
Briefings in Bioinformatics, 2020, pp. 1–13

doi: DOI HERE

Advance Access Publication Date: Day Month Year

Paper

PAPER

Multi-gene editing: current approaches and beyond
Hui Peng,1,2 Yi Zheng,1 Zhixun Zhao1 and Jinyan Li1,∗

1Data Science Institute, University of Technology Sydney, PO Box 123, Ultimo, NSW 2007, Australia and 2School of Computing, National 

University of Singapore, 13 Computing Drive, 117417, Singapore
∗Corresponding author. jinyan.li@uts.edu.au

FOR PUBLISHER ONLY Received on Date Month Year; revised on Date Month Year; accepted on Date Month Year

Abstract

CRISPR/Cas9 multi-gene editing is an active and widely studied topic in the fields of biomedicine and biology. It involves
a simultaneous participation of multiple single-guide RNAs (sgRNAs) to edit multiple target genes in a way that each
gene is edited by one of these sgRNAs. There are possibly numerous sgRNA candidates capable of on-target editing on
each of these genes with various efficiencies. Meanwhile, each of these sgRNA candidates may cause unwanted off-target
editing at many other genes. Therefore, selection optimization of these multiple sgRNAs is demanded so as to minimize
the number of sgRNAs and thus reduce the collective negative effects caused by the off-target editing. This survey
reviews wet-lab approaches to the implementation of multi-gene editing and their needs of computational tools for better
design. We found that though off-target editing is unavoidable during the gene editing, those disfavored cuttings by some
target genes’ sgRNAs can potentially become on-target editing sites for some other genes of interests. This off-to-on role
conversion is beneficial to optimize the sgRNA selection in multi-gene editing. We present a preference cutting score to
assess those beneficial off-target cutting sites which have a few mismatches with their host genes’ on-target editing sites.
These potential sgRNAs can be prioritized for recommendation via ranking their on-target average cutting efficiency, the
total off-target site number and their average preference cutting score. We also present case studies on cancer-associated
genes to demonstrate tremendous usefulness of the new method.
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Introduction

The CRISPR/Cas9 system (the clustered, regularly interspaced,

short palindromic repeats/CRISPR-associated protein 9 system)

is one of the most popular gene editing tools to modify an

organism’s DNA [33, 22, 12]. Recently, multi-gene editing has

been of strong interests in a wide range of applications where

the genes are functioning dependently and cooperatively. Multi-

gene editing involves a simultaneous participation of multiple

sgRNAs to edit multiple target genes in a way that each gene is

edited by one of these sgRNAs. The applications include studies

on complex diseases such as cancers which are caused by the

dysfunction of many genes [80, 10, 70], investigations on genes

forming regulation networks [58, 43], and gene groups that are

often involved in the same pathway to execute special biological

functions [11, 27]. Multi-gene editing has been also intensively

studied for crop quality enhancement [64, 76, 88, 89, 30, 52, 34],

for microbial production improvement [2, 60], and for model

organism construction [37, 90]. In particular, Otoupal et al. [60]

studied the disruption of both CAR2 and URA3 genes in

a single transformation to improve the ability of generating

bioproducts by Rhodosporidium toruloides; Xie et al. [96]

designed synthetic genes with a tandemly arrayed tRNA-

gRNA architecture to boost multiple gene editing capability

of the CRISPR-Cas9 system; and Zhang et al. [105] reported

a gRNA-tRNA array for CRISPR-Cas9 (GTR-CRISPR) for

multiplexed engineering of Saccharomyces cerevisiae. These

studies demonstrated the possibility of multi-gene editing with

CRISPR/Cas9 to solve real-life problems, where as many as six

genes were edited at one time [105].

On the other hand, off-target editing effect generated by the

CRISPR/Cas9 system largely prevents its usage in critical fields

such as gene therapy [56] and crops’ genetic modification [29].

New gene editing systems [40, 42] have even been proposed

to overcome this huge challenge, or adjustments have been

proposed to change the interior system [31, 41], or to select

optimal on-target cutting sites to avoid off-target editing
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events [18, 47]. To understand the benefits and concerns of the

current approaches in the implementation of multi-gene editing,

we compare their key steps and make our critical review.

We observed that computational tools are essentially

important to assist the design of an optimal multi-gene

editing system, and we found that optimal CRISPR/Cas9

systems should consider a panel of mutually beneficial

sgRNAs. Although some existing computational methods have

been proposed to predict the on-target cutting efficiency of

sgRNAs [18, 65, 61] and to detect their possible off-target

editing sites [47, 62, 13], all of these methods are just capable

of predicting sgRNAs to target single genes. So far, there is

nearly no good computational method to solve the multi-gene

editing design problem.

Beyond these methods and ideas, taking as a perspective,

we propose a novel method to recommend an optimal panel of

sgRNAs for multi-gene editing. Our main idea is to select as

less sgRNAs as possible to edit multiple genes simultaneously

with a higher average cutting efficiency but lower total off-

target effects. This goal is achieved by prioritizing those

beneficial off-target cutting sites of the selected sgRNA for

targeting one gene of interests and treating them as the on-

target cutting sites for editing the other genes of interests.

We define a preference cutting score to measure the efficiency

differences of a cutting site (on-target cutting or off-target

cutting) comparing to the other editing sites. Then, one

or more selected sgRNAs are ranked for recommendation

to edit single or multi-genes by considering the cutting

efficiency, off-target effect and preference cutting score. As

case studies, we applied our ranking method to 717 cancer

genes from the Cancer Gene Census (CGC) [75]. We present

an off-line tool for helping multi-gene editing tool design.

The tool and its source codes are available from Github:

https://github.com/PennHui2016/MultiGeneEditing.

Multi-gene editing: current applications and methods

The key definition of CRISPR/Cas9 multi-gene editing is the

simultaneous participation of multiple sgRNAs to edit the

multiple target genes in a way that each gene is edited by one

of the sgRNAs. Multi-gene editing has been adopted to edit

genomes of various species such as human [15, 57, 109, 9, 7];

other animals, e.g., hamster [23, 73], mouse [104, 54, 107],

Zebrafish [36, 67, 5], rabbit [99, 49]; plants, e.g., wheat [89, 6],

maize [97, 64], Arabidopsis [93, 106, 25, 51], tomato [46, 30, 34],

rice [96, 91, 92], Cabbage [52], rapeseed [76]; microorganisms,

e.g., yeast [72, 32, 87, 1], Candida albicans [83, 35], Bacillus

subtilis [94, 108, 48, 95], Staphylococcus aureus [21], Pichia

pastoris [50, 100], Aspergillus niger [20], and Myceliophthora

thermophila [45].

The implementation of these CRISPR/Cas systems to edit

the candidate genes consists of two phases of work: system

design and the formation of the complete CRISPR/Cas complex

in vivo.

Multi-gene editing system design

The phase of editing system design needs to choose the

type of the system and then to elaborate on its structure.

The CRISPR/Cas9 system [44] and the CRISPR/Cpf1 (or

CRISPR/Cas12a) system [104] are the two most widely used

gene-editing systems for implementing multi-gene editing. Both

of them are composed of a Cas protein for playing the

role of endonuclease and a RNA guide part for positioning.

Detailed structures of these two systems have been described

and compared in extensive literature [39, 38, 98, 19, 77, 79,

28]. Most parts of these two systems are fixed, only the

spacer sequence in the CrRNA is changed accompanying with

the candidate target gene. Thus, after the system type of

CRISPR/Cas is decided, only the spacer sequences are required

to consider and design.

The CRISPR/Cas systems of multi-gene editing can be

classified into Single-CRISPR/Cas system Multi-Gene Editing

(SCMGE) where only one CRISPR/Cas system is expected

to edit more than one gene [82, 102, 49], and Multi-

CRISPR/Cas system Multi-Gene Editing (MCMGE) where

each candidate gene is targeted by its specificity-oriented

CRISPR/Cas system [15, 104, 69]. SCMGE is useful to edit

those homology genes whose sequences are similar to each other,

on the other hand for those non-homology genes, MCMGE is

suitable.

The strategy for SCMGE spacer design is to find an optimal

conserved locus across all the homology genes. While for

MCMGE, current issues are handled by separately selecting

one optimal spacer for each candidate gene via existing

computational tools [17, 53].

For single gene editing, various computational tools have

been proposed to help select the spacer sequence (see

reviews [14, 16, 4]). Only a few of the tools supports the

design of spacers for multi-gene editing. Prykhozhij et al. [63]

proposed the tool CRISPR MultiTargeter which can select

common and unique spacers for similar genes. For the selection

of spacers for the design of MCMGE, we have not yet known

any computational tools. Though, for different genes, one can

run an existing computational tool several times to match the

selection to each candidate gene, there exist some drawbacks.

Firstly, it is not convenient to run the tool a lot of times if many

candidate genes are required to edit. Secondly, the total off-

target effect are hard to be summarised. Thirdly, these designs

have not considered the optimized situation where a smaller

number of spacers can be grouped to edit a larger number

of genes through those beneficial off-target sites. This is our

motivation to propose a computational optimization tool for

assisting the practical applications of multi-gene editing.

In vivo CRISPR/Cas system assembly

After the design of a CRISPR/Cas system for multi-gene

editing, the next phase is to implement an in vivo assembly

of the CRISPR/Cas system. The two primary parts of a

CRISPR/Cas system, i.e., the Cas protein and the sgRNA,

are always expressed from RNA ploy-II and RNA ploy-III

respectively. For SCMGE, the in vivo assembly of the editing

system is the same as the single gene editing process. However,

for MCMGE, the main difficulty is to express multiple sgRNAs

and assemble different editing systems for different candidate

genes.

Currently, several strategies have been adopted to express

multi-sgRNAs in vivo. For example, several sgRNAs can be co-

expressed through multiple sgRNA expression cassettes with

their own promoters [97, 87]. Or different sgRNAs can be

combined as a tandem array and expressed from a single

promoter. In the tandem array, two sgRNAs are separated by a

cutting feature such as the sequences that can be recognised

by the RNA endonuclease Csy4 (Csy4 cleavage) [26], the

hammerhead ribozyme and HDV ribozyme flanked 5’ and

3’ of the sgRNA (self-cleavage) [101] and the tRNA which

can be cut by endogenous RNase P and RNase Z (tRNA
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Processing) [81, 105]. Another strategy is to express the crRNA

array containing several spacers separated by a direct repeat

with a promoter [3, 71]. Three assembly methods have been

used to synthesis sgRNA arrays such as Oligo-based method,

combining PCRs and Golden Gate or Gibson assembly and

direct synthesis and ligation method [53].

Different carriers are often used to help express the

multi-gene editing systems. For prokaryotes, helper plasmids

(single or multiple plasmids) are always needed [2]. For

eukaryotes, helper plasmid can be used as well, or the

expression components of Cas protein and the gRNAs can

be integrated into the target genome DNA [97, 2]. For

some cases, researchers have co-injected the Cas protein

and the sgRNAs into the zygotes [44, 59]. More detailed

reviews about the in vivo CRISPR/Cas system assembly are

referred to [66, 55, 2, 1, 17, 53]. Our own collected literature

list from Google scholar (https://scholar.google.com/) and

pubmed (https://pubmed.ncbi.nlm.nih.gov/) using the key

words of ”CRISPR” and ”multi-gene” is attached at

Supplementary file 1.

Optimization of CRISPR/Cas9 multi-gene editing
through prioritizing beneficial off-target editing sites:
the idea beyond the current approaches

An off-target cutting is an event happened at a genome site

located away from the objective cutting site of an sgRNA

designed for the target gene. If we also need to edit this off-

target cutting site’s host gene, then we can use the same sgRNA

to target the two genes simultaneously. This is our perspective

beyond the current approaches to optimise the selection on a

panel of sgRNAs for multi-gene editing. Endo et. al. [24] also

adopted this strategy to implement multi-gene knockout in rice.

Next, we present a definition to describe a preference cutting

score to measure the efficiency differences of a cutting site (on-

target cutting or off-target cutting) comparing to the other

editing sites. Then, one or more selected sgRNAs are ranked

for recommendation to edit single or multi-genes by considering

the cutting efficiency, off-target effect and preference cutting

score. We also compare different recommendation methods to

understand the differences in the sgRNA panels for editing

cancer associated genes.

Preference cutting scores for a list of editing sites

The CRISPR/Cas9 complexes of an sgRNA may bind to

different genes. We define a numerical cutting score to measure

the editing preference of this sgRNA at these editing sites

based on the difference of the editing efficiency at a given

site compared with all the other editing sites. It is named a

preference cutting score at an editing site for the sgRNA. An

sgRNA with a higher cutting preference at an on-target editing

site than its off-target sites is selected to achieve a higher

specificity. Let C = {c1, c2, ci, . . . , cn} be the set of editing

sites (including the on-target and off-target sites) of an sgRNA

sg, the preference cutting score (PCS) at a site ci is defined by

equation (1):

PCS(ci, sg) =
1

n− 1

n∑
j=1,j 6=i

(f(ci, sg)− f(cj, sg))

×
|f(∗, sg) < f(ci, sg)|

n− 1

(1)

where f(ck, sg) is the editing efficiency of sg at site ck,

|f(∗, sg) < f(ci, sg)| means the number of sites having a

cutting efficiency lower than ci in C. PCS includes two parts:

the left part is the average difference between the on-target

cutting efficiency and all the off-target cutting efficiencies; the

right part is a penalty factor to compute the percentage of the

off-target cutting sites having higher cutting efficiencies than

the on-target cutting site. The average difference helps identify

an optimal on-target site that has a higher cutting efficiency

than all of the off-target cutting sites. In particular, the

multiplication of the penalty factor f(∗,,sg)<f(ci,sg)|
n−1 can give

a penalty to the situations when there are many editing sites

having bigger cutting efficiencies than our expected one. This

can help avoid selecting those sgRNAs whose off-target cutting

sites have an equal or even higher cutting efficiency comparing

to their on-target sites. Though the off-target number is small,

the off-target effect can be still significant.

The on-target cutting efficiency of an sgRNA for a given

gene is predicted by our recently published TSAM method [61],

which can recommend a list of potential spacer sequences, their

target site information and can predict the corresponding on-

target cutting efficiencies as well.

Off-target editing efficiency estimation

For an sgRNA, its genome wide possible off-target sites are

predicted via our published SVM ensemble method (ESC),

which has been proved to exceed the performance of the

state-of-the-art methods [62]. The output of this off-target

detection tool is a list of potential off-target sites with detailed

genome location information, mismatch numbers and predicted

probabilities. However, it does not predict the exact off-target

editing efficiency. There already exist some methods that can

perform this prediction such as Elevation [47]. However, the

predicted efficiencies may be not comparable to the on-target

efficiencies predicted by TSAM as they are not in the same

scale.

To address this problem, we make estimations on the

off-target cutting efficiency based on its on-target editing

efficiency and the distribution of the mismatches between

the off-target site sequence and the on-target site sequence.

Doench et al. [18] studied the impact of mismatch positions

and types on the cutting efficiency by introducing various

types of mutations to different positions of the sgRNAs and

measuring the decreasing rates of the cutting efficiencies. For

an sgRNA’s spacer sequence with the length of 20, there are 12

types of mismatches at each position. Doench et al. provided

a percent-activity profile of these 240 kinds of mismatches

PA = {pa11, · · · , pa
i
j , pa

12
20}, where i ∈ [1, 12] is the mismatch

type number, j ∈ [1, 20] is the position number and paij ∈
[0, 1] (See Supplementary file 2). Given an off-target site

sequence otSeq and its corresponding sgRNA spacer sequence

sgSeq, we calculate its n mismatches mis(otSeq, sgSeq) =

{mis1,mis2, · · · ,misk, · · · ,misn} and their percent-activity

values pa(otSeq, sgSeq) = {p1, p2, pk, · · · , pn}. Let the on-

target cutting efficiency of the sgRNA with sgSeq be on(sgSet),

then the cutting efficiency at otSeq is computed using

equation (2):

Ofc(otSeq) =
∏

pk∈pa(otSeq,sgSeq)

on(sgSet) · pk (2)
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Algorithm 1 Optimal sgRNA selection for single gene editing.

Require: gene sequence g seq of candidate gene A;

1: Adopt the tool TSAM to obtain the potential

on-target cutting sites of A where CS(g seq) =

{cs1, cs2, · · · , csi, · · · , csn} and compute their cutting

efficiencies CE(g seq) = {ce1, ce2, · · · , cei, · · · , cen};
2: for csi in CS(g seq) do

3: Predict the off-target cutting sites with ESC: OT (csi) =

{ot1, ot2, · · · , otj , · · · , otm};
4: Estimate the off-target site cutting efficiency at otj as

otcej via above formula (2)

5: Compute the PCS of csi:

6: PCS(csi) = 1
m

∑m
j=1(cei − otcej) · |otcej<cei|

m

7: end for

8: Rank csi:

9: rank(csi) = (rank(cei) + rank(|OT (csi)|) +

rank(PCS(csi)))/3

10: Output The rank list of A’s on-target cutting sites

CS(g seq)′

Selection of an optimal sgRNA for single-gene editing

Given a gene of interests, there are potentially many sgRNAs

for the on-target editing of this gene. An optimal sgRNA

to edit this gene is determined primarily by considering the

sgRNA’s on-target editing efficiency, in addition to the number

of its off-target sites and its preference cutting score. The

resulted CRISPR/Cas9 system should edit the gene with a high

efficiency meanwhile having a low off-target editing effect. The

special exploit of the preference cutting score is to avoid any

high-efficiency off-target editing event. The following pseudo

codes in Algorithm 1 describe the steps for selecting an

optimal sgRNA in single-gene editing.

The key step of Algorithm 1 is to sort the on-target

sgRNAs into a descending order according to their average rank

over the on-target cutting efficiency, the off-target number and

their PCS. |OT (csi)| stands for the number of off-target sites in

terms of the on-target editing site csi. In fact, one can change

the weights of these three types of ranks instead of using the

same weights. However, we don’t have datasets for optimizing

them, thus averaging strategy is adopted currently. Fig 1(a)

shows a simple schematic diagram of single gene editing design.

Most potential cutting partner (MPCP) of a gene and the

gene’s most beneficial off-target cutting site (MBOCS)

Suppose A is a gene. Denote sg(A) = {sgA1 , sgA2 , . . . , sgAt , . . . ,

sgAn } as n number of sgRNAs which are capable of editing A

at different sites. Each of these sgRNAs, for example sgAt , has

a number of off-target sites. We denote these off-target sites as

a set OFF (sgAt ), and denote the on-target editing site of sgA1
as on(sgA1 ). We calculate the PCS and cutting efficiency of sgA1
at every site in OFF (sgA1 ). These sites in OFF (sgA1 ) are then

ranked in terms of their averages over the cutting efficiencies

(ce) and PCSs: 2 ∗ ce ∗ PCS/(ce + PCS), where we used the

harmonic mean instead of arithmetic mean to avoid the large

difference between the two terms.

The top ranked off-target site of sgA1 is the most beneficial

off-target cutting site (MBOCS) of sgA1 (namely a local

MBOCS). Meanwhile, the host gene of this MBOCS is the local

most potential cutting partner (MPCP) of A. We repeat the

process for every sgAt to produce n local MBOCSs and their

corresponding local MPCPs.

Then we rank all the local MBOCSs to find the best local

MBOCS as the final global MBOCS, thus the MPCP of gene

A (namely the global MPCP) is determined. This ranking

process includes three steps: (a) combine the local MBOCS

(lmt) and its related sgRNA’s on target site on(sgAt ) as a site-

pair < lmt, on(sgAt ) >; (b) compute the site-pair’s average

cutting efficiency acet = 2 ∗ ce(lmt) ∗ ce(on(sgAt ))/(ce(lmt) +

ce(on(sgAt ))), the average PCS as aPCSt (in the same way as

ace) and the off-target site number numOTt = |OFF (sgAt )|−1

(here, the MBOCS is not regarded as an off-target site); (c)

rank ace, aPCS, numOT separately and calculate the average

rank for each pair as its final rank. We denote the final MPCP

as AP , where the corresponding sgRNA is sgAp and its MBOCS

is OFF (sgAp )[t] .

The purpose of defining the MPCP of gene A is two-fold:

firstly, we can identify the most possible unwanted mutation

that the CRISPR/Cas9 system of sgAp would introduce when

editing A; secondly, we may select sgAp to implement a paired

gene editing (i.e., editing on A and AP ) with an optimal overall

performance.

We note that if gene B is the most beneficial off-target

cutting site of gene A, it does not necessarily mean gene A

is the most beneficial off-target cutting site of gene B. But it is

highly possible that gene A is a top-ranked beneficial off-target

cutting site of gene B. An ideal case is that A and B can be

mutually the most beneficial off-target cutting sites.

The following Algorithm 2 with detailed steps can be used

to obtain the MPCP and MBOCS of given gene A. Fig 1(b)

shows an example of detecting MPCP and MBOCS.

Algorithm 2 considers only 20% top-ranked potential on-

target cutting sites to determine the MPCP and MBOCS of

a gene. There exist two-tier loops in the algorithm. In the

inner loop, we find the local MBOCS and local MPCP for

each considered on-target cutting site cs′i while the outside loop

returns the global MBOCS and MPCP of A.

Recommendation of an sgRNAs panel for multi-gene editing

For the simultaneous editing of multiple genes, three

approaches can be used to design the CRISPR/Cas9 system:

• The first approach is to separately select an optimal sgRNA

for each of the genes and then construct a co-expressing

vector or tandemly arrayed tRNA-gRNA unit to implement

the multi-gene editing; we name this approach one-to-one

(OTO) (see an example in Fig 2(a)). For this approach, we

can apply our Algorithm 1 to find the best sgRNAs for

each of the candidate genes.

• The second approach is to select a common sgRNA that

can target all of the genes in the group. The approach is

named one-to-all (OTA) (see an example in Fig 2(c)). This

approach is practically applicable only when these genes

are homology genes, having the same cutting site in each

sequence. We find the common sgRNAs by intersecting the

lists of on-target cutting sites for each of the candidate genes

derived from Algorithm 1.

• The third approach is to detect beneficial off-target editing

sites within the group of genes. This approach may result

in less number of sgRNAs to target all of the genes. This

approach is named less-to-all (LTA) (see an example in

Fig 2(b)). There are two situations for this approach: s1–

one sgRNA LTA (os-LTA), where we can choose one sgRNA

from the candidate list of a gene and it can off-target all

of the remaining genes in the group; s2–multi-sgRNA LTA,
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Genome DNA

Target gene
cs1 cs2 cs3 ot21 ot22 ot23 ot24ot31 ot32ot11

Select cs1 to design sgRNA as rank(cs1) is better than rank(cs2) and rank(cs3)
Rank(cs)=mean(rank(ce), rank(|ot|), rank(PCS))

ot12 ot33

Genome DNA

Target gene

gene1 gene2 gene3
MPCP of gene1

MBOCS
cs1 ot11 ot12

(a) Single gene editing

(b) MBOCS and MPCP

Local rank ot: rank(ot)=rank(2*ce*PCS/(ce+PCS)), ot12 is the local MBOCS of cs1 and gene3 is the local MPCP for cs1;
Global rank(<cs, ot>) = mean(rank(2*ce(cs)*ce(ot)/(ce(cs)+ce(ot))), rank(2*PCS(cs)*PCS(ot)/(PCS(cs)+PCS(ot))),rank(|ot|-1));
Select the pair <cs1, ot12>  as it ranks the first, ot12 is the MBOCS, the gene3 is the MPCP of gene1

cs2 ot21 local MBOCS

Fig. 1. Schematic diagram for single gene editing, and for searching MPCP and MBOCS. Here cs stands for the on-target cutting site, ot

represents the off-target site, ce is the cutting efficiency, PCS is the PCS score and |ot| gives the number of off-target sites; ot11 and ot12 are the

off-target sites for the sgRNA designed with cs1.

where for a subgroup of the genes, our above OTA or os-

LTA can be adopted and the remaining genes require OTO.

For example in the case of 6 genes to be edited, OTA can be

used for 2 of them, os-LTA can be used for another 2 and the

remaining two suit for the OTO, thus totally 4 sgRNAs are

required. For the os-LTA, we implement it via successively

selecting one gene from the group (or subgroup in s2) to get

its candidate sgRNAs together with each sgRNA’s off-target

sites, then search whether the remaining genes contain the

off-target sites. If found, we turn the off-target cutting to

an on-target cutting of the corresponding gene.

The OTO approach has nearly no application limits while

OTA and LTA can just work for those genes contain identical

or highly similar cutting sites. OTA and LTA may have less off-

target effect and the resulting CRISRP/Cas9 system is simpler

than that by OTO. For a given group of candidate genes to be

edited, all these three approaches are applicable. The potential

sgRNA/sgRNAs are sorted according to their average ranks of

the mean cutting efficiencies, total off-target site numbers and

mean PCS scores (in the way similar to previous single gene

editing).

One important restriction in the recommendation of sgRNAs

for multi-gene editing is that we do not allow more than one

sgRNAs to edit one gene. This is to avoid generating unintended

mutations which may result in elimination of a long sequence in

the gene when the two cutting sites are close to each other [68].

Suppose three genes A, B, C are required to be edited. When

OTO is used, three sgRNAs sgA, sgB , sgC can be designed for

targeting the three genes separately. If there exists an sgRNA

sgcommon that targets all of the three genes, then we require

the OTA strategy. For the LTA, we require that one or two

sgRNAs could be selected. For the one-sgRNA based LTA, the

sgRNA sglta1 will generate on-target cutting on one of the

three genes, e.g. A and off-target editing on both of the two

remaining genes, i.e. B and C. For the two-sgRNA based LTA,

one sgRNA sglta1 will on-target one gene A and off-target the

gene B while another sgRNA sglta2 will on-target the remaining

gene C. The situation of sglta1 on-target cutting A and off-

target cutting B while sglta2 on-target cutting B and off-target

cutting C is not considered. Our method recommends the best

sgRNA/sgRNAs derived by these three approaches for further

wet-lab experimental validation.

Case study on cancer associated genes

Cancer associated genes were collected from the Cancer Gene

Census (https://cancer.sanger.ac.uk/cosmic/census?tier=all) on

April 24, 2019. Related data of 723 cancer genes were exported

from the two tiers. Six genes (IGH, IGK, IGL, TRA, TRB and

TRD) were not labeled with ensembl ids [103], and they were

excluded from our analysis. The annotation information of the

remaining 717 genes were obtained from the ensembl database

(version GRCh38.92) [103] (See Supplementary file 3).

Pairwise-editing of cancer genes and their MPCPs: safety

analysis and effectiveness

We detected MPCPs for all of the 717 cancer genes. We

also conducted analysis on the safety and effectiveness of the

pairwise-editing by our suggested sgRNA at each cancer gene

and its MPCP (see Supplementary file 4 for more details).
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ot11

cs1 cs1

Target gene 1 Target gene 2 Target gene 3

(a) OTO

(b) LTA

(c) OTA

Target gene 1 Target gene 2 Target gene 3

cs1 cs2 cs3

cs1 cs2 cs3

Target gene 2

cs1 cs2 cs3

Target gene 1 Target gene 3

Design sgRNAs with cs1, cs2, cs3 to cut three target genes 

Design sgRNAs with cs1, cs3 to cut three target genes where the sgRNA with cs1 also cuts gene2 

Design a sgRNA with cs1 to cut three target genes as it cuts all three genes 

Fig. 2. Illustrations of the three strategies OTO, LTA and OTA. Here cs stands for the on-target cutting site, ot represents the off-target site.

ot11 and ot12 are the off-target sites for the sgRNA designed with cs1.

Pairwise editing safety analysis.

It was reported that small distance between two nicking sites

may introduce indels [68]. Such fragment deletion should be

avoided when a cancer gene and its MPCP are edited by one

spacer sgt. We examined the distance between every cancer

gene and its MPCP. We found that most of the cancer genes’

MPCP are located at different chromosomes. Only about 7.5%

(54 out of 717) of the cancer genes and their MPCPs are located

at the same chromosome, and the average distance between

these cutting sites at the cancer genes and those at their MPCPs

is 4.86E+7bp.

The nearest one is between gene KLK2 (ensembl id:

ENSG00000167751) and its MPCP KLK3 (ensembl id:

ENSG00000142515), the distance is about 18487bp. It is

understood that these cancer genes’ MPCPs are always far

from themselves. This suggests that it is safe to implement

these pairwise-editings on a cancer gene and its MPCP via the

recommended sgRNA.

Effectiveness.

We found that the cutting efficiencies at these editing sites

for the cancer genes and their MPCPs are high. The average

cutting efficiency (in the range [0, 1]) of the editing sites at these

cancer genes is about 0.78, the average cutting efficiency at

their MPCPS is about 0.58, and the average cutting efficiency of

each pair is much higher than 0.5. The preference cutting scores

(PCS) of the cancer genes and their MPCPs are also high: the

average PCS of the sites for the 717 cancer genes is 0.66 and the

average PCS for their MPCPs is 0.46. By our definition of the

PCS, a bigger PCS implies that the sgRNA’s on-target editing

efficiency is higher than that at its off-target cutting sites. This

suggests that our method is capable of selecting an optimal

sgRNA sgt to edit a cancer gene and its MPCP simultaneously

with a higher on-target cutting efficiency and specificity than

using any other sgRNA. A boxplot in Fig 3 shows a detailed

distribution of these cutting efficiency values.

Recommendation of sgRNAs for pairwise editing on

cancer-associated genes

Of the 717 cancer genes, there are 256686 unique pairs. Given

a pair of these genes, we attempted to recommend one sgRNA

for each of the two genes for editing (namely, by the OTO

strategy) or recommend one single sgRNA to edit the two genes

simultaneously (namely, by the OTA/LTA strategy). If more

than one sgRNAs are qualified by the OTA/LTA strategy, only

the top ranked one was recommended.

We found that about 57.3% of these pairs can be edited by

single sgRNAs with high cutting efficiencies (namely, 147162

out of 256686 pairs, including 4614 pairs determined by the

OTA strategy and 145692 determined by the LTA strategy,

where 3144 pairs were determined by both OTA and LTA). In

addition, there are 42 pairs of cancer genes where one gene is

the other gene’s MPCP. Comparing with sgRNAs selected by

the OTO strategy, the sgRNAs selected by OTA/LTA have a

higher average on-target cutting efficiencies to edit 24 pairs of

genes; and the sgRNAs selected by OTA/LTA have less number

of off-target sites to edit 22023 pairs of genes. In terms of the

PCS scores, the OTA/LTA strategies yield better scores on 37

pairs. Furthermore, three pairs of cancer genes can be edited by

single sgRNAs with higher average on-target cutting efficiency

(AOCE) and less off-target sites (OTS) than taking the OTO

approach (see Table 1).

For example, three cancer associated genes SSX1, SSX2

and SSX4 can be edited by a single sgRNA containing the

spacer sequence of ‘ACTACGCATGAAAGGTGGGA’. It cuts
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Fig. 3. A boxplot showing the cutting efficiencies and the PCS scores of the cutting sites for the 717 cancer genes and their MPCPs.

“cut eff” means the cutting efficiency.

Table 1. Three cancer gene pairs that can be edited by single sgRNAs with higher on-target cutting efficiency and less

off-target sites.

Strategy Cancer gene pair sgRNA AOCE OTS PCS

OTO SSX1-SSX2
AGCCTGCCGAAAGTCATCTG,

GCTATGCACCTGATGACGAG
0.8050 151 0.6756

OTA SSX1-SSX2 AGCCTGCCGAAAGTCATCTG 0.8099 81 0.6688

OTO SSX1-SSX4
AGCCTGCCGAAAGTCATCTG,

GCTATGCACCTGATGACGAG
0.8050 151 0.6755

LTA SSX1-SSX4 ACTACGCATGAAAGGTGGGA 0.8521 100 0.5989

OTO SSX2-SSX4
GCTATGCACCTGATGACGAG,

GCTATGCACCTGATGACGAG
0.8308 140 0.7095

LTA SSX2-SSX4 ACTACGCATGAAAGGTGGGA 0.8521 100 0.5989

the three genes with on-target cutting efficiencies of 0.8947

(on SSX4), 0.8134 (on SSX1) and 0.8134 (on SSX2), while

introducing 98 off-target sites. If we use the OTO strategy,

three sgRNAs ‘AGCCTGCCGAAAGTCATCTG’ (SSX1),

‘GCTATGCACCTGATGACGAG’ (SSX2) and ‘GCTATGCAC

CTGATGACGAG’ (SSX4) are required that have on-target

editing efficiencies of 0.7807, 0.8308 and 0.8308 respectively,

and there would be 221 off-target sites. Literature work

has reported that human synovial sarcoma is caused by

a chromosome translocation, which generates the SS18-

SSX fusion protein by the fusion of one of the three

SSX genes (SSX1, SSX2 and SSX4) with the SS18 gene

[78]. Simultaneously editing the three SSX genes could

help investigate the detailed mechanism of the human

synovial sarcoma, and the sgRNA with the spacer sequence

‘ACTACGCATGAAAGGTGGGA’ is recommended useful for

the investigations.

Editing five cancer associated genes TP53, BRCA2, BRCA1,

PTEN, NF1 to generate the murine models of ovarian

high-grade serous carcinoma

Five cancer associated genes TP53 (ensembl id: ENSG00000141510),

BRCA2 (ensembl id: ENSG00000139618), BRCA1 (ensembl id:

ENSG00000012048), PTEN (ensembl id: ENSG00000171862),

and NF1 (ensembl id: ENSG00000196712) have been all found

to be related to the ovarian high-grade serous carcinoma [8, 74].

Previous studies have knocked out some or all of the five

genes to generate the murine models of ovarian high-grade

serous carcinoma [84, 86, 85]. To test the performance of

our sgRNA recommendation method, our tool is applied to

select the sgRNAs for an optimal design of the CRISPR/Cas9

system editing the five genes simultaneously. Our method

recommended three groups of spacers (see Table 2).

In the first group, three spacers are recommended to

construct the simplest CRISPR/Cas9 system. The spacer

‘GAGCACAGTAGAACTAAGGG’ is predicted to target

BRCA2 and NF1 with an on-target editing efficiencies 0.7351
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Table 2. Our recommended spacers for editing the five cancer-associated genes.

spacer number strategy spacer genes OCS OTS PCS

3 LTA

GAGCACAGTAGAACTAAGGG;

GGCTGGGAACGCCGGAGAGT;

CCATTGTTCAATATCGTCCG.

BRCA2;NF1;PTEN;

BRCA1;TP53

0.7351; 0.1519;0.5427;

0.1960;0.7919
690 0.1759

4 LTA

CTTACAGCAGTAGTATCATG;

CATGACACCCCACCGGAAGT;

GGCTGGGAACGCCGGAGAGT;

CCATTGTTCAATATCGTCCG.

BRCA2;NF1;PTEN;

BRCA1;TP53

0.7990;0.8371;0.5427;

0.1960;0.7919
322 0.3693

5 OTO

TCAGGATGAAGGCCTGATGT;

CTTACAGCAGTAGTATCATG;

CATGACACCCCACCGGAAGT;

ACAGACTGATGTGTATACGT;

CCATTGTTCAATATCGTCCG.

BRCA1;BRCA2;NF1;

PTEN;TP53

0.8249;0.7990;0.8371;

0.8262;0.7919
256 0.6930

spacer means the selected spacer sequence; OCS is the on-target cutting efficiencies for the five genes (the same order as the

genes)

Algorithm 2 Determine MPCP and MBOCS.

Require: gene sequence g seq of candidate gene A;

1: Obtain the rank list of A’s on-target cutting sites

CS(g seq)′ according to Algorithm 1;

2: CS(g seq)′ = {cs′1, cs
′
2, · · · , cs

′
i, · · · , cs

′
n};

3: CE(g seq)′ = {ce′1, ce
′
2, · · · , ce

′
i, · · · , ce

′
n};

4: topN = int(n ∗ 0.2)

5: for t in 1 to topN do

6: OT (cs′t) = {ot1, ot2, · · · , otk, · · · , otK};
7: for otk in OT (cs′t) do

8: Estimate the off-target site cutting efficiency at otk

as otcek;

9: Compute its PCS score:

10: PCS(otk) = 1
K−1

∑K
j=1&j 6=k(otcek − otcej) ·

|otcej<otcek|
K−1

11: Compute the average value of otk’s cutting efficiency

and PCS score as avg otce pcs(otk) = 2 ∗ otcek ∗
PCS(otk)/(otcek + PCS(otk))

12: end for

13: Obtain otk′ , where it has the highest avg otce pcs(otk′)

and we regard otk′ as the MBOCS of cs′t
14: Compute the average cutting efficiency of cutting site

pair
〈
cs′t, otk′

〉
as avgOn(

〈
cs′t, otk′

〉
) = 2∗ce′t∗otcek′/(ce

′
t+

otcek′)

15: Compute the total number of off-target sites for cutting

site pair
〈
cs′t, otk′

〉
as numOT (

〈
cs′t, otk′

〉
) = K − 1

16: Compute the average PCS score for cutting site pair〈
cs′t, otk′

〉
as avgPCS(

〈
cs′t, otk′

〉
) = 2 ∗ PCS(cs′t) ∗

PCS(otk′)/(PCS(cs′t) + PCS(otk′))

17: end for

18: Rank the cutting site pair
〈
cs′t, otk′

〉
:

19: rank(
〈
cs′t, otk′

〉
) = (rank(avgOn(

〈
cs′t, otk′

〉
)) +

rank(numOT (
〈
cs′t, otk′

〉
)) +

rank(avgPCS(
〈
cs′t, otk′

〉
)))/3

20: Annotate the otk′ , obtain its host gene

21: Output The rank list of cutting cite pairs
〈
cs′′i , ot

′
k′

〉
, the

rank first ot′1 is the MBOCS and its host gene Got′
1

is the

MPCP of A

and 0.1519 respectively. The spacer ‘GGCTGGGAACGC

CGGAGAGT’ targets PTEN (0.5427) and BRCA1 (0.1960) and

the third spacer ‘CCATTGTTCAATATCGTCCG’ (0.7919)

binds to TP53. There are 690 potential off-target editing

sites by these three sgRNAs and the resulting PCS score is

0.1759. In the second group having four spacers, the spacer

‘GGCTGGGAACGCCGGAGAGT’ is predicted to edit both

PTEN and BRCA1. Each of the remaining three sgRNAs is to

edit a different gene of the remaining three. With this sgRNA

panel, the on-target cutting efficiency on NF1 is improved,

the total number of off-target sites is decreased (to 322), and

the PCS score is also improved (to 0.3693). Using the spacers

recommended by the OTO strategy, each of the five genes is

targeted by its own optimal spacer. The cutting efficiency and

specificity are both improved. But the resulted CRISPR/Cas9

system becomes much more complex. These recommendations

have their own advantages and shortcomings, end users are

suggested to choose their favourable spacer group to carry out

the multi-gene editing experiments.

Conclusion

We conducted a brief survey on the applications of multi-

gene editing and commented on their methods. We found

that bioinformatics to the system design of multi-gene editing

is important to optimize the editing performance. So far,

identification of beneficial off-target editing site has not been

studied. As a novel perspective, we constructed a novel

computational tool to help design CRISPR/Cas9 systems for

multi-gene editing by considering beneficial off-target editing

sites.

We adopted the idea of turning the harmful off-target

editing into beneficial editing sites of additional genes of

our interests. We searched those spacers that are designed

for a given gene (on-target) but also targeting other genes

(off-target), and evaluated their editing performance. The

performance evaluation included the comparison of the on-

target cutting efficiencies for all the genes, the total number of

off-target sites and the preference cutting scores. The cutting

efficiencies of the sgRNA cutting the additional genes are

approximated by multiplying the on-target cutting efficiency at

the given genes’ editing site with the percent-activity values.

Three strategies (OTO, LTA and OTA) were applied for

the selection of spacers for the multi-gene editing. The LTA

and OTA strategies can design simpler CRISPR/Cas9 systems

and sometimes can reduce the off-target site numbers. The

OTO strategy is to select an optimal spacer to each of the

target genes. This type of strategy can always achieve the

highest on-target cutting efficiencies but sometimes introduce
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more off-target sites; and the resulted CRISPR/Cas9 system is

complex. These selected spacers are ranked according to three

indices such as the average cutting efficiency, the total off-

target site number and the PCS score. The top-ranked spacers

are recommended for further wet lab validation. The developed

tool has great potential to make contributions to the multi-gene

editing studies and the related CRISPR/Cas9 system research.

Key Points

• Survey on the current wide-range applications of multi-gene

editing in the fields of biomedicine and biology;

• Perspectives and discussions on a novel off-to-on role

conversion idea to turn off-target editing sites into on-target

editing sites such that the number of sgRNAs is minimized

in the multi-gene editing, meanwhile the collective negative

effects caused by the off-target editing are reduced;

• Preference cutting scores to identify and rank beneficial off-

target editing sites for the recommendation of an optimised

panel of sgRNAs in the multi-gene editing;

• Comparative case studies using three approaches to editing

five cancer associated genes TP53, BRCA2, BRCA1, PTEN,

NF1 to generate the murine models of ovarian high-grade

serous carcinoma, and large scale evaluation on cancer-

associated genes; and

• The source code, software tools and the bench mark data

sets are public available.
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