“© 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for
all other uses, in any current or future media, including reprinting/republishing this material for
advertising or promotional purposes, creating new collective works, for resale or redistribution to
servers or lists, or reuse of any copyrighted component of this work in other works.”



DENet: A Universal Network for Counting Crowd
with Varying Densities and Scales

Lei Liu, Jie Jiang, Wenjing Jia, Member, IEEE, Saced Amirgholipour, Yi Wang, Michelle Zeibots, Xiangjian
He, Senior Member, IEEE

Abstract—Counting people or objects with significantly varying
scales and densities has attracted much interest from the research
community and yet it remains an open problem. In this paper,
we propose a simple but efficient and effective network, named
DENet, which is composed of two components, i.e., a detection
network (DNet) and an encoder-decoder estimation network
(ENet). We first run the DNet on the input image to detect and
count individuals who can be segmented clearly. Then, the ENet
is utilized to estimate the density maps of the remaining areas,
typically with low resolution and high densities where individuals
cannot be detected. For this purpose, we propose a modified
Xception network as the encoder for feature extraction and a
combination of dilated convolution and transposed convolution
as the decoder. When evaluated on the ShanghaiTech Part A,
UCF and WorldExpo’10 datasets, our DENet has achieved lower
Mean Absolute Error (MAE) than those of the state-of-the-art
methods.

Index Terms—Crowd counting, Density estimation, Detection

I. INTRODUCTION

Vision-based techniques for accurately counting or estimat-
ing the number of people (or objects) in a crowded scene are
desirable techniques in many real world applications including
visual surveillance, traffic monitoring and crowd analysis.
This is true especially in restricted, public places such as
train stations, where incidents, traffic delay and even terrible
stampedes have been reported due to overcrowding in these
places. However, various real-world situations, such as heavy
occlusions, cluttered background, size and shape variations of
people, and perspective distortion, have posed great challenges
for practical solutions capable of handling such situations.
Thus, accurate counting in crowded scenes is still an open
and popular research problem.

Existing crowd counting approaches can be classified to
three types, i.e., detection-based methods, regression-based
methods and CNN-based methods. The detection-based meth-
ods [1] [2] [3] [4] [5] [6] can only detect large scale
people and cannot handle high density crowd images. The
regression-based methods [7] [8] [9] [10] [11] [12] have
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Fig. 1. The architecture of the proposed DENet

difficulties in preserving the high-frequency variation in the
density map. With the development of CNNs, CNN-based
methods [13] [14] [15] [16] [17] [18] [19] have improved the
performance of crowd counting dramatically, which mainly
focus on improving the scale invariance of feature representa-
tion.

We find that most of the CNN based methods concentrate
on model design and loss function design. They all try to
solve the perspective distortion problem. Can we combine the
advantages of the detection based methods and the CNN based
methods?

In our work, we propose a simple but an efficient and effec-
tive solution. We first run a detection network (the ‘DNet’) on
an input image to detect and count the detected people who
can be segmented clearly. These segmented people areas are
then removed from the input image. Then, an encoder-decoder
estimation network (the ‘ENet’) is utilized to generate the
density map over the crowded areas where individual people
cannot be segmented. Furthermore, to combine the advantages
of detection and estimation, we propose a novel loss function
to train the ENet. The loss is composed of a Euclidean loss
and a counting loss. The Euclidean loss is used to generate
accurate heat maps and the counting loss is to compare the
number of predicted people and the ground truth.

The main contributions of our work are summarized as
follows.

o We propose a novel network structure, namely Detection-
Estimation Network (simplified as ‘DENet’) for accu-
rately and efficiently counting crowds of varying densi-
ties. The structure improves the multi-scale representation



of the learned network and can produce high-resolution
density maps. When applying our DENet structure to
some state-of-the-art crowd-counting networks, all esti-
mation accuracies have been improved to some extent,
demonstrating the applicability of our core idea.

o To further improve the generality of the estimation net-
work for different scales, we propose a novel estima-
tion network (‘ENet’), which uses a modified Xception
architecture as the encoder and combines the dilated
convolution and transposed convolution as its decoder.

e« We propose a new loss function for training the two
networks jointly. The function combines a Euclidean loss
and a newly proposed counting loss. The Euclidean loss
measures the estimation error at the pixel level, and the
counting loss measures the counting error of people over
the whole image.

« Extensive experiments on several challenging benchmark
datasets are conducted to demonstrate the superior perfor-
mance of our approach over the state-of-the-art solutions.

II. RELATED WORK

Early works addressing the crowd counting problem mainly
follow the counting-by-detection framework [20], which uses
body or part-based detectors to detect individual people in
crowd images. These methods require well-trained classifiers
to extract low-level features (e.g., Haar wavelets [21] and
HOG-histogram oriented gradients [5]) from a whole human
body. Recent approaches seeking an end-to-end solution using
CNN-based object detectors such as YOLO3 [1], SSD [2],
Fast R-CNN and Faster R-CNN [3] have greatly improved the
detection accuracy. Mask R-CNN [22], proposed by He, can
not only detect objects, but also segment them from the back-
ground. Although detection-based crowd counting methods are
successful for dealing with scenes with low crowd density,
when it comes to highly congested environments where only
parts of the whole objects are visible, the performance of these
detection-based approaches, affected by the size of the targets
and occlusions, always degrades significantly. This poses great
challenges to object detectors.

The feature-regression-based approaches, as proposed
in [13], [23], [14], [7], [24], aim to obtain the density function
of an image containing people and then calculate the total
count by integrating the density function over the whole image
space. More features, such as foreground and texture features,
have been used for generating low-level information [25].
Following similar approaches, Idrees et al. [10] proposed
a model to extract features by employing Fourier analysis
and SIFT (Scale-Invariant Feature Transform) [26] interest-
point based counting. They have demonstrated a countable
solution for handling highly crowded scenes. Recently, CNN-
based approaches have shown a remarkable success for crowd
counting because of their excellent representation learning
ability. Zhang et al. [13] designed a multi-column CNN
(MCNN) to tackle the large scale variation in crowd scenes.
With a similar idea, Onoro and Sastre [7] proposed a scale-
aware network, called Hydra, to extract features at different
scales. Very recently, inspired by MCNN, Sam et al. [14]

presented the Switch-CNN, which trained a classifier to select
the optimal regressor from multiple independent regressors
for specific input patches. Sindagi et al. [15] proposed to
consider the global and local contextual information by using
four modules. They used a combination of adversarial loss
and pixel-wise Euclidean loss to improve the accuracy of the
density map.

Liu et al. proposed DecideNet [27], which adaptively
adopted detection and regression based count estimations
under the guidance of an attention mechanism. Li ef al. [16]
proposed CSRNet by using VGG-16 [28] to extract feature
and dilated convolution layers, to generate the density map.
Cao proposed SANet [17] by combining the Euclidean loss
and counting loss, and used a set of transposed convolutions
to create high-resolution density maps.

The most recent works, e.g., [13] [14] [15], have attempted
to address the scale variation issue with multi-scale architec-
tures. They used CNNs with different field sizes to extract fea-
tures adaptive to the large variation in people sizes, and have
achieved significant improvements. Since the high-resolution
density maps contain finer details, we believe that it is of great
value to develop crowd density estimation techniques that can
produce high-resolution and high-quality density maps. How-
ever, there exist the following limitations in existing crowd
counting works dealing with varying crowdedness. Most of the
work has focused on either density estimation or people de-
tection. Although some of the recent works have attempted to
develop an adaptive network by combining density estimation
and people detection, they are only suitable for low density
scenes and are very inflexible. For example, DecideNet [27]
introduced a ratio that needs to be retrained each time when
the ratio of high-density areas to low-density areas changes.
This inflexibility poses practical issues for applications. Some
recently published works, e.g., [18] [19] [29] [30], proposed
new loss functions. Moreover, in existing CNN-based methods,
the input of an estimation network is typically the whole
image, where people of different scales are all annotated as
dots of the same scale in the heat map. However, it is difficult
to learn a network that can produce similar performance with
inputs of different scales.

III. PROPOSED ALGORITHM

To address the varying scale issues, we follow the two points
discussed above and propose a novel encoder-decoder net-
work, named Detection-Estimation Network (DENet), which
architecture is shown in Fig. 1. Inspired by the success of
Mask R-CNN [22] on object detection, we first adopt Mask
R-CNN to detect and segment people who can be clearly
differentiated from the crowd, and then we propose a novel
estimation network to estimate the density map for the areas
where individuals cannot be segmented due to high crowd-
edness. We modify Xception [31] to be the encoder of the
estimation network so as to improve the representation ability
and scale diversity of features. The decoder is composed of a
set of dilated convolutions [32] and transposed convolutions.
It is used to generate high-resolution and high-quality density
maps, of which the sizes can be exactly the same as that of the
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Fig. 2. The modified Xception in our DNet

input images. This section presents the details of our proposed
DENet. Moreover, we propose a new loss function.

A. DNet

Mask R-CNN proposed in [22] has further advanced Faster
R-CNN [3] by adding a branch for predicting an object mask in
parallel with the existing branch for bounding box recognition.
Thus, Mask R-CNN can not only detect objects but also
segment them from the input image. We adopt Mask R-CNN
as our DNet in our work and we only retain large people
segmented by DNet, because the smaller the size of the people,
the greater the number of miss detections and false detections.

B. ENet

As shown in Fig. 1, our estimation network consists of
two components, i.e., feature map encoder (FME) and density
map estimator (DME). We adopt a modified Xception as the
FME to extract features, and a set of dilated convolutions and
transposed convolutions as DME to create high-resolution and
high-quality density maps.

FME: Following the similar idea in [31], we modify Xcep-
tion to form an FME of the estimation net because it has been
widely used as the encoder for feature extraction. Moreover,
based on our observation, the performance of the network for
our counting task is not sensitive to the number of network
parameters and using fewer parameters does not degrade the
counting accuracy significantly. Thus, in order to reduce the
computation complexity, we have removed four blocks from
the original Xception architecture, and have achieved similar
accuracy. The architecture of the modified Xception is shown
in Fig. 2.

For the DME, while density-estimation-based approaches
take the spatial information into account, the outputs of these
works are mostly of low-resolution due to several pooling
layers, and hence cause the loss of detail compared with the
ground truth. Inspired by the approaches of CSRNet [16] and
SANet [17], the dilated convolution can keep more details than
the traditional convolution, and the transposed convolution can
alleviate the loss of information. Therefore, in our work, we
deploy a combination of dilated convolutions and transposed
convolutions as the decoder for the ENet to create high-
resolution and high-quality density maps.

Fig. 3 shows the architecture of the DME of our ENet. Three
pairs of convolution layer and transposed convolutional layer
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Fig. 3. The architecture of the DME in our DNet

are added after FME. The size of the filters in convolution
layer ranges from 7 x 7 to 3 x 3, and each transposed
convolutional layer doubles the size of the output of the
previous layer. A set of dilated convolutional layers are added
after the last transposed convolutional layer to keep the details
of feature maps. Then, a 1 x 1 convolution layer is added after
the last dilated convolutional layer to generate density maps.
ENet focuses on the features of high density parts in the input
image, and hence facilitates the feature learning in the model.
The size of density maps generated by ENet are the same as
the size of the input image.

C. Loss function

Since it is unavoidable that the DNet may miss detecting
some targets, even with a highly accurate ENet, the total
number of the estimated people will not be correct. To solve
this problem, in our DENet, in order to learn a model that can
achieve more accurate density maps, we propose to integrate
the Euclidean loss with a new counting loss. Euclidean loss
is used to measure the pixel-level density map error. Counting
error is the difference between the ground-truth number of
people and the sum of the number of people obtained by
detection and the number of people obtained by density
estimation. We propose to consider counting loss to measure
counting error. Mathematically, this can be illustrated as below.

Let Lr denote the Euclidean loss, which measures the
estimation error at pixel level and is defined as:

1
Lp = % [IF(X) = Y(X)]l3, (M

where N is the number of pixels in the density map, X is the
input image, Y'(X) is the corresponding ground-truth density
map, and F'(X) denotes the estimated density map. Following
the approach proposed by [33], we use Lo to measure the
difference between the ground truth number of people and the
sum of the numbers of people detected and estimated. Lc,
which represents the total computing loss, is defined as:

(Ner — Np — Ng) 2
(NGTfNDJrl) ’

where Ngr is the ground-truth of the total number of people
in an input image, and Np and Ng are the numbers of people
obtained by the detection and estimation, respectively. In case
DNet detects all the people, we add 1 in the denominator
of this equation to avoid the denominator becoming zero. By

Le = || )



weighting the above two loss functions equally, we define the
final loss function as:

Loss = Lg + L¢, 3)

IV. IMPLEMENTATION DETAILS

In this section, we provide more details of training the
proposed DENet, generating ground truth and performance
evaluation metrics.

A. Training DENet

The weights in DNet are from a well-trained Mask R-CNN.
For the ENet, all of the convolution layers are initialized
with zero. During the training of ENet, Adam is used as
the optimizer. During the training stage, we use the whole
images to train the network, where each training image is
augmented (flipping horizontally and vertically, etc) four times
for training.

The implementation of our approach is based on the Py-
Torch framework [34]. The hardware test-bed is GPU: P5000,
CPU: Xeon e5, RAM: 16G. We train every dataset for 400
epochs, the learning rate is 1-e6, and decreases as the iteration
increases, batch size is 4. The training time for each dataset
is different: Shanghai Tech PartA: 20h; Shanghai Tech PartB:
26h; UCSD: 14h; UCF: 30h; WorldExpo’10: 96h.

B. Ground truth generation

Ground truth generation is similar to that in existing
works [13], [16], [17], where annotations for crowd images
are dots at the center of pedestrians’ heads, and the ground
truth density functions are generated at each of the dots. We
generate the ground truth by blurring the dot map with a
Gaussian kernel (which is normalized to 1). The density map
is defined as:

F(z) =Y o(x— i) % Go,(2). )

=1

To generate the density map, the dot map o(z — x;) is
convolved with a Gaussian kernel of a standard deviation o,
where z; is the position of the pixel at the i** dot in the image.
In our experiments, we follow the configuration in [16], where
different datasets use Gaussian kernels of different values of
o.

Note that all the Gaussian functions are summed and
normalized, so that the total object count is preserved even
when there is overlapping between targets.

C. Evaluation metrics

In previous work, for crowd density estimation, two metrics
have been widely used to measure the counting error, ie.,
Mean Absolute Error (MAE) and Mean Squared Error (MSE),
defined as:

N
1 GT
MAE:N|§ IC; — CET| (5)

i=1

TABLE I
STATISTICS OF DIFFERENT DATASETS

Dataset Images  Annotations  Average Count
ShanghaiTech [13] 1198 33,0165 501
UCF [10] 50 63,974 1279
UCSD [8] 2000 49,885 29
World expo [35] 3980 199,923 56
UCF-QNREF [36] 1535 1,251,642 815
and
1 N
MSE = N|Z|ci —06T|2, (6)
i=1

where N is the number of images in the test set and CE7 is
the ground truth count of people in the i*" test image. C; is
the estimated number counted in the i*" test image. This is
defined as:

C; = Ng + Np, @)

where Np and Npg are the numbers of people obtained by
detection and estimation, respectively. Roughly speaking, the
lower the MAE and MSE, the better accuracy the estimation.

V. EXPERIMENTS

We evaluate the performance of our approach on five public
datasets, i.e., ShanghaiTech, UCF, UCSD, WorldExpo’10, and
UCF-QNRF [10], [8], [13], [35], [36] and compare with state-
of-the-art methods [16], [17]. The details of each dataset are
shown in Table I. In this section, we first present comparative
experimental results on the above benchmark datasets. Then
an ablation study conducted on the ShanghaiTech dataset is
included to analyze the effect of applying our baseline idea of
combining detection and estimation.

A. Results on the ShanghaiTech dataset

The ShanghaiTech crowd counting dataset was firstly in-
troduced by Zhang et al. [13]. This includes 1198 annotated
images and in total 330,165 annotated people. This dataset
is composed of two parts A and B, containing 482 and 716
images respectively. Images in Part A were downloaded from
Internet and images in Part B were captured from streets in
Shanghai. Moreover, images in Part A have more people in
each image than that of the Part B images. In our experiments,
300 images of Part A were used for training and the other
182 images were used for testing. Similarly, for Park B, 400
images were used for training and the other 316 images were
used for testing. The result of our method and other recent
works are compared in Table II. As shown in the table, our
method has achieved the lowest MAE (i.e., the best accuracy)
in ShanghaiTech Part A and achieved the second lowest MAE
on ShanghaiTech Part B. Some sample images together with
their results can be found in Fig. 4 on ShanghaiTech Part A
and Fig. 5 on ShanghaiTech Part B.



TABLE II
COMPARISON WITH STATE-OF-THE-ART METHODS ON THE
SHANGHAITECH DATASET

partA partB
Methods MAE MSE MAE MSE
Zhang et al [35] 181.8 2777 320 49.8
MCNN [13] 1102 1732 264 413
Huang et al [37] - - 20.2 35.6
Switch-CNN [14] 90.4 135.0  21.6 30.1
CP-CNN [15] 73.6 1064 20.1 30.1
CSRNet [16] 68.2 115.0 10.6 16.0
SANet [17] 67.0 104.5 8.4 13.6
ic-CNN [38] 68.5 116.2 10.7 16.0
DENet (ours) 65.5 101.2 9.6 154

GT Count: 568

GT Count: 1068

Fig. 4. Visualization of the estimated density maps of ShanghaiTech Part A
using our approach.

B. Results on UCF CC 50 dataset

The UCF CC 50 dataset includes 50 annotated images
with 63,974 people in total. This dataset is downloaded from
Internet with different perspective and resolutions [10]. The
number of annotated people in each image ranges from 94 to
4543, and the average number of people per image is 1,280.
5-fold cross-validation is used to evaluate the performance,
which follows the standard setting in [10]. The comparison
results are presented in Table III and the visual qualities of
generated density maps can be found in Fig. 6.

C. Results on UCSD dataset

The UCSD dataset [8] has 2000 images taken from surveil-
lance cameras with total 49,885 annotated people. The number
of people in one image varies from 11 to 44 and the size
of individual people in the image are similar. Following [8],
the training set contains 800 images and the rest of the 1200
images are used for testing. Most people can be detected by
DNet, and the results of UCSD dataset are shown in Table IV.
The proposed algorithm outperforms existing methods except

Detected:27
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Detected:40
Estimated:157
Total:197

Detected:38
Estimated:473
Total:511

Detected:34
Estimated:419
Total:453

Fig. 5. Visualization of the estimated density maps of ShanghaiTech Part B
using our approach.

Detected:100
E ted: 1568
Total:1668

Total:1142

Fig. 6. Visualization of the estimated density maps of UCF dataset using our
approach.

for the SANet [17] and Huang et al [37] in the MAE category.
We provide more results in Table IV and Fig. 7.

D. Results on WorldExpo’10 dataset

The WorldExpo’10 dataset [35] includes 3,980 annotated
images from 1,132 video sequences taken from 108 surveil-
lance cameras, which have 199,923 annotated people. This
dataset consists of 3,380 images for training, and has five
subsets each containing 120 images, for testing with different



TABLE III
COMPARISON WITH STATE-OF-THE-ART METHODS ON THE UCF DATASET

Methods MAE MSE
Zhang et al [35] 467.0 498.5
MCNN [13] 377.6  509.1
Huang er al [37]  409.5 563.7
Hydra-2s [7] 333.7 4253
Switch-CNN [14]  318.1 439.2
CP-CNN [15] 295.8 3209
CSRNet [16] 266.1 397.5
SANet [17] 2584 3349
ic-CNN [38] 260.9 365.5
DENet (ours) 2419 3454

- . Detected: 11
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Fig. 7. Visualization of the estimated density maps of UCSD using our
approach.

TABLE IV
COMPARISON WITH STATE-OF-THE-ART METHODS ON THE UCSD
DATASET

Methods MAE MSE
Zhang et al [35] 1.60 3.31
MCNN [13] 1.07 1.35
Huang et al [37] 1.00 1.40
CCNN [7] 1.51 -
Switch-CNN [14] 1.62 2.10
CSRNet [16] 1.16 1.47
SANet [17] 1.02 1.29
DENet (ours) 1.05 1.31

scenes. We train our model following the instructions given in
Section IV-A. Results are shown in Table V and Fig. 8. The
proposed DENet delivers the best MAE in Scenel, Scene2 and
Scene3, and it achieves the best accuracy on average.

E. Results on UCF-QNRF dataset

The UCF-QNRF dataset was released by [36]. It contains
1535 high resolution images with 199,923 annotated people.
The number of people in one image varies from 815 to 12865.
The training dataset and testing sets contains 1,201 images and
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Fig. 8. Visualization of the estimated density maps of WorldExpo’10 for
using our approach.

334 images, respectively. The results for UCF-QNRF dataset
are shown in Table VI. The proposed algorithm outperforms
existing methods in the MAE category.

F. Ablation studies

To demonstrate the effectiveness of our DENet idea, we
implemented the MCNN and CSRNet to train them with our
baseline idea of combining detection with the Mask R-CNN
and their density-estimation networks. Based on the MCNN
and CSRNet models, several ablation studies are conducted on
the ShanghaiTech Part A and ShanghaiTech Part B datasets.
The evaluation results are reported in Table VII. As shown
in this table, all results are improved over those originally
reported in [13] and [16]. Thus, we can conclude that most
of the crowd counting estimation networks can be improved
with our baseline idea.

VI. CONCLUSION

In this paper, we have proposed a novel encoder-decoder
architecture, which is called DENet, for accurate crowd count-
ing. We used the Mask R-CNN to detect and segment people
who can be clearly segmented, and have proposed a novel
estimation network to create density maps. The numbers of
detections and estimations are added to calculate the total num-
ber of people. By taking advantage of the dilated convolutional
layers and transposed layer, our estimation network can create
high-quality density maps without losing resolution. We have
proposed a new loss function that combines counting loss and
Euclidean loss to train our estimation network. Experiments
have shown that our method has achieved better performance



TABLE V
COMPARISON WITH STATE-OF-THE-ART METHODS ON WORLDEXPO’ 10 DATASET

Method Scenel  Scene2  Scene3  Scene4  SceneS  Average

Zhang et al [35] 9.8 14.1 14.3 222 3.7 12.9
MCNN [13] 34 20.6 12.9 13.0 8.1 11.6
Huang et al [37] 4.1 21.7 11.9 11.0 35 10.5
Switch-CNN [14] 4.4 15.7 10.0 10.4 5.8 8.9
CP-CNN [15] 29 14.7 10.5 10.4 5.8 8.9
CSRNet [16] 29 11.5 8.6 16.6 34 8.6
SANet [17] 2.8 14.0 10.2 12.5 35 8.6
ic-CNN [38] 17.0 12.3 9.2 8.1 4.7 10.3
DENet (ours) 2.8 10.7 8.6 15.2 35 8.2

TABLE VI
COMPARISON WITH STATE-OF-THE-ART METHODS ON THE UCF-QNRF
DATASET

Methods MAE MSE

MCNN [13] 277 426

Switch-CNN [14] 228 445

[36] 132 191

CSRNet [16] 129 209

DENet (ours) 121 205
TABLE VII

COMPARISON OF THE ESTIMATION ERROR OF TWO DIFFERENT NETWORK
CONFIGURATIONS, i.e., MCNN [13] AND CSRNET [16], COMBINING
WITH OUR IDEA, i.e., MASK R-CNN + MCNN AND MASK R-CNN +

CSRNET.
partA partB
Methods MAE MSE MAE MSE
MCNN [13] 1102 1732 264 413
Mask R-CNN + MCNN  105.6 164.1 232 37.5
CSRNet [16] 68.2 1150  10.6 16.0
Mask R-CNN + CSRNet  67.5 1121  10.1 15.5

on some major crowd counting datasets compared to the state-
of-the-art methods.
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