
pi (kg m™) 913 (48]
C (Jkg 'K 1930 [48]
C, J kg 'K™) 800 [49]
C, J kg 'K™) 1886 [48]
C, J kg 'K™) 4180 [25]
A (W m 'K 222 [48]
Ay (W m™'K™) 2.68 [25]
A, (W m™'K™) 0.022 [48]
Ay (Wm'K™ 0.54 [25]
4, kgm™" s 0.011 x (T/273.15)"%/(T + 961) [50]
L, O kg ™" 2.839x10° [51]
Liw Jkg ™) 0.334x10° [15]
P,(T) (Pa) In P,y(T) =9.55 - 5723.265/T + 3.53In(T) — 0.007283 T [52]
D, (m*s™) D,=2.12x10">(T/273.15)* [49]

K (8) = 10" %k, (1 - 8)*(1 -8, (13)
where b and ¢ are empirical parameters and the impedance
factor 107" denotes the obstruction of pore ice to vapour
flows. When the soil temperature is greater than the freezing
point, S; becomes 0, and equation (13) reverts to the formula
as defined by Brooks and Corey [19].

The vapour transfer in the porous medium described by
Fick’s law can be divided into two types, molecular diffusion
and Knudsen diffusion. Molecular diftusion is caused by the
collisions with the gas molecules, while Knudsen diftusion is
caused by the collisions between gas molecules and the wall
of the transport channel. Molecular diffusion dominates the
process when the mean free path of the molecules is smaller
than the average pore radius. Otherwise, Knudsen diffusion
does [54]. The harmonic averaging method is adopted here
to compute the vapour diffusivity D based on the molecular
diffusion coefficient D,, and the Knudsen diffusion coeffi-
cient Dy [55]:

1
D=,
(1D, + (1/Dy) (14)
where D,, can be written as follows [56]:
D,, = 0.66n(1-S)D,, (15)

where D, is the diffusivity of water vapour in air (m?s7Y), as
given in Table 1. The expression of D, was given by
Geankoplis [57] as follows:

d |T
Dy, =97.0-—,
2 \m,

where d is the averaged soil pore diameter (m) and m,, is the
molecular weight of water (kg mol™). The values of related
parameters are presented in Table 1.

(16)

2.5. Numerical Implementation. Equations (4), (5a), (5b),
and (5¢) are highly nonlinear since primary variables vary

with time and primary variables. The finite element method
for spatial discretization and the finite difference method for
temporal discretization are used to numerically solve the
governing equations, which is performed in the COMSOL
Multiphysics package. A detailed description for the nu-
merical approach can be found in the work of Teng et al.
[32].

In order to achieve a numerical stability of the solution,
the following strategies are adopted: the domain is divided
into 10000 elements, and the total time duration is divided
into 12000 steps.

3. Application to a Laboratory
Freezing Experiment

3.1. Testing Program. A series of laboratory tests were carried
out on the basis of a specifically designed new device. A
detailed illustration can be found in the work of Teng et al.
[32]. The temperatures of the top and bottom ends of the
specimen are controlled accurately by a pair of plates. The
top end of the specimen is sealed to prevent moisture source
or sink. A Mariotte bottle is used to supply distilled water,
leaving a void approximately 1cm in height between the
bottom end of the specimen and water surface, such that
only vapour can enter the specimen.

A kind of silica sand is applied in this study, which has a
particle size range from 0.5mm to 1 mm. The physical and
hydraulic properties of the sample are presented in Table 2.
The measured Soil Freezing Characteristic Curve is shown in
Figure 2, where the curve is fitted by equation (6). The soil
specimen is placed into the cylinder with a controlled dry
density of 1.40g/cm’. The final height of the sample is
13.5cm. Three Time-Domain-Reflectometer transducers
and seven thermistors are inserted into the cylinder to
measure the transit temperatures and water contents. In
addition, the specimen is divided into 1 cm-high columns to
check water contents at different depths after the completion
of the test.

Five experimental cases are designed as listed in Table 3.
In all the 5 cases, the top end of the sample is subjected to a
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TaBLE 2: Physical and hydraulic properties of the sample.

S Specific Maximum dry Inherent Average pore diameter Fitting parameter Fitting parameter
ample . . .
gravity density permeability (m) b c
f;lrllaa 2.63 g/em® 1.60 g/cm’ 3.47x107"0 m? 0.00075 3.70 8.00
100 4. Application to a High-Speed
R Railway Subgrade
=
5 or 4.1. Problem Description. In order to evaluate the numerical
g stability of the proposed model and to illustrate its appli-
§ 60r cation to high-speed railway subgrade, this section will
% perform a long-term test of the model by Niu et al. [10] who
2 ol performed in situ tests to measure the ground temperatures,
=] .
g moisture content, and frost heave of the subgrade of the
g Harbin-Dalian Passenger Dedicated Line. The subgrade at
é 20 - one site (K977) is built on the undisturbed ground surface,
e while the other is in a cut section (K1004). The measured
ol data start from Nov 1, 2013, to Oct 17, 2014, that last for
255 260 265 270 275 351 days. The upper layer of the subgrade structure is a well-

Temperature (K)

B Measured data
—— Best fit by equation (6)

FIGURE 2: The simulated and measured SFCC of the sample. The
best-fit results for « and f3 in equation (4) are 30.880 and —1.855,
respectively.

subfreezing temperature, while the bottom end is subjected
to a superfreezing different temperature. Case 1 and case 2
correspond to two different initial water contents. Case 3 to
case 5 change the test period in order to study the transient
total water content profile in time.

3.2. Simulation Result. The computed and measured water
content profiles for cases 1 and 2 are shown in Figure 3. As
for the result of case 1, it shows that the peak water content
appears at the top surface and the freezing front. A large
amount of ice is accumulated at the top surface, which is the
ice lens zone. The simulated result has a good general
agreement with the measured data and the simulated sat-
uration of ice and water at the top surface, and the freezing
front is quite close to the measured result. A minor dis-
agreement can be observed in the unfrozen zone, which may
attribute to the deviation of adsorption-desorption equi-
librium relations. The simulated result has a quite good
match with the tested data, where only one peak value at the
top surface can be observed.

Figure 4 shows a comparison between the measured and
computed result for cases 3, 4, and 5. In both the simulated
and measured results, the peak values can be observed at
both the top surface and the freezing front where the ice
content increases with the test period. At the same time, the
water content in the unfrozen zone seems to be independent
of the test period. It is apparent that liquid water goes
downward within the first day of freezing due to gravity,
which implies that the formation of ice is mainly induced by
vapour flow.

graded gravel with cement (thickness is 70 cm). The mate-
rials in the second layer are group A/B fills (thickness is
230 cm). The lower layer is a well-graded crushed stone and
sand (thickness is 50 cm). In order to simplify the numerical
simulation, the subgrade is considered as a 300 cm-high
embankment with the 70cm cemented gravel at the top
position, and the geomembrane is not considered.

The main differences between the in situ measurement
and the laboratory column experiment are that the soil is
subject to freezing, as well as thawing, and the temperature
variation in situ is much higher. The measured near-surface
temperature is shown in Figure 5, where a fitting function is
obtained as the input upper boundary. The lower temper-
ature of the soil specimen is kept constant 3°C. It is assumed
that there is no flow at both the upper and lower boundaries.
The thermal properties of soil can be found in Table 1. The
other parameters are the same as those for silica sand, which
can be found in Zhang et al. [9]. The hydraulic properties of
the soil are the same as those in the work of Teng et al. [32].

4.2. Freezing-Thawing Simulations. Figure 6 presents the
predicted frost and thawed depth variation in the 160 days,
which indicates one freezing and thawing cycle. The frost
and thawed depth are usually defined as the depth where the
soil temperature is zero. Thus, the predicted frost and
thawed depth are obtained from the simulated transient
temperature profiles. It can be observed that the frost depths
increase roughly linearly and reach a peak at about 90 days
and 80 days, respectively, for the site of K977 and K1004, and
then, the depth gradually decreases with time. The thawed
depth shows a linear increase tendency. A quite good
agreement between the measured and predicted frost and
thawed depth can be observed, which indicates that the
proposed numerical code performs well in predicting the
temperature field.

Figure 7 presents measured and predicted water con-
tent profiles in the subgrades of the two sites during the
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TaBLE 3: Test conditions.

Case Initial saturation (%) Bottom temperature (°C) Top temperature (°C) Water supply pattern and test period
1 31.81 10 -10 Control test, vapour, 7d
2 0 10 -10 Vapour, 7d
3 31.81 10 -10 Vapour, 1d
4 31.81 10 -10 Vapour, 3d
5 31.81 10 -10 Vapour, 5d
15
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FIGURE 7: The predicted and measured volumetric water content profiles at K977 and K1004 sites.

onset of freezing conditions and rapid warming period. It
can be observed that the water content near the top position
of the subgrade at both sites decreases rapidly as the
freezing condition develops, which is caused by the ice
accumulation as the freezing front progresses downward
and the upward migration of vapour into the frozen zone.
The predicted result can well capture the features of
moisture profile. During the thawing period, the moisture
in soil drains downward and the soil moisture becomes
lower comparing to the freezing condition. The position of
the peak moisture content during the thawing condition is
relatively lower than that during the freezing condition.
The proposed result can agree reasonably with the mea-
sured data. It is emphasized that a subgrade of the layered
structure has much lower water contents in the upper part.
The measured distributions may be different from the
hypothetical condition. This case is hard to be modelled in a
numerical code [15], while the proposed model can rea-
sonably reproduce the tendency.

5. Conclusions

The mechanism of vapour migration and phase transfor-
mation in unsaturated freezing soils has been less under-
stood. In order to avoid the great uncertainty caused by the
phase change term of vapour-water-ice in the numerical
iteration process, this study presents numerical solution
schemes for coupled vapour and heat transfer at above-zero
and subzero temperature conditions, and hence freezing-
thawing cycles. The new model is solved numerically by the
finite element method, which is, then, validated by com-
paring to the laboratory measurement and in situ obser-
vation. The main findings are as follows:

(1) The new model avoids using the local equilibrium
assumption that accounts for water-vapour-ice
phase change, and an adsorption-desorption

equilibrium relation is proposed to direct describe
phase change between vapour and ice phase, which
provides a novel way for modelling the water-heat
coupling movement problem.

(2) The numerical model has a close match with the
results of laboratory freezing experiment, which
shows a good performance in numerical instability
and mass or heat conservation.

(3) The numerical solutions performed quite well for the
field application that considers rapidly varying
surface temperatures. The proposed model can
generate a reasonable result for the frost or thawed
depth and soil moisture profiles.

(4) It should be noted that the new model should be
tested eventually against a more realistic and com-
plete field data set, which can provide detailed in-
formation on soil properties. The new expressions
used for vapour transfer and the adsorption-de-
sorption equilibrium relations are applicable to both
frozen and unfrozen conditions. The new expres-
sions can replenish the existing models, which
should be tested for more kinds of soils.

Notations

b:  Empirical parameter of the BC model, unitless

¢:  Empirical parameter of air permeability in frozen soil,
unitless

Effective volumetric heat capacity, Jm > K"
Volumetric heat capacity of ice, Jm > K™
Volumetric heat capacity of soil particle, Jm> K"
Volumetric heat capacity of vapour, Jm > K™*
Volumetric heat capacity of water, Jm> K™

Average pore diameter, m
Effective vapour diffusivity, m*s~
Diffusivity of water vapour in air, m*s™'

< @

§.
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Dy: Knudsen diffusion coefficient, m”s

D,,: Molecular diffusion coefficient, m*s~

K:  Air permeability of soil, m*

Kg:  Effective mass conductivity by the saturation gradient,
kgm™' s

Ky Effective mass conductivity by the temperature
gradient, kgm ™ s7' K™'

1

ke Inherent permeability, m*

L;,: Latent heat between ice and vapour, J kg™
L;,: Latent heat between ice and water, J kg™ "
m,,: Molecular weight of water, kg mol ™"

n:  Porosity, unitless

P: Vapour pressure, kPa

q,: Vapour flux, kg m™> s

R:  Specific gas constant of water vapour, 461.89 J kg ™' K™
S:  Saturation, unitless

S, Saturation of water, unitless

S;i: Saturation of ice, unitless

S, Saturation of unfrozen water, unitless

T:  Temperature, K

t: Time, s

To:  Freezing point of water, 273.15K

z: Soil depth, m

z: The position of the frost surface of ice lens, m.
Greek Letters

Empirical parameter of unfrozen water, unitless
Empirical parameter of unfrozen water, unitless
Empirical parameter of vapour pressure, unitless
The tortuosity factor, unitless
Dynamic viscosity of vapour, kgm ™" s
Effective thermal conductivity, Wm ™" K™

Effective thermal conductivity of ice, Wm K™
Effective thermal conductivity of soil particle,
Wm 'K

A,: Effective thermal conductivity of vapour, Wm™' K™
A,: Effective thermal conductivity of water, Wm K™
p:  Total density of soil, kgm™
p
p

-1

~ = >R 2% ®R

3

+ Density of ice, kg m™

< Density of soil particle, kgm™
p,: Density of vapour, kg m >
p.: Density of water, kg m™
pys: Saturated vapour density, kgm™.

Data Availability

A theoretical model is established to formulate the coupled
thermal and hydrological process by COMSOL, where the
vapour flow governs the mass transfer process. A series of
laboratory test results, which are published on Geotechnique
[17], are used to validate the numerical formulations/codes.
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