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Single image deraining is a challenging problem due to the presence of non-uniform rain densities and the ill-posedness of the
problem. Moreover, over-/under-deraining can directly impact the performance of vision systems. To address these issues, we propose
an end-to-end Context Aggregation Recurrent Network, called CARNet, to remove rain streaks from single images. In this paper, we
assume that a rainy image is the linear combination of a clean background image with rain streaks and propose to take advantage
of the context information and feature reuse to learn the rain streaks. In our proposed network, we first use the dilation technique to
effectively aggregate context information without sacrificing the spatial resolution, and then leverage a gated subnetwork to fuse the
intermediate features from different levels. To better learn and reuse rain streaks, we integrate a LSTM module to connect different
recurrences for passing the information learned from the previous stages about the rain streaks to the following stage. Finally,
to further refine the coarsely derained image, we introduce a refinement module to better preserve image details. As for the loss
function, the L1-norm perceptual loss and SSIM loss are adopted to reduce the gridding artifacts caused by the dilated convolution.
Experiments conducted on synthetic and real rainy images show that our CARNet achieves superior deraining performance both
qualitatively and quantitatively over the state-of-the-art approaches.

Index Terms—Image deraining, context awareness, dilated convolution, recurrent network, perceptual loss.

I. INTRODUCTION

IMAGES captured outdoors in rainy weather engender thedegeneracy phenomenon, such as low contrast or saturation
loss, which seriously affects the performance of outdoor visual
systems. In order to improve the performance of computer
vision applications such as image classification, object detec-
tion, and video surveillance [1], [2], it is important to develop
algorithms to remove rain streaks, especially the high density
ones in heavy rain conditions. Therefore, image deraining has
attracted much attention and also achieved some progress.
However, due to the randomness in physical nature of rain
streaks and the ill-posed problem, image deraining remains a
challenging problem.
In the past, many rain removal techniques based on video

systems (or sequential image data) have been proposed. These
techniques used inter-frame information to detect and remove
rain [3], [4], [5], [6], which has made it relatively easy to
remove rain from the video. In contrast, single image deraining
is more challenging due to less information available.
In recent years, deep learning-based single image deraining

methods [7], [10], [11], [12], [13], [14], [15], [8], [9] were
proposed and have achieved rapid progress. In [8], Chen et
al. used the latest smoothed dilation technique and a gated
subnetwork for image dehazing and deraining. In fact, the
network was initially designed for dehazing. Given the sim-
ilarity between a hazy image and a rainy image, Chen et
al. applied the network for deraining and have achieved good
performance. Besides, Ren et al. [9] proposed a simpler yet
better baseline deraining network, in which they adopted both
the stage-wise results and the original rainy image as the input
for each residual network (ResNet) to improve the deraining

(a) Rainy image (b) GMM [7]

(c) GCANet [8] (d) PReNet [9]

(e) CARNet (without refinement) (f) CARNet

Fig. 1: Deraining results obtained with GMM [7], GCANet [8],
PReNet [9] and our CARNet (see in a zoomed-in mode).

performance. However, as shown in Fig. 1, the method of [7]
tends to result in under-deraining (see Fig. 1(b)), and the
methods of [8] and [9] are prone to produce over-deraining
results (see Fig. 1(c) and (d)).
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Fig. 2: The architecture of our CARNet.

Inspired by the ideas of [8] and [9], to address the problem
of over- or under-deraining, in this paper we propose an
end-to-end Context Aggregation Recurrent Network, called
CARNet, to remove rain streaks from single images. Note
that, many existing deraining methods have taken the context
information into account but they have ignored the feature
reuse. In our work, a rainy image can be seen as a linear
combination of a clean background image with rain streaks.
We propose to take advantage of the context information and
feature reuse to learn the rain streaks from rainy images.
As shown in Fig. 2, our CARNet is composed of a Recurrent

Body and a Refinement module. The Recurrent Body mainly
consists of a Long Short Term Memory (LSTM) module, seven
Dilated ResBlocks and a Gated Fusion module. We adopt
the dilated convolutions to help with preserving the local and
global contexts eradicating the problem of over-deraining. The
LSTM module can pass the information learned during the
previous stages about the rain streaks to the current Dilated
Resblocks for better restoration effect. The Dilated ResBlock
can effectively aggregate context information without sacrific-
ing spatial resolution, and the Gated Fusion module is used
to determine the importance of different levels and fuse them.
Both of them are beneficial to a coarse-to-fine rain streaks
estimation, thereby improving the quality of rain removal.
Moreover, in the optimization process of our CARNet, we
cascade a Refinement module to further refine the derained
image to preserve more image details. Last but not the least, to
obtain more effective processing, we use a recursive learning
scheme similar to the idea in [9], allowing the network to
gradually expand without increasing model parameters.
Compared to the method of [8], as shown in Fig. 1(c) and

(f), one can see that the result of [8] has obvious rain traces
after deraining, i.e., the result of [8] suffers the under-deraining
issue, whereas our CARNet’s result shows little signs of rains.
Moreover, from Fig. 1(d) and (f) it can be seen that, our

CARNet is capable of obtaining more image details after
deraining with higher clarity thanks to the Dilated ResBlock
and Gated Fusion module. Comparing Fig. 1(e) with (f) in a
zoomed-in mode, one can see that our Refinement module can
also help alleviate the gridding artifacts caused by the dilated

convolution. Furthermore, we design a hybrid loss function
combining the L1-norm perceptual loss with the Structural
SIMilarity (SSIM) loss [16] to train our CARNet. As shown
in Fig. 8(b) and (f) of the ablation studies, the SSIM loss
can effectively reduce the gridding artifacts, which can also
be regarded as a perceptual metric based on image properties
like luminance, contrast and structure.
To validate the effectiveness of our proposed CARNet,
comprehensive experiments are conducted on both synthetic
and real rainy image datasets. Compared with the state-of-
the-art methods on the three synthetic datasets, our CARNet
achieves best quantitative and qualitative deraining results.
Moreover, the visually pleasant deraining results obtained
on real rainy images show the generalization ability of our
proposed CARNet model.
In summary, the main contribution of this work is threefold:
• We propose an end-to-end CARNet for single image
deraining which takes advantage of the context infor-
mation and feature reuse to learn the rain streaks. The
learned information about rain streaks is then propagated
over multiple stages via LSTM to obtain better deraining
results.

• We propose a hybrid loss function which considers both
L1-norm perceptual loss and SSIM loss to improve the
visual quality and effectively reduce the gridding artifacts.

• Extensive experiments conducted on both synthetic and
real rainy images demonstrate the superiority of our
CARNet over the state of the arts in both qualitative and
quantitative measures.
The remainder of this paper is organized as follows. In
Section II, the background and related work are introduced.
In Section III, the proposed CARNet is illustrated in details.
In Section IV, the experiment setup and results are presented
and analyzed. Finally, the conclusion is drawn in Section V.

II. BACKGROUND AND RELATED WORK
In this section, we first introduce the rain model to describe
various components of a rainy image. Then, we review some
recent single image deraining methods by grouping them into
optimization-based methods and deep learning based methods.
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(a) Rainy image O (b) Clean image B (c) Rain streaks S

Fig. 3: Rainy image decomposition. A rainy image (a) can be viewed
as the superposition of a clean background image (b) and a rain streak
image (c).

A. Rain Model

Mathematically, the widely used rain model [17], [7], [18]
considers a rainy image as the linear combination of a clean
background image with rain streaks, which is expressed as:

O = B + S , (1)
where B is the clean background image, S represents the rain
streaks, and O denotes the obtained image with rain streaks,
as shown in Fig. 3.
Thus, the goal of single image deraining is to recover B

from O, i.e.,
B = O − S . (2)

Similar to image denosing and image separation [19], [20],
single image deraining also has the ill-posed problem. In this
paper, we aim to learn S from O to obtain B with our proposed
CARNet.

B. Optimization-based Deraining Methods

Optimization-based deraining methods usually form an op-
timization problem based on some priors such as background
image priors and rain streaks priors [21], [18], [7], [22], [23].
In [21], Chen et al. proposed a low-rank appearance model to
remove rain streaks given that they always come in similar and
repeated patterns. Built upon a nonlinear generative model of
rainy image, Luo et al. [18] proposed a dictionary learning
based algorithm, where rain streak layer and background
image layer were forced to share the fewest dictionary items.
Li et al. [7] assumed that Gaussian Mixture Model-based
methods (GMMs) could accommodate multiple orientations
and scales of rain streaks and proposed a patch-based GMM
prior to rain streaks separation. However, these optimization-
based deraining methods still suffer limited deraining quality
due to the complexity of rainy images.

C. Deep Learning based Deraining Methods

Deep learning based methods can be regarded as data-driven
methods. The success of deep learning in several computer
vision tasks (e.g., [24], [25], [26], [27], [28]) has driven
researchers to develop deep learning based approaches for
image deraining, which have become more and more popular
in recent years.
A natural solution is to build a non-linear function to recover

a clean background image from the corresponding rainy image.
By combining the high-frequency detail-layer content of an
image and regressing on the negative residual information,
Fu et al. [10] proposed an end-to-end deep learning framework

for single image deraining based on deep convolutional neural
networks (CNNs).
In [13], Li et al. proposed a simple and effective deraining
method based on CNN, which was trained in a recursive
manner. Wang et al. [29] constructed a new real-world rain
dataset, and proposed a spatial attentive network to learn
discriminative deraining features in a local-to-global attentive
manner. In [30], the rainy-to-clean image translation model
was decomposed as a combination of an embedding learning
net and a conditional generator. Then, an entangled repre-
sentation learning mechanism was proposed to obtain better
deraining results. In [31], Du et al. proposed a variational
image deraining method by formulating image deraining in a
conditional variational auto-encoder framework, which could
learn a mapping from a single input image to many out-
puts. In [32], by uncovering the correlations of rain streaks
in an image, a multi-scale progressive fusion network was
proposed, which collaboratively represented rain streaks from
multiple scales via the pyramid representation. Recently, the
semi-supervised learning scheme has been adopted in image
deraining due to the lack of paired rainy-clean images in real
world such as [33], [34].
In this work, our CARNet utilizes the dilated CNN and
residual learning to obtain rain streaks, and leverages on a re-
current scheme to further improve the deraining performance.

III. CONTEXT AGGREGATION RECURRENT NETWORK

In this section, our CARNet is elaborated from three
perspectives, namely, network architecture, loss function and
network algorithm. To this end, we first present the proposed
CARNet architecture, then discuss the loss function used in
our network, and finally illustrate the detailed algorithm.

A. CARNet Architecture

As shown in Fig. 2, the proposed CARNet consists of two
parts, i.e., the Recurrent Body and the Refinement module. The
Recurrent Body is composed of three conv blocks, one deconv
block, one LSTM module, seven Dilated ResBlocks and one
Gated Fusion module. The Refinement module consists of two
conv blocks.
Conv Block + Deconv Block. In the Recurrent Body, the
conv block and deconv block appear symmetrically, and each
block includes a convolutional layer, a normalization layer
(InstanceNorm) and an activation function (ReLU). All the
filters in conv blocks are with a size of 3 × 3 with 1 × 1
padding. Due to the concatenation of 3-channel RGB images,
the first convolutional layer of the Recurrent Body has 6 and
64 channels for input and output, respectively. The second
convolutional layer downsamples the feature maps by 1/2 to
obtain the recursive input feature map Iin. In order to upsample
the feature map to the original resolution, the filter in deconv
block is with a size of 4× 4, a stride of 2, and 1× 1 padding.
After passing the last conv block, we get the intermediate
rain streaks S im, and use Eq. 2 to obtain the intermediate
background image Bim.
LSTM Module + Dilated ResBlock. LSTM modules
usually work with loops. In our CARNet, a LSTM module
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is used to pass the information learned from the previous
steps about rain streaks to the next step, and the structure
of LSTM can be found in [35], [36]. In order to increase
the original receptive field without reducing resolution [8], the
dilated convolution is adopted in our CARNet, and the dilation
rates of these seven ResBlocks are set as (2, 2, 2, 4, 4, 4,
1), respectively. The filters in the LSTM module and Dilated
ResBlocks are also with a size of 3×3. However, the padding
size of the LSTM module is 1 × 1, and the padding sizes in
the Dilated ResBlocks are the same as the dilation rates. The
LSTM module and Dilated ResBlock in our CARNet benefit
each other. In other words, the Dilated ResBlock has greater
capacity to affect the accuracy of the extraction of rain streaks
compared to the LSTM module. However, the advantage of the
LSTMmodule is that it can make full use of the information in
previous iterations [37]. Therefore, combining the benefits of
the LSTM module and Dilated ResBlock can greatly improve
the performance of single image deraining.
Gated Fusion Module. It is well known that fusing the

features of different levels can effectively achieve overall
performance improvement in deep learning [38], [39]. From
Fig. 2, three feature maps from different levels Fl, Fm and Fh
are fed into the gated subnetwork, and the recursive output
feature map Iout is computed as:

Iout = Wl ∗ Fl +Wm ∗ Fm +Wh ∗ Fh, (3)
where Wl, Wm and Wh are the weights obtained from the
gated fusion module and they correspond to each feature
level, respectively. The Gated Fusion module is a convolutional
layer, which has 3×64 and 3 channels for the input and output,
respectively. The input is the concatenation of Fl, Fm and Fh,
and the kernel size of the filter is 3 × 3.
Refinement Module. To further refine the derained images

and preserve more image details, two convolutional layers with
ReLU are adopted in the Refinement module. The size and
padding of the two filters are (7× 7, 3× 3) and (3 × 3, 1 × 1),
respectively. After six (6) recursive operations, Bim is regarded
as the input of the Refinement module to obtain the deraining
image Bout.

B. Loss Function

In recent studies, loss functions measuring the difference of
high-level feature representations, such as the loss on certain
layers in CNN [40], has demonstrated much better visual per-
formance than the per-pixel loss used in traditional CNNs [41].
However, as shown in Fig. 8(b), despite the fact that the
loss function measured on certain feature layers can obtain
better visual effect, it usually fails to achieve good quantitative
performance simultaneously. In order to further improve the
deraining performance of our CARNet, we propose a hybrid
loss function L, which is defined as:

L = Lp + Lssim, (4)
where Lp represents the perceptual loss and Lssim represents
the SSIM loss.
In Eq. 4, Lp is the feature loss from the layers relu1 2 and

relu2 2 of the VGG-16 model [42]. In order to obtain more
edge details from the deraining image, L1 norm is adopted

in the perceptual loss Lp to minimize the distance between
adjacent feature layers. In this paper, SSIM loss, denoted as
Lssim, is used to reduce the gridding artifacts caused by the
dilated convolution during the training process, and further
improve the quantitative performance of deraining. Different
from the negative SSIM loss in [9], our SSIM loss only needs
to calculate the similarity between the derained image Bout and
the corresponding ground-truth clean image BGT , i.e.

Lssim = 1 − SSIM(Bout, BGT ), (5)
where SSIM(·) indicates the similarity function.

C. CARNet Algorithm

By combing the previous two subsections with the content
of Fig. 2, Algorithm 1 summarizes the steps involved to train
our CARNet, where Num is the number of training images.

Algorithm 1 CARNet algorithm flow.
1: for i = 1; i < Num; i + + do
2: for t = 1; t < 7; t + + do
Step 1. Using the conv block to obtain the recursive input
feature map Iin;
Step 2. Adopting LSTM module, Dilated ResBlock and
Gated Fusion module to get the recursive output feature
map Iout with Eq. 3;
Step 3. Passing the deconv block to get the intermediate
rain streaks S im;
Step 4. Using Eq. 2 to obtain the intermediate background
image Bim for the next stage;

3: end for
Step 5. Regarding Bim as the input of the Refinement
module to obtain the deraining image Bout;
Step 6. Training with the hybrid loss function L in Eq. 4
and Eq. 5 to carry on the next loop;

4: end for

IV. EXPERIMENTS AND RESULTS

To demonstrate the performance of our proposed CARNet,
a series of experiments are conducted and compared with the
state-of-the-art methods [7], [10], [14], [11], [13], [8], [9]
using both synthetic and real-world images.
The proposed CARNet is implemented using Pytorch [43],
and is trained on a PC with Intel Core i7 CPU 3.6 GHz, 16GB
RAM and NVIDIA TITAN Xp. In our experiments, the patch
size is 100×100, and the batch size is 10. Adam is used as the
optimization algorithm and the models are trained for up to
80 epochs. The learning rate starts from 0.001 and is decayed
by 0.1 for every 30 epochs.

A. Datasets and Evaluation Metrics

Datasets. The proposed CARNet is first evaluated on three
synthetic datasets, namely, Rain100L [11], Rain100H [11] and
Rain800 [41]. Rain100L is a synthesized dataset with only one
type of rain streaks and is light rain. In Rain100H and Rain800,
the rain pixels contain different intensities and orientations,
and they are heavy rains. In addition, the real-world rainy
images used in [41], [9], [1] are adopted to demonstrate the
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TABLE I: Average PSNR and SSIM comparison (PSNR/SSIM) on the synthetic datasets Rain100L [11] and Rain100H [11]. The best and
second best results are highlighted in red and green, respectively.
Method GMM [7] DDN [10] RGN [14] JORDER [11] RESCAN [13] GCANet [8] PReNet [9] CARNet
Rain100L 28.66/0.865 32.16/0.936 33.16/0.963 36.61/0.974 - 35.03/0.957 37.48/0.979 38.34/0.981
Rain100H 15.05/0.425 21.92/0.764 25.25/0.841 26.54/0.835 28.88/0.866 27.12/0.821 29.46/0.899 30.62/0.907

TABLE II: Quantitative comparison on Rain800 [41]. The best and second best results are highlighted in color. � means the metrics are cited
from [45].
Method Rainy image GMM [7] DDN [10] RGN [14] JORDER [11]� RESCAN [13] GCANet [8] PReNet [9] CARNet
PSNR 22.60 22.86 25.22 25.57 26.03 27.70 27.68 26.43 28.12
SSIM 0.707 0.742 0.841 0.850 0.850 0.867 0.879 0.888 0.896

(a) Input: 27.36/0.816 (b) GCANet: 37.73/0.967 (c) PReNet: 36.96/0.977 (d) CARNet: 41.13/0.989 (e) Ground truth: Inf/1

Fig. 4: Qualitative comparison and PSNR/SSIM of deraining results by GCANet [8], PReNet [9] and our CARNet on an image from
Rain100L.

(a) Input: 11.88/0.272 (b) DDN [10]:27.21/0.810 (c) RESCAN [13]:29.13/0.881 (d) JORDER [11]:25.51/0.807

(e) Ground truth: Inf/1 (f) GCANet [8]:28.72/0.856 (g) PReNet [9]:30.28/0.909 (h) CARNet: 31.25/0.928

Fig. 5: Qualitative comparison and PSNR/SSIM of deraining results by DDN [10], RESCAN [13], JORDER [11], GCANet [8], PReNet [9]
and our CARNet on an image from Rain100H.

effectiveness of our CARNet. These rainy images are used for
evaluation purpose only.

Evaluation Metrics. In our experiments, two widely used
metrics, namely, Peak Signal to Noise Ratio (PSNR) [44]
and SSIM, are adopted as the quality metrics, and both
are calculated using the same methods as in [9]. Generally

speaking, the higher the values of PSNR and SSIM, the better
the rain removal effect.

B. Evaluation on Synthetic Datasets

In this subsection, we compare the quantitative and qualita-
tive performance of different methods on Rain100L, Rain100H
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TABLE III: Comparison of our CARNet (t = 6) with four loss
functions on Rain100H. The best results are highlighted in red.
Loss Rainy image Lp L0(Lp + Lpw−L2) L1(Lp + Lpw−L1) L(Lp + Lssim)
PSNR 13.55 28.34 29.93 30.31 30.62
SSIM 0.379 0.835 0.893 0.898 0.907

TABLE IV: Comparison of our CARNet with different t on
Rain100H. The best results are highlighted in red.
Stage 2 3 4 5 6 7
PSNR 27.27 28.74 30.38 30.41 30.62 30.18
SSIM 0.878 0.899 0.904 0.907 0.907 0.902

TABLE V: Comparison of our CARNet on Rain100H with/without
the Refinement Module (RM) using two loss functions. The best
results are highlighted in red.
RM + Loss Rainy image without RM + L0 without RM + L with RM + L
PSNR 13.55 22.85 29.65 30.62
SSIM 0.379 0.771 0.887 0.907

and Rain800 datasets.
Quantitative results of Li et al. [7], Fu et al. [10], Fan et

al. [14], Yang et al. [11], Li et al. [13], Chen et al. [8],
Ren et al. [9] and our CARNet on Rain100L and Rain100H
are tabulated in Table I. Note that, except for Chen et al. [8]
and our CARNet, the results of other methods in Table I are all
cited from [9]. As for GCANet [8], we retrain it on Rain100L
and Rain100H with the default settings. As shown in Table I,
our CARNet achieves superior quantitative performance.
To make it easier for readers to understand qualitatively,

two groups of comparative experiments are presented. As
described in Section I, the proposed CARNet is inspired by
the ideas of [9] and [8]. Therefore, we firstly compare the
deraining results obtained by our CARNet and those obtained
by GCANet [8] and PReNet [9] on Rain100L, as shown in
Fig. 4.
From Fig. 4, GCANet [8] still retains a signification portion

of rain traces after rain removal, and PReNet [9] mistakenly
removes part of the sailing ropes as rain streaks. In contrast,
our CARNet is able to retain the details of the deraining
images while effectively removing the rain streaks.
Fig. 5 shows the deraining results of different methods

on Rain100H. From qualitative perspective, both PReNet [9]
and our CARNet have obtained comparable results, with the
rain streaks completely removed. In comparison, visible dark
noises along rain directions can still be observed from the
results achieved by the other methods [9].
To further evaluate the performance of our CARNet,

Rain800 is adopted to train DDN [10], RGN [14], RES-
CAN [13], GCANet [8], PReNet [9] and our CARNet. It
should be noted that DDN [10], RGN [14], RESCAN [13],
GCANet [8] and PReNet [9] are retrained with the default
settings. From Table II, our CARNet obtains the highest scores
in terms of PSNR and SSIM. As shown in Fig. 6, it can be
seen that our CARNet is able to successfully remove the rain
streaks and better preserve image details.

C. Evaluation on Real-World Rainy Images

The real-world rainy images contain rain streaks with dif-
ferent scales and complex degradation. In this subsection, two
real-world rainy images, i.e., ‘Outdoor rain’ and ‘Courtyard

rain’, are used to compare the effectiveness of different meth-
ods, as shown in Fig. 7.
For the real rainy image ‘Outdoor rain’, one can see that

the rain removal effect of GMM [7] (see Fig. 7(b)) is not
obvious. DDN [10], JORDER [11] and GCANet [8] are able
to remove majority of the rain streaks, but they still leave some
rain residuals or traces in the derained images. Holistically
speaking, RGN [14], RESCAN [13] and PReNet [9] achieve
rain removal effect as good as our CARNet.
From the deraining results on the real rainy image ‘Court-

yard rain’, there are obvious rain streaks in the results obtained
by GMM [7], DDN [10], JORDER [11], RESCAN [13] and
GCANet [8]. RGN [14] and PReNet [9] tend to add extra
artifacts in the deraining images. In comparison, our CARNet
obtains a clearer deraining result.
Therefore, in general, our CARNet outperforms the above

methods in terms of rain streaks removal and image details
preservation.

D. Ablation Studies

In our proposed CARNet, there are three important part-
s, i.e., loss function, iteration number and Refinement module.
In this subsection, we discuss their respective characteristics.
All the ablation studies are conducted on Rain100H.
Impact of the Hybrid Loss Function. To demonstrate the

effectiveness of our proposed hybrid loss function, we train
four of our CARNet models by minimizing 1) the L1-norm
perceptual loss, denoted as Lp, 2) the hybrid loss function
L0 = Lp+Lpw−L2, where Lpw−L2 is the pixel-wise L2-norm loss,
3) the hybrid loss function L1 = Lp + Lpw−L1, where Lpw−L1
is the pixel-wise L1-norm loss, and 4) the default hybrid loss
function L = Lp + Lssim in Eq. 4, respectively.
Table III lists their PSNR and SSIM values obtained on

Rain100H. Fig. 8 illustrates the deraining results with the four
loss functions with our CARNet model. In general, we can get
a good rain removal effect by using any of Lp, L0, L1 or L.
However, from Fig. 8(c), it leaves a little bit of rain traces and
appears a little unnatural. That is because L2-norm correlates
poorly with image quality as perceived by a human observ-
er [46]. In addition, by looking at Fig. 8(b) with a zoomed-in
mode, there are some gridding artifacts which contribute to the
low quantitative score. That is because we adopt the dilated
convolution to increase the original receptive field, which also
produces gridding artifacts [47]. In comparison, as shown in
Fig. 8(e) or (f), combining with Lpw−L1 or Lssim, the gridding
artifacts have been greatly alleviated. Meanwhile, we have
achieved better quantitative scores from Table III. Holistically
speaking, the hybrid loss function L1 produces rain removal
effect as good as our default hybrid loss function L. However,
it is inferior to ours in terms of structural restoration, such
as the edge of the moon. Therefore, the proposed CARNet is
trained with the hybrid loss function L.
Impact of the Iteration Number. As described in [13],

the network model with iterations can improve deraining
performance stage by stage. Table IV lists the PSNR and SSIM
values of our CARNet with stages t = 2, 3, 4, 5, 6, 7. In general,
the larger the iteration number, the higher the average values
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(a) Input: 21.38/0.655 (b) GMM [7]: 19.98/0.713 (c) DDN [10]: 20.46/0.809 (d) RESCAN [13]: 23.00/0.828

(e) Ground truth: Inf/1 (f) GCANet [8]: 23.18/0.829 (g) PReNet [9]: 20.48/0.853 (h) CARNet: 27.27/0.878

Fig. 6: Qualitative comparison and PSNR/SSIM of deraining results obtained with GMM [7], DDN [10], RESCAN [13], GCANet [8],
PReNet [9] and our CARNet on an example image from Rain800.

(a) Input (b) GMM [7] (c) DDN [10]

(d) RGN [14] (e) JORDER [11] (f) RESCAN [13]

(g) GCANet [8] (h) PReNet [9] (i) CARNet

Fig. 7: Visual quality comparison of deraining results by GMM [7], DDN [10], RGN [14], JORDER [11], RESCAN [13], GCANet [8],
PReNet [9] and our CARNet on two real rainy images (see in a zoomed-in mode).
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(a) Input: 10.93/0.117 (b) Lp: 33.21/0.861 (c) L0(Lp+Lpw−L2): 35.73/0.946

(d) Ground truth: Inf/1 (e) L1(Lp+Lpw−L1): 36.46/0.957 (f) L(Lp+Lssim): 37.77/0.965

Fig. 8: Qualitative comparison and PSNR/SSIM scores of our CARNet models trained with four different loss functions (see in a zoomed-in
mode).

(a) Input: 16.20/0.511 (b) t=2:28.84/0.910 (c) t=4:30.97/0.925

(d) Ground truth: Inf/1 (e) t=6:31.54/0.929 (f) t=7:30.22/0.917

Fig. 9: Qualitative comparison and PSNR/SSIM of our CARNet trained by different iteration numbers.

of PSNR and SSIM. However, a larger t also means that the
network model will become more difficult to train. Table IV
and Fig. 9 show that when the value of t is larger than 6,
the deraining performance of our CARNet drops significantly.
Thus, we choose t = 6 in our CARNet for all of the above
experiments.

Effectiveness of the Refinement Module. In this paper,
the Refinement module is cascaded with the Recurrent Body

for further improving the deraining output. To demonstrate
its effectiveness, combining with the loss function, we retrain
our CARNet using two loss functions without the Refinement
module, separately. As shown in Table V, we obtain the best
result with the default settings, i.e., with RM + L, compared
to the other two cases. That is to say, the Refinement module
is able to effectively enhance the performance of rain removal.
In addition, it can be seen from Fig. 10 (c) and (d) that the
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(a) Input: 15.72/0.530 (b) w/o RM + L0:24.93/0.848 (c) w/o RM + L:27.16/0.886 (d) with RM + L:27.69/0.902 (e) Ground truth: Inf/1

Fig. 10: Qualitative comparison and PSNR/SSIM of deraining results by our CARNet on an image from Rain100H with/without (without is
abbreviated as “w/o”) the Refinement Module (RM) using the two loss functions (see in a zoomed-in mode).

(a) Light rainy image (b) Moderate rainy image

(c) Heavy rainy image (d) Heavy rainy image

Fig. 11: Real-world examples of object detection. Left: Detection results on rainy images using Faster R-CNN (referred to as “direct
detection”); Right: Detection results on deraining images obtained by our CARNet using Faster R-CNN (referred to as “deraining + detection”).

Refinement module makes sure finer image details are well
preserved. Therefore, our CARNet consists of the Refinement
module.

E. Evaluation on Object Detection Results

Single image deraining can be regarded as a preprocessing
step to improve the performance of other high level vision
tasks such as face recognition and object detection [2]. To
ascertain deraining performance improvement using our CAR-
Net, four visual results of object detection by combing with
the popular Faster R-CNN model [48] are shown in Fig. 11.
Four real-world rainy images coming from [41], [9], [1] are
adopted with one image corresponding to light rain, one for
moderate rain and two for heavy rain. The results are shown
in Fig. 11.
It is clear that, after being preprocessed by our CARNet, the

detection performance has a noticeable improvement over the
naive Faster R-CNN. It is worth mentioning that in Fig. 11(d),
given the heavy rain conditions, we can not detect anything
using Faster R-CNN without deraining. After the rain removal
by our CARNet, it is labeled correctly as ‘Person’. In addition,
300 real rainy images from [1] are used to collect statistics
of the impact of rain removal on object detection. From our
experimental results, when using the ‘deraining + detection’

method, the number of detected objects increases from 954
to 1061. That is to say, the derained images obtained by our
CARNet can improve the object-detection effect.

V. CONCLUSION

In this paper, we have proposed an end-to-end context ag-
gregation recurrent network, called CARNet, for single image
deraining. Our CARNet consists of the Recurrent Body and the
Refinement module, and aims to learn the rain streaks using
the context information and feature reuse. During the training
process, we have proposed a hybrid loss function of perceptual
loss with L1 norm and SSIM loss to reduce the gridding
artifacts caused by the dilated convolution and have obtained
better visual quality. Detailed experiments and comparisons
on synthetic and real rainy images have demonstrated that our
CARNet outperforms the state-of-the-art methods.
For future work, the semi-supervised and un-supervised
methods for single image deraining have attracted more and
more attention, as shown in [33], [34]. We will extend our
work to the semi-supervised learning for deraining in future.
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